WO2022247644A1 - 一种发送ssb的方法和相关装置 - Google Patents

一种发送ssb的方法和相关装置 Download PDF

Info

Publication number
WO2022247644A1
WO2022247644A1 PCT/CN2022/092356 CN2022092356W WO2022247644A1 WO 2022247644 A1 WO2022247644 A1 WO 2022247644A1 CN 2022092356 W CN2022092356 W CN 2022092356W WO 2022247644 A1 WO2022247644 A1 WO 2022247644A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
ssb
synchronization
synchronous
full amount
Prior art date
Application number
PCT/CN2022/092356
Other languages
English (en)
French (fr)
Inventor
张振华
胡明明
汪孔林
于士杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022247644A1 publication Critical patent/WO2022247644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]

Definitions

  • the present application relates to the field of communication technology, and in particular to a method and a related device for sending a synchronization signal and broadcasting a physical channel PBCH block SSB.
  • the user equipment searches the synchronization signal block (synchronization signal and PBCH block, SSB) sent by the base station to perform cell search, synchronization and measurement to access the network.
  • SSB synchronization signal block
  • the base station sends the SSB at a period of 20 milliseconds.
  • the base station may also send the SSB at a period of 40/80/160 milliseconds, so as to reduce channel resources consumed by the base station.
  • the user equipment needs to use SSB measurement to assist the tracking reference signal (TRS) measurement. If the base station lengthens the SSB period, it may cause abnormal timing , causing the user equipment on the network to drop calls, or the new user equipment cannot connect to the network.
  • TRS tracking reference signal
  • the embodiment of the present application provides a method and a related device for sending a synchronization signal and broadcasting a physical channel PBCH block SSB, which are used to send the full amount of SSB or the synchronization SSB respectively through different synchronization periods of the first beam.
  • the present application proposes a method for sending a synchronization signal and broadcasting a physical channel PBCH block SSB.
  • the base station determines the full period, which includes N synchronization periods, where N is an integer greater than or equal to 2, and in the first synchronization period Send the full amount of SSB through the first beam, the full amount of SSB includes PBCH, and then send the first synchronized SSB through the first beam in the second synchronization period, the first synchronization period and the second synchronization period both belong to the full amount period
  • the first synchronization SSB since the user can obtain the PBCH in the first synchronization period, the first synchronization SSB does not include the PBCH, which saves the consumption of transmission resources without affecting the performance.
  • the duration of the synchronization period is 20 milliseconds
  • the duration of the full period is 40 milliseconds, 80 milliseconds or 160 milliseconds
  • the full quantity of SSB can be sent every 2/4/8 synchronization periods, and in other synchronization periods Only the synchronous SSB that does not include the PBCH needs to be sent, which saves transmission resources.
  • the base station transmits the second synchronous SSB through the second beam during the first synchronous period, and the second synchronous SSB does not include PBCH, then only the first beam transmits the full amount of SSB during the first synchronous period, avoiding Occupies too many transmission resources.
  • the base station sends the full amount of SSB through the second beam during the second synchronization period, then only the second beam sends the full amount of SSB during the second synchronization period, so as to avoid occupying too many transmission resources at the same time.
  • the present application proposes a communication device, including:
  • the processing module is used to determine the full amount cycle, the full amount cycle includes N synchronization cycles, and N is an integer greater than or equal to 2.
  • the sending module is configured to send the full amount of SSB through the first beam in the first synchronization period, the full amount of SSB includes the PBCH, and the first synchronization period is one of the N synchronization periods.
  • the sending module is configured to send the first synchronous SSB through the first beam in the second synchronous period, the first synchronous SSB does not include the PBCH, and the second synchronous period is a synchronous period different from the first synchronous period among the N synchronous periods.
  • the duration of the synchronization period is 20 milliseconds, and the duration of the full amount period is 40 milliseconds, 80 milliseconds or 160 milliseconds.
  • the sending module is further configured to send the second synchronous SSB through the second beam in the first synchronous period, and the second synchronous SSB does not include the PBCH.
  • the sending module is further configured to send the full amount of SSBs through the second beam in the second synchronization period.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer executes the method described in any one of the above-mentioned first aspects. method.
  • the fourth aspect of the present application provides a computer program product, the computer program product includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can read the computer-readable storage medium.
  • the computer executes the instruction, and at least one processor executes the computer-executed instruction to make the device implement the method provided by the above first aspect or any possible implementation manner of the first aspect.
  • a fifth aspect of the present application provides a communication device, and the communication device may include at least one processor, a memory, and a communication interface. At least one processor is coupled with memory and a communication interface. The memory is used to store instructions, at least one processor is used to execute the instructions, and the communication interface is used to communicate with other communication devices under the control of the at least one processor. When executed by at least one processor, the instruction causes at least one processor to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • a sixth aspect of the present application provides a system-on-a-chip, where the system-on-a-chip includes a processor, configured to support a communication device to implement the functions involved in the first aspect or any possible implementation manner of the first aspect.
  • system-on-a-chip may further include a memory, and the memory is used for storing necessary program instructions and data of XXX.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the base station determines the full amount period, the full amount period includes N synchronization periods, and sends the full amount of SSB through the first beam in the first synchronization period, and the full amount of SSB includes PBCH, and then sends the first synchronization period through the first beam in the second synchronization period SSB, the first synchronization period and the second synchronization period belong to the synchronization period in the full cycle, since the user can obtain PBCH in the first synchronization period, the first synchronization SSB does not include PBCH, without affecting performance Next, the consumption of transmission resources is saved.
  • FIG. 1-1 is a schematic diagram of the composition and structure of a communication system provided by an embodiment of the present application.
  • FIG. 1-2 is a block diagram of a partial structure of a mobile phone related to a terminal provided in this embodiment
  • 1-3 is a schematic diagram of the system architecture of the fifth generation (5Generation, 5G) communication system network architecture;
  • Figure 1-4 is a schematic diagram of the functional division of the 5G network in the base station
  • Figure 1-5 is a schematic diagram of extending the SSB period of 20 milliseconds to 160 milliseconds;
  • Figure 2-1 is a schematic diagram of an embodiment of a method for sending SSB provided by the present application
  • Figure 2-2 is a schematic diagram of a full period of 80 milliseconds and a synchronization period of 20 milliseconds;
  • Figure 2-3 is a schematic diagram of the composition of the full amount of SSB
  • Figure 2-4 is a schematic diagram of protocol 38.211Table 7.4.3.1-1;
  • Figure 2-5 is a schematic diagram of SSB beam scanning
  • 2-6 is a schematic diagram of a user equipment determining a beam with the highest signal strength
  • Figure 2-7 is a schematic diagram of the base station sending a full amount of SSB through the first beam in synchronization period 0;
  • Figure 2-8 is a comparison diagram of full SSB and synchronous SSB
  • Figure 3-1 is a method for sending SSB provided by the embodiment of this application.
  • FIG. 3-2 is a schematic diagram of an example base station determining beam 0 for sending full SSBs in synchronization period 0;
  • FIG. 4 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the embodiment of the present application provides a method and a related device for sending a synchronization signal and broadcasting a physical channel PBCH block SSB, which are used to send the full amount of SSB or the synchronization SSB respectively through different synchronization periods of the first beam.
  • the technical solutions of the embodiments of the present application can be applied to communication systems for various data processing, such as code division multiple access (code division multiple access, CDMA), time division multiple access (time division multiple access, TDMA), frequency division multiple access (frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency-division multiple access (single carrier FDMA, SC-FDMA) and other systems, etc.
  • code division multiple access code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency-division multiple access single carrier frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • the term “system” can be used interchangeably with "network”.
  • the CDMA system can implement wireless technologies such as universal terrestrial radio access (UTRA), CDMA2000, and the like.
  • UTRA may include wideband CDMA (wideband CDMA, WCDMA) technology and
  • CDMA2000 can cover interim standard (interim standard, IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • TDMA systems can implement wireless technologies such as global system for mobile communication (GSM).
  • OFDMA system can realize such as evolved universal wireless terrestrial access (evolved UTRA, E-UTRA), ultra mobile broadband (ultra mobile broadband, UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA and other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolutions.
  • 3GPP in long term evolution (long term evolution, LTE) and various versions based on LTE evolution are new versions of UMTS using E-UTRA.
  • the fifth generation (5 Generation, 5G) communication system and new air interface (New Radio, referred to as "NR") is the next generation communication system under research.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. For the evolution of architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • FIG. 1-1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • An embodiment of the present application provides a communication system 100 , including a base station 110 and a user equipment 120 .
  • the user equipment 120 may include any terminal equipment such as a mobile phone, a tablet computer, a PDA (Personal Digital Assistant, personal digital assistant), a POS (Point of Sales, sales terminal), and a vehicle-mounted computer.
  • terminal equipment such as a mobile phone, a tablet computer, a PDA (Personal Digital Assistant, personal digital assistant), a POS (Point of Sales, sales terminal), and a vehicle-mounted computer.
  • FIG. 1-2 shows a block diagram of a partial structure of the mobile phone related to the terminal provided by the embodiment of the present application.
  • the mobile phone includes: a radio frequency (Radio Frequency, RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (wireless fidelity, WiFi) module 1170, a processing Device 1180, and power supply 1190 and other components.
  • RF Radio Frequency
  • the base station 110 may be a gNB in a 5G radio access network (NG-RAN).
  • NG-RAN 5G radio access network
  • the 5G network architecture includes a 5G access network (NG-RAN) and a 5G core network (5GC).
  • NG-RAN 5G access network
  • 5GC 5G core network
  • the 5G radio access network includes two types of nodes: gNB and ng-eNB.
  • the gNB application provides the user equipment 120 with the node of protocol termination of the user plane and the control plane of NR, and connects to the 5GC via the NG interface.
  • the ng-eNB application provides the user equipment 120 with a node of the protocol termination of the user plane and the control plane of E-UTRA, and connects to the 5GC via the NG interface. It can be seen that gNB is required for independent networking, and ng-eNB is set for different core networks for backward compatibility with 4G networks.
  • the network elements involved in this application are gNBs, and those involved in gNBs are shown in Figures 1-4. They are divided into functions in the overall 5G network. The specific content of each function is the existing technology. I won't go into details here.
  • the user equipment 120 searches the SSB sent by the base station 110 to perform cell search, synchronization and measurement, so as to access the network.
  • the base station 110 sends the SSB at a period of 20 milliseconds.
  • the base station 110 may also send the SSB at a period of 40/80/160 milliseconds, so as to reduce channel resources consumed by the base station.
  • the original SSB period of 20 milliseconds is extended to 160 milliseconds.
  • SSB measurement In a standalone (stand alone, SA) scenario, user equipment 120 needs to use SSB measurement to assist in tracking reference signal (TRS) measurement. If base station 110 lengthens the period of SSB, abnormal time deviation may occur , causing the user equipment 120 on the network to start to drop calls in the second 20 millisecond period, or the new user equipment 120 cannot access the network.
  • TRS tracking reference signal
  • Embodiment 1 introduces the communication system 100 provided by this application, and the communication method based on the communication system 100 is introduced through Embodiment 1 and Embodiment 2.
  • a method for sending SSB provided by the embodiment of the present application mainly includes the following steps:
  • the base station determines a full amount period, where the full amount period includes N synchronization periods, where N is an integer greater than or equal to 2.
  • the base station may set a full amount period, and send a full amount SSB once every full amount period.
  • a full amount period includes N synchronization periods, where each synchronization period is a synchronization period.
  • the duration of the synchronization cycle is 20 milliseconds, and the duration of the full cycle may be 40/80/160 milliseconds.
  • a full period includes 2 (40 milliseconds/20 milliseconds) synchronization periods; if the full period is 80 milliseconds, and the synchronization period is 20 milliseconds, then a full period includes 4 (80 milliseconds/20 milliseconds) synchronization periods; if the full period is 160 milliseconds and the synchronization period is 20 milliseconds, then one full period includes 8 (160 milliseconds/20 milliseconds) synchronization periods.
  • the duration of the full amount period is 80 milliseconds, and the duration of the synchronization period is 20 milliseconds, then the full amount period includes 4 synchronization periods, which are synchronization periods 0/1/2/3.
  • the base station determines a first synchronization period, where the first synchronization period is one of N synchronization periods, and the first synchronization period is used to send a full amount of SSBs on a first beam.
  • the base station can determine the first synchronization period corresponding to the first beam from the N synchronization periods, and the first synchronization period is used to send the full amount of SSB through the first beam.
  • the base station may randomly determine synchronization period 0 as the first synchronization period.
  • the base station may also determine more than one synchronization period as the first synchronization period.
  • the base station determines synchronization period 0/1/2, or, synchronization period 0/1/3, or, synchronization period 0/2/3, or, synchronization period 1/2/3, or, synchronization period 0/1, Or, synchronization period 0/2, or, synchronization period 0/3, or, synchronization period 1/2, or, synchronization period 1/3, or, synchronization period 2/3, as the first synchronization period.
  • the base station determines a second synchronization period, where the second synchronization period is one of N synchronization periods, and the second synchronization period is used to send a synchronization SSB on the first beam.
  • the base station after the base station determines the first synchronization period, it can further determine the second synchronization period, which is used to send the synchronization SSB through the first beam, where the second synchronization period is N synchronization periods A sync period in a cycle that is different from the first sync period.
  • the base station may randomly determine synchronization period 0 as the first synchronization period, then the base station may further determine any one of synchronization periods 1/2/3 as the second synchronization period.
  • the base station may determine two of the synchronization periods 1/2/3 as two synchronization periods, which are not limited here.
  • the base station may determine the synchronization period 1/2/3 as three synchronization periods respectively, which is not limited here.
  • the base station sends the full amount of SSBs through the first beam in the first synchronization period.
  • the full amount of SSB may be sent in the first synchronization period.
  • the full amount of SSB consists of three parts: primary synchronization signals (primary synchronization signals, PSS), secondary synchronization signals (secondary synchronization signals, SSS), and broadcast physical channels (physical broadcast channel, PBCH). Composed together.
  • the full SSB occupies 4 orthogonal frequency division multiplexing (OFDM) symbols in the time domain and 240 subcarriers in the frequency domain, numbered 0-239.
  • OFDM orthogonal frequency division multiplexing
  • the PSS is located in the middle 127 subcarriers of symbol 0
  • the SSS is located in the middle 127 subcarriers of symbol 2.
  • the PBCH is located in symbol 1/3 and symbol 2, wherein symbol 1/3 occupies all subcarriers from 0 to 239, and symbol 2 occupies all subcarriers except the subcarriers occupied by SSS and subcarriers protected by SSS.
  • PSS, SSS, and PBCH occupy different symbols and resources as shown in Figure 2-4: Protocol 38.211 Table 7.4.3.1-1.
  • k and l represent the frequency domain index and time domain index in the SSB respectively, and Set 0 means that the user equipment assumes that the RE of this part in the protocol 38.211 Table 7.4.3.1-1 is set to 0.
  • the user equipment since the PBCH bears the system broadcast message, the user equipment does not need to retrieve it in every synchronization cycle, but only needs to retrieve it in at least one synchronization cycle.
  • a very large-scale antenna array is introduced in the fifth generation mobile communication technology (5G), and the number of antennas in the millimeter wave frequency band may be as high as 256.
  • the application of beamforming in 5G can make signal energy more concentrated and enhance coverage through beamforming, and reduce inter-user and inter-cell interference.
  • SSB beam scanning a suitable beam direction pair is established between the base station and the user equipment for subsequent access, data transmission and synchronization.
  • the SSB beam scanning may be sent via different beams at different times in a time-division manner as shown in FIG. 2-5.
  • the user equipment selects the beam with the highest signal strength as the initial beam direction, and performs subsequent processing. For example, as shown in FIGS. 2-6 , user equipment 1 receives the highest signal strength from beam 3 , and user equipment 2 receives the highest signal strength from beam 7 .
  • the user equipment After searching for the beam with the highest signal strength, the user equipment will send access information of a physical random access channel (physical random access channel, PRACH) at a time related to the index of the selected SSB.
  • PRACH physical random access channel
  • the base station sends the first synchronization SSB through the first beam in the second synchronization period.
  • the synchronization SSB may be sent in the second synchronization period. Specifically, as shown in Figure 2-7, the base station transmits the full amount of SSB through the first beam in synchronization period 0, and transmits the synchronization SSB through the first beam in synchronization period 1/2/3, for example, sends the first SSB in synchronization period 1. Synchronize SSBs. It should be noted that, as shown in Figure 2-8, compared with the full SSB, the synchronous SSB includes the SSS and the PSS, but does not include the PBCH.
  • the base station can transmit multiple beams at the same time.
  • the full amount of SSB on different beams can be sent in different synchronization periods in the full amount period. Exemplarily, it can be realized through Embodiment 2.
  • a method for sending SSB provided by the embodiment of this application mainly includes the following steps:
  • the base station determines a full amount period, where the full amount period includes N synchronization periods, where N is an integer greater than or equal to 2.
  • step 201 Please refer to step 201, which will not be repeated here.
  • the base station determines the first beam that sends the full amount of SSB in the first synchronization period, where the first synchronization period is one of the N synchronization periods.
  • the existing system has multiple beams, such as 4/8/16 beams, as shown in Figure 3-2.
  • 4 beams are beams 0/1/2/3
  • the base station is determined at Beam 0 of the full SSB is sent in sync cycle 0.
  • the base station may randomly select from 4 beams, and here, beam 0 is selected as an example.
  • the base station determines that beam 0 is the first beam that sends the full amount of SSB in the first synchronization period, in order to avoid sending the full amount of SSB on different beams at the same time, resulting in excessive resource occupation in the synchronization period, the base station At the same time, it is determined that the beam 1/2/3 is the beam for transmitting the synchronous SSB in the first synchronization period.
  • the base station determines a second beam for sending all SSBs in the second synchronization period.
  • the base station can select from the remaining beams 1/2/3 One beam, as the second beam of synchronization period 1.
  • the base station determines that beam 2/3 is the beam for transmitting synchronization SSBs in the second synchronization period.
  • the base station may select a beam from the remaining beams 2/3 as the third beam in the synchronization period 2, and finally the remaining beam 3 as the fourth beam in the synchronization period 3.
  • the base station sends the full SSB through the first beam in the first synchronization period, and sends the second synchronization SSB through the second beam in the first synchronization period.
  • the base station after the base station determines the first beam that sends the full amount of SSB in the first synchronization period, it can send the full amount of SSB through the first beam in the first synchronization period, and transmit the full amount of SSB in the first synchronization period through the second beam Send the second sync SSB.
  • the base station when the base station transmits the full amount of SSB through beam 0 in synchronization period 0, in order to avoid sending the full amount of SSB on different beams at the same time, resulting in excessive resource occupation in the synchronization period, the base station simultaneously transmits the full amount of SSB in the synchronization period In 0, the synchronous SSB (that is, the second synchronous SSB) is transmitted through beams 1/2/3.
  • the base station sends the first synchronization SSB through the first beam in the second synchronization period, and sends the full amount of SSB through the second beam in the second synchronization period.
  • the base station may send the full amount of SSB in the second synchronization period through the second beam.
  • the base station sends full SSBs through the second beam in synchronization period 1, and transmits synchronization SSBs through beams 0/2/3 in synchronization periods 0/2/3.
  • the synchronous SSB includes the SSS and the PSS, but does not include the PBCH.
  • a communication device 400 provided in an embodiment of the present application may include: a processing module 401 and a sending module 402 . in,
  • the processing module 401 is configured to determine a full amount cycle, the full amount cycle includes N synchronization cycles, and N is an integer greater than or equal to 2.
  • the sending module 402 is configured to send a full amount of SSBs through a first beam in a first synchronization period, the full amount of SSBs includes the PBCH, and the first synchronization period is one of the N synchronization periods.
  • the sending module 402 is configured to send the first synchronous SSB through the first beam in the second synchronous period, the first synchronous SSB does not include the PBCH, and the second synchronous period is a synchronous period different from the first synchronous period among the N synchronous periods.
  • the duration of the synchronization period is 20 milliseconds, and the duration of the full amount period is 40 milliseconds, 80 milliseconds or 160 milliseconds.
  • the sending module 402 is further configured to send the second synchronous SSB through the second beam in the first synchronous period, and the second synchronous SSB does not include the PBCH.
  • the sending module 402 is further configured to send the full amount of SSB through the second beam in the second synchronization period.
  • the embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the above method embodiments.
  • the communication device 500 includes:
  • a receiver 501 , a transmitter 502 , a processor 503 and a memory 504 (the number of processors 503 in the communication device 500 may be one or more, one processor is taken as an example in FIG. 5 ).
  • the receiver 501 , the transmitter 502 , the processor 503 and the memory 504 may be connected through a bus or in other ways, wherein connection through a bus is taken as an example in FIG. 5 .
  • the memory 504 may include read-only memory and random-access memory, and provides instructions and data to the processor 503 .
  • a part of the memory 504 may also include a non-volatile random access memory (non-volatile random access memory, NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 504 stores operating systems and operating instructions, executable modules or data structures, or their subsets, or their extended sets, wherein the operating instructions may include various operating instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and processing hardware-based tasks.
  • the processor 503 controls operations of the communication device, and the processor 503 may also be called a central processing unit (central processing unit, CPU).
  • CPU central processing unit
  • various components of the communication device are coupled together through a bus system, where the bus system may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • the various buses are referred to as bus systems in the figures.
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 503 or implemented by the processor 503 .
  • the processor 503 may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above method can be completed by an integrated logic circuit of hardware in the processor 503 or an instruction in the form of software.
  • the above-mentioned processor 503 may be a general-purpose processor, a digital signal processor (digital signal processing, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field-programmable gate array (field-programmable gate array, FPGA) or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 504, and the processor 503 reads the information in the memory 504, and completes the steps of the above method in combination with its hardware.
  • the receiver 501 can be used to receive input digital or character information, and generate signal input related to the relevant settings and function control of the communication device.
  • the transmitter 502 can include a display device such as a display screen.
  • the transmitter 502 can be used to output digital information through an external interface. or character information.
  • the processor 503 is configured to execute a method for sending a synchronization signal and broadcasting a physical channel PBCH block SSB performed by the aforementioned communication device.
  • the communication device when it is a chip, it includes: a processing unit and a communication unit, the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin or a circuit Wait.
  • the processing unit may execute the computer-executed instructions stored in the storage unit, so that the chip in the terminal executes the method for sending wireless report information according to any one of the above-mentioned first aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (read -only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned above can be a general-purpose central processing unit, microprocessor, ASIC, or one or more integrated circuits for controlling the program execution of the above method.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be A physical unit can be located in one place, or it can be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the connection relationship between the modules indicates that they have communication connections, which can be specifically implemented as one or more communication buses or signal lines.
  • the essence of the technical solution of this application or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a floppy disk of a computer , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute the method described in each embodiment of the present application .
  • a computer device which can be a personal computer, a server, or a network device, etc.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • wired eg, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.

Abstract

本申请实施例公开了一种发送同步信号和广播物理信道PBCH块SSB的方法和相关装置,用于通过第一波束的不同的同步周期分别发送全量SSB或同步SSB。在本申请的方法中,基站确定全量周期,全量周期包括N个同步周期,并在第一同步周期通过第一波束发送全量SSB,所述全量SSB包括PBCH,然后在第二同步周期通过所述第一波束发送第一同步SSB,所述第一同步周期和所述第二同步周期均属于全量周期中的同步周期,由于用户可以在第一同步周期中获取PBCH,第一同步SSB不包括PBCH,在不影响性能的情况下,节约了传输资源的消耗。

Description

一种发送SSB的方法和相关装置
本申请要求于2021年5月26日提交中国专利局、申请号为202110579119.9、发明名称为“一种发送SSB的方法和相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种发送同步信号和广播物理信道PBCH块SSB的方法和相关装置。
背景技术
当前的通信系统中,用户设备搜索基站发送的同步信号块(synchronization signal and PBCH block,SSB)进行小区搜索、同步和测量,以接入网络。一般的,基站按照20毫秒的周期发送SSB。但是,在小区轻载、空载的场景中,广播SSB的消息占用过多信道资源(例如8%)。为此,基站也可以按照40/80/160毫秒的周期发送SSB,以降低基站消耗的信道资源。
但是,在独立组网(stand alone,SA)的场景中,用户设备需要采用SSB测量来辅助跟踪参考信号(tracking reference signal,TRS)测量,若基站拉长SSB的周期,可能会产生时偏异常,导致在网的用户设备掉话,或者新用户设备无法入网。
发明内容
本申请实施例提供了一种发送同步信号和广播物理信道PBCH块SSB的方法和相关装置,用于通过第一波束的不同的同步周期分别发送全量SSB或同步SSB。
第一方面,本申请提出了一种发送同步信号和广播物理信道PBCH块SSB的方法,基站确定全量周期,全量周期包括N个同步周期,N为大于等于2的整数,并在第一同步周期通过第一波束发送全量SSB,所述全量SSB包括PBCH,然后在第二同步周期通过所述第一波束发送第一同步SSB,所述第一同步周期和所述第二同步周期均属于全量周期中的同步周期,由于用户可以在第一同步周期中获取PBCH,第一同步SSB不包括PBCH,在不影响性能的情况下,节约了传输资源的消耗。
在一些可行的实现方式中,同步周期的时长为20毫秒,全量周期的时长为40毫秒、80毫秒或160毫秒,那么可以每2/4/8个同步周期发送一次全量SSB,在其他同步周期只需要发送不包括PBCH的同步SSB,节约了传输资源。
在一些可行的实现方式中,基站在第一同步周期通过第二波束发送第二同步SSB,第二同步SSB不包括PBCH,那么在第一同步周期只有第一波束发送全量SSB,避免在同一时刻占用过多传输资源。
在一些可行的实现方式中,基站在第二同步周期通过第二波束发送全量SSB,那么在第二同步周期只有第二波束发送全量SSB,避免在同一时刻占用过多传输资源。
第二方面,本申请提出了一种通信装置,包括:
处理模块,用于确定全量周期,全量周期包括N个同步周期,N为大于等于2的整数。
发送模块,用于在第一同步周期通过第一波束发送全量SSB,全量SSB包括PBCH,第一同步周期为N个同步周期中一个。
发送模块,用于在第二同步周期通过第一波束发送第一同步SSB,第一同步SSB不包括PBCH,第二同步周期为N个同步周期中不同于第一同步周期的同步周期。
在一些可行的实现方式中,同步周期的时长为20毫秒,全量周期的时长为40毫秒、80毫秒或160毫秒。
在一些可行的实现方式中,发送模块,还用于在第一同步周期通过第二波束发送第二同步SSB,第二同步SSB不包括PBCH。
在一些可行的实现方式中,发送模块,还用于在第二同步周期通过第二波束发送全量SSB。
第三方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面中任一项所述的方法。
本申请第四方面提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施上述第一方面或者第一方面的任一种可能的实现方式所提供的方法。
本申请第五方面提供一种通信装置,该通信装置可以包括至少一个处理器、存储器和通信接口。至少一个处理器与存储器和通信接口耦合。存储器用于存储指令,至少一个处理器用于执行该指令,通信接口用于在至少一个处理器的控制下与其他通信装置进行通信。该指令在被至少一个处理器执行时,使至少一个处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
本申请第六方面提供了一种芯片系统,该芯片系统包括处理器,用于支持通信装置实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存XXX必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三至第六方面或者其中任一种可能实现方式所带来的技术效果可参见第一方面或第一方面不同可能实现方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
基站确定全量周期,全量周期包括N个同步周期,并在第一同步周期通过第一波束发送全量SSB,所述全量SSB包括PBCH,然后在第二同步周期通过所述第一波束发送第一同步SSB,所述第一同步周期和所述第二同步周期均属于全量周期中的同步周期,由于用户可以在第一同步周期中获取PBCH,第一同步SSB不包括PBCH,在不影响性能的情况下,节约了传输资源的消耗。
附图说明
图1-1为本申请实施例提供的一种通信系统的组成结构示意图;
图1-2为本实施例提供的终端相关的手机的部分结构的框图;
图1-3为第五代(5Generation,5G)通信系统网络架构的系统架构的示意图;
图1-4为基站中在5G网络的功能划分的示意图;
图1-5为将20毫秒时长的SSB周期拉长到160毫秒的示意图;
图2-1为本申请提供的一种发送SSB的方法的实施例示意图;
图2-2为全量周期的时长为80毫秒且同步周期的时长为20毫秒的示意图;
图2-3为全量SSB的组成的示意图;
图2-4为协议38.211Table 7.4.3.1-1的示意图;
图2-5为SSB波束扫描的示意图;
图2-6为用户设备确定信号强度最大的波束的示意图;
图2-7为基站在同步周期0上通过第一波束发送全量SSB的示意图;
图2-8为全量SSB和同步SSB的对比示意图;
图3-1为本申请实施例提供的一种发送SSB的方法;
图3-2为示例的基站确定在同步周期0中发送全量SSB的波束0的示意图;
图4为本申请实施例提供的一种通信装置的示意图;
图5为本申请实施例提供的一种通信装置的示意图。
具体实施方式
本申请实施例提供了一种发送同步信号和广播物理信道PBCH块SSB的方法和相关装置,用于通过第一波束的不同的同步周期分别发送全量SSB或同步SSB。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请实施例的技术方案可以应用于各种数据处理的通信系统,例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、 超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。第五代(5 Generation,5G)通信系统、新空口(New Radio,简称“NR”)是正在研究当中的下一代通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参阅图1-1所示,为本申请实施例提供的一种通信系统的组成结构示意图。本申请实施例提供一种通信系统100,包括基站110和用户设备120。
其中,用户设备120可以包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备。
以手机为例,图1-2示出的是与本申请实施例提供的终端相关的手机的部分结构的框图。参考图1-2,手机包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、以及电源1190等部件。本领域技术人员可以理解,图1-2中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在一些可行的实现方式中,基站110可以为5G无线接入网(NG-RAN)中的gNB。如图1-3所示,5G网络架构包括5G接入网(NG-RAN)和5G核心网(5GC),其中,5G无线接入网包括两种节点:gNB和ng-eNB。
其中,gNB应用向用户设备120提供NR的用户面和控制面的协议终端的节点,并且经由NG接口连接到5GC。ng-eNB应用向用户设备120提供E-UTRA的用户面和控制面的协议终端的节点,并且经由NG接口连接到5GC。由此可知,gNB是独立组网需要用到的,而ng-eNB是为了向下兼容4G网络,为了不同核心网而设置的。
如上图1-3所示,本申请涉及的网元为gNB,gNB中的涉及到如图1-4所示,它们在整体5G网络的功能划分,具体的各功能的内容为现有技术,此处不做赘述。
当前的通信系统中,用户设备120搜索基站110发送的SSB进行小区搜索、同步和测量,以接入网络。一般的,基站110按照20毫秒的周期发送SSB。但是,在小区轻载、空载的场景中,广播SSB的消息占用过多信道资源(例如8%)。为此,基站110也可以按照40/80/160毫秒的周期发送SSB,以降低基站消耗的信道资源。例如,如图1-5所示,在小区轻载、空载的场景中,将原来20毫秒时长的SSB周期拉长到160毫秒。在独立组网(stand alone,SA)的场景中,用户设备120需要采用SSB测量来辅助跟踪参考信号(tracking reference signal,TRS)测量,若基站110拉长SSB的周期,可能会产生时偏异常,导致在网的用户设备120在第二个20毫秒的周期开始掉话,或者新用户设备120无法入网。
前述实施例介绍了本申请提供给的通信系统100,接下来通过实施例1和实施例2介 绍基于该通信系统100执行的通信方法。
实施例1、
请参阅图2-1所示,本申请实施例提供的一种发送SSB的方法主要包括如下步骤:
201、基站确定全量周期,全量周期包括N个同步周期,N为大于等于2的整数。
在本申请实施例中,基站可以设置全量周期,每个全量周期发送一次全量SSB。需要说明的是,一个全量周期包括N个同步周期,其中,每个同步周期为一个同步周期。在一些可行的实现方式中,同步周期的时长为20毫秒,全量周期的时长可以为40/80/160毫秒。
例如,若全量周期为40毫秒,同步周期为20毫秒,那么一个全量周期包括2个(40毫秒/20毫秒)同步周期;若全量周期为80毫秒,同步周期为20毫秒,那么一个全量周期包括4个(80毫秒/20毫秒)同步周期;若全量周期为160毫秒,同步周期为20毫秒,那么一个全量周期包括8个(160毫秒/20毫秒)同步周期。
示例性的,如图2-2所示,全量周期的时长为80毫秒,同步周期的时长为20毫秒,那么全量周期包括4个同步周期,分别为同步周期0/1/2/3。
202、基站确定第一同步周期,第一同步周期为N个同步周期中的一个,第一同步周期用于在第一波束发送全量SSB。
在本申请实施例中,当基站确定了全量周期后,基站可以从N个同步周期中确定与第一波束对应的第一同步周期,该第一同步周期用于通过第一波束发送全量SSB。例如,如图2-2所示,基站可以随机确定同步周期0,作为第一同步周期。在一些可行的实现方式中,基站还可以确定多于一个同步周期,作为第一同步周期。例如,基站确定同步周期0/1/2,或,同步周期0/1/3,或,同步周期0/2/3,或,同步周期1/2/3,或,同步周期0/1,或,同步周期0/2,或,同步周期0/3,或,同步周期1/2,或,同步周期1/3,或,同步周期2/3,作为第一同步周期。
203、基站确定第二同步周期,第二同步周期为N个同步周期中的一个,第二同步周期用于在第一波束发送同步SSB。
在一些可行的实现方式中,当基站确定了第一同步周期后,可以进一步确定第二同步周期,该第二同步周期用于通过第一波束发送同步SSB,其中第二同步周期为N个同步周期中不同于第一同步周期的同步周期。
例如,如图2-2所示,基站可以随机确定同步周期0,作为第一同步周期,那么基站可以进一步确定同步周期1/2/3中的任意1个作为第二同步周期。在一些可行的实现方式中,基站可以确定同步周期1/2/3中的两个分别作为2个同步周期,此处不做限定。在一些可行的实现方式中,基站可以确定同步周期1/2/3分别作为3个同步周期,此处不做限定。
204、基站在第一同步周期通过第一波束发送全量SSB。
在本申请实施例中,当基站确定了第一同步周期后,可以在第一同步周期发送全量SSB。
需要说明的是,如图2-3所示,全量SSB由主同步信号(primary Synchronization Signals,PSS)、辅同步信号(secondary synchronization signals,SSS)、广播物理 信道(physical broadcast channel,PBCH)三部分共同组成。全量SSB在时域上占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,在频域占用240个子载波,编号为0~239。其中,PSS位于符号0的中间127个子载波,SSS位于符号2的中间127个子载波,为了保护PSS和SSS,两端分别有不同的子载波。另外,PBCH位于符号1/3,以及符号2,其中符号1/3上占0~239所有子载波,符号2上占用除去SSS占用子载波及保护SSS的子载波以外的所有子载波。
其中PSS、SSS、PBCH占用不同的符号和占用资源如图2-4所示:协议38.211 Table 7.4.3.1-1。其中,k和l分别表示SSB内的频域索引和时域索引,Set 0表示用户设备假定协议38.211 Table 7.4.3.1-1中的该部分的RE被设置为0。
需要说明的是,PBCH由于承载系统广播消息,用户设备不需要在每个同步周期都检索到,只需要在至少在一个同步周期中检索到即可。
需要说明的是,在第五代移动通信技术(5th generation mobile communication technology,5G)中引入了超大规模天线阵列,其中,毫米波频段天线个数可能高达256。波束赋型在5G的应用可以通过波束赋型使信号能量更加集中增强覆盖,减少用户间及小区间干扰。通过SSB波束扫描,基站和用户设备之间建立一个合适的波束方向对,进行随后的接入及数据传输以及同步。具体的,SSB波束扫描可以如图2-5所示,采用时分的方式在不同时间经由不同的波束发送。在SSB波束扫描的过程中,用户设备选择信号强度最大的波束作为初始波束方向,进行随后的处理。例如,如图2-6所示,用户设备1从波束3接收到的信号强度最大,而用户设备2从波束7接收到的信号强度最大。
当搜索到信号强度最大的波束后,用户设备会在与所选择的SSB的索引相关的时间发送物理随机接入信道(physical random access channel,PRACH)的接入信息。基站通过解析收到的PRACH的接入信息,可以判断终端所处方向并建立初始波束对。
205、基站在第二同步周期通过第一波束发送第一同步SSB。
在本申请实施例中,当基站确定了第二同步周期后,可以在第二同步周期发送同步SSB。具体的,如图2-7所示,基站在同步周期0上通过第一波束发送全量SSB,在同步周期1/2/3通过第一波束发送同步SSB,例如在同步周期1内发送第一同步SSB。需要说明的是,如图2-8所示,同步SSB相比全量SSB,同步SSB包括SSS和PSS,而不包括PBCH。
在一些可行的实现方式中,基站可以同时发送多个波束。为了避免在不同波束同时发送全量SSB,导致在该同步周期的占用过多资源,可以让不同波束上的全量SSB分别在全量周期中不同同步周期中发送。示例性的,可以通过实施例2实现。
实施例2、
请参阅图3-1所示,本申请实施例提供的一种发送SSB的方法,主要包括如下步骤:
301、基站确定全量周期,全量周期包括N个同步周期,N为大于等于2的整数。
请参考步骤201,此处不做赘述。
302、基站确定第一同步周期中发送全量SSB的第一波束,第一同步周期为N个同步周 期中的一个。
举例说明,设现有系统具有多个波束,例如4/8/16个波束,如图3-2所示,以4个波束为例,分别为波束0/1/2/3,基站确定在同步周期0中发送全量SSB的波束0。在一些可行的实现方式中,基站可以从4个波束中随机选择,在此,以选择波束0为例。在本申请实施例中,当基站确定了波束0为第一同步周期中发送全量SSB的第一波束后,为了避免在不同波束同时发送全量SSB,导致在该同步周期的占用过多资源,基站同时确定了波束1/2/3为第一同步周期中发送同步SSB的波束。
303、基站确定第二同步周期中发送全量SSB的第二波束。
在本申请实施例中,如图3-2所示,基站确定在同步周期0中发送全量SSB的波束0后,在第二同步周期中,基站可以从剩余的波束1/2/3中选择一个波束,作为同步周期1的第二波束。另外,为了避免在不同波束同时发送全量SSB,导致在该同步周期的占用过多资源,基站同时确定了波束2/3为第二同步周期中发送同步SSB的波束。同理,基站可以从剩余的波束2/3中选择一个波束,作为同步周期2的第三波束,最后剩余的波束3作为同步周期3的第四波束。
304、基站在第一同步周期通过第一波束发送全量SSB,并在第一同步周期通过第二波束发送第二同步SSB。
在本申请实施例中,当基站确定第一同步周期中发送全量SSB的第一波束后,即可在第一同步周期中通过第一波束发送全量SSB,并在第一同步周期通过第二波束发送第二同步SSB。例如,如图3-2所示,当基站在同步周期0中通过波束0发送全量SSB,为了避免在不同波束同时发送全量SSB,导致在该同步周期的占用过多资源,基站同时在同步周期0中通过波束1/2/3发送同步SSB(即第二同步SSB)。
305、基站在第二同步周期通过第一波束发送第一同步SSB,并在第二同步周期通过第二波束发送全量SSB。
在本申请实施例中,当基站确定了在第二同步周期中发送全量SSB的第二波束后,可以在第二同步周期中通过第二波束发送全量SSB。例如,如图3-2所示,基站在同步周期1上通过第二波束发送全量SSB,在同步周期0/2/3中通过波束0/2/3发送同步SSB。
需要说明的是,同步SSB相比全量SSB,同步SSB包括SSS和PSS,而不包括PBCH。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图4所示,本申请实施例提供的一种通信装置400,可以包括:处理模块401、发送模块402。其中,
处理模块401,用于确定全量周期,全量周期包括N个同步周期,N为大于等于2的整数。
发送模块402,用于在第一同步周期通过第一波束发送全量SSB,全量SSB包括PBCH,第一同步周期为N个同步周期中一个。
发送模块402,用于在第二同步周期通过第一波束发送第一同步SSB,第一同步SSB不包括PBCH,第二同步周期为N个同步周期中不同于第一同步周期的同步周期。
在一些可行的实现方式中,同步周期的时长为20毫秒,全量周期的时长为40毫秒、80毫秒或160毫秒。
在一些可行的实现方式中,发送模块402,还用于在第一同步周期通过第二波束发送第二同步SSB,第二同步SSB不包括PBCH。
在一些可行的实现方式中,发送模块402,还用于在第二同步周期通过第二波束发送全量SSB。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本申请实施例提供的另一种通信装置500,请参阅图5所示,通信装置500包括:
接收器501、发射器502、处理器503和存储器504(其中通信装置500中的处理器503的数量可以一个或多个,图5中以一个处理器为例)。在本申请的一些实施例中,接收器501、发射器502、处理器503和存储器504可通过总线或其它方式连接,其中,图5中以通过总线连接为例。
存储器504可以包括只读存储器和随机存取存储器,并向处理器503提供指令和数据。存储器504的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。存储器504存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器503控制通信装置的操作,处理器503还可以称为中央处理单元(central processing unit,CPU)。具体的应用中,通信装置的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器503中,或者由处理器503实现。处理器503可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各 步骤可以通过处理器503中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器503可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器504,处理器503读取存储器504中的信息,结合其硬件完成上述方法的步骤。
接收器501可用于接收输入的数字或字符信息,以及产生与通信装置的相关设置以及功能控制有关的信号输入,发射器502可包括显示屏等显示设备,发射器502可用于通过外接接口输出数字或字符信息。
本申请实施例中,处理器503,用于执行前述通信装置执行的一种发送同步信号和广播物理信道PBCH块SSB的方法。
在另一种可能的设计中,当通信装置为芯片时,包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线报告信息的发送方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,ASIC,或一个或多个用于控制上述方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献 的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。

Claims (12)

  1. 一种发送同步信号和广播物理信道PBCH块SSB的方法,其特征在于,包括:
    基站确定全量周期,所述全量周期包括N个同步周期,N为大于等于2的整数;
    所述基站在第一同步周期通过第一波束发送全量SSB,所述全量SSB包括PBCH,所述第一同步周期为所述N个同步周期中一个;
    所述基站在第二同步周期通过所述第一波束发送第一同步SSB,所述第一同步SSB不包括PBCH,所述第二同步周期为所述N个同步周期中不同于所述第一同步周期的同步周期。
  2. 根据权利要求1所述方法,其特征在于,所述同步周期的时长为20毫秒,所述全量周期的时长为40毫秒、80毫秒或160毫秒。
  3. 根据权利要求1或2所述方法,其特征在于,所述方法还包括:
    所述基站在第一同步周期通过第二波束发送第二同步SSB,所述第二同步SSB不包括PBCH。
  4. 根据权利要求1-3中任一项所述方法,其特征在于,所述方法还包括:
    所述基站在第二同步周期通过第二波束发送全量SSB。
  5. 一种通信装置,其特征在于,包括:
    处理模块,用于确定全量周期,所述全量周期包括N个同步周期,N为大于等于2的整数;
    发送模块,用于在第一同步周期通过第一波束发送全量SSB,所述全量SSB包括PBCH,所述第一同步周期为所述N个同步周期中一个;
    所述发送模块,用于在第二同步周期通过所述第一波束发送第一同步SSB,所述第一同步SSB不包括PBCH,所述第二同步周期为所述N个同步周期中不同于所述第一同步周期的同步周期。
  6. 根据权利要求5所述通信装置,其特征在于,所述同步周期的时长为20毫秒,所述全量周期的时长为40毫秒、80毫秒或160毫秒。
  7. 根据权利要求5或6所述通信装置,其特征在于,
    所述发送模块,还用于在第一同步周期通过第二波束发送第二同步SSB,所述第二同步SSB不包括PBCH。
  8. 根据权利要求5-7中任一项所述通信装置,其特征在于,
    所述发送模块,还用于在第二同步周期通过第二波束发送全量SSB。
  9. 一种芯片系统,其特征在于,所述芯片系统包括处理器和存储器,所述存储器和所述处理器通过线路互联,所述存储器中存储有指令,所述处理器用于执行如权利要求1-4中任一项的方法。
  10. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质存储有程序,所述程序使得计算机设备执行如权利要求1-4中任一项的方法。
  11. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机执行指令,所述计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器从所述计算机可读存储介质中读取所述计算机执行指令,所述至少一个处理器执行所述计算机执行指令使 得所述设备执行如权利要求1-4中任一项的方法。
  12. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器、存储器和通信接口;
    所述至少一个处理器与所述存储器和所述通信接口耦合;
    所述存储器用于存储指令,所述处理器用于执行所述指令,所述通信接口用于在所述至少一个处理器的控制下与其他通信装置进行通信;
    所述指令在被所述至少一个处理器执行时,使所述至少一个处理器执行如权利要求1-4中任一项的方法。
PCT/CN2022/092356 2021-05-26 2022-05-12 一种发送ssb的方法和相关装置 WO2022247644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110579119.9 2021-05-26
CN202110579119.9A CN115412962A (zh) 2021-05-26 2021-05-26 一种发送ssb的方法和相关装置

Publications (1)

Publication Number Publication Date
WO2022247644A1 true WO2022247644A1 (zh) 2022-12-01

Family

ID=84156395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092356 WO2022247644A1 (zh) 2021-05-26 2022-05-12 一种发送ssb的方法和相关装置

Country Status (2)

Country Link
CN (1) CN115412962A (zh)
WO (1) WO2022247644A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116192325A (zh) * 2023-02-01 2023-05-30 浙江三维通信科技有限公司 基站信号的屏蔽方法、装置、存储介质和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465091A (zh) * 2019-01-18 2020-07-28 华为技术有限公司 一种通信方法及设备
CN111585729A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种信号的发送、接收方法、网络设备及终端
US20200314673A1 (en) * 2019-03-28 2020-10-01 Qualcomm Incorporated Techniques for measuring synchronization signal blocks in wireless communications
CN111918392A (zh) * 2019-05-08 2020-11-10 中国移动通信有限公司研究院 信息的指示方法、检测方法、网络设备及终端
WO2021056587A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465091A (zh) * 2019-01-18 2020-07-28 华为技术有限公司 一种通信方法及设备
CN111585729A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种信号的发送、接收方法、网络设备及终端
US20200314673A1 (en) * 2019-03-28 2020-10-01 Qualcomm Incorporated Techniques for measuring synchronization signal blocks in wireless communications
CN111918392A (zh) * 2019-05-08 2020-11-10 中国移动通信有限公司研究院 信息的指示方法、检测方法、网络设备及终端
WO2021056587A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 一种通信方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116192325A (zh) * 2023-02-01 2023-05-30 浙江三维通信科技有限公司 基站信号的屏蔽方法、装置、存储介质和电子装置
CN116192325B (zh) * 2023-02-01 2024-03-22 浙江三维通信科技有限公司 基站信号的屏蔽方法、装置、存储介质和电子装置

Also Published As

Publication number Publication date
CN115412962A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
US9949063B2 (en) Bluetooth low energy triggering NAN for further discovery and connection
EP3668216B1 (en) Method for monitoring pdcch, network device, and terminal
EP3993540A1 (en) Ran node, ue, and method for same
US10609543B2 (en) Flexible BTLE TDS frame format for bi-directional service discovery
WO2018201499A1 (zh) 一种用于确定寻呼的方法和装置
US20210345312A1 (en) Communication method and apparatus
US11445550B2 (en) Method of transmitting random access response message, method of receiving random access response message and devices thereof
JP2021533628A (ja) 信号を伝送する方法、端末機器及びネットワーク機器
JP7393431B2 (ja) ランダムアクセス方法および装置
US20210360517A1 (en) Method and Apparatus for Obtaining System Information
JP2022510775A (ja) 無認可周波数帯域におけるssbの伝送方法及び機器
WO2022089608A1 (zh) 多卡并收方法和装置
WO2019047117A1 (zh) 接入网络的方法、终端设备和网络设备
WO2022022636A1 (zh) 初始接入方法及装置、终端及网络侧设备
WO2022247644A1 (zh) 一种发送ssb的方法和相关装置
WO2022105776A1 (zh) 主信息块mib的获取方法、装置和终端
US10375179B2 (en) Pre-association service discovery
TWI785202B (zh) 配置同步載波的方法、設備及電腦存儲媒介
US20230247568A1 (en) Methods for communication under multiple links and electronic device
CN112312521A (zh) 一种网络接入方法及其装置
US10681759B2 (en) Paging schemes for peer-to-peer communications
CN113923683A (zh) 一种测量方法、装置及计算机可读存储介质
WO2018028640A1 (zh) 信息传输的方法、终端设备和网络设备
JP2021523594A (ja) 情報処理方法、ネットワーク機器、端末機器
CN112218274B (zh) 一种异常处理方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE