WO2021176682A1 - Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility - Google Patents

Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility Download PDF

Info

Publication number
WO2021176682A1
WO2021176682A1 PCT/JP2020/009633 JP2020009633W WO2021176682A1 WO 2021176682 A1 WO2021176682 A1 WO 2021176682A1 JP 2020009633 W JP2020009633 W JP 2020009633W WO 2021176682 A1 WO2021176682 A1 WO 2021176682A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogen
channel
chlorine
intake
Prior art date
Application number
PCT/JP2020/009633
Other languages
French (fr)
Japanese (ja)
Inventor
司 吉崎
一郎 内山
直彦 谷口
柳川 敏治
圭二 尾山
中村 明博
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2020/009633 priority Critical patent/WO2021176682A1/en
Priority to JP2021500753A priority patent/JP6927452B1/en
Priority to PCT/JP2020/042096 priority patent/WO2021176774A1/en
Publication of WO2021176682A1 publication Critical patent/WO2021176682A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Definitions

  • the present invention relates to a water discharge method, a water treatment method, a residual chlorine reduction method, and a water treatment facility.
  • Intake channels and drainage channels are laid from the sea area to the inside of the power plant in order to take in seawater for water cooling of equipment such as condensers in the power plant and to discharge the taken in seawater.
  • Marine organisms such as wisteria and mussels breed inside the intake and drainage channels, and such attachment of marine organisms causes narrowing or blockage of the intake and drainage channels and the condenser cooling pipe. As a result, the flow rate of the intake water and the discharged water is lowered, and the condensate cooling efficiency is lowered.
  • Patent Document 1 describes a method of preventing marine organisms from adhering to intake channels and drainage channels by using a chlorine-based disinfectant.
  • the purpose of this disclosure is to reduce the residual chlorine concentration in water.
  • a predetermined position of the water channel is used.
  • a chlorine-based chemical is added to the water, and a hydrogen-containing liquid containing dissolved hydrogen or gaseous hydrogen is added to the water at a position closer to the outlet side than the predetermined position.
  • the seawater facility for solving the above problems is provided between the facility and the natural water area, and has a flood channel for discharging water containing residual chlorine from the facility to the natural water area, and a hydrogen-containing liquid containing dissolved hydrogen or a hydrogen-containing liquid. It is provided with an addition device for adding gaseous hydrogen to the water in the flood bypass.
  • the seawater facility for solving the above problems has an intake port and a water discharge port provided in a natural water area, takes in water from the natural water area through the water intake port, and takes in the taken water through the water discharge port.
  • a hydrogen-containing liquid or gaseous hydrogen containing dissolved hydrogen at a position on the outlet side of the water channel where a chlorine-based chemical is added to the water in the water channel at a predetermined position of the water channel to be discharged into the natural water area. Is provided with an addition device for adding water to the water in the water channel.
  • the residual chlorine concentration in water is reduced. Therefore, for example, even when water is released into a natural water area, it does not adversely affect the environment of the natural water area.
  • FIG. 1 is a plan view of the thermal power plant 10.
  • FIG. 2 is a schematic view of the seawater facility 11 (corresponding to the water treatment facility of the present invention) and the condenser 18 constructed in the thermal power plant 10.
  • the thermal power plant 10 is constructed on a site facing the sea 2 as a natural water area.
  • the thermal power plant 10 includes a seawater facility 11, a fuel storage facility 14, and a power generation facility 16.
  • the seawater facility 11 has a water channel 25 and an addition device 30.
  • the power generation facility 16 includes a turbine, a boiler, a generator, and a condenser 18 (not shown).
  • a turbine When the fuel supplied to the boiler from the fuel storage facility 14 is burned, high-temperature and high-pressure steam is generated in the boiler, the turbine and the generator are driven by the energy of the steam, and electric energy is generated in the generator. ..
  • the condenser 18 as equipment is connected to the turbine, and the steam discharged from the turbine is supplied to the condenser 18.
  • the condenser 18 is a surface condenser or a mixed condenser.
  • the water channel 25 of the seawater facility 11 has an intake channel 20 on the upstream side of the condenser 18 and a flood channel 22 on the downstream side of the condenser 18.
  • the intake channel 20 is a channel for taking in the salt water of the sea 2 into the thermal power plant 10.
  • the intake channel 20 is constructed on the ground from the sea or the seabed to the condenser 18 or its vicinity.
  • the end of the intake channel 20 opens in the sea or on the seabed, and the opening is the intake port 21.
  • the salt water of the sea 2 is taken into the intake channel 20 through the intake port 21.
  • the salt water taken into the intake channel 20 is sent to the condenser 18.
  • the flood channel 22 is a channel for discharging salt water to the sea 2.
  • the flood bypass 22 is constructed on the ground from the sea or the seabed to the condenser 18 or its vicinity.
  • the end of the floodway 22 opens in the sea or on the seabed, and the opening is the drainage port 24.
  • the salt water in the condenser 18 is discharged to the drainage channel 22, and the discharged water is sent to the discharge port 24. Then, the salt water is discharged to the sea 2 through the discharge port 24.
  • the inlet of the condenser 18 is connected to the intake channel 20 via a flow path, a pump 19, and the like.
  • the outlet of the condenser 18 is connected to the flood channel 22 via a flow path or the like.
  • the pump 19 sends the salt water in the intake channel 20 to the condenser 18.
  • the salt water supplied to the condenser 18 cools and condenses the steam supplied from the turbine.
  • the salt water used for cooling in the condenser 18 is discharged to the flood channel 22 and discharged to the sea 2 through the flood channel 22.
  • the potential energy or the pressure difference may be used to allow salt water to flow from the sea 2 to the sea 2 via the intake channel 20, the condenser 18, and the drainage channel 22.
  • salt water containing marine organisms flows through the intake channel 20, the drainage channel 22, and the condenser 18, marine organisms easily adhere to and propagate inside the intake channel 20, the drainage channel 22, and the condenser 18.
  • a chlorine-based chemical is added to the salt water in the intake channel 20 by the addition device 30 in order to suppress the adhesion and reproduction of marine organisms.
  • water containing dissolved hydrogen hereinafter referred to as hydrogen water
  • hydrogen water water containing dissolved hydrogen
  • the water used as the solvent for hydrogen water is salt water, but it may be fresh water or clean water.
  • the addition device 30 will be described in detail below.
  • the addition device 30 includes an electrolyzer 31, a gas dissolution device 41, liquid feed pumps 35, 44, and a valve 45.
  • the inlet of the electrolysis device 31 is connected to the intake channel 20 via the introduction pipe 32 and the liquid feed pump 35, and the liquid outlet of the electrolysis device 31 is connected to the intake channel 20 via the discharge pipe 33.
  • the gas outlet of 31 is connected to the gas inlet of the gas dissolving device 41 via a transmission pipe 34.
  • the liquid inlet of the gas dissolving device 41 is connected to the intake channel 20 via the introduction pipe 42 and the liquid feeding pump 44, and the liquid outlet of the gas dissolving device 41 is connected to the drainage channel 22 via the valve 45 and the discharge pipe 43. Has been done.
  • the liquid feed pump 35 supplies the salt water in the intake channel 20 to the electrolyzer 31.
  • the electrolyzer 31 generates chlorine (Cl 2 ) at the anode of the electrolyzer 31 by electrolyzing the salt water introduced from the intake channel 20. Therefore, the salt water electrolyzed by the electrolyzer 31 contains effective chlorine composed of free chlorine, combined chlorine, and the like.
  • the free chlorine, chlorine gas molecules (Cl 2) in the brine, hypochlorous acid (HClO) and hypochlorous acid ions (ClO -) refers to.
  • Bound chlorine is obtained by reacting free chlorine with ammonia contained in salt water and its compound, and refers to chloramines such as monochloramine, dichloramine, and trichloramine.
  • Hydrogen (H 2 ) is generated at the cathode of the electrolyzer 31 by the electrolysis of salt water in the electrolyzer 31.
  • the electrolysis device 31 has a degassing tower or a receiving tank or the like, and hydrogen molecules in the electrolyzed salt water are separated from the salt water in the degassing tower or the receiving tank or the like, and gaseous hydrogen is generated from the salt water.
  • the gaseous hydrogen is sent from the electrolyzer 31 to the gas dissolving apparatus 41 through the transmission pipe 34.
  • a valve for adjusting the flow rate of gaseous hydrogen from the electrolyzer 31 to the gas dissolution device 41 may be provided in the middle of the transmission pipe 34.
  • the salt water from which hydrogen is separated in the electrolyzer 31 is a chlorine-based chemical, and more specifically, it is a chlorine-based aqueous solution containing effective chlorine.
  • the chlorine-based aqueous solution is introduced into the intake channel 20 from the electrolyzer 31 through the discharge pipe 33. Since the chlorine-based aqueous solution is added to the salt water in the intake channel 20, the adhesion and reproduction of marine organisms are suppressed.
  • the position where the chlorine-based aqueous solution is added from the discharge pipe 33 to the intake channel 20 is as close as possible to the intake port 21 in order to obtain the effect of preventing the adhesion and reproduction of marine organisms in the widest possible range of the intake channel 20. Is preferable.
  • one liquid feeding pump 35 is provided.
  • a plurality of liquid feeding pumps 35 may be provided in the path from the intake passage 20 to the intake pipe 20 via the introduction pipe 32, the electrolyzer 31 and the discharge pipe 33.
  • one or more valves may be provided in the path from the intake pipe 20 to the intake pipe 20 via the introduction pipe 32, the electrolyzer 31 and the discharge pipe 33.
  • One or more liquid feed pumps 35 and valves adjust the supply flow rate of salt water from the intake channel 20 to the electrolyzer 31 and adjust the input flow rate of the chlorine-based aqueous solution from the electrolyzer 31 to the intake channel 20.
  • the residual chlorine concentration in the intake channel 20 and the condenser 18 and the discharge channel 22 on the downstream side thereof is appropriate. Is adjusted to.
  • the liquid feed pump 44 supplies the salt water in the intake channel 20 to the gas dissolving device 41.
  • the liquid inlet of the gas dissolving device 41 is connected to the drainage channel 22 via the introduction pipe 42 and the liquid feeding pump 44, and the liquid feeding pump 44 supplies the salt water in the drainage channel 22 to the gas dissolving device 41. May be good.
  • the gas melting device 41 dissolves the gaseous hydrogen introduced from the electrolyzer 31 in the salt water introduced from the intake channel 20. As a result, salt water containing dissolved hydrogen (hereinafter referred to as hydrogen water) is generated in the gas dissolving device 41. In the gas dissolution device 41, the gas hydrogen is efficiently dissolved in salt water and the concentration of dissolved hydrogen in the hydrogen water is increased. Therefore, the inside of the gas dissolution device 41 may be pressurized to a high pressure by a compressor or the like.
  • the hydrogen water generated in the gas dissolving device 41 is introduced from the gas dissolving device 41 into the flood channel 22 through the valve 45 and the discharge pipe 43.
  • the valve 45 adjusts the flow rate of hydrogen water input to the drainage channel 22.
  • residual chlorine in the salt water is reduced or removed, and the salt water is neutralized.
  • the neutralized salt water is discharged from the flood channel 22 into the sea 2.
  • the residual chlorine concentration of the neutralized salt water does not affect the natural environment of the sea 2, and is, for example, less than or equal to the value stipulated by the agreement with the local community, laws, regulations, and the like.
  • the position where hydrogen water is added from the discharge pipe 43 is better as it is closer to the discharge port 24.
  • the hydrogen water is added from the discharge pipe 43 to the vicinity of the discharge port 24.
  • the gaseous hydrogen generated in the electrolyzer 31 is not directly injected into the salt water in the drainage channel 22, but the gaseous hydrogen is once dissolved in the salt water by the gas dissolving apparatus 41, and then the hydrogen water is discharged. It is added to the salt water in the discharge channel 22. Therefore, the neutralization of salt water in the drainage channel 22 proceeds efficiently.
  • the chlorine-based chemical added to the salt water in the intake channel 20 is a chlorine-based aqueous solution generated by the electrolyzer 31.
  • a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water in the intake channel 20 by the charging device.
  • the chlorine-based aqueous solution is, for example, a hypochlorous acid aqueous solution or a chlorinated isocyanuric acid aqueous solution, but other chlorine-based aqueous solutions may be used.
  • chlorine gas may be ejected into the salt water in the intake channel 20.
  • Chlorine gas is stored in a gas cylinder.
  • a solid chlorine-based chemical may be charged into the salt water in the intake channel 20 by the charging device.
  • the solid chlorine-based chemicals are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleached powder.
  • the solid chlorine-based chemicals are stored in the storage tank in advance.
  • the gaseous hydrogen generated by the electrolyzer 31 is supplied to the gas dissolution apparatus 41.
  • the addition device 30 may have a gas cylinder or a hydrogen generating device, and the gaseous hydrogen stored in the gas cylinder or the gaseous hydrogen generated by the hydrogen generating apparatus may be supplied to the gas melting device 41.
  • the hydrogen generator is, for example, an electrolyzer that electrolyzes water to generate hydrogen and oxygen.
  • gaseous hydrogen is previously dissolved in salt water in the gas dissolving apparatus 41.
  • the gaseous hydrogen may be directly ejected into the salt water in the drainage channel 22, and the gaseous hydrogen may be dissolved in the salt water.
  • the salt water in the intake channel 20 or the discharge channel 22 is supplied to the gas dissolving device 41.
  • clean water may be supplied to the gas dissolving device 41.
  • fresh water in a natural water area other than the sea 2 may be supplied to the gas dissolving device 41.
  • the natural water area is the sea 2, and the thermal power plant 10 is built on the coast of the sea 2.
  • the natural water area may be a salt lake, a freshwater lake, a swamp or a river, and the thermal power plant 10 may be constructed on the coast of the salt lake, a freshwater lake, a swamp or a river.
  • the brackish water is salt water
  • the brackish lake is a kind of salt lake in this disclosure.
  • the seawater facility 11 is constructed in the thermal power plant 10.
  • the seawater facility 11 may be constructed in another type of power plant, for example, a hydroelectric power plant, a pumped storage power plant, or a nuclear power plant, or may be constructed in a factory other than the power plant. ..
  • the equipment provided between the intake channel 20 and the drainage channel 22 was the condenser 18, other equipment, for example, a hydroelectric generator may be used.
  • the position where hydrogen water or gaseous hydrogen is added may be any position from the position where the chlorine-based aqueous solution is added to the intake pipe 20 from the discharge pipe 33 to the outlet 24. However, in order to prevent marine organisms from adhering to the condenser 18, it is preferable that the position where hydrogen water or gaseous hydrogen is added is on the downstream side of the condenser 18.
  • chlorine water water containing residual chlorine
  • a hypochlorous acid solution was used as the chlorinated water.
  • hydrogen water hydrogen gas was introduced into pure water in a beaker from a hydrogen tank and stirred while bubbling. No catalyst such as platinum is used.
  • the hydrogen concentration of the hydrogen water thus obtained was measured with a hydrogen concentration meter, it was about 0.8 ppm.
  • Equal amounts of the above chlorine water and hydrogen water were mixed in a beaker, and the mixed water was stirred to determine the residual chlorine concentration.
  • the residual chlorine concentration was measured by the DPD method.
  • the hydrogen concentration after mixing was also measured with a hydrogen concentration meter.
  • other means such as ultraviolet irradiation are not used.
  • Tables 1 to 4 show the chlorine concentration of chlorine water before mixing, the residual chlorine concentration at the time of mixing, and immediately after mixing, 5 minutes after mixing, and 10 in each of the four tests in which chlorine water and hydrogen water were mixed.
  • the residual chlorine concentration and hydrogen concentration after 1 minute and 15 minutes, and the reduced concentration immediately after mixing are shown.
  • the residual chlorine concentration and hydrogen concentration at the time of mixing are half of the residual chlorine concentration and hydrogen concentration before mixing, but this was diluted to 50% by mixing equal amounts of chlorine water and hydrogen water. It depends.
  • Table 5 shows the results when 50 ml each of chlorinated water and pure water are mixed as a comparative example.
  • the residual chlorine concentration can be reduced by mixing hydrogen water with chlorine water.

Abstract

The present invention reduces the residual chlorine concentration of water released to a natural water area such as an ocean. A water treating method for taking water from a natural water area into a waterway through an intake port 21 and discharging the water, which had been taken into the waterway 25, to the natural water area through a discharge port 24, the method comprising a step for adding, to the water, a chlorine-based chemical agent at a predetermined position in the waterway 25, and a step for adding, to the water, hydrogen gas or a hydrogen-containing liquid that contains dissolved hydrogen at a position on the side of the discharge port 24 with respect to said predetermined position.

Description

放水方法、水処理方法、残留塩素低減方法及び水処理設備Water discharge method, water treatment method, residual chlorine reduction method and water treatment equipment
 本発明は、放水方法、水処理方法、残留塩素低減方法及び水処理設備に関する。 The present invention relates to a water discharge method, a water treatment method, a residual chlorine reduction method, and a water treatment facility.
 発電所内の復水器等の設備の水冷用の海水を取り込んだり、取り込んだ海水を放出したりすべく、取水路及び放水路が海域から発電所内にまで敷設されている。取水路及び放水路の内側にはフジツボ類及びイガイ類等の海生生物が繁殖するところ、このような海生生物の付着は取水路及び放水路ならびに復水器冷却管の狭窄或いは閉塞を招き、その結果、取込水及び放出水の流量の低下や復水冷却効率の低下が発生する。このような問題を解決するべく、塩素系薬剤を取水路に投入すると、取水路及び放水路における海生生物の発生を抑えることができる。特許文献1には、塩素系殺菌剤を用いて取水路及び放水路に海生生物が付着することを防止する方法が記載されている。 Intake channels and drainage channels are laid from the sea area to the inside of the power plant in order to take in seawater for water cooling of equipment such as condensers in the power plant and to discharge the taken in seawater. Marine organisms such as wisteria and mussels breed inside the intake and drainage channels, and such attachment of marine organisms causes narrowing or blockage of the intake and drainage channels and the condenser cooling pipe. As a result, the flow rate of the intake water and the discharged water is lowered, and the condensate cooling efficiency is lowered. When a chlorine-based chemical is introduced into the intake channel in order to solve such a problem, the generation of marine organisms in the intake channel and the discharge channel can be suppressed. Patent Document 1 describes a method of preventing marine organisms from adhering to intake channels and drainage channels by using a chlorine-based disinfectant.
特開2019-76813号公報Japanese Unexamined Patent Publication No. 2019-76813
 しかしながら、放水路から海へ放出される海水の残留塩素濃度が高いと、海の自然環境に悪影響を及ぼしてしまう。 However, if the concentration of residual chlorine in the seawater released from the drainage channel to the sea is high, it will adversely affect the natural environment of the sea.
 そこで、本開示は、水の残留塩素濃度の低減を図ることを目的とする。 Therefore, the purpose of this disclosure is to reduce the residual chlorine concentration in water.
 本発明者らは鋭意研究の結果、残留塩素を含む水に溶存水素を含む水素含有液又は気体水素を添加すると、その水に含まれる残留塩素が低減するという新たな知見を得た。 As a result of diligent research, the present inventors have obtained a new finding that when a hydrogen-containing liquid containing dissolved hydrogen or gaseous hydrogen is added to water containing residual chlorine, the residual chlorine contained in the water is reduced.
 そこで、以上の課題を解決するために、残留塩素を含む水が使用される設備から放水路を通じて前記水を自然水域に放出する放水方法において、溶存水素を含む水素含有液又は気体水素を前記放水路内の前記水に添加する。 Therefore, in order to solve the above problems, in a water discharge method in which the water is discharged from a facility in which water containing residual chlorine is used to a natural water area through a flood bypass, a hydrogen-containing liquid containing dissolved hydrogen or gaseous hydrogen is released. Add to the water in the channel.
 また、以上の課題を解決するために、自然水域から水を取水口を通じて水路に取り込むとともに、前記水路に取り込んだ水を放水口を通じて前記自然水域に放出する水処理方法において、前記水路の所定位置において塩素系薬剤を前記水に添加し、前記所定位置よりも放水口側の位置において溶存水素を含む水素含有液又は気体水素を前記水に添加する。
 
Further, in order to solve the above problems, in a water treatment method in which water from a natural water area is taken into a water channel through a water outlet and the water taken into the water channel is discharged to the natural water area through an outlet, a predetermined position of the water channel is used. In, a chlorine-based chemical is added to the water, and a hydrogen-containing liquid containing dissolved hydrogen or gaseous hydrogen is added to the water at a position closer to the outlet side than the predetermined position.
 以上の課題を解決するための海水設備は、設備と自然水域との間に設けられ、残留塩素を含む水を前記設備から前記自然水域に放出する放水路と、溶存水素を含む水素含有液又は気体水素を前記放水路内の前記水に添加する添加装置と、を備える。 The seawater facility for solving the above problems is provided between the facility and the natural water area, and has a flood channel for discharging water containing residual chlorine from the facility to the natural water area, and a hydrogen-containing liquid containing dissolved hydrogen or a hydrogen-containing liquid. It is provided with an addition device for adding gaseous hydrogen to the water in the flood bypass.
 また、以上の課題を解決するための海水設備は、自然水域に設けられた取水口及び放水口を有し、前記自然水域から前記取水口を通じて水を取り込み、取り込まれた水を前記放水口を通じて前記自然水域に放出する水路と、前記水路の所定位置において塩素系薬剤を前記水路内の前記水に添加し、前記所定位置よりも放水口側の位置において溶存水素を含む水素含有液又は気体水素を前記水路内の前記水に添加する添加装置と、を備える。 Further, the seawater facility for solving the above problems has an intake port and a water discharge port provided in a natural water area, takes in water from the natural water area through the water intake port, and takes in the taken water through the water discharge port. A hydrogen-containing liquid or gaseous hydrogen containing dissolved hydrogen at a position on the outlet side of the water channel where a chlorine-based chemical is added to the water in the water channel at a predetermined position of the water channel to be discharged into the natural water area. Is provided with an addition device for adding water to the water in the water channel.
 本開示によれば、水の残留塩素濃度が低減する。よって、例えば水が自然水域に放出される場合であっても、自然水域の環境に悪影響を及ぼさない。 According to the present disclosure, the residual chlorine concentration in water is reduced. Therefore, for example, even when water is released into a natural water area, it does not adversely affect the environment of the natural water area.
海水設備が構築された火力発電所の平面図である。It is a top view of a thermal power plant in which seawater equipment is constructed. 海水設備及び復水器の模式図である。It is a schematic diagram of a seawater facility and a condenser.
 以下、図面を参照して、実施形態について説明する。以下に述べる実施形態には技術的に好ましい種々の限定が付されているところ、本発明の範囲を以下の実施形態及び図示例に限定するものではない。 Hereinafter, embodiments will be described with reference to the drawings. Although various technically preferable limitations are attached to the embodiments described below, the scope of the present invention is not limited to the following embodiments and illustrated examples.
 図1は火力発電所10の平面図である。図2は、火力発電所10に構築された海水設備11(本発明の水処理設備に相当)及び復水器18の模式図である。 FIG. 1 is a plan view of the thermal power plant 10. FIG. 2 is a schematic view of the seawater facility 11 (corresponding to the water treatment facility of the present invention) and the condenser 18 constructed in the thermal power plant 10.
 火力発電所10は、自然水域としての海2に臨む敷地に建設されている。火力発電所10は海水設備11、燃料貯蔵設備14及び発電設備16を備える。海水設備11は水路25及び添加装置30を有する。 The thermal power plant 10 is constructed on a site facing the sea 2 as a natural water area. The thermal power plant 10 includes a seawater facility 11, a fuel storage facility 14, and a power generation facility 16. The seawater facility 11 has a water channel 25 and an addition device 30.
 発電設備16は、図示しないタービン、ボイラ、発電機及び復水器18を備える。燃料貯蔵設備14からボイラに供給された燃料が燃焼されると、高温・高圧の蒸気がボイラにおいて生成され、その蒸気のエネルギーによりタービン及び発電機が駆動され、発電機において電気エネルギーが生成される。設備としての復水器18はタービンに連結されており、タービンから排出された蒸気が復水器18に供給される。復水器18は表面復水器又は混合復水器である。 The power generation facility 16 includes a turbine, a boiler, a generator, and a condenser 18 (not shown). When the fuel supplied to the boiler from the fuel storage facility 14 is burned, high-temperature and high-pressure steam is generated in the boiler, the turbine and the generator are driven by the energy of the steam, and electric energy is generated in the generator. .. The condenser 18 as equipment is connected to the turbine, and the steam discharged from the turbine is supplied to the condenser 18. The condenser 18 is a surface condenser or a mixed condenser.
 海水設備11の水路25は、復水器18よりも上流側の取水路20と、復水器18よりも下流側の放水路22と、を有する。取水路20は、海2の塩水を火力発電所10内に取り込むための水路である。取水路20は、海中又は海底から復水器18又はその近傍にかけて地盤に構築されている。取水路20の端部が海中又は海底において開口し、その開口が取水口21とされている。海2の塩水は取水口21を通って取水路20に取り込まれる。取水路20に取り込まれた塩水は復水器18へ送られる。放水路22は、塩水を海2に放出するための水路である。放水路22は、海中又は海底から復水器18又はその近傍にかけて地盤に構築されている。放水路22の端部が海中又は海底において開口し、その開口が放水口24とされている。復水器18内の塩水が放水路22に排出され、排出された水は放水口24へ送られる。そして、塩水は放水口24を通って海2に放出される。 The water channel 25 of the seawater facility 11 has an intake channel 20 on the upstream side of the condenser 18 and a flood channel 22 on the downstream side of the condenser 18. The intake channel 20 is a channel for taking in the salt water of the sea 2 into the thermal power plant 10. The intake channel 20 is constructed on the ground from the sea or the seabed to the condenser 18 or its vicinity. The end of the intake channel 20 opens in the sea or on the seabed, and the opening is the intake port 21. The salt water of the sea 2 is taken into the intake channel 20 through the intake port 21. The salt water taken into the intake channel 20 is sent to the condenser 18. The flood channel 22 is a channel for discharging salt water to the sea 2. The flood bypass 22 is constructed on the ground from the sea or the seabed to the condenser 18 or its vicinity. The end of the floodway 22 opens in the sea or on the seabed, and the opening is the drainage port 24. The salt water in the condenser 18 is discharged to the drainage channel 22, and the discharged water is sent to the discharge port 24. Then, the salt water is discharged to the sea 2 through the discharge port 24.
 復水器18のインレットは流路及びポンプ19等を介して取水路20に連結されている。復水器18のアウトレットは流路等を介して放水路22に連結されている。このポンプ19は取水路20内の塩水を復水器18に送液する。復水器18に供給された塩水によって、タービンから供給された蒸気が冷却されて凝縮される。復水器18において冷却に使用された塩水は放水路22に排出されて、放水路22を通じて海2に放出される。なお、ポンプ19の代わりに位置エネルギー又は圧力差を利用して、塩水が海2から取水路20、復水器18及び放水路22を経由して海2に流れるものとしてもよい。 The inlet of the condenser 18 is connected to the intake channel 20 via a flow path, a pump 19, and the like. The outlet of the condenser 18 is connected to the flood channel 22 via a flow path or the like. The pump 19 sends the salt water in the intake channel 20 to the condenser 18. The salt water supplied to the condenser 18 cools and condenses the steam supplied from the turbine. The salt water used for cooling in the condenser 18 is discharged to the flood channel 22 and discharged to the sea 2 through the flood channel 22. In addition, instead of the pump 19, the potential energy or the pressure difference may be used to allow salt water to flow from the sea 2 to the sea 2 via the intake channel 20, the condenser 18, and the drainage channel 22.
 取水路20、放水路22及び復水器18には海生生物を含む塩水が流れるため、海生生物が取水路20、放水路22及び復水器18の内部に付着・繁殖しやすい。海生生物の付着及び繁殖を抑えるべく、塩素系薬剤が添加装置30によって取水路20内の塩水に添加される。また、放水路22から海2に放出される塩水の残留塩素濃度の低減を図るべく、溶存水素を含む水(以下、水素水という。)が添加装置30によって放水路22内の塩水に添加される。以下の説明では水素水の溶媒となる水は塩水であるが、淡水又は上水であってもよい。 Since salt water containing marine organisms flows through the intake channel 20, the drainage channel 22, and the condenser 18, marine organisms easily adhere to and propagate inside the intake channel 20, the drainage channel 22, and the condenser 18. A chlorine-based chemical is added to the salt water in the intake channel 20 by the addition device 30 in order to suppress the adhesion and reproduction of marine organisms. Further, in order to reduce the residual chlorine concentration of the salt water discharged from the discharge channel 22 into the sea 2, water containing dissolved hydrogen (hereinafter referred to as hydrogen water) is added to the salt water in the discharge channel 22 by the addition device 30. NS. In the following description, the water used as the solvent for hydrogen water is salt water, but it may be fresh water or clean water.
 添加装置30について以下に詳細に説明する。
 添加装置30は電気分解装置31、気体溶解装置41及び送液ポンプ35,44及びバルブ45を有する。
The addition device 30 will be described in detail below.
The addition device 30 includes an electrolyzer 31, a gas dissolution device 41, liquid feed pumps 35, 44, and a valve 45.
 電気分解装置31のインレットが導入管32及び送液ポンプ35を介して取水路20に連結され、電気分解装置31の液用アウトレットが排出管33を介して取水路20に連結され、電気分解装置31の気体用アウトレットが送管34を介して気体溶解装置41の気体用インレットに連結されている。気体溶解装置41の液用インレットが導入管42及び送液ポンプ44を介して取水路20に連結され、気体溶解装置41の液用アウトレットがバルブ45及び排出管43を介して放水路22に連結されている。 The inlet of the electrolysis device 31 is connected to the intake channel 20 via the introduction pipe 32 and the liquid feed pump 35, and the liquid outlet of the electrolysis device 31 is connected to the intake channel 20 via the discharge pipe 33. The gas outlet of 31 is connected to the gas inlet of the gas dissolving device 41 via a transmission pipe 34. The liquid inlet of the gas dissolving device 41 is connected to the intake channel 20 via the introduction pipe 42 and the liquid feeding pump 44, and the liquid outlet of the gas dissolving device 41 is connected to the drainage channel 22 via the valve 45 and the discharge pipe 43. Has been done.
 送液ポンプ35は取水路20内の塩水を電気分解装置31に供給する。
 電気分解装置31は、取水路20から導入された塩水を電気分解することによって、電気分解装置31の陽極に塩素(Cl2)を生成する。そのため、電気分解装置31によって電気分解された塩水には、遊離塩素及び結合塩素等からなる有効塩素が含まれている。遊離塩素とは、塩水中の塩素ガス分子(Cl2)、次亜塩素酸(HClO)及び次亜塩素酸イオン(ClO-)のことをいう。結合塩素は、塩水に含まれるアンモニア及びその化合物と遊離塩素が反応することによって得られたものであって、例えばモノクロラミン、ジクロラミン、トリクロラミン等のクロラミンのことをいう。
The liquid feed pump 35 supplies the salt water in the intake channel 20 to the electrolyzer 31.
The electrolyzer 31 generates chlorine (Cl 2 ) at the anode of the electrolyzer 31 by electrolyzing the salt water introduced from the intake channel 20. Therefore, the salt water electrolyzed by the electrolyzer 31 contains effective chlorine composed of free chlorine, combined chlorine, and the like. The free chlorine, chlorine gas molecules (Cl 2) in the brine, hypochlorous acid (HClO) and hypochlorous acid ions (ClO -) refers to. Bound chlorine is obtained by reacting free chlorine with ammonia contained in salt water and its compound, and refers to chloramines such as monochloramine, dichloramine, and trichloramine.
 電気分解装置31における塩水の電気分解によって水素(H2)が電気分解装置31の陰極に生成される。電気分解装置31は脱気塔又は受槽等を有し、電気分解された塩水中の水素分子が脱気塔又は受槽等において塩水から分離されて、気体水素が塩水から発生する。その気体水素は電気分解装置31から送管34を通って気体溶解装置41に送られる。送管34の中途部には、電気分解装置31から気体溶解装置41への気体水素の流量を調整するバルブが設けられてもよい。 Hydrogen (H 2 ) is generated at the cathode of the electrolyzer 31 by the electrolysis of salt water in the electrolyzer 31. The electrolysis device 31 has a degassing tower or a receiving tank or the like, and hydrogen molecules in the electrolyzed salt water are separated from the salt water in the degassing tower or the receiving tank or the like, and gaseous hydrogen is generated from the salt water. The gaseous hydrogen is sent from the electrolyzer 31 to the gas dissolving apparatus 41 through the transmission pipe 34. A valve for adjusting the flow rate of gaseous hydrogen from the electrolyzer 31 to the gas dissolution device 41 may be provided in the middle of the transmission pipe 34.
 電気分解装置31において水素が分離された塩水は塩素系薬剤であり、より具体的には、有効塩素を含む塩素系水溶液である。その塩素系水溶液が電気分解装置31から排出管33を通って取水路20に投入される。その塩素系水溶液が取水路20内の塩水に添加されるため、海生生物の付着及び繁殖が抑制される。排出管33から取水路20に塩素系水溶液が添加される位置は、取水路20の出来る限り広い範囲で海生生物の付着及び繁殖の防止効果を得るために、取水口21に可能な限り近いことが好ましい。 The salt water from which hydrogen is separated in the electrolyzer 31 is a chlorine-based chemical, and more specifically, it is a chlorine-based aqueous solution containing effective chlorine. The chlorine-based aqueous solution is introduced into the intake channel 20 from the electrolyzer 31 through the discharge pipe 33. Since the chlorine-based aqueous solution is added to the salt water in the intake channel 20, the adhesion and reproduction of marine organisms are suppressed. The position where the chlorine-based aqueous solution is added from the discharge pipe 33 to the intake channel 20 is as close as possible to the intake port 21 in order to obtain the effect of preventing the adhesion and reproduction of marine organisms in the widest possible range of the intake channel 20. Is preferable.
 図2に示す例では、1体の送液ポンプ35が設けられている。それに対して、取水路20から導入管32、電気分解装置31及び排出管33を経由して取水路20までの経路に複数の送液ポンプ35が設けられてもよい。また、取水路20から導入管32、電気分解装置31及び排出管33を経由して取水路20までの経路に一又は複数のバルブが設けられてもよい。一又は複数の送液ポンプ35及びバルブは、取水路20から電気分解装置31への塩水の供給流量を調整したり、電気分解装置31から取水路20への塩素系水溶液の投入流量を調整したりする。送液ポンプ35及びバルブが制御されたり、電気分解装置31の消費電力が制御されたりすることによって、取水路20並びにそれよりも下流側の復水器18及び放水路22における残留塩素濃度が適切に調整される。 In the example shown in FIG. 2, one liquid feeding pump 35 is provided. On the other hand, a plurality of liquid feeding pumps 35 may be provided in the path from the intake passage 20 to the intake pipe 20 via the introduction pipe 32, the electrolyzer 31 and the discharge pipe 33. Further, one or more valves may be provided in the path from the intake pipe 20 to the intake pipe 20 via the introduction pipe 32, the electrolyzer 31 and the discharge pipe 33. One or more liquid feed pumps 35 and valves adjust the supply flow rate of salt water from the intake channel 20 to the electrolyzer 31 and adjust the input flow rate of the chlorine-based aqueous solution from the electrolyzer 31 to the intake channel 20. Or By controlling the liquid feed pump 35 and the valve, and controlling the power consumption of the electrolyzer 31, the residual chlorine concentration in the intake channel 20 and the condenser 18 and the discharge channel 22 on the downstream side thereof is appropriate. Is adjusted to.
 送液ポンプ44は取水路20内の塩水を気体溶解装置41に供給する。なお、気体溶解装置41の液用インレットが導入管42及び送液ポンプ44を介して放水路22に連結されて、送液ポンプ44が放水路22内の塩水を気体溶解装置41に供給してもよい。 The liquid feed pump 44 supplies the salt water in the intake channel 20 to the gas dissolving device 41. The liquid inlet of the gas dissolving device 41 is connected to the drainage channel 22 via the introduction pipe 42 and the liquid feeding pump 44, and the liquid feeding pump 44 supplies the salt water in the drainage channel 22 to the gas dissolving device 41. May be good.
 気体溶解装置41は、取水路20から導入された塩水に、電気分解装置31から導入された気体水素を溶解させる。これにより、気体溶解装置41内において、溶存水素を含む塩水(以下、水素水という。)が生成される。気体溶解装置41において気体水素が塩水に効率よく溶解し、水素水中の溶存水素濃度が高くなるために、気体溶解装置41の内部がコンプレッサー等によって高圧に加圧されてもよい。 The gas melting device 41 dissolves the gaseous hydrogen introduced from the electrolyzer 31 in the salt water introduced from the intake channel 20. As a result, salt water containing dissolved hydrogen (hereinafter referred to as hydrogen water) is generated in the gas dissolving device 41. In the gas dissolution device 41, the gas hydrogen is efficiently dissolved in salt water and the concentration of dissolved hydrogen in the hydrogen water is increased. Therefore, the inside of the gas dissolution device 41 may be pressurized to a high pressure by a compressor or the like.
 気体溶解装置41において生成された水素水が気体溶解装置41からバルブ45及び排出管43を通って放水路22に投入される。バルブ45は、放水路22への水素水の投入流量を調整する。水素水が放水路22内の塩水に添加されることによって、その塩水中の残留塩素が低減又は除去されて、その塩水が中和される。中和された塩水は放水路22から海2に放出される。中和された塩水の残留塩素濃度は、海2の自然環境に影響を及ばさない程度であり、例えば地元との協定や、法律、規則等によって定められた値以下である。放水路22における塩水の残留塩素濃度が高い領域を広くするべく、排出管43から水素水が添加される位置は放水口24に近いほど良い。特に、海2に放出される塩水の残留塩素濃度を前記定められた値以下に抑えられるのであれば、排出管43から水素水が添加される位置が放水口24近傍であることが好ましい。 The hydrogen water generated in the gas dissolving device 41 is introduced from the gas dissolving device 41 into the flood channel 22 through the valve 45 and the discharge pipe 43. The valve 45 adjusts the flow rate of hydrogen water input to the drainage channel 22. By adding hydrogen water to the salt water in the drainage channel 22, residual chlorine in the salt water is reduced or removed, and the salt water is neutralized. The neutralized salt water is discharged from the flood channel 22 into the sea 2. The residual chlorine concentration of the neutralized salt water does not affect the natural environment of the sea 2, and is, for example, less than or equal to the value stipulated by the agreement with the local community, laws, regulations, and the like. In order to widen the region of the discharge channel 22 where the residual chlorine concentration of the salt water is high, the position where hydrogen water is added from the discharge pipe 43 is better as it is closer to the discharge port 24. In particular, if the residual chlorine concentration of the salt water released into the sea 2 can be suppressed to be equal to or lower than the predetermined value, it is preferable that the hydrogen water is added from the discharge pipe 43 to the vicinity of the discharge port 24.
 以上の実施形態によれば、以下のような有利な効果をもたらす。 According to the above embodiment, the following advantageous effects are brought about.
(1) 気体溶解装置41によって生成された水素水が放水路22内の塩水に投入されるため、放水路22から海2に放出される塩水の残留塩素濃度が低減する。そのため、海2における自然環境に悪影響を及ぼさない。 (1) Since the hydrogen water generated by the gas dissolving device 41 is put into the salt water in the drainage channel 22, the residual chlorine concentration of the saltwater discharged from the drainage channel 22 into the sea 2 is reduced. Therefore, it does not adversely affect the natural environment in the sea 2.
(2) 電気分解装置31によって生成された塩素系水溶液が取水路20内の塩水に投入されるため、取水路20、復水器18及び放水路22における海生生物の付着及び繁殖が抑えられる。特に、放水路22内の塩水の残留塩素濃度が低減するため、電気分解装置31によって生成された塩素系水溶液の有効塩素濃度を低くしなくても済み、海生生物の付着及び繁殖が確実に抑えられる。 (2) Since the chlorine-based aqueous solution generated by the electrolyzer 31 is put into the salt water in the intake channel 20, the adhesion and reproduction of marine organisms in the intake channel 20, the condenser 18, and the drainage channel 22 are suppressed. .. In particular, since the residual chlorine concentration of the salt water in the flood channel 22 is reduced, it is not necessary to lower the effective chlorine concentration of the chlorine-based aqueous solution generated by the electrolyzer 31, and the adhesion and reproduction of marine organisms are ensured. It can be suppressed.
(3) 電気分解装置31において塩水から生成された気体水素が利用されるため、塩水の残留塩素の低減のために水素を別途準備しなくても済む。放水路22内の塩水の残留塩素濃度の低減を低コストで行える。また、電気分解装置31において気体水素を大気に放出しなくても済む。 (3) Since the gaseous hydrogen generated from the salt water is used in the electrolyzer 31, it is not necessary to separately prepare hydrogen in order to reduce the residual chlorine in the salt water. The residual chlorine concentration of salt water in the drainage channel 22 can be reduced at low cost. Further, it is not necessary to release gaseous hydrogen to the atmosphere in the electrolyzer 31.
(4) 電気分解装置31において生成された気体水素が放水路22内の塩水に直接注入されるのではなく、その気体水素が気体溶解装置41によって一旦塩水に溶解された上で、水素水が放水路22内の塩水に添加される。それゆえ、放水路22内での塩水の中和が効率よく進行する。 (4) The gaseous hydrogen generated in the electrolyzer 31 is not directly injected into the salt water in the drainage channel 22, but the gaseous hydrogen is once dissolved in the salt water by the gas dissolving apparatus 41, and then the hydrogen water is discharged. It is added to the salt water in the discharge channel 22. Therefore, the neutralization of salt water in the drainage channel 22 proceeds efficiently.
 以上に実施形態について説明した。以上の実施形態は変更又は改良され得る。以上の実施形態からの変更点について以下に説明する。以下に説明する各変更点を組み合わせて適用してもよい。 The embodiment has been described above. The above embodiments may be modified or improved. The changes from the above embodiments will be described below. Each of the changes described below may be applied in combination.
(A) 上記実施形態では、取水路20内の塩水に添加される塩素系薬剤が、電気分解装置31によって生成された塩素系水溶液である。それに対して、予め生成されて且つ貯留槽等に貯留された塩素系水溶液が投入装置によって取水路20内の塩水に添加されてもよい。塩素系水溶液は例えば次亜塩素酸水溶液又は塩素化イソシアヌル酸水溶液であるが、それ以外の塩素系水溶液であってもよい。また、塩素系水溶液の代わりに塩素ガスが取水路20内の塩水に噴出されるものとしてもよい。塩素ガスはガスボンベに貯留されている。また、塩素系水溶液の代わりに固形塩素系薬剤が投入装置によって取水路20内の塩水に投入されるものとしてもよい。固形塩素系薬剤は例えば次亜塩素酸カルシウム、次亜塩素酸ナトリウム、塩素化イソシアヌル酸又はさらし粉である。固形塩素系薬剤は貯留タンクに予め貯留されている。 (A) In the above embodiment, the chlorine-based chemical added to the salt water in the intake channel 20 is a chlorine-based aqueous solution generated by the electrolyzer 31. On the other hand, a chlorine-based aqueous solution that has been generated in advance and stored in a storage tank or the like may be added to the salt water in the intake channel 20 by the charging device. The chlorine-based aqueous solution is, for example, a hypochlorous acid aqueous solution or a chlorinated isocyanuric acid aqueous solution, but other chlorine-based aqueous solutions may be used. Further, instead of the chlorine-based aqueous solution, chlorine gas may be ejected into the salt water in the intake channel 20. Chlorine gas is stored in a gas cylinder. Further, instead of the chlorine-based aqueous solution, a solid chlorine-based chemical may be charged into the salt water in the intake channel 20 by the charging device. The solid chlorine-based chemicals are, for example, calcium hypochlorite, sodium hypochlorite, chlorinated isocyanuric acid or bleached powder. The solid chlorine-based chemicals are stored in the storage tank in advance.
(B) 上記実施形態では、電気分解装置31によって生成された気体水素が気体溶解装置41に供給される。それに対して、添加装置30がガスボンベ又は水素生成装置を有し、ガスボンベに貯留された気体水素又は水素生成装置によって生成された気体水素が気体溶解装置41に供給されてもよい。水素生成装置は、例えば、水を電気分解して水素と酸素を生成する電気分解装置である。 (B) In the above embodiment, the gaseous hydrogen generated by the electrolyzer 31 is supplied to the gas dissolution apparatus 41. On the other hand, the addition device 30 may have a gas cylinder or a hydrogen generating device, and the gaseous hydrogen stored in the gas cylinder or the gaseous hydrogen generated by the hydrogen generating apparatus may be supplied to the gas melting device 41. The hydrogen generator is, for example, an electrolyzer that electrolyzes water to generate hydrogen and oxygen.
(C) 上記実施形態又は上記変形例(B)では、気体水素が気体溶解装置41において予め塩水に溶解される。それに対して、気体水素が放水路22内の塩水に直接噴出されて、気体水素がその塩水に溶解するものとしてもよい。 (C) In the above embodiment or the above modified example (B), gaseous hydrogen is previously dissolved in salt water in the gas dissolving apparatus 41. On the other hand, the gaseous hydrogen may be directly ejected into the salt water in the drainage channel 22, and the gaseous hydrogen may be dissolved in the salt water.
(D) 上記実施形態では、取水路20又は放水路22内の塩水が気体溶解装置41に供給される。それに対して、上水が気体溶解装置41に供給されてもよい。また、海2以外の自然水域の淡水が気体溶解装置41に供給されてもよい。 (D) In the above embodiment, the salt water in the intake channel 20 or the discharge channel 22 is supplied to the gas dissolving device 41. On the other hand, clean water may be supplied to the gas dissolving device 41. Further, fresh water in a natural water area other than the sea 2 may be supplied to the gas dissolving device 41.
(E) 上記実施形態では、自然水域が海2であり、火力発電所10が海2の沿岸に建造されている。それに対して、自然水域が塩湖、淡水湖、沼又は河川であり、火力発電所10が塩湖、淡水湖、沼又は河川の沿岸に建造されるものとしてもよい。自然水域に存在する水が淡水である場合には、上記(A)及び(B)の変形例を併せて適用する必要があるか、電気分解装置31に供給される淡水に塩化ナトリウムを溶解させる必要がある。なお、汽水が塩水であるので、本開示では汽水湖は塩湖の一種である。 (E) In the above embodiment, the natural water area is the sea 2, and the thermal power plant 10 is built on the coast of the sea 2. On the other hand, the natural water area may be a salt lake, a freshwater lake, a swamp or a river, and the thermal power plant 10 may be constructed on the coast of the salt lake, a freshwater lake, a swamp or a river. When the water existing in the natural water area is fresh water, it is necessary to apply the modified examples of (A) and (B) together, or to dissolve sodium chloride in the fresh water supplied to the electrolyzer 31. There is a need. Since brackish water is salt water, the brackish lake is a kind of salt lake in this disclosure.
(F) 上記実施形態では、海水設備11が火力発電所10に構築されている。それに対して、海水設備11が他の種類の発電所、例えば水力発電所、揚水発電所、原子力発電所に構築されるものとしてもよいし、発電所以外の工場に構築されるものとしてもよい。また、取水路20と放水路22との間に設けられた設備が復水器18であったが、他の設備、例えば水力発電機であってもよい。 (F) In the above embodiment, the seawater facility 11 is constructed in the thermal power plant 10. On the other hand, the seawater facility 11 may be constructed in another type of power plant, for example, a hydroelectric power plant, a pumped storage power plant, or a nuclear power plant, or may be constructed in a factory other than the power plant. .. Further, although the equipment provided between the intake channel 20 and the drainage channel 22 was the condenser 18, other equipment, for example, a hydroelectric generator may be used.
(G) 水素水又は気体水素が添加される位置は、排出管33から取水路20に塩素系水溶液が添加される位置から放水口24までのうちどの位置でもよい。但し、復水器18に海生生物が付着するのを抑制するため、水素水又は気体水素が添加される位置が復水器18の下流側であることが好ましい。 (G) The position where hydrogen water or gaseous hydrogen is added may be any position from the position where the chlorine-based aqueous solution is added to the intake pipe 20 from the discharge pipe 33 to the outlet 24. However, in order to prevent marine organisms from adhering to the condenser 18, it is preferable that the position where hydrogen water or gaseous hydrogen is added is on the downstream side of the condenser 18.
 残留塩素を含む水(以下、塩素水という)と水素水を混合することによって、残留塩素濃度が低減することを5回の試験(うち1回は比較試験)により検証した。以下に具体的に説明する。 It was verified by five tests (one of which was a comparative test) that the residual chlorine concentration was reduced by mixing hydrogen water with water containing residual chlorine (hereinafter referred to as chlorine water). This will be described in detail below.
 塩素水として、次亜塩素酸溶液を用いた。
 水素水として、水素タンクから水素ガスをビーカ中の純水に導入してバブリングしつつ撹拌したものを用いた。なお、白金等の触媒は用いていない。こうして得られた水素水の水素濃度を水素濃度計で測定したところ約0.8ppmであった。
A hypochlorous acid solution was used as the chlorinated water.
As hydrogen water, hydrogen gas was introduced into pure water in a beaker from a hydrogen tank and stirred while bubbling. No catalyst such as platinum is used. When the hydrogen concentration of the hydrogen water thus obtained was measured with a hydrogen concentration meter, it was about 0.8 ppm.
 以上の塩素水と水素水とを等量(本試験では50mlずつ)をビーカ内で混合し、その混合水を攪拌して、残留塩素濃度を求めた。なお、残留塩素濃度はDPD法で測定した。また、併せて水素濃度計により混合後の水素濃度も測定した。なお、塩素水と水素水を混合撹拌する際、紫外線照射等の他の手段は用いていない。 Equal amounts of the above chlorine water and hydrogen water (50 ml each in this test) were mixed in a beaker, and the mixed water was stirred to determine the residual chlorine concentration. The residual chlorine concentration was measured by the DPD method. At the same time, the hydrogen concentration after mixing was also measured with a hydrogen concentration meter. When mixing and stirring chlorine water and hydrogen water, other means such as ultraviolet irradiation are not used.
 表1~表4は、塩素水と水素水を混合した4回の各試験における、混合前の塩素水の塩素濃度、混合時の残留塩素濃度、及び、混合直後、混合から5分後、10分後、15分後における残留塩素濃度及び水素濃度及び、混合直後からの低下濃度を示す。なお、混合時の残留塩素濃度及び水素濃度は、混合前の残留塩素濃度及び水素濃度の半分になっているが、これは、塩素水と水素水を等量混合して50%に希釈されたことによる。
 また、表5は、比較例として、塩素水と純水を50mlずつ混合した場合の結果を示す。
 表5に示すように、比較例の場合は、混合後も残留塩素濃度の低下は認められなかったのに対して、表1~表4に示すように、水素水を塩素水と混合した場合は、いずれの試験においても、時間の経過に伴って残留塩素濃度が低下し、混合後15分の時点で0.06~0.12ppmの濃度低下が認められた。
Tables 1 to 4 show the chlorine concentration of chlorine water before mixing, the residual chlorine concentration at the time of mixing, and immediately after mixing, 5 minutes after mixing, and 10 in each of the four tests in which chlorine water and hydrogen water were mixed. The residual chlorine concentration and hydrogen concentration after 1 minute and 15 minutes, and the reduced concentration immediately after mixing are shown. The residual chlorine concentration and hydrogen concentration at the time of mixing are half of the residual chlorine concentration and hydrogen concentration before mixing, but this was diluted to 50% by mixing equal amounts of chlorine water and hydrogen water. It depends.
In addition, Table 5 shows the results when 50 ml each of chlorinated water and pure water are mixed as a comparative example.
As shown in Table 5, in the case of the comparative example, no decrease in the residual chlorine concentration was observed even after mixing, whereas as shown in Tables 1 to 4, hydrogen water was mixed with chlorine water. In all the tests, the residual chlorine concentration decreased with the passage of time, and a decrease of 0.06 to 0.12 ppm was observed 15 minutes after mixing.
 以上の通り、塩素水に水素水を混合することにより、残留塩素濃度が低下できることを確認した。 As described above, it was confirmed that the residual chlorine concentration can be reduced by mixing hydrogen water with chlorine water.
 以下、表1~表5に試験結果を示す。 The test results are shown in Tables 1 to 5 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、上記試験では、水素水を塩素水に混合することによる塩素濃度低下を確認したが、上記の通り、試験で用いた水素水は水素ガスを純水にバブリングすることにより得られたものであるから、塩素水に直接水素ガスをバブリングすることによっても同様の効果が期待できる。 In the above test, it was confirmed that the chlorine concentration decreased by mixing hydrogen water with chlorine water, but as described above, the hydrogen water used in the test was obtained by bubbling hydrogen gas into pure water. Therefore, the same effect can be expected by bubbling hydrogen gas directly into chlorine water.
 2…海(自然水域)
 18…復水器(設備)
 20…取水路
 22…放水路
 25…水路
 30…添加装置
 31…電気分解装置
 41…気体溶解装置
2 ... Sea (natural water area)
18 ... Condenser (equipment)
20 ... Intake channel 22 ... Flood channel 25 ... Water channel 30 ... Addition device 31 ... Electrolysis device 41 ... Gas dissolution device

Claims (14)

  1.  残留塩素を含む水が使用される設備から放水路を通じて前記水を自然水域に放出する放水方法において、
     溶存水素を含む水素含有液又は気体水素を前記放水路内の前記水に添加することを特徴とする放水方法。
    In a water discharge method in which water containing residual chlorine is discharged from a facility in which water is used to a natural water area through a flood channel.
    A water discharge method comprising adding a hydrogen-containing liquid containing dissolved hydrogen or gaseous hydrogen to the water in the flood bypass.
  2.  水の電気分解によって気体水素を生成し、その気体水素を液体に溶かすことによって前記水素含有液を得る
    請求項1に記載の放水方法。
    The water discharge method according to claim 1, wherein gaseous hydrogen is generated by electrolysis of water, and the gaseous hydrogen is dissolved in a liquid to obtain the hydrogen-containing liquid.
  3.  自然水域から水を取水口を通じて水路に取り込むとともに、前記水路に取り込んだ水を放水口を通じて前記自然水域に放出する水処理方法において、
     前記水路内の所定位置において塩素系薬剤を前記水に添加し、前記所定位置よりも放水口側の位置において溶存水素を含む水素含有液又は気体水素を前記水に添加することを特徴とする水処理方法。
    In a water treatment method in which water from a natural water area is taken into a waterway through a water outlet and the water taken into the waterway is discharged to the natural water area through an outlet.
    Water characterized in that a chlorine-based chemical is added to the water at a predetermined position in the water channel, and a hydrogen-containing liquid containing dissolved hydrogen or gaseous hydrogen is added to the water at a position closer to the outlet side than the predetermined position. Processing method.
  4.  前記水路が、前記取水口と設備との間に設けられ、前記取水口から取り入れた水を前記設備に送る取水路と、前記設備と前記放水口との間に設けられ、前記水を前記設備から前記放水口に送る放水路と、を有し、
     前記塩素系薬剤を添加する前記所定位置が前記取水路内にあり、前記水素含有液又は前記気体水素を添加する前記位置が前記放水路内にある
    請求項3に記載の水処理方法。
    The water channel is provided between the intake port and the equipment, and is provided between the intake channel for sending the water taken in from the intake port to the equipment and the equipment and the water discharge port, and the water is supplied to the equipment. It has a drainage channel that sends from to the outlet.
    The water treatment method according to claim 3, wherein the predetermined position for adding the chlorine-based chemical is in the intake channel, and the position for adding the hydrogen-containing liquid or the gaseous hydrogen is in the drainage channel.
  5.  前記自然水域が海又は塩湖であり、前記取水口を通じて取り込む水が塩水であり、
     前記水路から前記塩水を電気分解装置に供給して、前記電気分解装置により前記塩水を電気分解することによって気体水素を生成し、前記気体水素を気体溶解装置により液体に溶かすことによって前記水素含有液を生成する
    請求項3又は4に記載の水処理方法。
    The natural water area is the sea or a salt lake, and the water taken in through the intake is salt water.
    The salt water is supplied from the water channel to the electrolyzer, the salt water is electrolyzed by the electrolyzer to generate gaseous hydrogen, and the gaseous hydrogen is dissolved in a liquid by the gas dissolving apparatus to dissolve the hydrogen-containing liquid. The water treatment method according to claim 3 or 4.
  6.  残留塩素を含む水に溶存水素を含む水素含有液又は気体水素を添加する残留塩素低減方法。 A method for reducing residual chlorine by adding a hydrogen-containing liquid containing dissolved hydrogen or gaseous hydrogen to water containing residual chlorine.
  7.  設備と自然水域との間に設けられ、残留塩素を含む水を前記設備から前記自然水域に放出する放水路と、
     溶存水素を含む水素含有液又は気体水素を前記放水路内の前記水に添加する添加装置と、
    を備える水処理設備。
    A flood bypass provided between the equipment and the natural water area to discharge water containing residual chlorine from the equipment to the natural water area.
    An addition device that adds a hydrogen-containing liquid containing dissolved hydrogen or gaseous hydrogen to the water in the flood bypass, and
    Water treatment equipment equipped with.
  8.  前記添加装置が、
     気体水素を液体に溶かすことによって前記水素含有液を生成する気体溶解装置を有する
    請求項7に記載の水処理設備。
    The addition device
    The water treatment facility according to claim 7, further comprising a gas dissolving device for producing the hydrogen-containing liquid by dissolving gaseous hydrogen in a liquid.
  9.  前記自然水域に通じるとともに、前記自然水域から水を取り込む取水路を更に備え、
     前記添加装置が、
     前記取水路から前記水が供給され、その水の電気分解によって前記気体水素を生成し、その気体水素を前記気体溶解装置へ送出する電気分解装置を更に有する
    請求項8に記載の水処理設備。
    In addition to being connected to the natural water area, it is further equipped with an intake channel that takes in water from the natural water area.
    The addition device
    The water treatment facility according to claim 8, further comprising an electrolyzer that supplies the water from the intake channel, generates the gaseous hydrogen by electrolysis of the water, and sends the gaseous hydrogen to the gas dissolving apparatus.
  10.  前記自然水域に通じるとともに、前記自然水域から水を取り込む取水路を更に備え、
     前記添加装置が、
     前記取水路から前記水が供給され、その水の電気分解によって前記気体水素を生成し、その気体水素を前記放水路内の前記水に添加する電気分解装置を更に有する
    請求項7に記載の水処理設備。
    In addition to being connected to the natural water area, it is further equipped with an intake channel that takes in water from the natural water area.
    The addition device
    The water according to claim 7, further comprising an electrolyzer that supplies the water from the intake channel, generates the gaseous hydrogen by electrolysis of the water, and adds the gaseous hydrogen to the water in the drainage channel. Processing equipment.
  11.  前記自然水域が海又は塩湖であり、前記取水路に取り込まれる前記水が塩水であり、
     前記電気分解装置は、前記塩水の電気分解により有効塩素を含む塩素系水溶液を生成し、前記塩素系水溶液を前記取水路内の前記塩水に添加する
    請求項9又は10に記載の水処理設備。
    The natural water area is the sea or a salt lake, and the water taken into the intake channel is salt water.
    The water treatment facility according to claim 9 or 10, wherein the electrolysis device generates a chlorine-based aqueous solution containing effective chlorine by electrolysis of the salt water, and adds the chlorine-based aqueous solution to the salt water in the intake channel.
  12.  前記取水路から前記設備に前記水が供給される
    請求項9から11の何れか一項に記載の水処理設備。
    The water treatment facility according to any one of claims 9 to 11, wherein the water is supplied from the intake channel to the facility.
  13.  前記設備が復水器である請求項7から12の何れか一項に記載の水処理設備。 The water treatment equipment according to any one of claims 7 to 12, wherein the equipment is a condenser.
  14.  自然水域に設けられた取水口及び放水口を有し、前記自然水域から前記取水口を通じて水を取り込み、取り込まれた水を前記放水口を通じて前記自然水域に放出する水路と、
     前記水路の所定位置において塩素系薬剤を前記水路内の前記水に添加し、前記所定位置よりも放水口側の位置において溶存水素を含む水素含有液又は気体水素を前記水路内の前記水に添加する添加装置と、を備える水処理設備。
    A water channel that has an intake and a water outlet provided in a natural water area, takes in water from the natural water area through the water intake, and discharges the taken-in water to the natural water area through the water outlet.
    A chlorine-based chemical is added to the water in the water channel at a predetermined position in the water channel, and a hydrogen-containing liquid or gaseous hydrogen containing dissolved hydrogen is added to the water in the water channel at a position closer to the outlet side than the predetermined position. Water treatment equipment equipped with an addition device.
PCT/JP2020/009633 2020-03-06 2020-03-06 Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility WO2021176682A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/009633 WO2021176682A1 (en) 2020-03-06 2020-03-06 Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility
JP2021500753A JP6927452B1 (en) 2020-03-06 2020-11-11 Water treatment method and water treatment equipment
PCT/JP2020/042096 WO2021176774A1 (en) 2020-03-06 2020-11-11 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009633 WO2021176682A1 (en) 2020-03-06 2020-03-06 Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility

Publications (1)

Publication Number Publication Date
WO2021176682A1 true WO2021176682A1 (en) 2021-09-10

Family

ID=77613234

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/009633 WO2021176682A1 (en) 2020-03-06 2020-03-06 Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility
PCT/JP2020/042096 WO2021176774A1 (en) 2020-03-06 2020-11-11 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042096 WO2021176774A1 (en) 2020-03-06 2020-11-11 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility

Country Status (1)

Country Link
WO (2) WO2021176682A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137666A (en) * 1997-07-15 1999-02-12 Mitsubishi Heavy Ind Ltd Chlorine generator of sea water cooling power plant
JP2001145890A (en) * 1999-11-22 2001-05-29 Japan Organo Co Ltd Method and apparatus for treating waste water
KR20150134734A (en) * 2014-05-22 2015-12-02 삼성중공업 주식회사 Ballast water treatment apparatus
WO2016121063A1 (en) * 2015-01-29 2016-08-04 中国電力株式会社 Water discharge channel
WO2019031430A1 (en) * 2017-08-10 2019-02-14 栗田工業株式会社 Reverse osmosis treatment method and water treatment device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE174009T1 (en) * 1994-09-08 1998-12-15 Solvay Umweltchemie Gmbh METHOD FOR REMOVAL OF CHLORATE AND BROMATE COMPOUNDS FROM WATER BY CATALYTIC REDUCTION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137666A (en) * 1997-07-15 1999-02-12 Mitsubishi Heavy Ind Ltd Chlorine generator of sea water cooling power plant
JP2001145890A (en) * 1999-11-22 2001-05-29 Japan Organo Co Ltd Method and apparatus for treating waste water
KR20150134734A (en) * 2014-05-22 2015-12-02 삼성중공업 주식회사 Ballast water treatment apparatus
WO2016121063A1 (en) * 2015-01-29 2016-08-04 中国電力株式会社 Water discharge channel
WO2019031430A1 (en) * 2017-08-10 2019-02-14 栗田工業株式会社 Reverse osmosis treatment method and water treatment device

Also Published As

Publication number Publication date
WO2021176774A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
US10093561B2 (en) Apparatus and method for treating ballast water
JP5923190B2 (en) Method and system for treating ballast water
KR102314591B1 (en) Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system
JP4478159B2 (en) Electrolytic ballast water treatment apparatus and treatment method
KR101066674B1 (en) Electrolysis unit, apparatus for treatment of ballast water of ship with the same
US5256310A (en) Treatment of fresh water for zebra mussel infestation
JP2010201313A (en) Reverse osmosis membrane separation method
WO2018092852A1 (en) Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
CN106946325A (en) The method and system of hydroxyl radical free radical advanced oxidation prevention and control ocean invasive plants
JP6927452B1 (en) Water treatment method and water treatment equipment
JP5967337B1 (en) Method of operating reverse osmosis membrane treatment system and reverse osmosis membrane treatment system
WO2021176682A1 (en) Water discharging method, water treating method, residual chlorine reduction method, and water treatment facility
US11919785B2 (en) Ocean alkalinity system and method for capturing atmospheric carbon dioxide
TWI786081B (en) Method for modifying reverse osmosis membrane, reverse osmosis membrane, and method for processing water containing non-charged substance
JP6388124B2 (en) Electrolysis system
WO2022249487A1 (en) Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
JP6747950B2 (en) Water treatment equipment
WO2016028231A1 (en) Ballast water treatment system and method of ballast water treatment
WO2022249488A1 (en) Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility
WO2021090583A1 (en) Water treatment system and water treatment method
KR101980474B1 (en) Hypochlorous acid supply device and boiler waste-water treatment method
CN116177686A (en) Oxygen cathode electrolysis seawater antifouling method and device for underwater ship
KR20040043434A (en) Sea water recycling chlorine generator by using mono cell
JP2020075219A (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method and water treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP