WO2022249287A1 - ドライバ回路、送信機および通信システム - Google Patents

ドライバ回路、送信機および通信システム Download PDF

Info

Publication number
WO2022249287A1
WO2022249287A1 PCT/JP2021/019825 JP2021019825W WO2022249287A1 WO 2022249287 A1 WO2022249287 A1 WO 2022249287A1 JP 2021019825 W JP2021019825 W JP 2021019825W WO 2022249287 A1 WO2022249287 A1 WO 2022249287A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
driver
signal
type transistor
voltage
Prior art date
Application number
PCT/JP2021/019825
Other languages
English (en)
French (fr)
Inventor
成友 市岡
治 二宮
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to JP2023523765A priority Critical patent/JPWO2022249287A1/ja
Priority to PCT/JP2021/019825 priority patent/WO2022249287A1/ja
Publication of WO2022249287A1 publication Critical patent/WO2022249287A1/ja
Priority to US18/517,644 priority patent/US20240097735A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication

Definitions

  • the present disclosure relates to driver circuits used in communication systems.
  • communication may be performed by connecting devices that transmit and receive signals conforming to a predetermined standard.
  • One of the communication standards is the D-PHY standard of MIPI. This standard provides a low-speed, low-power signaling mode (LPTX mode) and a high-speed, small-amplitude signaling mode (HSTX mode).
  • LPTX mode low-speed, low-power signaling mode
  • HSTX mode high-speed, small-amplitude signaling mode
  • the MIPI D-PHY standard achieves a high-speed, low-power interface by combining LPTX and HSTX modes in proportion. However, if the operation rate of the HSTX mode is higher than that of the LPTX mode, the power consumption will be large, so further power reduction is required.
  • Patent Document 1 discloses a configuration in which the operation of a driver circuit is switched according to the power supply voltage range so that wired communication can be appropriately performed in a communication system.
  • the regulator that supplies power to the driver circuit has a voltage equal to or higher than the signal amplitude (eg, 1.2 V) in the LPTX mode. supply voltage.
  • the signal amplitude eg, 1.2 V
  • the HSTX mode since a constant DC current is passed through the output to obtain a desired output amplitude, power corresponding to the product of this DC current and the power supply voltage applied to the regulator is consumed. Therefore, there is a problem that power consumption in the HSTX mode increases.
  • the driver circuit needs to use a transistor with a high withstand voltage in order to support the LPTX mode. Therefore, it is more difficult to reduce the power consumption.
  • An object of the present disclosure is to realize low power consumption for a driver circuit having two signal transmission modes with different amplitudes, such as LPTX mode and HSTX mode.
  • a driver circuit is provided between a first power supply of a first voltage and a ground power supply, receives a first input signal, and outputs a signal corresponding to the first input signal.
  • a driver a regulator connected to a second power supply having a second voltage lower than the first voltage and supplying a third power supply having a third voltage lower than the second voltage, and the third power supply and the ground power supply a second driver for receiving a second input signal and outputting a signal corresponding to the second input signal; an output to which the output of the first driver and the output of the second driver are commonly connected; terminal.
  • the first driver operates by receiving the first power supply and outputs a signal corresponding to the first input signal.
  • the regulator receives a second power supply having a lower voltage than the first power supply supplied to the first driver and supplies a third power supply having a lower voltage than the second power supply.
  • the second driver receives the third power supply and operates to output a signal corresponding to the second input signal.
  • the output of the first driver and the output of the second driver are commonly connected to the output terminal. That is, the first driver and the second driver are provided in parallel, and the power supply voltage of the regulator that supplies power to the second driver is lower than the power supply voltage of the first driver.
  • the driver circuit is provided between a first power supply of a first voltage and a ground power supply, receives a first input signal, and outputs a signal corresponding to the first input signal.
  • a regulator connected to a second power supply having a second voltage lower than the first voltage and supplying a third power supply having a third voltage lower than the second voltage, and the third power supply and the ground power supply a second driver for receiving a second input signal and outputting a signal corresponding to the second input signal; an output to which the output of the first driver and the output of the second driver are commonly connected; and an ESD (Electro Static Discharge) protection circuit provided between the second power supply and the output terminal and including one or two or more serially connected diodes.
  • ESD Electro Static Discharge
  • an ESD protection circuit including one or more serially connected diodes is provided between the second power supply and the output terminal. This can protect the driver circuit from ESD.
  • the driver circuit is provided between a first power supply of a first voltage and a ground power supply, receives a first input signal, and outputs a signal corresponding to the first input signal.
  • a regulator connected to a second power supply having a second voltage lower than the first voltage and supplying a third power supply having a third voltage lower than the second voltage, and the third power supply and the ground power supply a second driver for receiving a second input signal and outputting a signal corresponding to the second input signal; an output to which the output of the first driver and the output of the second driver are commonly connected; and a load change countermeasure circuit that suppresses fluctuations in the third voltage of the third power supply when the first mode in which the first driver operates changes to the second mode in which the second driver operates.
  • the load variation countermeasure circuit is provided between the third power supply and the ground power supply and has a current path that switches between a conducting state and a non-conducting state according to a given signal; to the second mode, a signal is provided to the current path so as to turn on the current path during the first mode and to turn off the current path when transitioning to the second mode.
  • the load variation countermeasure circuit can suppress the voltage variation of the third power supply when the first mode in which the first driver operates changes to the second mode in which the second driver operates.
  • Communication system configuration example A circuit configuration example of a transmission circuit that is an example of a driver circuit according to an embodiment It is a signal waveform diagram when switching from LPTX mode to HSTX mode, (a) when there is no load fluctuation countermeasure circuit, (b) when there is a load fluctuation countermeasure circuit.
