JPH1137666A - Chlorine generator of sea water cooling power plant - Google Patents
Chlorine generator of sea water cooling power plantInfo
- Publication number
- JPH1137666A JPH1137666A JP18979097A JP18979097A JPH1137666A JP H1137666 A JPH1137666 A JP H1137666A JP 18979097 A JP18979097 A JP 18979097A JP 18979097 A JP18979097 A JP 18979097A JP H1137666 A JPH1137666 A JP H1137666A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen gas
- generator
- chlorine
- cooling
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は海水を使用して復水
器等を冷却するようにした海水冷却型の発電プラントに
おける塩素発生装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chlorine generator for a seawater-cooled power plant in which seawater is used to cool a condenser or the like.
【0002】[0002]
【従来の技術】冷却水に海水を用いる発電プラントにお
いては、復水器に冷却水を供給する循環水ポンプや、海
水取水管等の海水採取・供給経路に貝類などの海洋生物
の付着や、雑菌の侵入がある。2. Description of the Related Art In a power plant that uses seawater for cooling water, a circulating water pump that supplies cooling water to a condenser, adhesion of marine organisms such as shellfish to seawater sampling and supply routes such as a seawater intake pipe, There is invasion of various bacteria.
【0003】これ等の海洋生物や雑菌が侵入すると、冷
却水に対して有害物となるので、これ等を除去するため
に、海水の循環系統に塩素の化合物である次亜塩素酸ナ
トリウム(NaClO )を注入する。[0003] When these marine organisms and various bacteria enter, they are harmful to the cooling water. To remove them, the chlorine compound sodium hypochlorite (NaClO) is supplied to the seawater circulation system. Inject).
【0004】ここで用いる次亜塩素酸ナトリウムは、遊
離酸素を発生して強い酸化性を示し、生物を殺す強い殺
生力と雑菌を殺す強い殺菌力があるので、前記目的に使
用する物質として適当なものということができる。[0004] The sodium hypochlorite used here exhibits strong oxidizing properties by generating free oxygen, and has a strong biocidal activity for killing living organisms and a strong bactericidal activity for killing various germs. It can be said that.
【0005】この次亜塩素酸ナトリウムの製法は、対処
する海洋生物の種類、対処の仕方等によって種々ある
が、塩素発生装置により海水あるいは食塩を無隔膜で電
気分解して生成する方法が一般的である。There are various methods for producing sodium hypochlorite depending on the type of marine organisms to be treated, the manner of dealing, and the like, and a method for producing seawater or salt by electrolysis using a chlorine generator without a diaphragm is generally used. It is.
【0006】その場合の反応式の一例は次の通りであ
り、この反応の過程で次亜塩素酸ナトリウムを発生し、
またそれと共に水素ガスとを発生している。An example of the reaction formula in this case is as follows. In the course of this reaction, sodium hypochlorite is generated,
At the same time, hydrogen gas is generated.
【0007】[0007]
【化1】 Embedded image
【0008】従来の海水冷却系統内における塩素発生装
置の配置は、図2にシステム図として示すように構成さ
れている。The arrangement of a chlorine generator in a conventional seawater cooling system is configured as shown in FIG. 2 as a system diagram.
【0009】まず、海水は取水口32から循環水ポンプ
11で取水され、復水器12の冷却水として供給されて
図示省略の蒸気タービンからの排気を冷却した後、放水
口23に放水されることによりいわゆる海水冷却型発電
プラントの冷却系が構成される。First, seawater is taken in from a water inlet 32 by a circulating water pump 11, supplied as cooling water for a condenser 12, cools exhaust gas from a steam turbine (not shown), and is then discharged to a water outlet 23. This constitutes a cooling system of a so-called seawater-cooled power plant.
【0010】前記取水された海水は、前記冷却系とは別
に循環水ポンプ11を出た後復水器12の上流側で一部
分岐されてブースターポンプ13によって昇圧され塩素
発生装置14の原料水として供される。The extracted seawater leaves the circulating water pump 11 separately from the cooling system and is partially branched upstream of the condenser 12 and pressurized by a booster pump 13 to serve as raw water for a chlorine generator 14. Provided.
【0011】塩素発生装置14の原料水として供給され
た海水は、同塩素発生装置14内において前記した反応
を行って次亜塩素酸ナトリウムを生成し、同次亜塩素酸
ナトリウムは塩素供給ライン15を通って循環水ポンプ
11の入口側に注入され、同循環水ポンプ11、前記復
水器12と循環する過程で海洋生物の付着並びに雑菌処
理のために供せられる。なお、前記塩素発生装置14で
次亜塩素酸ナトリウム等を生成した際に生じた残渣は排
水管34を経て放水口33に放水される。Seawater supplied as raw material water for the chlorine generator 14 performs the above-described reaction in the chlorine generator 14 to produce sodium hypochlorite, and the sodium hypochlorite is supplied to the chlorine supply line 15. The water is supplied to the inlet side of the circulating water pump 11 through the circulating water pump 11, and is supplied to the circulating water pump 11 and the condenser 12 for the attachment of marine organisms and the treatment of various germs during the circulation. The residue generated when sodium hypochlorite or the like is generated by the chlorine generator 14 is discharged to a water discharge port 33 through a drain pipe 34.
【0012】一方、発電プラントにおいては、水素ガス
(H2ガス)が回転体の冷却に有益であるとの知見から、
発電機の冷却媒体としてこれを採用する向きがある。On the other hand, in a power plant, from the finding that hydrogen gas (H 2 gas) is useful for cooling a rotating body,
There is a direction to adopt this as a cooling medium of the generator.
【0013】すなわち、水素ガスは風損が少ないので発
電機の効率を1〜2%上昇させ得ること、水素の熱伝達
率が空気に優るので空気冷却式の発電機より小型に設計
できること、水素ガスを供給循環すればその部分では発
電機内に酸素が無いことになるので絶縁劣化が少ないこ
と、そしてまた、騒音とかシール油の劣化が少ないこと
などが利点として挙げられている。[0013] That is, hydrogen gas has a small windage, so that the efficiency of the generator can be increased by 1 to 2%. Since the heat transfer coefficient of hydrogen is superior to that of air, it can be designed smaller than an air-cooled generator. If gas is supplied and circulated, there is no oxygen in the generator at that part, so that insulation deterioration is small, and noise and seal oil deterioration are also mentioned as advantages.
【0014】しかし、このような数々の利点を数えられ
て発電機冷却媒体の一つとして有力な水素ガスは、プラ
ント内に水素発生装置を設置して生成させるか、また
は、市販のボンベ入りの水素ガスを調達し、これを供給
循環させるかして使用されるのが普通である。However, because of these advantages, hydrogen gas which is one of the most effective cooling media for generators can be generated by installing a hydrogen generator in a plant or by using a commercially available cylinder. Generally, hydrogen gas is procured and supplied or circulated for use.
【0015】その一例は図3に示すような配列であり、
水素ガス発生器22を出て発電機17の冷却に供せられ
て昇温した水素ガスは、水素ガス冷却器16で冷却さ
れ、発電機17に循環されて再び発電機17の冷却に供
せられる。An example is an arrangement as shown in FIG.
The hydrogen gas that exits the hydrogen gas generator 22 and is used for cooling the generator 17 and is heated is cooled by the hydrogen gas cooler 16, circulated to the generator 17, and used for cooling the generator 17 again. Can be
【0016】なお、水素ガス冷却器16で前記水素ガス
と熱交換して昇温した冷却水は、冷却塔18において、
通風機19により大気で空気冷却され、循環ポンプ2
0、循環系21を経て水素ガス冷却器16に循環し、前
記水素ガスの冷却に供せられることになる。The cooling water heated by the heat exchange with the hydrogen gas in the hydrogen gas cooler 16 is cooled in the cooling tower 18.
The air is cooled by the air by the ventilator 19 and the circulation pump 2
0, circulates through the circulation system 21 to the hydrogen gas cooler 16 and is used for cooling the hydrogen gas.
【0017】[0017]
【発明が解決しようとする課題】前記した従来のものに
おいては、塩素発生装置の系統と水素ガス発生器による
水素発生システム系統を併設することになるが、ここで
先ず塩素発生装置の系統についてみると、塩素発生装置
で次亜塩素酸ナトリウム(NaClO )を製造する場合に
は、その多くが海水を電気分解してこれを生成するが、
電気分解には多量の電力を消費するためにランニングコ
スト(消費電力量)及び電気機器の設備・補修コスト等
を要し、非常に高いものにつく。In the above-mentioned conventional apparatus, a system of a chlorine generator and a system of a hydrogen generation system using a hydrogen gas generator are provided side by side. First, the system of the chlorine generator will be described. And, when sodium hypochlorite (NaClO) is produced by a chlorine generator, most of it produces electrolyzed seawater,
The electrolysis consumes a large amount of electric power, requires running costs (electric power consumption), equipment and repair costs for electric equipment, and the like, and is extremely expensive.
【0018】また、復水器の冷却水としての循環水中へ
の次亜塩素酸ナトリウムの注入量はかなりの倍率で希釈
されるので、次亜塩素酸ナトリウムの使用量の絶対値は
少ないものである。その上電気分解の過程で副生的に生
成される水素ガスは大気に放出されている。Further, since the amount of sodium hypochlorite injected into circulating water as cooling water for the condenser is diluted by a considerable factor, the absolute value of the amount of sodium hypochlorite used is small. is there. In addition, hydrogen gas produced as a by-product in the electrolysis process is released to the atmosphere.
【0019】他方、水素ガス発生器による水素発生シス
テム系統についてみると、循環する冷却水中の不純物濃
度を一定以上にしないように希釈を行うか、または時間
をおいて周期的に循環冷却水を完全に排出して新しい冷
却水と取り替えねばならず、この方式は経費の増加を伴
う割に効果が期待できない。また、水素ガスは軽比重で
あるため漏洩を防止するべく種々の対応をする必要があ
る。On the other hand, regarding a hydrogen generation system system using a hydrogen gas generator, dilution is carried out so that the impurity concentration in the circulating cooling water does not exceed a certain level, or the circulating cooling water is completely removed periodically at intervals. This system must be discharged and replaced with new cooling water, and this method cannot be expected to be effective despite the increase in costs. Further, since hydrogen gas has a light specific gravity, it is necessary to take various measures to prevent leakage.
【0020】本発明は前記した従来のものにおける諸々
の問題点を解消し、より合理的、そして効果的に機能
し、コスト的にも優れた海水冷却型の発電プラントにお
ける塩素発生装置を提供することを課題とするものであ
る。The present invention solves the above-mentioned various problems in the prior art, and provides a chlorine-generating apparatus for a seawater-cooled power generation plant that functions more efficiently and effectively and is excellent in cost. That is the task.
【0021】[0021]
【課題を解決するための手段】本発明は、前記した課題
を解決すべくなされたもので、海水冷却型の発電プラン
トにおいて、原料水として海水を用いた塩素発生装置を
設け、同塩素発生装置で生成される塩素成分を冷却水循
環系へ供給する経路と、同塩素発生装置で副生的に発生
する水素ガスを主発電機の冷却系に供給する経路を設け
た海水冷却型発電プラントの塩素発生装置を提供するも
のである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In a seawater-cooled power plant, a chlorine generator using seawater as a raw water is provided. Chlorine in a seawater-cooled power plant equipped with a route for supplying the chlorine component generated in the process to the cooling water circulation system and a route for supplying the by-product hydrogen gas generated by the chlorine generator to the cooling system of the main generator A generator is provided.
【0022】すなわち、塩素発生装置においては、例え
ば次亜塩素酸ナトリウム等の塩素成分を生成するに止ま
らず、同塩素発生装置で副生的に水素ガスを発生する点
に着目し、この副生的に発生する水素ガスを主発電機の
冷却系に供給して、同主発電機の冷却に供することによ
り、塩素発生装置とは別個独立に水素発生装置を新たに
設置する必要はなく、また市販の水素ボンベを別途購入
する必要もなく、安価にして合理的に、水素ガスによる
発電機の冷却システムを構築し、運用することができる
ものである。That is, in the chlorine generator, attention is paid not only to generation of a chlorine component such as sodium hypochlorite but also to generation of hydrogen gas as a by-product in the chlorine generator. By supplying hydrogen gas that is temporarily generated to the cooling system of the main generator and cooling the main generator, there is no need to install a new hydrogen generator separately from the chlorine generator, and It is not necessary to purchase a commercially available hydrogen cylinder separately, and it is possible to construct and operate a cooling system for a generator using hydrogen gas at low cost and rationally.
【0023】[0023]
【発明の実施の形態】本発明の実施の一形態を図1に基
づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.
【0024】図1は本実施の形態における塩素発生装置
のシステム構成図である。なお、前記した従来のものと
同一の部分については、図中に同一の符号を付して示
し、重複する説明は極力省略する。FIG. 1 is a system configuration diagram of a chlorine generator according to the present embodiment. Note that the same parts as those of the above-described conventional one are denoted by the same reference numerals in the drawings, and redundant description will be omitted as much as possible.
【0025】海水は循環水ポンプ11で吸引されて取水
口32から取水され、復水器12の冷却水として供給さ
れ、蒸気タービン26の排気を冷却し(排気系統は図示
省略している)、放水口33に放水される。The seawater is sucked by the circulating water pump 11 and is taken in from the water inlet 32 and supplied as cooling water for the condenser 12 to cool the exhaust of the steam turbine 26 (the exhaust system is not shown). Water is discharged to the water discharge port 33.
【0026】前記取水された海水は循環水ポンプ11を
出た後、復水器12の上流側で一部分岐され、ブースタ
ーポンプ13によって昇圧されて塩素発生装置14の原
料水として供与される。The extracted seawater exits the circulating water pump 11, is partially branched upstream of the condenser 12, is boosted in pressure by a booster pump 13, and is supplied as raw water for a chlorine generator 14.
【0027】塩素発生装置14で生成された次亜塩素酸
ナトリウムは塩素供給ライン15を通って循環水ポンプ
11の入口側に注入され、貝類等の海洋生物の付着及び
雑菌の処理に供せられる。そして同塩素発生装置14に
おいて次亜塩素酸ナトリウム等を生成した際に生じた残
渣は排水管34を経て放水口33に放水される。The sodium hypochlorite generated by the chlorine generator 14 is injected into the inlet of the circulating water pump 11 through the chlorine supply line 15 and used for the attachment of marine organisms such as shellfish and the treatment of various germs. . The residue generated when sodium hypochlorite or the like is generated in the chlorine generator 14 is discharged to a water discharge port 33 via a drain pipe 34.
【0028】他方、前記塩素発生装置14では、次亜塩
素酸ナトリウムを生成すると同時に副生物として水素ガ
スを発生する。この水素ガスは水素ガス分離器29で集
められ、水素ガス供給ライン24を経て発電機23に供
給してこれの冷却媒体として使用する。On the other hand, the chlorine generator 14 generates hydrogen gas as a by-product at the same time as generating sodium hypochlorite. This hydrogen gas is collected by a hydrogen gas separator 29 and supplied to a generator 23 via a hydrogen gas supply line 24 to be used as a cooling medium therefor.
【0029】発電機23の冷却に供した水素ガスは昇温
するので、これを水素ガス循環ライン30を経て冷却塔
25に送って冷却し、前記水素ガス供給ライン24を利
用して発電機23に再循環して同発電機23の冷却に供
する。Since the temperature of the hydrogen gas used for cooling the generator 23 rises, the hydrogen gas is sent to a cooling tower 25 through a hydrogen gas circulation line 30 to be cooled, and the hydrogen gas is supplied to the generator 23 using the hydrogen gas supply line 24. For cooling the generator 23.
【0030】なお図中27は冷却水排出ラインで、冷却
塔25にたまる冷却水を排出ポンプ31を利用して排出
する系統を示し、また28は水素ガスパージラインで、
発電機23を冷却するに余剰の水素ガスが生じたときに
それを系外に排出するために設けているものである。In the drawing, reference numeral 27 denotes a cooling water discharge line, which shows a system for discharging the cooling water accumulated in the cooling tower 25 by using a discharge pump 31, and reference numeral 28 denotes a hydrogen gas purge line.
This is provided to discharge excess hydrogen gas to the outside of the system when excessive hydrogen gas is generated for cooling the generator 23.
【0031】前記した従来のこの種発電プラントでは、
発電機23の冷却用として独立した水素ガス発生装置と
その供給系列を設けるか、もしくは市販の水素ガスボン
ベを利用して発電機23を冷却する装置を備えているの
が一般的であるが、本実施の形態では、前記したように
塩素発生装置14に水素ガス分離器29を併設し、塩素
発生装置14で副生物として発生する水素ガスを利用し
ているので、改めて独立の水素ガス発生装置とか市販の
水素ガスボンベを利用する装置等を設ける必要はなく、
これらの装置を設置する設備費、およびそれらの装置を
運転するランニングコストを削減することができ、きわ
めて有益なものである。In the above-described conventional power plant,
Generally, an independent hydrogen gas generator and its supply system are provided for cooling the generator 23, or a device for cooling the generator 23 using a commercially available hydrogen gas cylinder is provided. In the embodiment, as described above, the hydrogen gas separator 29 is provided alongside the chlorine generator 14, and the hydrogen gas generated as a by-product in the chlorine generator 14 is used. There is no need to provide a device that uses a commercially available hydrogen gas cylinder,
The equipment cost for installing these devices and the running cost for operating these devices can be reduced, which is extremely beneficial.
【0032】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。Although the present invention has been described with reference to the illustrated embodiments, the present invention is not limited to such embodiments.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention.
【0033】[0033]
【発明の効果】以上本発明によれば、海水冷却型の発電
プラントにおいて、原料水として海水を用いた塩素発生
装置を設け、同塩素発生装置で生成される塩素成分を冷
却水循環系へ供給する経路と、同塩素発生装置で副生的
に発生する水素ガスを主発電機の冷却系に供給する経路
を設けて塩素発生装置を構成しているので、このような
海水冷却型の発電プラントが本来的に必要とする貝類等
の海洋生物の処理や、循環水系の雑菌処理のための塩素
発生装置を有効活用して、同塩素発生装置で副生的に発
生する水素ガスを大気に捨てずに主発電機の冷却系に供
給してそれの冷却に供することができ、これにより、改
めて独立の水素ガス発生装置とか市販の水素ガスボンベ
を利用する装置等を設ける必要はなく、これらの設備
費、ランニングコストを大幅に節減することができたも
のである。As described above, according to the present invention, in a seawater-cooled power plant, a chlorine generator using seawater as a raw water is provided, and a chlorine component generated by the chlorine generator is supplied to a cooling water circulation system. Since a chlorine generator is constructed by providing a path and a path for supplying hydrogen gas generated as a by-product in the chlorine generator to the cooling system of the main generator, such a seawater-cooled power plant is constructed. Effective use of chlorine generators for the processing of marine life such as shellfish and other germs in the circulating water system that are originally required, without disposing hydrogen gas by-produced by the chlorine generator to the atmosphere Supply to the cooling system of the main generator for cooling it, thereby eliminating the need to provide a separate hydrogen gas generator or a device using a commercially available hydrogen gas cylinder. , Running cost The one in which it was possible to significant savings.
【図1】本発明の実施の一形態に係る塩素発生装置のシ
ステムの概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of a system of a chlorine generator according to an embodiment of the present invention.
【図2】従来の塩素発生装置のシステムの概要を示す説
明図である。FIG. 2 is an explanatory diagram showing an outline of a system of a conventional chlorine generator.
【図3】従来の水素ガス発生装置のシステムの概要を示
す説明図である。FIG. 3 is an explanatory diagram showing an outline of a system of a conventional hydrogen gas generator.
11 循環水ポンプ 12 復水器 13 ブースターポンプ 14 塩素発生装置 15 塩素供給ライン 16 水素ガス冷却器 17 発電機 18 冷却塔 19 通風機 20 循環ポンプ 21 循環系 22 水素ガス発生器 23 発電機 24 水素ガス供給ライン 25 冷却塔 26 蒸気タービン 27 冷却水排出ライン 28 水素ガスパージライン 29 水素ガス分離器 30 水素ガス循環ライン 31 排出ポンプ 32 取水口 33 放水口 34 排水管 DESCRIPTION OF SYMBOLS 11 Circulating water pump 12 Condenser 13 Booster pump 14 Chlorine generator 15 Chlorine supply line 16 Hydrogen gas cooler 17 Generator 18 Cooling tower 19 Ventilator 20 Circulation pump 21 Circulation system 22 Hydrogen gas generator 23 Generator 24 Hydrogen gas Supply line 25 Cooling tower 26 Steam turbine 27 Cooling water discharge line 28 Hydrogen gas purge line 29 Hydrogen gas separator 30 Hydrogen gas circulation line 31 Discharge pump 32 Water intake 33 Water outlet 34 Drain pipe
Claims (1)
料水として海水を用いた塩素発生装置を設け、同塩素発
生装置で生成される塩素成分を冷却水循環系へ供給する
経路と、同塩素発生装置で副生的に発生する水素ガスを
主発電機の冷却系に供給する経路を設けたことを特徴と
する海水冷却型発電プラントの塩素発生装置。In a seawater-cooled power plant, a chlorine generator using seawater as raw water is provided, and a chlorine component generated by the chlorine generator is supplied to a cooling water circulation system. A chlorine generator for a seawater-cooled power plant, wherein a path for supplying hydrogen gas generated as a by-product to the cooling system of the main generator is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18979097A JPH1137666A (en) | 1997-07-15 | 1997-07-15 | Chlorine generator of sea water cooling power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18979097A JPH1137666A (en) | 1997-07-15 | 1997-07-15 | Chlorine generator of sea water cooling power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1137666A true JPH1137666A (en) | 1999-02-12 |
Family
ID=16247257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18979097A Withdrawn JPH1137666A (en) | 1997-07-15 | 1997-07-15 | Chlorine generator of sea water cooling power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1137666A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005144212A (en) * | 2003-11-11 | 2005-06-09 | Chugoku Electric Power Co Inc:The | Method and system for controlling adhesion and growth of marine organism |
JP2010179304A (en) * | 2004-02-13 | 2010-08-19 | Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd | Method of making seawater harmless and apparatus therefor |
WO2014027402A1 (en) | 2012-08-14 | 2014-02-20 | 中国電力株式会社 | Method for stopping attachment-period larvae from swimming or crawling |
JP2015031458A (en) * | 2013-08-02 | 2015-02-16 | 東北電力株式会社 | Plate heat exchanger washing apparatus and plate heat exchanger washing method |
JP6927452B1 (en) * | 2020-03-06 | 2021-09-01 | 中国電力株式会社 | Water treatment method and water treatment equipment |
WO2021176682A1 (en) * | 2020-03-06 | 2021-09-10 | 中国電力株式会社 | Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility |
US11134671B2 (en) | 2015-03-27 | 2021-10-05 | The Chugoku Electric Power Co., Inc. | Method for preventing settlement of sessile organisms |
US11134670B2 (en) | 2014-12-08 | 2021-10-05 | The Chugoku Electric Power Co., Inc. | Methods of suppressing settlement of barnacles |
US11134669B2 (en) | 2014-03-24 | 2021-10-05 | The Chugoku Electric Power Co., Inc. | Method for killing Pteriomorphia and barnacles using light irradiation |
US11140893B2 (en) | 2014-03-24 | 2021-10-12 | The Chugoku Electric Power Co., Inc. | Method for stopping swimming or crawling of adhesion-stage larvae |
JPWO2022249487A1 (en) * | 2021-05-28 | 2022-12-01 | ||
WO2022249488A1 (en) * | 2021-05-28 | 2022-12-01 | 中国電力株式会社 | Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility |
-
1997
- 1997-07-15 JP JP18979097A patent/JPH1137666A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005144212A (en) * | 2003-11-11 | 2005-06-09 | Chugoku Electric Power Co Inc:The | Method and system for controlling adhesion and growth of marine organism |
JP2010179304A (en) * | 2004-02-13 | 2010-08-19 | Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd | Method of making seawater harmless and apparatus therefor |
WO2014027402A1 (en) | 2012-08-14 | 2014-02-20 | 中国電力株式会社 | Method for stopping attachment-period larvae from swimming or crawling |
JP2015031458A (en) * | 2013-08-02 | 2015-02-16 | 東北電力株式会社 | Plate heat exchanger washing apparatus and plate heat exchanger washing method |
US11134669B2 (en) | 2014-03-24 | 2021-10-05 | The Chugoku Electric Power Co., Inc. | Method for killing Pteriomorphia and barnacles using light irradiation |
US11140893B2 (en) | 2014-03-24 | 2021-10-12 | The Chugoku Electric Power Co., Inc. | Method for stopping swimming or crawling of adhesion-stage larvae |
US11134670B2 (en) | 2014-12-08 | 2021-10-05 | The Chugoku Electric Power Co., Inc. | Methods of suppressing settlement of barnacles |
US11134671B2 (en) | 2015-03-27 | 2021-10-05 | The Chugoku Electric Power Co., Inc. | Method for preventing settlement of sessile organisms |
WO2021176682A1 (en) * | 2020-03-06 | 2021-09-10 | 中国電力株式会社 | Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility |
WO2021176774A1 (en) * | 2020-03-06 | 2021-09-10 | 中国電力株式会社 | Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility |
JP6927452B1 (en) * | 2020-03-06 | 2021-09-01 | 中国電力株式会社 | Water treatment method and water treatment equipment |
JPWO2022249487A1 (en) * | 2021-05-28 | 2022-12-01 | ||
WO2022249488A1 (en) * | 2021-05-28 | 2022-12-01 | 中国電力株式会社 | Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility |
WO2022249487A1 (en) * | 2021-05-28 | 2022-12-01 | 中国電力株式会社 | Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1137666A (en) | Chlorine generator of sea water cooling power plant | |
EP1148296B1 (en) | Exhaust gas cooling system | |
TWI593870B (en) | Exhaust heat recovery device, power generating system, and exhaust heat recovery method | |
CA2822014C (en) | Metallurgical plant gas cleaning system, and method of cleaning an effluent gas | |
JP2017015019A (en) | Thermal power generation facility recovering moisture in exhaust gas and method for treating water recovered from thermal power generation facility | |
JP3273189B2 (en) | Energy supply and utilization equipment | |
JP4895903B2 (en) | Cooling system and power plant equipped with this cooling system | |
KR20110030044A (en) | The generating method and apparatus of fresh water | |
KR101714587B1 (en) | High-Efficiency On-Site Device for Production of Sodium Hypochlorite | |
KR101163704B1 (en) | Fuel cell system using hydrogen from electrolyzer of sea water | |
KR101403622B1 (en) | Waste heat recovery system for ship that can remove dissolved oxygen by minimizing steam consumption | |
JP6318444B2 (en) | Seawater electrolysis system and electrolyte injection method | |
KR20130040320A (en) | Fresh water generating equipment for vessels by using waste heat | |
JP2018178231A (en) | Hydrogen/oxygen generator | |
JP6828195B2 (en) | Dual circuit reactor steam generator with purge operation and drainage | |
CN212116079U (en) | Anti-corrosion sterilization device for seawater cooling pipeline of high-power frequency converter | |
JP2009081084A (en) | Fuel cell power generation apparatus | |
JP2004108186A (en) | Cooling tower system of power generation plant | |
CN110615507B (en) | Circulating cooling water treatment equipment and circulating cooling water treatment method | |
JP4022065B2 (en) | Water purification equipment | |
JP4604159B2 (en) | Medical equipment unit | |
US20030098268A1 (en) | Periodic ozone treatment system for a showering tower type water cooling system | |
JPH109774A (en) | Chlorine generator apparatus for power plant | |
KR20160023216A (en) | Mgps anode current control system and method by change of sea flow rate of vessel, and vessel including the same | |
CN220926959U (en) | Ozone generator air purification mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20041005 |