  • “high”, “low” or “1” and “0” of a signal mean the logic level of the signal on the high potential side and the low potential side.
  • “on” and “off” of a transistor mean that the transistor is in a conducting state or a non-conducting state.
  • Symbols such as “VDE”, “VDN”, “VREG”, and “VSS” are used to represent both the power supply itself or the power supply potential.
  • Symbols such as “R1” are used to represent both the resistive element itself or the resistance value of the resistive element.
  • FIG. 1 is a schematic diagram of a configuration example of a communication system.
  • a communication system 1 shown in FIG. 1 includes a transmitter 2 , a receiver 3 and a transmission line 4 .
  • the transmitter 2 includes a transmission circuit 10 and a control circuit 5 that controls the transmission circuit 10 .
  • the receiver 3 comprises a receiver circuit 6 with a terminating resistor Rt.
  • the terminating resistance Rt is, for example, 100 ⁇ .
  • the transmission line 4 is configured to transmit differential signals, and has a P-side transmission line 41 and an N-side transmission line 42 .
  • the output terminals 21 and 22 of the transmission circuit 10 are connected to the P-side transmission line 41 and the N-side transmission line 42 of the transmission line 4, respectively.
  • the communication system 1 is compatible with the D-PHY standard of MIPI. As described above, the MIPI D-PHY standard realizes a high-speed, low-power interface by combining the LPTX mode and the HSTX mode.
  • the transmission circuit 10 includes a high speed driver (HSTX) 11, a low speed driver (LPTX) 12, and a regulator 30.
  • the output of the high-speed driver 11 and the output of the low-speed driver 12 are commonly connected to output terminals 21 and 22 of the transmission circuit 10 .
  • Regulator 30 receives control signal CTRL from control circuit 5 , generates power supply voltage VREG, and supplies it to high-speed driver 11 .
  • the high-speed driver 11 receives differential signals INP and INN from the control circuit 5 and generates signals EXP and EXN to be output to the transmission line 4 .
  • the low-speed driver 12 receives single-ended signals ALP and ALN from the control circuit 5 and generates signals EXP and EXN to be output to the transmission line 4 .
  • the transmission circuit 10 is an example of a driver circuit according to the present disclosure.
  • the high speed driver 11 corresponds to the second driver
  • the low speed driver 12 corresponds to the first driver.
  • Signals HS_EN and HS_ENB are signals for switching between HSTX mode and LPTX mode, and are complementary signals.
  • signal HS_EN is high and signal HS_ENB is low
  • transmitter circuit 10 operates in HSTX mode.
  • the high speed driver 11 operates.
  • signal HS_EN is low and signal HS_ENB is high
  • transmitter circuit 10 operates in LPTX mode.
  • the low speed driver 12 operates.
  • Signal SUSP is a signal used for controlling a load change countermeasure circuit 40, which will be described later.
  • FIG. 2 is a diagram showing a circuit configuration example of the transmission circuit 10.
  • the transmission circuit 10 of FIG. 2 includes a power supply VDE and a power supply VDN as power supplies.
  • the power supply voltage VDN is lower than the power supply voltage VDE (VDN ⁇ VDE), for example, VDE is 1.2V and VDN is 0.75V.
  • the power supply VDN is the core power supply and the power supply VDE is the IO power supply.
  • a core power supply clamp circuit 23 is provided between the power supply VDN and the ground power supply VSS
  • an IO power supply clamp circuit 24 is provided between the power supply VDE and the ground power supply VSS. ing.
  • the regulator 30 generates a power supply VREG for operating the high-speed driver 11 from the power supply VDN.
  • Regulator 30 includes a resistor ladder 31, an operational amplifier 32, a P-type transistor MP1, an N-type transistor MN1, and a resistance element R1.
  • the resistor ladder 31 resistively divides the power supply voltage VDE to generate the reference voltage VREF.
  • the resistance ladder 31 has a function of adjusting the reference voltage VREF around 0.4V or 0.2V, for example, according to the control signal CTRL.
  • a P-type transistor MP1, an N-type transistor MN1 and a resistive element R1 are connected in series between a power supply VDN and a power supply VSS.
  • a power supply voltage VREG is output from a connection node between the N-type transistor MN1 and the resistance element R1.
  • the operational amplifier 32 has the reference voltage VREF as one input and the power supply voltage VREG as the other input, and its output is connected to the gate of the N-type transistor MN1.
  • the power supply voltage VREG is set to 0.4V or 0.2V, for example, according to the reference voltage VREF.
  • the P-type transistor MP1 is provided for circuit protection, and its gate is fixed to low (0V).
  • the high-speed driver 11 includes N-type transistors MN2, MN3, MN4 and MN5, and resistance elements R2, R3 and R4.
  • One end of the resistance element R2 is connected to the power supply VREG.
  • An N-type transistor MN2, a resistance element R3, and an N-type transistor MN4 are connected in series between the other end of the resistance element R2 and the ground power supply VSS.
  • a resistance element R4, and an N-type transistor MN5 are connected in series.
  • the signal INP is input to the gates of the N-type transistors MN2 and MN5, and the signal INN is input to the gates of the N-type transistors MN3 and MN4.
  • a node between the N-type transistor MN2 and the resistance element R3 is connected to the output terminal 21, and the signal EXP is output from the node.
  • a node between the N-type transistor MN3 and the resistance element R4 is connected to the output terminal 22, and the signal EXN is output from the node.
  • the low-speed driver 12 includes P-type transistors MP2, MP3, MP4, MP5, N-type transistors MN6, MN7, MN8, MN9, and resistance elements R5, R6, R7, R8.
  • P-type transistors MP2 and MP3, resistance elements R5 and R6, and N-type transistors MN6 and MN7 are connected in series between the power supply VDE and the ground power supply VSS.
  • P-type transistors MP4 and MP5, resistance elements R7 and R8, and N-type transistors MN8 and MN9 are connected in series between the power supply VDE and the ground power supply VSS.
  • Signal ALP is input to the gates of P-type transistor MP3 and N-type transistor MN6, and signal ALN is input to the gates of P-type transistor MP5 and N-type transistor MN8.
  • Signal HS_EN is input to the gates of P-type transistors MP2 and MP4, and signal HS_ENB is input to the gates of P-type transistors MN7 and MN9.
  • a node between the resistance elements R5 and R6 is connected to the output terminal 21, and the signal EXP is output from this node.
  • a node between the resistance elements R7 and R8 is connected to the output terminal 22, and the signal EXN is output from this node.
  • the high-speed driver 11 turns on the N-type transistors MN2 and MN5 and turns off the N-type transistors MN3 and MN4 when the signal INP is high and the signal INN is low.
  • the current flows from the power supply VREG as follows: resistance element R2 ⁇ N-type transistor MN2 ⁇ output terminal 21 ⁇ P-side transmission line 41 ⁇ termination resistor Rx of the receiving circuit 6 ⁇ N-side transmission line 42 ⁇ output terminal 22 ⁇ resistor element R4 ⁇ N-type transistor MN5 ⁇ ground power supply VSS.
  • the N-type transistors MN3 and MN4 are turned on and the N-type transistors MN2 and MN5 are turned off.
  • the current flows from the power source VREG as follows: resistance element R2 ⁇ N-type transistor MN3 ⁇ output terminal 22 ⁇ N-side transmission line 42 ⁇ termination resistor Rx of the receiving circuit 6 ⁇ P-side transmission line 41 ⁇ output terminal 21 ⁇ resistor element R3 ⁇ N-type transistor MN4 ⁇ ground power supply VSS.
  • the R2+MN2 on-resistance, R2+MN3 on-resistance, R3+MN4 on-resistance, and R4+MN5 on-resistance are each designed to be 50 ⁇ .
  • the total resistance in the current path from the power supply VREG described above to the ground power supply VSS is 200 ⁇ including the termination resistance Rx of 100 ⁇ .
  • a differential voltage of 200 mV is output to the termination resistor Rt.
  • signal INP is high and signal INN is low
  • signal EXP is 300 mV and signal EXN is 100 mV
  • signal INP is low and signal INN is high
  • signal EXP is 100 mV and signal EXN is 100 mV. 300 mV.
  • the differential common voltage will be 200mV.
  • the power supply voltage VREG is 0.2 V
  • a differential voltage of 100 mV is output to the termination resistor Rt, and the differential common voltage becomes 100 mV.
  • the low speed driver 12 outputs a low signal as the signal EXN.
  • signal ALN low, low speed driver 12 outputs high as signal EXN because P-type transistor MP5 is turned on and N-type transistor MN8 is turned off.
  • diodes D1 and D2 are provided between the output terminals 21 and 22 and the power supply VDE, respectively, and diodes D3 and D4 are provided between the output terminals 21 and 22 and the ground power supply VSS, respectively. ing.
  • an ESD protection circuit 50 is provided between the power supply VDN and the output terminals 21 and 22 .
  • the ESD protection circuit 50 includes diodes D 5 and D 6 serially connected between the power supply VDN and the output terminal 21 and diodes D 7 and D 8 serially connected between the power supply VDN and the output terminal 22 .
  • serially connected diodes D5 and D6 are provided so as not to generate a through current.
  • serially connected diodes D7 and D8 are provided so as not to generate a through current.
  • the load variation countermeasure circuit 40 is provided to suppress variations in the power supply voltage VREG when switching from the LPTX mode to the HSTX mode.
  • the load change countermeasure circuit 40 includes a NOR circuit 41, a resistive element R9, and an N-type transistor MN10.
  • a resistor element R9 and an N-type transistor MN10 are connected in series between the power supply VREG and the ground power supply VSS.
  • NOR circuit 41 receives signal HS_EN and signal SUSP as inputs, and outputs NG10 to the gate of N-type transistor MN10.
  • FIG. 3 is a signal waveform diagram showing the operation of the transmission circuit 10 when switching from the LPTX mode to the HSTX mode. indicates
  • the signal SUSP is a signal newly provided for the load variation countermeasure circuit 40.
  • the LPTX mode is switched to the HSTX mode, the signal SUSP transitions from high to low before the signal HS_EN transitions from low to high. do.
  • the output NG10 of the NOR circuit 41 becomes high, current is drawn from the power supply VREG via the resistance element R9 and the N-type transistor MN10.
  • the output NG10 of the NOR circuit 41 becomes low, cutting off the current path through the resistive element R9 and the N-type transistor MN10.
  • the potentials of the signals EXP and EXN can be stabilized immediately after the transition to the HSTX mode.
  • a capacitive element C1 is provided between the power supply VREG and the ground power supply VSS.
  • the capacitive element C1 reduces the impedance of the node of the power supply VREG and stabilizes the potential thereof, so that the waveform quality of the output signals EXP and EXN of the high-speed driver 11 can be improved.
  • the capacitive element C1 is preferably composed of, for example, a varactor. As a result, a large-capacity stabilizing capacitor can be realized in a relatively small area and at a low voltage.
  • the transmission circuit 10 operates as follows as a whole.
  • the regulator 30 supplies the power supply voltage VREG to the high speed driver 11 .
  • signal HS_EN is high (signal HS_ENB is low)
  • transmission circuit 10 is in HSTX mode, high-speed driver 11 operates, and outputs differential small-amplitude signals EXP and EXN according to differential input signals INP and INN. .
  • the low-speed driver 12 is in a non-operating state and the output is Hi-Z.
  • signal HS_EN is low (signal HS_ENB is high)
  • transmission circuit 10 is in LPTX mode, low-speed driver 12 operates, and outputs CMOS output signals EXP, EXN according to single-ended signals ALP, ALN.
  • the high-speed driver 11 is in a non-operating state and the output is Hi-Z. That is, in the transmission circuit 10, the high speed driver 11 and the low speed driver 12 operate exclusively.
  • the transmission circuit 10 is provided with the high-speed driver 11 and the low-speed driver 12 in parallel, and the high-speed driver 11 and the low-speed driver 12 are exclusively switched to operate. Therefore, the power supply VDN of the regulator 30 that supplies the power supply VREG to the high-speed driver 11 can be a power supply having a lower voltage than the power supply VDE of the low-speed driver 12 . As a result, the power consumption of the transmission circuit 10 can be reduced. In addition, since the transistors MN2 to MN5 forming the high-speed driver 11 can be formed of low withstand voltage transistors, power consumption can be easily reduced.
  • an ESD protection circuit 50 including serially connected diodes D5 and D6 and serially connected diodes D7 and D8 is provided.
  • an ESD protection circuit 50 including serially connected diodes D5 and D6 and serially connected diodes D7 and D8 is provided.
  • three or more stages of diodes may be provided, or a single diode may be provided as necessary. .
  • the load variation countermeasure circuit 40 it is possible to suppress variation in the power supply voltage VREG when switching from the LPTX mode to the HSTX mode. Furthermore, by providing a capacitive element C1 composed of a varactor between the power supply VREG and the ground power supply VSS, fluctuations in the power supply voltage VREG can be further suppressed.
  • the transmission circuit 10 compatible with the MIPI D-PHY standard having the LPTX mode and the HSTX mode has been described as an example, but the driver circuit according to the present disclosure is not limited to this. , the present disclosure is applicable to driver circuits with two signal transmission modes with different amplitudes.

Abstract

第1ドライバ(12)は、第1電源(VDE)を受けて動作し、入力信号ALP,ALNに応じて信号EXP,EXNを出力する。レギュレータ(30)は、第1電源(VDE)よりも電圧が低い第2電源(VDN)を受け、第2電源(VDN)よりも電圧が低い第3電源(VREG)を供給する。第2ドライバ(11)は、第3電源(VREG)を受けて動作し、入力信号INP,INNに応じて信号EXP,EXNを出力する。第1ドライバ(12)の出力および第2ドライバ(11)の出力が、出力端子(21,22)に共通に接続されている。

Description

ドライバ回路、送信機および通信システム
 本開示は、通信システムにおいて用いられるドライバ回路に関する。
 通信システムでは、所定の規格に則った信号を送信および受信する装置を接続することにより、通信を行うことがある。通信規格の1つとして、MIPIのD-PHY規格がある。この規格は、低速低電力の信号伝送モード(LPTXモード)、および、高速小振幅の信号伝送モード(HSTXモード)を備えている。MIPIのD-PHY規格では、LPTXモードとHSTXモードをある割合で組み合わせることによって、高速低電力のインターフェースを実現している。ただし、LPTXモードに対してHSTXモードの動作率が高い場合は、消費電力が大きくなるため、さらなる低電力化が求められる。
 特許文献1では、通信システムにおいて、有線通信を適切に行うことができるように、電源電圧の範囲に応じて、ドライバ回路の動作を切り替える構成が開示されている。
特開2020-43523号公報
 特許文献1の構成を、LPTXモードが必須であるMIPI D-PHYに適用した場合には、ドライバ回路に電源を供給するレギュレータには、LPTXモードにおける信号振幅(例えば1.2V)と同一電圧以上の電源電圧を与える必要がある。一方、HSTXモードでは、所望の出力振幅を得るために出力に一定のDC電流を流すため、このDC電流とレギュレータに与えられる電源電圧との積に相当する電力が消費される。このため、HSTXモードにおける消費電力が大きくなってしまう、という問題がある。
 また、特許文献1の構成では、ドライバ回路は、LPTXモードに対応するために、耐圧の高いトランジスタを用いる必要がある。このため、低電力化がより困難である。
 本開示は、LPTXモードとHSTXモードのような振幅が異なる2つの信号伝送モードを有するドライバ回路について、低電力化を実現することを目的とする。
 本開示の第1態様では、ドライバ回路は、第1電圧の第1電源と接地電源との間に設けられ、第1入力信号を受け、前記第1入力信号に応じた信号を出力する第1ドライバと、前記第1電圧より低い第2電圧の第2電源に接続され、前記第2電圧より低い第3電圧の第3電源を供給するレギュレータと、前記第3電源と前記接地電源との間に設けられ、第2入力信号を受け、前記第2入力信号に応じた信号を出力する第2ドライバと、前記第1ドライバの出力、および、前記第2ドライバの出力が共通に接続された出力端子とを備える。
 この態様によると、第1ドライバは、第1電源を受けて動作し、第1入力信号に応じた信号を出力する。レギュレータは、第1ドライバに供給される第1電源よりも電圧が低い第2電源を受け、第2電源よりも電圧が低い第3電源を供給する。第2ドライバは、第3電源を受けて動作し、第2入力信号に応じた信号を出力する。第1ドライバの出力および第2ドライバの出力が、出力端子に共通に接続されている。すなわち、第1ドライバと第2ドライバとが並列に設けられており、かつ、第2ドライバに電源を供給するレギュレータの電源電圧が、第1ドライバの電源電圧よりも低い。これにより、第2ドライバが動作するモードにおいて、レギュレータの電源からドライバ回路を経由した電流パスにおける消費電力が小さいので、ドライバ回路の低電力化を実現することができる。
 本開示の第2態様では、ドライバ回路は、第1電圧の第1電源と接地電源との間に設けられ、第1入力信号を受け、前記第1入力信号に応じた信号を出力する第1ドライバと、前記第1電圧より低い第2電圧の第2電源に接続され、前記第2電圧より低い第3電圧の第3電源を供給するレギュレータと、前記第3電源と前記接地電源との間に設けられ、第2入力信号を受け、前記第2入力信号に応じた信号を出力する第2ドライバと、前記第1ドライバの出力、および、前記第2ドライバの出力が共通に接続された出力端子と、前記第2電源と前記出力端子との間に設けられ、1個、または、シリアル接続された2個以上のダイオードを含むESD(Electro Static Discharge)保護回路とを備える。
 この態様によると、上述した第1態様と同様の作用効果が得られる。加えて、第2電源と出力端子との間に、1個またはシリアル接続された2個以上のダイオードを含むESD保護回路が設けられている。これにより、ドライバ回路をESDから保護することができる。
 本開示の第3態様では、ドライバ回路は、第1電圧の第1電源と接地電源との間に設けられ、第1入力信号を受け、前記第1入力信号に応じた信号を出力する第1ドライバと、前記第1電圧より低い第2電圧の第2電源に接続され、前記第2電圧より低い第3電圧の第3電源を供給するレギュレータと、前記第3電源と前記接地電源との間に設けられ、第2入力信号を受け、前記第2入力信号に応じた信号を出力する第2ドライバと、前記第1ドライバの出力、および、前記第2ドライバの出力が共通に接続された出力端子と、前記第1ドライバが動作する第1モードから、前記第2ドライバが動作する第2モードに遷移する場合において、前記第3電源の前記第3電圧の変動を抑える負荷変動対策回路とを備え、前記負荷変動対策回路は、前記第3電源と前記接地電源との間に設けられ、与えられる信号に応じて、導通状態と非導通状態とが切り換わる電流経路を備え、前記第1モードから前記第2モードに遷移する場合において、前記第1モード中に前記電流経路を導通状態にし、前記第2モードに遷移した時に前記電流経路を切断状態にするよう、前記電流経路に信号を与えるように構成されている。
 この態様によると、上述した第1態様と同様の作用効果が得られる。加えて、負荷変動対策回路によって、第1ドライバが動作する第1モードから第2ドライバが動作する第2モードに遷移する場合において、第3電源の電圧変動を抑えることができる。
 本開示によると、振幅が異なる2つの信号伝送モードを備えるドライバ回路について、低電力化を実現することができる。
通信システムの構成例 実施形態に係るドライバ回路の一例である送信回路の回路構成例 LPTXモードからHSTXモードに切り替わるときの信号波形図であり、(a)は負荷変動対策回路がない場合、(b)は負荷変動対策回路がある場合
 以下、実施の形態について、図面を参照して説明する。なお、以下に示す回路構成図では、本開示に関わる構成要素を中心にして簡略化して図示を行っている。このため例えば、直接的に接続されているように図示された構成要素が、実際の回路構成では、その間に他の構成要素が配置されており、間接的に接続されている場合がある。
 また、以下の説明において、信号の「ハイ」「ロー」または「1」「0」は、信号の高電位側および低電位側の論理レベルを意味する。また、トランジスタの「オン」「オフ」は、トランジスタが導通状態であるか非導通状態であるかを意味する。また、「VDE」「VDN」「VREG」「VSS」等の記号は、電源自体、または、電源電位の両方を表すのに用いられる。「R1」等の記号は、抵抗素子自体、または、抵抗素子の抵抗値の両方を表すのに用いられる。
 図1は通信システムの構成例の概要図である。図1に示す通信システム1は、送信機2、受信機3、および、伝送路4を備える。送信機2は、送信回路10、および、送信回路10を制御する制御回路5を備える。受信機3は、終端抵抗Rtを有する受信回路6を備える。終端抵抗Rtは、例えば100Ωである。伝送路4は、差動信号を送信できるように構成されており、P側伝送線路41およびN側伝送線路42を有する。送信回路10の出力端子21,22は、伝送路4のP側伝送線路41およびN側伝送線路42にそれぞれ接続されている。通信システム1は、ここでは、MIPIのD-PHY規格に対応しているものとする。上述したとおり、MIPIのD-PHY規格では、LPTXモードとHSTXモードを組み合わせることによって、高速低電力のインターフェースを実現している。
 送信回路10は、高速ドライバ(HSTX)11、低速ドライバ(LPTX)12、および、レギュレータ30を備える。高速ドライバ11の出力と、低速ドライバ12の出力とは、送信回路10の出力端子21,22に共通に接続されている。レギュレータ30は、制御回路5から制御信号CTRLを受けて、電源電圧VREGを生成し、高速ドライバ11に供給する。高速ドライバ11は、制御回路5から差動信号INP,INNを受けて、伝送路4に出力する信号EXP,EXNを生成する。低速ドライバ12は、制御回路5からシングルエンド信号ALP,ALNを受けて、伝送路4に出力する信号EXP,EXNを生成する。送信回路10は、本開示に係るドライバ回路の一例である。高速ドライバ11が、第2ドライバに相当し、低速ドライバ12が、第1ドライバに相当する。
 信号HS_EN,HS_ENBは、HSTXモードとLPTXモードの切替信号であり、相補信号である。信号HS_ENがハイ、信号HS_ENBがローのときは、送信回路10はHSTXモードとして動作する。HSTXモードでは、高速ドライバ11が動作する。信号HS_ENがロー、信号HS_ENBがハイのときは、送信回路10はLPTXモードとして動作する。LPTXモードでは、低速ドライバ12が動作する。また、信号SUSPは、後述する負荷変動対策回路40の制御に用いられる信号である。
 図2は送信回路10の回路構成例を示す図である。図2の送信回路10は、電源として、電源VDEおよび電源VDNを備える。電源電圧VDNは電源電圧VDEより低く(VDN<VDE)、例えば、VDEは1.2V,VDNは0.75Vである。例えば、電源VDNがコア電源であり、電源VDEがIO電源である。ESD(Electro Static Discharge)保護のために、電源VDNと接地電源VSSとの間にコア電源クランプ回路23が設けられており、電源VDEと接地電源VSSとの間にIO電源クランプ回路24が設けられている。
 レギュレータ30は、電源VDNから、高速ドライバ11が動作するための電源VREGを生成する。レギュレータ30は、抵抗ラダー31、オペアンプ32、P型トランジスタMP1、N型トランジスタMN1、および、抵抗素子R1を備える。抵抗ラダー31は、電源電圧VDEを抵抗分圧して、参照電圧VREFを生成する。抵抗ラダー31は、制御信号CTRLに従って、参照電圧VREFを例えば0.4Vまたは0.2Vを中心として調整する機能を有する。電源VDNと電源VSSとの間に、P型トランジスタMP1、N型トランジスタMN1および抵抗素子R1が、直列に接続されている。N型トランジスタMN1と抵抗素子R1との接続ノードから、電源電圧VREGが出力される。オペアンプ32は、参照電圧VREFを一方の入力とし、他方の入力として電源電圧VREGがフィードバックされており、出力がN型トランジスタMN1のゲートに接続されている。これにより、電源電圧VREGが、参照電圧VREFに応じて、例えば0.4Vまたは0.2Vに設定される。なお、P型トランジスタMP1は、回路保護のために設けられており、ゲートがロー(0V)固定されている。
 高速ドライバ11は、N型トランジスタMN2,MN3,MN4,MN5、および、抵抗素子R2,R3,R4を備える。抵抗素子R2は、一端が電源VREGに接続されている。抵抗素子R2の他端と、接地電源VSSとの間に、N型トランジスタMN2、抵抗素子R3、および、N型トランジスタMN4が直列に接続されており、また、これらと並列に、N型トランジスタMN3、抵抗素子R4、および、N型トランジスタMN5が直列に接続されている。信号INPは、N型トランジスタMN2,MN5のゲートに入力され、信号INNは、N型トランジスタMN3,MN4のゲートに入力される。N型トランジスタMN2と抵抗素子R3との間のノードは、出力端子21に接続されており、当該ノードから信号EXPが出力される。N型トランジスタMN3と抵抗素子R4との間のノードは、出力端子22に接続されており、当該ノードから信号EXNが出力される。
 低速ドライバ12は、P型トランジスタMP2,MP3,MP4,MP5、N型トランジスタMN6,MN7,MN8,MN9、および、抵抗素子R5,R6,R7,R8を備える。電源VDEと接地電源VSSとの間に、P型トランジスタMP2,MP3、抵抗素子R5,R6、および、N型トランジスタMN6,MN7が直列に接続されている。また、電源VDEと接地電源VSSとの間に、P型トランジスタMP4,MP5、抵抗素子R7,R8、および、N型トランジスタMN8,MN9が直列に接続されている。信号ALPは、P型トランジスタMP3およびN型トランジスタMN6のゲートに入力され、信号ALNは、P型トランジスタMP5およびN型トランジスタMN8のゲートに入力される。また、信号HS_ENは、P型トランジスタMP2,MP4のゲートに入力され、信号HS_ENBは、P型トランジスタMN7,MN9のゲートに入力される。抵抗素子R5,R6の間のノードは、出力端子21に接続されており、当該ノードから信号EXPが出力される。抵抗素子R7,R8の間のノードは、出力端子22に接続されており、当該ノードから信号EXNが出力される。
 <HSTXモードの動作>
 信号HS_ENがハイであり、信号HS_ENBがローのとき、送信回路10はHSTXモードになり、高速ドライバ11が動作する。低速ドライバ12は、P型トランジスタMP2,MP4およびN型トランジスタMN7,MN9がオフになるため、動作しない。
 HSTXモードにおいて、高速ドライバ11は、信号INPがハイであり、信号INNがローのとき、N型トランジスタMN2,MN5がオンになり、N型トランジスタMN3,MN4がオフになる。このとき、電流は、電源VREGから、抵抗素子R2→N型トランジスタMN2→出力端子21→P側伝送線路41→受信回路6の終端抵抗Rx→N側伝送線路42→出力端子22→抵抗素子R4→N型トランジスタMN5→接地電源VSS と流れる。一方、信号INPがローであり、信号INNがハイのとき、N型トランジスタMN3,MN4がオンになり、N型トランジスタMN2,MN5がオフになる。このとき、電流は、電源VREGから、抵抗素子R2→N型トランジスタMN3→出力端子22→N側伝送線路42→受信回路6の終端抵抗Rx→P側伝送線路41→出力端子21→抵抗素子R3→N型トランジスタMN4→接地電源VSS と流れる。
 ここで、R2+MN2オン抵抗、R2+MN3オン抵抗、R3+MN4オン抵抗、および、R4+MN5オン抵抗が、それぞれ50Ωになるように、設計されているものとする。この場合、上述した電源VREGから接地電源VSSまでの電流経路における合計抵抗は、終端抵抗Rxの100Ωを含めて、200Ωになる。
 電源電圧VREGが0.4Vとすると、VREG-VSS間に流れる電流は2(=0.4×1000/200)mAとなる。終端抵抗Rtには、200mVの差動電圧が出力される。信号INPがハイであり、信号INNがローのときは、信号EXPは300mV,信号EXNは100mVになり、信号INPがローであり、信号INNがハイのときは、信号EXPは100mV,信号EXNは300mVになる。いずれの場合も、差動コモン電圧は200mVになる。
 また、電源電圧VREGが0.2Vとすると、VREG-VSS間に流れる電流は1(=0.2×1000/200)mAとなる。終端抵抗Rtには、100mVの差動電圧が出力され、差動コモン電圧は100mVになる。
 <LPTXモードの動作>
 信号HS_ENがローであり、信号HS_ENBがハイのとき、送信回路10はLPTXモードになり、低速ドライバ12が動作する。高速ドライバ11は、信号INP,INNがいずれもローになるため、動作しない。
 LPTXモードにおいて、低速ドライバ12は、信号ALPがハイのとき、P型トランジスタMP3がオフになり、N型トランジスタMN6がオンになるので、信号EXPとしてローを出力する。信号ALPがローのとき、低速ドライバ12は、P型トランジスタMP3がオンになり、N型トランジスタMN6がオフになるので、信号EXPとしてハイを出力する。
 また、低速ドライバ12は、信号ALNがハイのとき、P型トランジスタMP5がオフになり、N型トランジスタMN8がオンになるので、信号EXNとしてローを出力する。信号ALNがローのとき、低速ドライバ12は、P型トランジスタMP5がオンになり、N型トランジスタMN8がオフになるので、信号EXNとしてハイを出力する。
 (その他の構成)
 ESD保護のために、出力端子21,22と電源VDEとの間にダイオードD1,D2がそれぞれ設けられており、出力端子21,22と接地電源VSSとの間にダイオードD3,D4がそれぞれ設けられている。
 また、電源VDNと出力端子21,22との間に、ESD保護回路50が設けられている。ESD保護回路50は、電源VDNと出力端子21との間にシリアル接続されたダイオードD5,D6と、電源VDNと出力端子22との間にシリアル接続されたダイオードD7,D8と備えている。ESD保護回路50では、電源VDNと出力端子21,22との間に生じ得る電圧差と、ダイオードの閾値電圧とを考慮して、貫通電流が発生しないように、シリアル接続されたダイオードD5,D6、および、シリアル接続されたダイオードD7,D8を設けている。
 負荷変動対策回路40は、LPTXモードからHSTXモードに切り替わるときの電源電圧VREGの変動を抑えるために設けられている。負荷変動対策回路40は、NOR回路41,抵抗素子R9、および、N型トランジスタMN10を備える。電源VREGと接地電源VSSとの間に、抵抗素子R9およびN型トランジスタMN10が、直列に接続されている。これにより、N型トランジスタMN10のゲートに与えられる信号によって導通状態と非導通状態とが切り替わる電流経路が、電源VREGと接地電源VSSとの間に構成されている。NOR回路41は、信号HS_ENおよび信号SUSPを入力とし、出力NG10がN型トランジスタMN10のゲートに与えられる。
 図3はLPTXモードからHSTXモードに切り替わるときの送信回路10の動作を示す信号波形図であり、(a)は負荷変動対策回路40がない場合、(b)は負荷変動対策回路40がある場合を示す。
 図3(a)に示すように、MIPI D-PHY-Txの動作シーケンスでは、LPTXモードからHSTXモードに切り替わるとき、LP-11→LP-01→LP-00と遷移した後に、HSTXモードに遷移する。このとき、高速ドライバ11では、上述したVREG-VSS間の電流経路に電流が流れていない状態から、電流(例えば2mA)が流れる状態に急峻に遷移する。このため、HSTXモードに遷移した直後は、電源電圧VREGが変動してしまい、これにより信号EXP,EXNの電位が不安定になってしまう。
 これに対して、負荷変動対策回路40を設けた場合には、図3(b)に示すように動作する。信号SUSPは、負荷変動対策回路40のために新たに設けた信号であり、LPTXモードからHSTXモードに切り替わるとき、信号HS_ENがローからハイに遷移するのに先だって、信号SUSPはハイからローに遷移する。このとき、NOR回路41の出力NG10がハイになることによって、電源VREGから抵抗素子R9およびN型トランジスタMN10を介して電流が引かれる。信号HS_ENがローからハイに遷移すると、NOR回路41の出力NG10がローになり、抵抗素子R9およびN型トランジスタMN10を介する電流経路は遮断される。この結果、HSTXモードに遷移した直後から、信号EXP,EXNの電位を安定させることができる。
 また、電源VREGと接地電源VSSとの間に、容量素子C1が設けられている。この容量素子C1によって、電源VREGのノードのインピーダンスを低下させ、その電位を安定させることができるので、高速ドライバ11の出力信号EXP,EXNの波形品質を向上させることができる。容量素子C1は、例えば、バラクタによって構成するのが好ましい。これにより、比較的小面積でかつ低電圧下で、大容量の安定化容量を実現することができる。
 送信回路10は、全体として次のように動作する。レギュレータ30は、電源電圧VREGを高速ドライバ11に供給している。信号HS_ENがハイ(信号HS_ENBがロー)のとき、送信回路10はHSTXモードになり、高速ドライバ11が動作し、差動入力信号INP,INNに応じて差動小振幅信号EXP,EXNを出力する。このとき、低速ドライバ12は非動作状態であり、出力がHi-Zになっている。一方、信号HS_ENがロー(信号HS_ENBがハイ)のとき、送信回路10はLPTXモードになり、低速ドライバ12が動作し、シングルエンド信号ALP,ALNに応じてCMOS出力信号EXP,EXNを出力する。このとき、高速ドライバ11は非動作状態であり、出力がHi-Zになっている。すなわち、送信回路10では、高速ドライバ11と低速ドライバ12とは、排他的に動作する。
 以上のように本実施形態によると、送信回路10は、高速ドライバ11と低速ドライバ12とが並列に設けられており、高速ドライバ11と低速ドライバ12とを排他的に切り替えて動作させる。このため、高速ドライバ11に電源VREGを供給するレギュレータ30の電源VDNを、低速ドライバ12の電源VDEよりも電圧が低い電源とすることができる。これにより、送信回路10の低電力化が可能になっている。また、高速ドライバ11を構成するトランジスタMN2~MN5を、低耐圧のトランジスタで構成することができるので、低電力化が容易になっている。
 加えて、電源VDNと出力端子21,22との間のESD保護のために、シリアル接続したダイオードD5,D6、および、シリアル接続したダイオードD7,D8を含むESD保護回路50を設けている。なお、電源VDNと信号EXP,EXNの電位差とダイオードの閾値とを考慮して、必要に応じて、3段以上のダイオードを設けるようにしてもよいし、1個のダイオードを設けてもかまわない。
 また、負荷変動対策回路40を設けることによって、LPTXモードからHSTXモードへの切替時の電源電圧VREGの変動を抑制することができる。さらに、電源VREGと接地電源VSSとの間に、バラクタによって構成された容量素子C1を設けることによって、電源電圧VREGの変動をさらに抑制することができる。
 なお、上述の実施形態では、LPTXモードとHSTXモードを有するMIPIのD-PHY規格に対応した送信回路10を例にとって説明を行ったが、本開示に係るドライバ回路はこれに限られるものではなく、振幅が異なる2つの信号伝送モードを備えるドライバ回路に、本開示は適用可能である。
 なお、本開示は、上述の各実施形態で示した構成に限定されるものではなく、多くの変形が、本開示の技術的思想内で当該技術分野において通常の知識を有する者により可能である。また、本開示の趣旨を逸脱しない範囲で、複数の実施形態における各構成要素を任意に組み合わせてもよい。
 本開示では、振幅が異なる2つの信号伝送モードを備えるドライバ回路の低電力化が実現できるので、例えば、通信システムの省電力に有効である。
1 通信システム
2 送信機
3 受信機
4 伝送路
10 送信回路(ドライバ回路)
11 高速ドライバ(HSTX,第2ドライバ)
12 低速ドライバ(LPTX,第1ドライバ)
21,22 出力端子
30 レギュレータ
40 負荷変動対策回路
50 ESD保護回路
C1 容量素子
D5,D6,D7,D8 ダイオード
R2,R3,R4 抵抗素子
MN2,MN3,MN4,MN5 N型トランジスタ
VDE 第1電源
VDE 第2電源
VREG 第3電源

Claims (15)

  1.  第1電圧の第1電源と接地電源との間に設けられ、第1入力信号を受け、前記第1入力信号に応じた信号を出力する第1ドライバと、
     前記第1電圧より低い第2電圧の第2電源に接続され、前記第2電圧より低い第3電圧の第3電源を供給するレギュレータと、
     前記第3電源と前記接地電源との間に設けられ、第2入力信号を受け、前記第2入力信号に応じた信号を出力する第2ドライバと、
     前記第1ドライバの出力、および、前記第2ドライバの出力が共通に接続された出力端子とを備える
    ドライバ回路。
  2.  請求項1記載のドライバ回路において、
     前記第3電源と前記接地電源との間に設けられ、バラクタによって構成された容量素子を備える
    ドライバ回路。
  3.  請求項1記載のドライバ回路において、
     前記第2ドライバは、
     一端が前記第3電源に接続された第1抵抗素子と、
     前記第1抵抗素子の他端と前記接地電源との間に直列に接続された、第1N型トランジスタ、第2抵抗素子および第2N型トランジスタと、
     前記第1抵抗素子の他端と前記接地電源との間に、前記第1N型トランジスタ、前記第2抵抗素子および前記第2N型トランジスタと並列に、直列に接続された、第3N型トランジスタ、第3抵抗素子および第4N型トランジスタとを備え、
     前記第2入力信号は、差動信号であり、当該差動信号を構成する一方の信号は、前記第1および第4N型トランジスタのゲートに入力され、他方の信号は、前記第2および第3N型トランジスタのゲートに入力される
    ドライバ回路。
  4.  請求項1記載のドライバ回路を備える送信機。
  5.  請求項4記載の送信機と、
     前記送信機に接続された伝送路と、
     前記伝送路を介して前記送信機に接続された受信機とを備える
    通信システム。
  6.  第1電圧の第1電源と接地電源との間に設けられ、第1入力信号を受け、前記第1入力信号に応じた信号を出力する第1ドライバと、
     前記第1電圧より低い第2電圧の第2電源に接続され、前記第2電圧より低い第3電圧の第3電源を供給するレギュレータと、
     前記第3電源と前記接地電源との間に設けられ、第2入力信号を受け、前記第2入力信号に応じた信号を出力する第2ドライバと、
     前記第1ドライバの出力、および、前記第2ドライバの出力が共通に接続された出力端子と、
     前記第2電源と前記出力端子との間に設けられ、1個、または、シリアル接続された2個以上のダイオードを含むESD(Electro Static Discharge)保護回路とを備える
    ドライバ回路。
  7.  請求項6記載のドライバ回路において、
     前記第3電源と前記接地電源との間に設けられ、バラクタによって構成された容量素子を備える
    ドライバ回路。
  8.  請求項6記載のドライバ回路において、
     前記第2ドライバは、
     一端が前記第3電源に接続された第1抵抗素子と、
     前記第1抵抗素子の他端と前記接地電源との間に直列に接続された、第1N型トランジスタ、第2抵抗素子および第2N型トランジスタと、
     前記第1抵抗素子の他端と前記接地電源との間に、前記第1N型トランジスタ、前記第2抵抗素子および前記第2N型トランジスタと並列に、直列に接続された、第3N型トランジスタ、第3抵抗素子および第4N型トランジスタとを備え、
     前記第2入力信号は、差動信号であり、当該差動信号を構成する一方の信号は、前記第1および第4N型トランジスタのゲートに入力され、他方の信号は、前記第2および第3N型トランジスタのゲートに入力される
    ドライバ回路。
  9.  請求項6記載のドライバ回路を備える送信機。
  10.  請求項9記載の送信機と、
     前記送信機に接続された伝送路と、
     前記伝送路を介して前記送信機に接続された受信機とを備える
    通信システム。
  11.  第1電圧の第1電源と接地電源との間に設けられ、第1入力信号を受け、前記第1入力信号に応じた信号を出力する第1ドライバと、
     前記第1電圧より低い第2電圧の第2電源に接続され、前記第2電圧より低い第3電圧の第3電源を供給するレギュレータと、
     前記第3電源と前記接地電源との間に設けられ、第2入力信号を受け、前記第2入力信号に応じた信号を出力する第2ドライバと、
     前記第1ドライバの出力、および、前記第2ドライバの出力が共通に接続された出力端子と、
     前記第1ドライバが動作する第1モードから、前記第2ドライバが動作する第2モードに遷移する場合において、前記第3電源の前記第3電圧の変動を抑える負荷変動対策回路とを備え、
     前記負荷変動対策回路は、
     前記第3電源と前記接地電源との間に設けられ、与えられる信号に応じて、導通状態と非導通状態とが切り替わる電流経路を備え、
     前記第1モードから前記第2モードに遷移する場合において、前記第1モード中に前記電流経路を導通状態にし、前記第2モードに遷移した時に前記電流経路を切断状態にするよう、前記電流経路に信号を与えるように構成されている
    ドライバ回路。
  12.  請求項11記載のドライバ回路において、
     前記第3電源と前記接地電源との間に設けられ、バラクタによって構成された容量素子を備える
    ドライバ回路。
  13.  請求項11記載のドライバ回路において、
     前記第2ドライバは、
     一端が前記第3電源に接続された第1抵抗素子と、
     前記第1抵抗素子の他端と前記接地電源との間に直列に接続された、第1N型トランジスタ、第2抵抗素子および第2N型トランジスタと、
     前記第1抵抗素子の他端と前記接地電源との間に、前記第1N型トランジスタ、前記第2抵抗素子および前記第2N型トランジスタと並列に、直列に接続された、第3N型トランジスタ、第3抵抗素子および第4N型トランジスタとを備え、
     前記第2入力信号は、差動信号であり、当該差動信号を構成する一方の信号は、前記第1および第4N型トランジスタのゲートに入力され、他方の信号は、前記第2および第3N型トランジスタのゲートに入力される
    ドライバ回路。
  14.  請求項11記載のドライバ回路を備える送信機。
  15.  請求項14記載の送信機と、
     前記送信機に接続された伝送路と、
     前記伝送路を介して前記送信機に接続された受信機とを備える
    通信システム。
PCT/JP2021/019825 2021-05-25 2021-05-25 ドライバ回路、送信機および通信システム WO2022249287A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023523765A JPWO2022249287A1 (ja) 2021-05-25 2021-05-25
PCT/JP2021/019825 WO2022249287A1 (ja) 2021-05-25 2021-05-25 ドライバ回路、送信機および通信システム
US18/517,644 US20240097735A1 (en) 2021-05-25 2023-11-22 Driver circuit, transmitter, and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019825 WO2022249287A1 (ja) 2021-05-25 2021-05-25 ドライバ回路、送信機および通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/517,644 Continuation US20240097735A1 (en) 2021-05-25 2023-11-22 Driver circuit, transmitter, and communication system

Publications (1)

Publication Number Publication Date
WO2022249287A1 true WO2022249287A1 (ja) 2022-12-01

Family

ID=84229769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019825 WO2022249287A1 (ja) 2021-05-25 2021-05-25 ドライバ回路、送信機および通信システム

Country Status (3)

Country Link
US (1) US20240097735A1 (ja)
JP (1) JPWO2022249287A1 (ja)
WO (1) WO2022249287A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258957A (ja) * 2001-03-02 2002-09-13 Ricoh Co Ltd Fet駆動回路
US20110096848A1 (en) * 2009-10-22 2011-04-28 Synopsys, Inc. "Supply-Less" HDMI Source Terminated Output Stage With Tuned Wide-Range Programmable Termination
JP2011166260A (ja) * 2010-02-05 2011-08-25 Hitachi Ltd 出力ドライバ回路
JP2015091092A (ja) * 2013-11-07 2015-05-11 富士通セミコンダクター株式会社 ドライバ回路および半導体集積回路装置
JP2015195435A (ja) * 2014-03-31 2015-11-05 キヤノン株式会社 信号処理装置
WO2018070261A1 (ja) * 2016-10-12 2018-04-19 ソニーセミコンダクタソリューションズ株式会社 ドライバ回路およびその制御方法、並びに、送受信システム
JP2019132918A (ja) * 2018-01-30 2019-08-08 ラピスセミコンダクタ株式会社 ディスプレイ駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258957A (ja) * 2001-03-02 2002-09-13 Ricoh Co Ltd Fet駆動回路
US20110096848A1 (en) * 2009-10-22 2011-04-28 Synopsys, Inc. "Supply-Less" HDMI Source Terminated Output Stage With Tuned Wide-Range Programmable Termination
JP2011166260A (ja) * 2010-02-05 2011-08-25 Hitachi Ltd 出力ドライバ回路
JP2015091092A (ja) * 2013-11-07 2015-05-11 富士通セミコンダクター株式会社 ドライバ回路および半導体集積回路装置
JP2015195435A (ja) * 2014-03-31 2015-11-05 キヤノン株式会社 信号処理装置
WO2018070261A1 (ja) * 2016-10-12 2018-04-19 ソニーセミコンダクタソリューションズ株式会社 ドライバ回路およびその制御方法、並びに、送受信システム
JP2019132918A (ja) * 2018-01-30 2019-08-08 ラピスセミコンダクタ株式会社 ディスプレイ駆動装置

Also Published As

Publication number Publication date
US20240097735A1 (en) 2024-03-21
JPWO2022249287A1 (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
US7679420B1 (en) Slew rate controlled level shifter with reduced quiescent current
US7012450B1 (en) Transmitter for low voltage differential signaling
JP5337886B2 (ja) Dc結合型レーザ駆動回路、及び、半導体レーザ素子の駆動方法
US7391825B2 (en) Comparator circuit having reduced pulse width distortion
JP5313261B2 (ja) 低電圧アプリケーションのためのマルチモード出力構成を有する自己バイアス装置差動信号回路のための装置および方法
US9746864B1 (en) Fast transient low drop-out voltage regulator for a voltage-mode driver
US7999523B1 (en) Driver with improved power supply rejection
US20080246511A1 (en) Differential Drive Circuit and Electronic Apparatus Incorporating the Same
US20120162189A1 (en) Driver circuit and video system
JP5241523B2 (ja) 基準電圧生成回路
JP2011142173A (ja) 制御回路及びレーザダイオード駆動回路
JP2017126259A (ja) 電源装置
US20060017468A1 (en) Common-mode shifting circuit for CML buffers
JP2006340266A (ja) 差動信号伝送回路および差動信号伝送装置
CN111327278A (zh) 输出级电路
US20090289668A1 (en) Output driver circuit for an integrated circuit
CN104348473A (zh) 具有振幅伺服环的高速电平移位器
JP4097149B2 (ja) 差動駆動回路およびそれを内蔵する電子機器
US7233174B2 (en) Dual polarity, high input voltage swing comparator using MOS input transistors
JP2000505987A (ja) 内部電圧基準出力ドライバ
CN106712765B (zh) 一种基于cmos工艺的pecl发送器接口电路
WO2022249287A1 (ja) ドライバ回路、送信機および通信システム
US9971370B2 (en) Voltage regulator with regulated-biased current amplifier
JP2008199236A (ja) 差動ドライバ回路
US7215171B2 (en) Digitally controlled threshold adjustment circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523765

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE