WO2022247621A1 - 内衬装置及半导体加工设备 - Google Patents

内衬装置及半导体加工设备 Download PDF

Info

Publication number
WO2022247621A1
WO2022247621A1 PCT/CN2022/091655 CN2022091655W WO2022247621A1 WO 2022247621 A1 WO2022247621 A1 WO 2022247621A1 CN 2022091655 W CN2022091655 W CN 2022091655W WO 2022247621 A1 WO2022247621 A1 WO 2022247621A1
Authority
WO
WIPO (PCT)
Prior art keywords
backing ring
lining
ring
process chamber
insulating
Prior art date
Application number
PCT/CN2022/091655
Other languages
English (en)
French (fr)
Inventor
姚明可
朱海云
朱旭
马振国
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2022247621A1 publication Critical patent/WO2022247621A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber

Definitions

  • the invention relates to the field of semiconductor manufacturing, in particular to a lining device and semiconductor processing equipment.
  • the physical vapor deposition (Physical Vapor Deposition, PVD) method is generally used to deposit conductive films.
  • the TiN film prepared by this PVD method has good metal state properties and strong barrier ability, but with the increase in line width size Continuously shrinking, the conductive film deposited by PVD method cannot meet the step coverage requirements of holes/grooves with high aspect ratio (greater than 5:1), while the chemical vapor deposition (Chemical Vapor Deposition, CVD) method has good step coverage and Process integration capabilities, and thus gradually began to replace the PVD method to deposit conductive films.
  • CVD chemical Vapor Deposition
  • the process results such as resistivity and sheet resistance uniformity of the conductive film are mainly affected by the stability of the radio frequency field, and small changes in the chamber environment may cause radio frequency field The change.
  • the conductive film is mainly deposited on the surface of the wafer, but a small part will still be deposited on the ceramic lining inside the chamber. With the increase in the number of pieces of processing, more and more conductive films are deposited on the ceramic lining. , so that the area of the lower electrode in the radio frequency field gradually increases, and the radio frequency environment changes, which affects the consistency and stability of the process results.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a lining device and semiconductor processing equipment, which can avoid film deposition on the insulating lining ring under the premise of realizing gas discharge inside the process chamber. On the inner peripheral wall, the consistency and stability of the process results can be improved.
  • a lining device which is applied in the process chamber of semiconductor processing equipment.
  • the lining device includes a lining component and an exhaust channel structure arranged in the lining component.
  • the air inlet of the exhaust channel structure communicates with the inside of the process chamber;
  • the gas outlet of the exhaust channel structure communicates with the exhaust port of the process chamber to discharge the gas inside the process chamber. gas;
  • the lining assembly includes a first metal backing ring and an insulating backing ring nested sequentially from the center to the edge along the radial direction of the process chamber; wherein, the air inlet of the exhaust channel structure is located at the first On the inner peripheral wall of the metal backing ring; the axial length of the first metal backing ring is set to be able to cover the area above the specified height position of the inner peripheral wall of the insulating backing ring to prevent film deposition on the insulating backing ring on the inner peripheral wall.
  • the outer peripheral wall of the first metal backing ring is provided with a plurality of positioning protrusions spaced along its circumferential direction
  • the upper surface of the insulating backing ring is provided with a plurality of positioning recesses, each The positioning protrusions cooperate with each of the positioning recesses in one-to-one correspondence, so as to define the relative position of the first metal backing ring and the insulating backing ring.
  • each of the positioning recesses is a first slope forming an angle with the radial direction of the process chamber, and the height of the first slope is increased from the center along the radial direction of the process chamber to gradually increases toward the edge;
  • the lower surface of each positioning protrusion is a second slope, and the second slope is in contact with the first slope on the corresponding positioning recess, so that the first metal
  • the backing ring is coaxial with the insulating backing ring.
  • the value range of the included angle is greater than or equal to 20° and less than or equal to 30°.
  • the sides of the first inclined surface, the second inclined surface, and the positioning concave portion and the positioning convex portion opposite to each other are polished surfaces to reduce the positioning concave portion and the positioning convex portion. Coefficient of friction for positioning protrusions.
  • annular groove is also provided on the inner peripheral wall of the insulating backing ring, the first metal backing ring is located in the annular groove, and the inner peripheral wall of the first metal backing ring is in contact with the The inner peripheral wall of the insulating backing ring is flush; the upper surface of the first metal backing ring is flush with the upper surface of the insulating backing ring.
  • the lining assembly further includes a second metal backing ring, and the second metal backing ring is nested around the insulating backing ring;
  • the exhaust channel structure includes a plurality of first exhaust holes, a plurality of second exhaust holes and an exhaust channel, wherein each of the first exhaust holes penetrates radially of the first metal backing ring It is arranged in the first metal lining ring, and a plurality of the first exhaust holes are distributed along the circumferential direction of the first metal lining ring at intervals; the first exhaust holes are located in the first metal lining one end on the inner peripheral wall of the ring serves as an air inlet for said exhaust channel structure;
  • Each of the second vent holes is arranged through the insulating bushing ring in the radial direction of the insulating bushing ring, and the plurality of second vent holes are connected with the plurality of first vent holes one by one. Correspondingly set;
  • the exhaust channel is arranged in the second metal backing ring, and the inlet end of the exhaust channel communicates with each of the second exhaust holes, and the outlet end of the exhaust channel is used as the The air outlet of the exhaust channel structure communicates with the exhaust port.
  • the specified height position is located at a specified vertical distance below the lowest height position of the air inlet of the exhaust channel structure, and the value range of the specified vertical distance is greater than or equal to 25mm and less than or equal to 35mm.
  • the diameter of the first vent hole is larger than the diameter of the second vent hole, so that when the first metal backing ring thermally expands, the first vent hole can be connected to the corresponding first vent hole.
  • the two exhaust holes are kept connected.
  • the difference between the diameter of the first exhaust hole and the diameter of the second exhaust hole is greater than or equal to 0.8 mm and less than or equal to 1 mm.
  • an embodiment of the present invention also provides a semiconductor processing equipment, including a process chamber and a radio frequency power supply, wherein an air inlet device is provided on the top of the process chamber for feeding into the process chamber Conveying process gas; an upper electrode and a base below the upper electrode are arranged in the process chamber, wherein the upper electrode is electrically connected to the radio frequency power supply, and the radio frequency power supply is used to supply the upper electrode
  • the electrodes are loaded with radio frequency power; the base is grounded; a lining device surrounding the base is also provided in the process chamber, and the lining device adopts the above-mentioned lining device provided by the embodiment of the present invention.
  • the semiconductor processing equipment further includes a metal edge ring disposed around the base.
  • the semiconductor processing equipment is a chemical vapor deposition equipment
  • the deposited film is a conductive film.
  • the axial length of the first metal backing ring is set to be able to cover the area of the inner peripheral wall of the insulating backing ring above the specified height position, which can prevent the conductive film from being deposited inside the insulating backing ring On the surrounding wall, and after the conductive film is deposited by CVD method, it can ensure that the area of the lower electrode of the radio frequency field will not increase compared with that before depositing the film, and realize that the radio frequency environment remains consistent before and after depositing the conductive film, thereby improving the consistency and consistency of process results.
  • the first metal backing ring can cover the inner peripheral wall of the insulating backing ring while the exhaust passage structure can still It communicates with the inside of the process chamber, so that the gas inside the process chamber can be discharged.
  • the semiconductor processing equipment provided by the embodiment of the present invention by adopting the above-mentioned lining device provided by the embodiment of the present invention, can prevent the conductive film from being deposited on the inner peripheral wall of the insulating lining ring under the premise of realizing gas discharge inside the process chamber, Ensure the consistency of the radio frequency field in the process, so that the consistency and stability of the process results can be improved.
  • Fig. 1 is a sectional view of a semiconductor processing equipment
  • Fig. 2 is a partial enlarged view of the lining device in Fig. 1;
  • Fig. 3 is an axial cross-sectional view of the insulating backing ring in Fig. 1;
  • FIG. 4 is a graph of the resistivity and the number of wafers of the film prepared by the semiconductor processing equipment in FIG. 1;
  • FIG. 5 is a cross-sectional view of a semiconductor processing device provided by an embodiment of the present invention.
  • Fig. 6 is a partially enlarged view of the lining device in Fig. 5 of the lining device provided by the embodiment of the present invention.
  • Fig. 7A is a top view of the insulating lining ring used in the embodiment of the present invention.
  • Fig. 7B is a partial cross-sectional view along the line B1-B1 in Fig. 7A in the axial direction of the insulating back ring;
  • Fig. 7C is a partial cross-sectional view along the line B2-B2 in Fig. 7A in the axial direction of the insulating back ring;
  • Fig. 8A is another top view of the insulating lining used in the embodiment of the present invention.
  • Fig. 8B is a sectional view along the line B3-B3 in Fig. 8A in the axial direction of the insulating back ring;
  • Fig. 9A is a bottom view of the first metal backing ring used in the embodiment of the present invention.
  • Fig. 9B is a sectional view along the line C1-C1 in Fig. 9A in the axial direction of the first metal backing ring;
  • Fig. 9C is a sectional view along the line C2-C2 in Fig. 9A in the axial direction of the first metal backing ring;
  • Fig. 9D is an axial cross-sectional view of the first metal backing ring used in the embodiment of the present invention.
  • FIG. 10 is a graph of the resistivity of a film prepared by using the semiconductor processing equipment provided by the embodiment of the present invention and the number of wafers.
  • a semiconductor processing equipment includes a process chamber 100 and a radio frequency power supply (not shown in FIG. 1 ), wherein an upper electrode and a base 101 are arranged in the process chamber 100,
  • the pedestal 101 is used to carry the wafer, and the pedestal 101 is, for example, a heater for heating the wafer; and the pedestal 101 can be used as a lower electrode, and is grounded through the lifting shaft 104, and the lifting shaft 104 can, for example, Grounding is through the chamber walls of the process chamber 100 .
  • a metal edge ring 103 is provided around the base 101, which is electrically connected to the base 101 to protect the base 101 and improve the uniformity of the electric field distribution above the base 101;
  • the process chamber 100 is provided with Inlet device 105, which is used to deliver process gas to the process chamber 100;
  • the upper electrode includes a uniform flow chamber arranged in the process chamber 100 above the base 101 and spaced from top to bottom The plate 107 and the shower head 108, the uniform flow plate 107 and the shower head 108 are used to evenly flow the process gas flowing out from the gas inlet device 105, so that it can be evenly directed towards the wafer on the base 101 surface delivery.
  • the process chamber 100 includes a chamber side wall and an upper electrode mounting plate 116 above it, and an insulating adapter 110 is provided between the two to electrically connect the chamber side wall and the upper electrode mounting plate 116. Insulation, wherein the side wall of the chamber is grounded, and the upper electrode mounting plate 116 is provided with a radio frequency feed electrode 106, and the even flow plate 107 and the shower head 108 are connected to the above-mentioned upper electrode mounting plate 116 through a connecting piece 115 (such as a conductive screw).
  • a connecting piece 115 such as a conductive screw
  • the RF feeding electrode 106 is electrically connected to the above-mentioned RF power supply, and is electrically connected to the upper electrode mounting plate 116 .
  • the radio frequency feeding electrode 106, the upper electrode mounting plate 116, the shower head 108 and the flow uniform plate 107 are all charged, and generate electricity between the chamber side wall of the grounded process chamber 100 and the base 101.
  • the continuous and stable glow discharge can excite the process gas in the process chamber 100 to form plasma, and the plasma will deposit and form a thin film on the surface of the wafer 102 .
  • a lining device 109 surrounding the susceptor 101 is disposed in the process chamber 100 . It should be noted that the dashed box in FIG. 1 only schematically includes a partial structure of the lining device 109 .
  • the structure of the above-mentioned RF feeding electrode assembly is not limited to the structure shown in FIG. 1 , and the embodiment of the present invention has no special limitation thereto.
  • the above-mentioned lining device 109 includes a first metal backing ring 1091 , an insulating backing ring 1092 and a second metal backing ring 1093 nested sequentially from the center to the edge along the radial direction of the process chamber 100 , wherein, as As shown in Fig. 3, a plurality of exhaust holes 1094 are arranged in the insulating lining 1092, and the plurality of exhaust holes 1094 are distributed at intervals along the circumference of the insulating lining 1092, and the air inlet 1094a of each exhaust hole 1094 is located at the insulating On the inner peripheral wall of the backing ring 1092. And, as shown in FIG.
  • annular gas channel 1095 and an exhaust cavity 1096 below it are arranged in the second metal backing ring 1093 , wherein the inlet end of the annular gas channel 1095 is connected to the outlet of each exhaust hole 1094
  • the gas port is connected; the gas outlet end of the annular gas passage 1095 is connected with the inlet end of the exhaust chamber 1096, and the gas outlet end of the exhaust chamber 1096 is connected with the exhaust port arranged on the chamber wall of the process chamber 100, thereby realizing the process The gas in the chamber 100 is exhausted.
  • the above-mentioned lining device 109 further includes a grounding lining 1097 , which is disposed around the inside of the process chamber 100 and located under the insulating lining 1092 .
  • the ground liner 1097 is grounded through the chamber walls of the process chamber 100 .
  • the inlet end 1094a of the above-mentioned gas outlet 1094 is located on the inner peripheral wall of the insulating backing ring 1092, when a conductive film (such as a TiN film) is deposited by CVD, the gas is drawn into the gas outlet through the gas inlet 1094a.
  • a conductive film such as a TiN film
  • the gas is drawn into the gas outlet through the gas inlet 1094a.
  • a part of the unreacted conductive film on the wafer will be deposited on the first metal backing ring 1091 with the airflow, and a part of the unreacted conductive film will be deposited on the first metal backing ring 1092 along with the airflow.
  • the area below the metal backing ring 1091 is specifically the area A on the inner peripheral wall of the insulating backing ring 1092 shown in FIG. 2 and FIG.
  • FIG. 4 is a graph of the resistivity of the film prepared by the semiconductor processing equipment in FIG. 1 versus the number of wafers. As shown in Figure 4, during the continuous process of 150 wafers, the resistivity of the TiN thin film tends to increase gradually, which cannot meet the requirements for the consistency and stability of the process results.
  • an embodiment of the present invention provides a lining device 1, which is applied in a process chamber 100 of semiconductor processing equipment (such as chemical vapor deposition equipment), the process chamber 100 is, for example, the same structure as the process chamber shown in FIG. 1 .
  • the above-mentioned lining device 1 includes a lining assembly 11 and an exhaust passage structure 12 arranged in the lining assembly 11 , the air inlet of the exhaust passage structure 12 communicates with the inside of the process chamber 100 The gas outlet of the exhaust channel structure 12 communicates with the exhaust port of the process chamber 100 for exhausting the gas inside the process chamber 100 .
  • the liner assembly 11 includes a first metal backing ring 111 , an insulating backing ring 112 and a second metal backing ring 113 nested sequentially from the center to the edge along the radial direction of the process chamber 100 ; wherein, the first The metal backing ring 111 and the second metal backing ring 113 are, for example, aluminum backing rings; the insulating backing ring 112 is, for example, a ceramic backing ring to protect the inner peripheral wall of the second metal backing ring 113 from depositing a thin film.
  • the air inlet of the exhaust channel structure 12 is located on the inner peripheral wall of the first metal backing ring 111; the axial length of the first metal backing ring 111 is set to be able to cover the area of the inner peripheral wall of the insulating backing ring 112 above the specified height position , so as to prevent the film from being deposited on the inner peripheral wall of the insulating lining ring 112 .
  • the axial length of the first metal backing ring 111 is increased relative to the axial length of the first metal backing ring 1091 in FIG. Cover the area A shown in Fig. 2 and Fig. 3, thereby can prevent conductive thin film from being deposited on the inner peripheral wall of insulating lining ring 112, and then after depositing conductive thin film (such as TiN thin film), can guarantee that the lower electrode area of radio frequency field is relative to It will not increase before the deposition of the thin film, so that the radio frequency environment remains consistent before and after the deposition of the conductive thin film, thereby improving the consistency and stability of the process results.
  • conductive thin film such as TiN thin film
  • the air inlet of the exhaust channel structure 12 on the inner peripheral wall of the first metal backing ring 111, not only can the first metal backing ring 111 cover the inner peripheral wall of the insulating backing ring 112, but also the exhaust channel structure 12 can still communicate with the inside of the process chamber 100, so that the gas inside the process chamber 100 can be exhausted; In the channel structure 12 , this can further avoid film deposition on the insulating backing ring 112 .
  • the potential of the first metal backing ring 111 is in a suspended state. Therefore, even if a thin film is deposited on the first metal backing ring 111, the lower electrode area of the increased radio frequency field Small and will not affect the RF environment.
  • the above-mentioned lining device 1 further includes a grounding lining 114 , which is disposed around the inside of the process chamber 100 and located under the insulating lining 112 .
  • the ground liner 114 is grounded through the chamber walls of the process chamber 100 .
  • the axial length of the first metal backing ring 111 can be freely set according to the actual situation, as long as the first metal backing ring 111 can cover the insulating backing ring under the premise that the potential of the first metal backing ring 111 is in a suspended state. It is enough that the inner peripheral wall is located in the area above the specified height position, so as to prevent the thin film from being deposited on the inner peripheral wall of the insulating backing ring 112 .
  • the above-mentioned exhaust channel structure 12 can have various structures, for example, as shown in Figure 6, the exhaust channel structure 12 includes a plurality of first exhaust holes 121, a plurality of second exhaust holes 122 and exhaust channels, wherein , as shown in FIG. 9D , each first exhaust hole 121 is provided through the first metal backing ring 111 along the radial direction of the first metal backing ring 111 , and a plurality of first exhaust holes 121 are arranged along the first metal backing ring 111 .
  • each second exhaust hole 122 is provided through the insulating collar 112 along the radial direction of the insulating collar 112 , and as shown in FIG.
  • the exhaust holes 121 are arranged in a one-to-one correspondence.
  • the gas in the process chamber 100 can be evenly discharged from each first exhaust hole 121, thereby improving the uniformity of exhaust. performance, which can further improve the stability of the radio frequency environment.
  • the above-mentioned exhaust channel is arranged in the second metal backing ring 113, and the intake end of the exhaust channel communicates with each second exhaust hole 122, and the gas outlet end of the exhaust channel is used as the above-mentioned
  • the gas outlet of the exhaust channel structure 12 communicates with the exhaust port (not shown in the figure) provided on the chamber wall of the process chamber 100 .
  • the exhaust channel includes an annular gas channel 123 and an exhaust cavity 124 below it.
  • the gas outlets of the two exhaust holes 122 are communicated; the gas outlets of the annular gas channel 123 are communicated with the inlets of the exhaust chamber 124, and the gas outlets of the gas outlet channels 124 are communicated with the above-mentioned exhaust ports, thereby realizing the process chamber 100.
  • the gas is exhausted, and the specific exhaust direction is shown by the arrow in Figure 6.
  • the above-mentioned exhaust chamber 124 may be an annular channel or any other structure.
  • the above-mentioned second metal backing ring 113 can also be omitted.
  • the above-mentioned exhaust channel can also be arranged in the chamber side wall of the process chamber 100, or can also be It is arranged on another exhaust component located in the process chamber 100, which is not particularly limited in the embodiment of the present invention.
  • the second metal backing ring 113 includes an upper sub-backing ring and a lower sub-backing ring below it, the two are sealed butted, and the inner peripheral wall of the lower sub-backing ring is relatively opposite to the upper sub-backing ring.
  • the inner peripheral wall protrudes to form a stepped structure that can support the insulating back ring 112, thereby improving structural stability.
  • the split structure of the second metal backing ring 113 can facilitate the processing of gas passages.
  • the second metal backing ring 113 can also adopt a one-piece structure, which is not particularly limited in the embodiment of the present invention.
  • the deformed first metal backing ring 111 will move upward by 0.2mm-0.3mm relative to the first metal backing ring 111 at normal temperature. , at this time, it may happen that the second exhaust hole 122 is staggered from the first exhaust hole 121 and cannot communicate with each other.
  • the diameter of the first exhaust hole 121 is optionally larger than that of the second
  • the diameter of the vent hole 122 is such that the first vent hole 121 and the corresponding second vent hole 122 can still maintain communication when the first metal backing ring 111 thermally expands, so that no matter at normal temperature or at high temperature, no There will be cases of wrong holes, which can meet the requirements of exhaust rate and exhaust uniformity under different process temperatures.
  • the range of the difference between the diameter of the first exhaust hole 121 and the diameter of the second exhaust hole 122 is greater than or equal to 0.8 mm and less than or equal to 1 mm. The numerical range of the difference can meet the requirements for exhaust rate and exhaust uniformity under different process temperatures.
  • the maximum inner diameter W1 of the insulating backing ring 112 is greater than the maximum outer diameter W2 of the first metal backing ring 111, and the maximum inner diameter W1 and the largest outer diameter W2
  • the range of the difference is, for example, greater than or equal to 2 mm and less than or equal to 4 mm.
  • an annular step 1125 is provided on the upper end surface of the insulating backing ring 112;
  • an annular boss 1113 is provided on the outer peripheral wall of the first metal backing ring 111, and the annular boss 1113 is stacked on the step surface 1126 of the annular step 1125, and the first The fixed connection of the metal backing ring 111 and the insulating backing ring 112 .
  • the above-mentioned first metal backing ring 111 and the insulating backing ring 112 can be positioned in various ways, as shown in FIG. a plurality of positioning recesses 1121, and as shown in Figure 9B, on the outer peripheral wall of the above-mentioned first metal backing ring 111 (that is, the lower surface of the above-mentioned annular boss 1113), a plurality of positioning protrusions distributed along its circumferential direction are arranged at intervals 1111 , each positioning protrusion 1111 matches each positioning recess 1121 one by one, so as to define the relative position of the first metal backing ring 111 and the insulating backing ring 112 .
  • the above-mentioned first metal backing ring 111 and the insulating backing ring 112 can be coaxially arranged, and at the same time, the rotation of the first metal backing ring 111 around its axis can be restricted. degrees of freedom.
  • the bottom surface of each positioning recess 1121 is the same as the process chamber
  • the radial direction of the chamber 100 forms a first slope 1122 with an included angle a1, and the height of the first slope 1122 gradually increases from the center to the edge along the radial direction of the process chamber 100; as shown in FIG.
  • the first metal backing ring 111 Under the cooperation of the second slope 1112 and the corresponding first slope 1122, the first metal backing ring 111 can be automatically centered with the insulating backing ring 112 to realize the first metal backing ring 111 is coaxial with the insulating collar.
  • the first slope 1122, the second slope 1112, and the sides of the positioning convex portion 1111 and the positioning concave portion 1121 are all polished. Treated surface.
  • annular groove 1123 is also provided on the inner peripheral wall of the insulating backing ring 112.
  • the first metal backing ring 111 is located in the annular groove 1123 , and the inner peripheral wall of the first metal backing ring 111 is flush with the inner peripheral wall of the insulating backing ring 112 ; the upper surface of the first metal backing ring 111 is flush with the upper surface of the insulating backing ring 112 .
  • the structural stability can be improved by supporting the first metal back ring 111 by the bottom surface 1124 of the annular groove 1123 .
  • the axial distance between the lowest height position of the second exhaust hole 122 and the upper surface of the insulating backing ring 112 is h1
  • the axial length of the first metal backing ring 111 is h2
  • the value range of the specified vertical distance ⁇ h is greater than or equal to 25mm and less than or equal to 35mm.
  • the first metal backing ring 111 can at least cover the above-mentioned area A shown in FIG. 3 , thereby preventing film deposition on the inner peripheral wall of the insulating backing ring 112 , and can avoid changing the radio frequency environment due to the axial length of the first metal backing ring 111 being too long.
  • FIG. 10 is a graph of the resistivity of a film prepared by using the semiconductor processing equipment provided by the embodiment of the present invention and the number of wafers. As shown in Figure 10, the abscissa is the number of wafers; the ordinate is the resistivity of the film; during the continuous process of 1000 wafers, the resistivity of the film is stable in the range of 220-240 (unit: ⁇ cm). In order to meet the requirements for consistency and stability of process results.
  • the axial length of the first metal backing ring is set to be able to cover the area of the inner peripheral wall of the insulating backing ring above the specified height position, which can prevent the conductive film from being deposited on the On the inner peripheral wall of the insulating lining ring, and then after depositing the conductive film by CVD method, it can ensure that the area of the lower electrode of the radio frequency field will not increase compared with that before depositing the film, and realize that the radio frequency environment remains consistent before and after depositing the conductive film, thereby improving the process Consistency and stability of the results; meanwhile, by positioning the air inlet of the exhaust passage structure on the inner peripheral wall of the first metal backing ring, the first metal backing ring can be exhausted while covering the inner peripheral wall of the insulating backing ring.
  • the gas channel structure can still communicate with the inside of the process chamber, so that the gas inside the process chamber can be discharged.
  • an embodiment of the present invention also provides a semiconductor processing equipment, such as the semiconductor processing equipment shown in FIG. 5, specifically, the semiconductor processing equipment includes a process chamber 100 and a radio frequency power supply ( Not shown in Fig. 5), wherein, upper electrode and base 101 are arranged in process chamber 100, and this base 101 is used for carrying wafer, and base 101 is heater for example, is used for wafer heating; and, the susceptor 101 can be used as the bottom electrode and grounded through the lifting shaft 104 , and the lifting shaft 104 can be grounded through the chamber wall of the process chamber 100 , for example.
  • a radio frequency power supply Not shown in Fig. 5
  • the semiconductor processing equipment includes a process chamber 100 and a radio frequency power supply ( Not shown in Fig. 5), wherein, upper electrode and base 101 are arranged in process chamber 100, and this base 101 is used for carrying wafer, and base 101 is heater for example, is used for wafer heating; and, the susceptor 101 can be used as the bottom electrode and grounded through the lifting shaft 104 , and the lifting
  • a metal edge ring 103 is provided around the base 101, which is electrically connected to the base 101, so as to protect the base 101 and improve the uniformity of the electric field distribution above the base 101;
  • the chamber 100 is provided with an air inlet device 105, which is used to deliver process gas into the process chamber 100;
  • the upper electrode is arranged in the process chamber 100, and is located above the base 101, and is spaced from top to bottom
  • the set uniform flow plate 107 and shower head 108 are used to evenly flow the process gas flowing out from the air inlet device 105, so that it can evenly flow toward the base
  • the surface of the wafer on the seat 101 is conveyed.
  • the process chamber 100 includes a chamber side wall and an upper electrode mounting plate 116 above it, and an insulating adapter 110 is provided between the two to electrically connect the chamber side wall and the upper electrode mounting plate 116. Insulation, wherein the side wall of the chamber is grounded, and the upper electrode mounting plate 116 is provided with a radio frequency feed electrode 106, and the even flow plate 107 and the shower head 108 are connected to the above-mentioned upper electrode mounting plate 116 through a connecting piece 115 (such as a conductive screw).
  • a connecting piece 115 such as a conductive screw
  • the RF feeding electrode 106 is electrically connected to the above-mentioned RF power supply, and is electrically connected to the upper electrode mounting plate 116 .
  • the radio frequency feeding electrode 106, the upper electrode mounting plate 116, the shower head 108 and the flow uniform plate 107 are all charged, and generate electricity between the chamber side wall of the grounded process chamber 100 and the base 101.
  • the continuous and stable glow discharge can excite the process gas in the process chamber 100 to form plasma, and the plasma will deposit and form a thin film on the surface of the wafer 102 .
  • a lining device 1 surrounding the susceptor 101 is provided in the process chamber 100 .
  • the semiconductor processing equipment provided by the embodiment of the present invention is, for example, chemical vapor deposition equipment, and the deposited film is, for example, a conductive film (especially a TiN film).
  • the semiconductor processing equipment provided by the embodiment of the present invention adopts the above-mentioned lining device 1 provided by the embodiment of the present invention.
  • the lining device 1 it is possible to prevent the thin film from being deposited on the inner peripheral wall of the insulating lining ring under the premise of realizing gas discharge inside the process chamber, thereby improving the consistency and stability of the process results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明实施例提供一种内衬装置及半导体加工设备,该内衬装置包括内衬组件和排气通道结构,排气通道结构的进气口与工艺腔室的内部连通;排气通道结构的出气口与工艺腔室的排气口连通;内衬组件包括沿工艺腔室的径向由中心向边缘依次嵌套的第一金属衬环和绝缘衬环;其中,排气通道结构的进气口位于第一金属衬环的内周壁上;第一金属衬环的轴向长度被设置为能够覆盖绝缘衬环的内周壁位于指定高度位置以上的区域,以防止薄膜沉积在绝缘衬环的内周壁上。本发明实施例提供的内衬装置及半导体加工设备,可以在实现工艺腔室内部气体排出的前提下,避免薄膜沉积在绝缘衬环的内周壁上,从而可以提高工艺结果的一致性和稳定性。

Description

内衬装置及半导体加工设备 技术领域
本发明涉及半导体制造领域,具体地,涉及一种内衬装置及半导体加工设备。
背景技术
传统工艺一般使用物理气相沉积(Physical Vapor Deposition,简称PVD)方法沉积导电薄膜,例如,通过该PVD方法制得的TiN薄膜具有很好的金属态性质,且阻挡能力强,但是随着线宽尺寸不断缩小,PVD方法沉积的导电薄膜无法满足高深宽比(大于5:1)的孔/槽的台阶覆盖率要求,而化学气相沉积(Chemical Vapor Deposition,简称CVD)方法具有良好的台阶覆盖率和工艺整合能力,因而逐渐开始取代PVD方法沉积导电薄膜。
在采用CVD方法沉积导电薄膜(尤其是TiN薄膜)时,导电薄膜的电阻率、方块电阻均匀性等工艺结果主要受射频场的稳定性影响,而腔室环境的微小变化都可能会引起射频场的变化。导电薄膜作为导体,主要沉积在晶圆表面,但仍有一少部分会沉积在腔室内部的陶瓷内衬上,随着执行工艺片数的增多,陶瓷内衬上沉积的导电薄膜越来越多,使得射频场的下电极面积逐渐增大,射频环境发生改变,从而导致工艺结果的一致性和稳定性受到影响。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种内衬装置及半导体加工设备,其可以在实现工艺腔室内部气体排出的前提下,避 免薄膜沉积在绝缘衬环的内周壁上,从而可以提高工艺结果的一致性和稳定性。
为实现本发明的目的而提供一种内衬装置,应用于半导体加工设备的工艺腔室中,所述内衬装置包括内衬组件和设置在所述内衬组件中的排气通道结构,所述排气通道结构的进气口与所述工艺腔室的内部连通;所述排气通道结构的出气口与所述工艺腔室的排气口连通,用以排出所述工艺腔室内部的气体;
所述内衬组件包括沿所述工艺腔室的径向由中心向边缘依次嵌套的第一金属衬环和绝缘衬环;其中,所述排气通道结构的进气口位于所述第一金属衬环的内周壁上;所述第一金属衬环的轴向长度被设置为能够覆盖所述绝缘衬环的内周壁位于指定高度位置以上的区域,以防止薄膜沉积在所述绝缘衬环的内周壁上。
可选的,在所述第一金属衬环的外周壁上设置有沿其周向间隔分布的多个定位凸部,且在所述绝缘衬环的上表面上设置有多个定位凹部,各个所述定位凸部一一对应地与各个所述定位凹部相配合,以限定所述第一金属衬环与所述绝缘衬环的相对位置。
可选的,每个所述定位凹部的底面均为与所述工艺腔室的径向呈夹角的第一斜面,且所述第一斜面的高度沿所述工艺腔室的径向由中心向边缘逐渐增大;每个所述定位凸部的下表面为第二斜面,所述第二斜面与对应的所述定位凹部上的所述第一斜面接触配合,以使所述第一金属衬环与所述绝缘衬环同轴。
可选的,所述夹角的取值范围为大于等于20°,且小于等于30°。
可选的,所述第一斜面、所述第二斜面以及所述定位凹部和所述定位凸部彼此相对的侧面均为经抛光处理后的表面,用以减小所述定位凹部和所述定位凸部的摩擦系数。
可选的,在所述绝缘衬环的内周壁上还设置有环形凹槽,所述第一金属衬环位于所述环形凹槽中,且所述第一金属衬环的内周壁与所述绝缘衬环的内周壁相平齐;所述第一金属衬环的上表面与所述绝缘衬环的上表面相平齐。
可选的,所述内衬组件还包括第二金属衬环,所述第二金属衬环嵌套在所述绝缘衬环的周围;
所述排气通道结构包括多个第一排气孔、多个第二排气孔和排气通道,其中,每个所述第一排气孔沿所述第一金属衬环的径向贯通设置在所述第一金属衬环中,且多个所述第一排气孔沿所述第一金属衬环的周向间隔分布;所述第一排气孔的位于所述第一金属衬环的内周壁上的一端用作所述排气通道结构的进气口;
每个所述第二排气孔沿所述绝缘衬环的径向贯通设置在所述绝缘衬环中,且多个所述第二排气孔与多个所述第一排气孔一一对应地设置;
所述排气通道设置在所述第二金属衬环中,且所述排气通道的进气端与各个所述第二排气孔相连通,所述排气通道的出气端用作所述排气通道结构的出气口与所述排气口相连通。
可选的,所述指定高度位置位于所述排气通道结构的进气口的最低高度位置以下的指定竖直距离处,所述指定竖直距离的取值范围为大于等于25mm,且小于等于35mm。
可选的,所述第一排气孔的直径大于所述第二排气孔的直径,以在所述第一金属衬环热膨胀时能够使所述第一排气孔与对应的所述第二排气孔保持连通。
可选的,所述第一排气孔的直径与所述第二排气孔的直径的差值为大于等于0.8mm,且小于等于1mm。
可选的,所述第一金属衬环的外周壁与所述绝缘衬环的内周壁之间具有径向间隙,用以为所述第一金属衬环的热膨胀预留空间。
作为另一个技术方案,本发明实施例还提供一种半导体加工设备,包括工艺腔室和射频电源,其中,在所述工艺腔室顶部设置有进气装置,用于向所述工艺腔室中输送工艺气体;在所述工艺腔室中设置有上电极和位于所述上电极下方的基座,其中,所述上电极与所述射频电源电连接,所述射频电源用于向所述上电极加载射频功率;所述基座接地;在所述工艺腔室内还设置有环绕在所述基座周围的内衬装置,所述内衬装置采用本发明实施例提供的上述内衬装置。
可选的,所述半导体加工设备还包括环绕所述基座设置的金属边缘环。
可选的,所述半导体加工设备为化学气相沉积设备,所述沉积薄膜为导电薄膜。
本发明具有以下有益效果:
本发明实施例提供的内衬装置,其第一金属衬环的轴向长度被设置为能够覆盖绝缘衬环的内周壁位于指定高度位置以上的区域,可以防止导电薄膜沉积在绝缘衬环的内周壁上,进而在采用CVD方法沉积导电薄膜之后,可以保证射频场的下电极面积相对于沉积薄膜之前不会增加,实现射频环境在沉积导电薄膜前后保持一致,从而可以提高工艺结果的一致性和稳定性;同时,通过将排气通道结构的进气口位于第一金属衬环的内周壁上,可以使第一金属衬环在覆盖绝缘衬环的内周壁的同时,排气通道结构仍然能够与工艺腔室内部相连通,从而可以实现将工艺腔室内部气体排出。
本发明实施例提供的半导体加工设备,其通过采用本发明实施例提供的上述内衬装置,可以在实现工艺腔室内部气体排出的前提下,避免导电薄膜沉积在绝缘衬环的内周壁上,保证工艺过程中射频场的一致性,从而可以提高工艺结果的一致性和稳定性。
附图说明
图1为一种半导体加工设备的剖视图;
图2为图1中内衬装置的局部放大图;
图3为图1中的绝缘衬环在轴向上的剖视图;
图4为采用图1中的半导体加工设备制备的薄膜的电阻率与晶圆数量的曲线图;
图5为本发明实施例提供的半导体加工设备的剖视图;
图6为本发明实施例提供的内衬装置在图5中内衬装置的局部放大图;
图7A为本发明实施例采用的绝缘衬环的一种俯视图;
图7B为沿图7A中B1-B1线在绝缘衬环的轴向上的局部剖视图;
图7C为沿图7A中B2-B2线在绝缘衬环的轴向上的局部剖视图;
图8A为本发明实施例采用的绝缘衬环的另一种俯视图;
图8B为沿图8A中B3-B3线在绝缘衬环在轴向上的剖视图;
图9A为本发明实施例采用的第一金属衬环的仰视图;
图9B为沿图9A中C1-C1线在第一金属衬环的轴向上的剖视图;
图9C为沿图9A中C2-C2线在第一金属衬环的轴向上的剖视图;
图9D为本发明实施例采用的第一金属衬环在轴向上的剖视图;
图10为采用本发明实施例提供的半导体加工设备制备的薄膜的电阻率与晶圆数量的曲线图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明实施例提供的内衬装置及半导体加工设备进行详细描述。
请一并参阅图1至图3,一种半导体加工设备包括工艺腔室100和射频电源(在图1中未示出),其中,在工艺腔室100中设置有上电极和基座101,该基座101用于承载晶圆,基座101例如为加热器,用于对晶圆进行加热;并且,基座101可以用作下电极,并通过升降轴104接地,该升降轴104例如可以通过工艺腔室100的腔室壁接地。并且,在基座101的周围环绕设置 有金属边缘环103,其与基座101电导通,用以保护基座101,同时提高基座101上方的电场分布均匀性;在工艺腔室100设置有进气装置105,该进气装置105用于向工艺腔室100中输送工艺气体;上电极包括设置在工艺腔室100中,且位于基座101上方,并由上而下间隔设置的匀流板107和喷淋头108,匀流板107和喷淋头108用于对自进气装置105流出的工艺气体起到匀流的作用,以使其能够均匀地朝向基座101上的晶圆表面输送。并且,工艺腔室100包括腔室侧壁和位于其上方的上电极安装板116,且在二者之间设置有绝缘适配件110,用以将腔室侧壁与上电极安装板116电绝缘,其中,腔室侧壁接地,而上电极安装板116上设置有射频馈入电极106,匀流板107和喷淋头108通过连接件115(例如导电螺钉)与上述上电极安装板116固定连接,且能够电导通,并且在绝缘适配件110的绝缘作用下,匀流板107和喷淋头108与腔室侧壁电绝缘,从而可以保证射频功率能够有效作用于腔室。射频馈入电极106与上述射频电源电连接,且与上电极安装板116电连接。在射频电源开启时,射频馈入电极106、上电极安装板116、喷淋头108与匀流板107均带电,并在接地的工艺腔室100的腔室侧壁与基座101之间产生持续稳定的辉光放电,以能够激发工艺腔室100中的工艺气体形成等离子体,等离子体会在晶圆102表面上沉积形成薄膜。此外,在工艺腔室100内设置有环绕在基座101周围的内衬装置109。需要说明的是,图1中的虚线框仅示意性地包含了内衬装置109的局部结构。
还需要说明的是,在实际应用中,上述射频馈入电极组件的结构并不局限于图1中示出的结构,本发明实施例对此没有特别的限制。
如图2所示,上述内衬装置109包括沿工艺腔室100的径向由中心向边缘依次嵌套的第一金属衬环1091、绝缘衬环1092和第二金属衬环1093,其中,如图3所示,绝缘衬环1092中设置有多个排气孔1094,且多个排气孔1094沿绝缘衬环1092的周向间隔分布,每个排气孔1094的进气口1094a位 于绝缘衬环1092的内周壁上。并且,如图2所示,在第二金属衬环1093中设置有环形气体通道1095和位于其下方的排气腔1096,其中,环形气体通道1095的进气端与各个排气孔1094的出气口连通;环形气体通道1095的出气端与排气腔1096的进气端连通,排气腔1096的出气端与设置在工艺腔室100的腔室壁上的排气口连通,从而实现将工艺腔室100中的气体排出。此外,如图1所示,上述内衬装置109还包括接地内衬1097,其环绕设置在工艺腔室100的内部,并位于绝缘衬环1092的下方。接地内衬1097通过工艺腔室100的腔室壁接地。
但是,由于上述排气孔1094的进气端1094a位于绝缘衬环1092的内周壁上,在采用CVD方法沉积导电薄膜(例如TiN薄膜)时,气体经由上述进气口1094a被抽入排气孔1094中,在晶圆上的一部分未反应完全的导电薄膜会随气流沉积在第一金属衬环1091上,还有一部分未反应完全的导电薄膜会随气流沉积在绝缘衬环1092的位于第一金属衬环1091以下的区域,具体为图2和图3示出的绝缘衬环1092的内周壁上的区域A,沉积在该区域A上的导电薄膜会增加射频场的下电极面积(增加的下电极面积即为区域A的面积),导致射频环境发生改变,从而导致工艺结果的一致性和稳定性受到影响。图4为图1中的半导体加工设备制备的薄膜的电阻率与晶圆数量的曲线图。如图4所示,在对150片晶圆连续工艺的过程中,TiN薄膜的电阻率出现逐渐增加的趋势,无法满足对工艺结果的一致性和稳定性的要求。
为了解决上述问题,请参阅图5,本发明实施例提供一种内衬装置1,该内衬装置1应用于半导体加工设备(例如化学气相沉积设备)的工艺腔室100中,该工艺腔室100例如与图1示出的工艺腔室的结构相同。
如图6所示,上述内衬装置1包括内衬组件11和设置在该内衬组件11中的排气通道结构12,该排气通道结构12的进气口与工艺腔室100的内部连通;排气通道结构12的出气口与工艺腔室100的排气口连通,用以排出工 艺腔室100内部的气体。在本实施例中,内衬组件11包括沿工艺腔室100的径向由中心向边缘依次嵌套的第一金属衬环111、绝缘衬环112和第二金属衬环113;其中,第一金属衬环111和第二金属衬环113例如为铝衬环;绝缘衬环112例如为陶瓷衬环,用以保护第二金属衬环113的内周壁上不会沉积薄膜。排气通道结构12的进气口位于第一金属衬环111的内周壁上;第一金属衬环111的轴向长度被设置为能够覆盖绝缘衬环112的内周壁位于指定高度位置以上的区域,以防止薄膜沉积在绝缘衬环112的内周壁上。
本发明实施例提供的内衬装置1,其第一金属衬环111的轴向长度相对于图2中的第一金属衬环1091的轴向长度增加,可以使第一金属衬环111能够至少覆盖图2和图3示出的区域A,从而可以防止导电薄膜沉积在绝缘衬环112的内周壁上,进而在沉积导电薄膜(例如TiN薄膜)之后,可以保证射频场的下电极面积相对于沉积薄膜之前不会增加,实现射频环境在沉积导电薄膜前后保持一致,从而可以提高工艺结果的一致性和稳定性。
同时,通过将排气通道结构12的进气口位于第一金属衬环111的内周壁上,不仅可以使第一金属衬环111在覆盖绝缘衬环112的内周壁的同时,排气通道结构12仍然能够与工艺腔室100内部相连通,从而可以实现将工艺腔室100内部气体排出;而且在沉积TiN薄膜时,由于气体会经由该排气通道结构12的进气端被抽入排气通道结构12中,这可以进一步避免薄膜沉积在绝缘衬环112上。
需要说明的是,在绝缘衬环112的电绝缘作用下,第一金属衬环111的电位处于悬浮状态,因此,即使薄膜沉积在第一金属衬环111上,增加的射频场的下电极面积较小,不会影响射频环境。
此外,如图5所示,上述内衬装置1还包括接地内衬114,其环绕设置在工艺腔室100的内部,并位于绝缘衬环112的下方。接地内衬114通过工艺腔室100的腔室壁接地。
上述第一金属衬环111的轴向长度可以根据实际情况而自由设定,只要在保证第一金属衬环111的电位处于悬浮状态的前提下,第一金属衬环111能够覆盖绝缘衬环的内周壁位于指定高度位置以上的区域,进而防止薄膜沉积在绝缘衬环112的内周壁上即可。
上述排气通道结构12可以有多种结构,例如,如图6所示,该排气通道结构12包括多个第一排气孔121、多个第二排气孔122和排气通道,其中,如图9D所示,每个第一排气孔121沿第一金属衬环111的径向贯通设置在第一金属衬环111中,且多个第一排气孔121沿第一金属衬环111的周向间隔分布;第一排气孔121的位于第一金属衬环111的内周壁上的一端用作上述排气通道结构11的进气口,以能够与工艺腔室100的内部连通。如图8B所示,每个第二排气孔122沿绝缘衬环112的径向贯通设置在绝缘衬环112中,且如图6所示,多个第二排气孔122与多个第一排气孔121一一对应地设置。
通过使多个第一排气孔121沿第一金属衬环111的周向间隔分布,可以使工艺腔室100中的气体均匀地从各个第一排气孔121排出,从而可以提高排气均匀性,进而可以进一步提高射频环境的稳定性。
如图6所示,上述排气通道设置在第二金属衬环113中,且该排气通道的进气端与各个第二排气孔122相连通,该排气通道的出气端用作上述排气通道结构12的出气口与设置在工艺腔室100的腔室壁上的排气口(图中未示出)相连通。该排气通道的结构可以有多种,例如,在本实施例中,排气通道包括环形气体通道123和位于其下方的排气腔124,其中,环形气体通道123的进气端与各个第二排气孔122的出气端连通;环形气体通道123的出气端与排气腔124的进气端连通,出气通道124的出气端与上述排气口连通,从而实现将工艺腔室100中的气体排出,具体排气方向如图6中的箭头所示。可选的,上述排气腔124可以是环形通道或者其他任意结构。
需要说明的是,在实际应用中,也可以省去上述第二金属衬环113,在这种情况下,上述排气通道也可以设置在工艺腔室100的腔室侧壁中,或者还可以设置在位于工艺腔室100中的另外的排气部件上,本发明实施例对此没有特别的限制。
在一些实施例中,可选的,第二金属衬环113包括上子衬环和位于其下方的下子衬环,二者密封对接,并且,下子衬环的内周壁相对于上子衬环的内周壁凸出,从而形成可支撑绝缘衬环112的台阶结构,从而可以提高结构稳定性。第二金属衬环113通过采用分体式结构,可以便于气体通道的加工,当然,在实际应用中,第二金属衬环113也可以采用一体式结构,本发明实施例对此没有特别的限制。
在一些实施例中,由于第一金属衬环111在高温环境下会产生热膨胀变形,变形后的第一金属衬环111相对于常温下的第一金属衬环111会向上移动0.2mm-0.3mm,此时可能会出现第二排气孔122与第一排气孔121错开,而无法连通的情况,为了避免该情况的发生,可选的,上述第一排气孔121的直径大于第二排气孔122的直径,以使在第一金属衬环111热膨胀时第一排气孔121与对应的第二排气孔122仍然能够保持连通,从而无论是在常温还是在高温下,都不会有错孔的情况发生,进而可以满足不同工艺温度下,对排气速率和排气均匀性的要求。可选的,上述第一排气孔121的直径与第二排气孔122的直径的差值的范围为大于等于0.8mm,且小于等于1mm。该差值的数值范围可以满足不同工艺温度下,对排气速率和排气均匀性的要求。
在一些实施例中,可选的,第一金属衬环111的外周壁与绝缘衬环112的内周壁之间具有径向间隙,用以为第一金属衬环111的热膨胀预留空间,从而避免绝缘衬环112被损坏,即,如图8B和图9D所示,绝缘衬环112的最大内径W1大于第一金属衬环111的最大外径W2,该最大内径W1与最大外径W2之间的差值的范围例如为大于等于2mm,且小于等于4mm。
上述第一金属衬环111与绝缘衬环112的固定方式可以有多种,例如,在本实施例中,如图7C所示,在绝缘衬环112的上端面设置有环形台阶1125;如图9C所示,在第一金属衬环111的外周壁上设置有环形凸台1113,并且该环形凸台1113叠置在环形台阶1125的台阶面1126上,且可以通过紧固件来实现第一金属衬环111与绝缘衬环112的固定连接。
上述第一金属衬环111与绝缘衬环112的定位方式可以有多种,如图7B所示,在绝缘衬环112的上表面(即,上述环形台阶1125的台阶面1126)上设置有多个定位凹部1121,且如图9B所示,在上述第一金属衬环111的外周壁(即,上述环形凸台1113的下表面)上设置有沿其周向间隔分布的多个定位凸部1111,各个定位凸部1111一一对应地与各个定位凹部1121相配合,以限定第一金属衬环111与绝缘衬环112的相对位置。在定位凸部1111与定位凹部1121相配合的作用下,可以使上述第一金属衬环111与绝缘衬环112的同轴设置,同时可以限制第一金属衬环111围绕其轴线方向上的旋转自由度。
进一步可选的,在安装第一金属衬环111时,为了确保第一金属衬环111与绝缘衬环112同轴设置,进一步实现第一金属衬环111与图4中示出的金属边缘环103同轴实现径向间距相等的精确性,以及腔室与腔室之间安装的一致性,保证射频的稳定性,如图7B所示,每个定位凹部1121的底面均为与工艺腔室100的径向呈夹角a1的第一斜面1122,且该第一斜面1122的高度沿工艺腔室100的径向由中心向边缘逐渐增大;如图9B所示,每个定位凸部1111的下表面为第二斜面1112,该第二斜面1112与工艺腔室100的径向呈夹角a2,且a2=a1,并且第二斜面1112与对应的定位凹部1121的第一斜面1122接触配合。在安装第一金属衬环111时,在第二斜面1112与对应的第一斜面1122的配合作用下,第一金属衬环111可以自动与绝缘衬环112对中,以实现第一金属衬环111与所述绝缘衬环同轴。可选的,上述夹角 a1=a2,且取值范围为小于等于20°,且小于等于30°。
在安装第一金属衬环111时,为了减少定位凸部1111与定位凹部1121的摩擦系数,第一斜面1122、第二斜面1112以及定位凸部1111与定位凹部1121彼此相对的侧面均为经抛光处理后的表面。
在一些实施例中,可选的,如图7B所示,在绝缘衬环112的内周壁上还设置有环形凹槽1123,如图6所示,第一金属衬环111位于该环形凹槽1123中,且第一金属衬环111的内周壁与绝缘衬环112的内周壁相平齐;第一金属衬环111的上表面与绝缘衬环112的上表面相平齐。这样,不仅可以进一步提高排气均匀性,而且通过由环形凹槽1123的底面1124支撑第一金属衬环111,有助于提高结构稳定性。
如图7B所示,第二排气孔122的最低高度位置与绝缘衬环112的上表面之间的轴向距离为h1,如图9B所示,第一金属衬环111的轴向长度为h2;上述指定高度位置位于第二排气孔122的最低高度位置(即,排气通道结构12的进气口)以下的指定竖直距离处,即,轴向长度h2=h1+Δh,可选的,该指定竖直距离Δh的取值范围为大于等于25mm,且小于等于35mm。通过将竖直距离Δh设定在该竖直范围内,既可以使第一金属衬环111能够至少覆盖图3示出的上述区域A,从而可以防止薄膜沉积在绝缘衬环112的内周壁上,又可以避免因第一金属衬环111的轴向长度过长而改变射频环境。
图10为采用本发明实施例提供的半导体加工设备制备的薄膜的电阻率与晶圆数量的曲线图。如图10所示,横坐标为晶圆数量;纵坐标为薄膜电阻率;在对1000片晶圆连续工艺的过程中,薄膜的电阻率稳定在220-240(单位为μΩ·cm)的范围内,从而可以满足对工艺结果的一致性和稳定性的要求。
综上所述,本发明实施例提供的内衬装置,其第一金属衬环的轴向长度被设置为能够覆盖绝缘衬环的内周壁位于指定高度位置以上的区域,可以防止导电薄膜沉积在绝缘衬环的内周壁上,进而在采用CVD方法沉积导电薄 膜之后,可以保证射频场的下电极面积相对于沉积薄膜之前不会增加,实现射频环境在沉积导电薄膜前后保持一致,从而可以提高工艺结果的一致性和稳定性;同时,通过将排气通道结构的进气口位于第一金属衬环的内周壁上,可以使第一金属衬环在覆盖绝缘衬环的内周壁的同时,排气通道结构仍然能够与工艺腔室内部相连通,从而可以实现将工艺腔室内部气体排出。
作为另一个技术方案,本发明实施例还提供一种半导体加工设备,该半导体加工设备例如采用图5中示出的半导体加工设备,具体来说,半导体加工设备包括工艺腔室100和射频电源(在图5中未示出),其中,在在工艺腔室100中设置有上电极和基座101,该基座101用于承载晶圆,基座101例如为加热器,用于对晶圆进行加热;并且,基座101可以用作下电极,并通过升降轴104接地,该升降轴104例如可以通过工艺腔室100的腔室壁接地。并且,可选的,在基座101的周围环绕设置有金属边缘环103,其与基座101电导通,用以保护基座101,同时提高基座101上方的电场分布均匀性;在工艺腔室100设置有进气装置105,该进气装置105用于向工艺腔室100中输送工艺气体;上电极包括设置在工艺腔室100中,且位于基座101上方,并由上而下间隔设置的匀流板107和喷淋头108,匀流板107和喷淋头108用以用于对自进气装置105流出的工艺气体起到匀流的作用,以使其能够均匀地朝向基座101上的晶圆表面输送。并且,工艺腔室100包括腔室侧壁和位于其上方的上电极安装板116,且在二者之间设置有绝缘适配件110,用以将腔室侧壁与上电极安装板116电绝缘,其中,腔室侧壁接地,而上电极安装板116上设置有射频馈入电极106,匀流板107和喷淋头108通过连接件115(例如导电螺钉)与上述上电极安装板116固定连接,且能够电导通,并且在绝缘适配件110的绝缘作用下,匀流板107和喷淋头108与腔室侧壁电绝缘,从而可以保证射频功率能够有效作用于腔室。射频馈入电极106与上述射频电源电连接,且与上电极安装板116电连接。在射频电源 开启时,射频馈入电极106、上电极安装板116、喷淋头108与匀流板107均带电,并在接地的工艺腔室100的腔室侧壁与基座101之间产生持续稳定的辉光放电,以能够激发工艺腔室100中的工艺气体形成等离子体,等离子体会在晶圆102表面上沉积形成薄膜。此外,在工艺腔室100内设置有环绕在基座101周围的内衬装置1。
本发明实施例提供的半导体加工设备例如为化学气相沉积设备,沉积薄膜例如为导电薄膜(尤其是TiN薄膜)。
本发明实施例提供的半导体加工设备采用本发明实施例提供的上述内衬装置1。通过采用该内衬装置1,可以在实现工艺腔室内部气体排出的前提下,避免薄膜沉积在绝缘衬环的内周壁上,从而可以提高工艺结果的一致性和稳定性。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种内衬装置,应用于半导体加工设备的工艺腔室中,其特征在于,所述内衬装置包括内衬组件和设置在所述内衬组件中的排气通道结构,所述排气通道结构的进气口与所述工艺腔室的内部连通;所述排气通道结构的出气口与所述工艺腔室的排气口连通,用以排出所述工艺腔室内部的气体;
    所述内衬组件包括沿所述工艺腔室的径向由中心向边缘依次嵌套的第一金属衬环和绝缘衬环;其中,所述排气通道结构的进气口位于所述第一金属衬环的内周壁上;所述第一金属衬环的轴向长度被设置为能够覆盖所述绝缘衬环的内周壁位于指定高度位置以上的区域,以防止薄膜沉积在所述绝缘衬环的内周壁上。
  2. 根据权利要求1所述的内衬装置,其特征在于,在所述第一金属衬环的外周壁上设置有沿其周向间隔分布的多个定位凸部,且在所述绝缘衬环的上表面上设置有多个定位凹部,各个所述定位凸部一一对应地与各个所述定位凹部相配合,以限定所述第一金属衬环与所述绝缘衬环的相对位置。
  3. 根据权利要求2所述的内衬装置,其特征在于,每个所述定位凹部的底面均为与所述工艺腔室的径向呈夹角的第一斜面,且所述第一斜面的高度沿所述工艺腔室的径向由中心向边缘逐渐增大;每个所述定位凸部的下表面为第二斜面,所述第二斜面与对应的所述定位凹部上的所述第一斜面接触配合,以使所述第一金属衬环与所述绝缘衬环同轴。
  4. 根据权利要求3所述的内衬装置,其特征在于,所述夹角的取值范围为大于等于20°,且小于等于30°。
  5. 根据权利要求3所述的内衬装置,其特征在于,所述第一斜面、所 述第二斜面以及所述定位凹部和所述定位凸部彼此相对的侧面均为经抛光处理后的表面,用以减小所述定位凹部和所述定位凸部的摩擦系数。
  6. 根据权利要求1-5任意一项所述的内衬装置,其特征在于,在所述绝缘衬环的内周壁上还设置有环形凹槽,所述第一金属衬环位于所述环形凹槽中,且所述第一金属衬环的内周壁与所述绝缘衬环的内周壁相平齐;所述第一金属衬环的上表面与所述绝缘衬环的上表面相平齐。
  7. 根据权利要求1-5任意一项所述的内衬装置,其特征在于,所述内衬组件还包括第二金属衬环,所述第二金属衬环嵌套在所述绝缘衬环的周围;
    所述排气通道结构包括多个第一排气孔、多个第二排气孔和排气通道,其中,每个所述第一排气孔沿所述第一金属衬环的径向贯通设置在所述第一金属衬环中,且多个所述第一排气孔沿所述第一金属衬环的周向间隔分布;所述第一排气孔的位于所述第一金属衬环的内周壁上的一端用作所述排气通道结构的进气口;
    每个所述第二排气孔沿所述绝缘衬环的径向贯通设置在所述绝缘衬环中,且多个所述第二排气孔与多个所述第一排气孔一一对应地设置;
    所述排气通道设置在所述第二金属衬环中,且所述排气通道的进气端与各个所述第二排气孔相连通,所述排气通道的出气端用作所述排气通道结构的出气口与所述排气口相连通。
  8. 根据权利要求1-5任意一项所述的内衬装置,其特征在于,所述指定高度位置位于所述排气通道结构的进气口的最低高度位置以下的指定竖直距离处,所述指定竖直距离的取值范围为大于等于25mm,且小于等于35mm。
  9. 根据权利要求7所述的内衬装置,其特征在于,所述第一排气孔的 直径大于所述第二排气孔的直径,以在所述第一金属衬环热膨胀时能够使所述第一排气孔与对应的所述第二排气孔保持连通。
  10. 根据权利要求9所述的内衬装置,其特征在于,所述第一排气孔的直径与所述第二排气孔的直径的差值大于等于0.8mm,且小于等于1mm。
  11. 根据权利要求1-5任意一项所述的内衬装置,其特征在于,所述第一金属衬环的外周壁与所述绝缘衬环的内周壁之间具有径向间隙,用以为所述第一金属衬环的热膨胀预留空间。
  12. 一种半导体加工设备,其特征在于,包括工艺腔室和射频电源,其中,在所述工艺腔室顶部设置有进气装置,用于向所述工艺腔室中输送工艺气体;在所述工艺腔室中设置有上电极和位于所述上电极下方的基座,其中,所述上电极与所述射频电源电连接,所述射频电源用于向所述上电极加载射频功率;所述基座接地;在所述工艺腔室内还设置有环绕在所述基座周围的内衬装置,所述内衬装置采用权利要求1-11任意一项所述的内衬装置。
  13. 根据权利要求12所述的半导体加工设备,其特征在于,所述半导体加工设备还包括环绕所述基座设置的金属边缘环。
  14. 根据权利要求12所述的半导体加工设备,其特征在于,所述半导体加工设备为化学气相沉积设备,沉积薄膜为导电薄膜。
PCT/CN2022/091655 2021-05-26 2022-05-09 内衬装置及半导体加工设备 WO2022247621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110578246.7 2021-05-26
CN202110578246.7A CN113337810B (zh) 2021-05-26 2021-05-26 内衬装置及半导体加工设备

Publications (1)

Publication Number Publication Date
WO2022247621A1 true WO2022247621A1 (zh) 2022-12-01

Family

ID=77471578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091655 WO2022247621A1 (zh) 2021-05-26 2022-05-09 内衬装置及半导体加工设备

Country Status (3)

Country Link
CN (1) CN113337810B (zh)
TW (1) TWI797008B (zh)
WO (1) WO2022247621A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438277A (zh) * 2023-12-19 2024-01-23 北京北方华创微电子装备有限公司 匀流组件、进气装置及半导体设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337810B (zh) * 2021-05-26 2022-04-22 北京北方华创微电子装备有限公司 内衬装置及半导体加工设备
CN114171364B (zh) * 2021-12-03 2024-05-17 北京北方华创微电子装备有限公司 半导体工艺设备
CN117467976B (zh) * 2023-10-31 2024-05-17 北京北方华创微电子装备有限公司 用于气相沉积工艺腔室的上衬环、下衬环、进气衬体和内衬

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846332A (en) * 1996-07-12 1998-12-08 Applied Materials, Inc. Thermally floating pedestal collar in a chemical vapor deposition chamber
CN101202206A (zh) * 2006-12-11 2008-06-18 北京北方微电子基地设备工艺研究中心有限责任公司 反应腔室内衬及包含该内衬的反应腔室
CN102691100A (zh) * 2011-03-22 2012-09-26 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室装置和具有该工艺腔室装置的外延设备
CN111996590A (zh) * 2020-08-14 2020-11-27 北京北方华创微电子装备有限公司 一种工艺腔室
CN113337810A (zh) * 2021-05-26 2021-09-03 北京北方华创微电子装备有限公司 内衬装置及半导体加工设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885356A (en) * 1994-11-30 1999-03-23 Applied Materials, Inc. Method of reducing residue accumulation in CVD chamber using ceramic lining
US6117244A (en) * 1998-03-24 2000-09-12 Applied Materials, Inc. Deposition resistant lining for CVD chamber
US6364954B2 (en) * 1998-12-14 2002-04-02 Applied Materials, Inc. High temperature chemical vapor deposition chamber
JP2000331939A (ja) * 1999-05-17 2000-11-30 Applied Materials Inc 成膜装置
CN1930322A (zh) * 2004-03-05 2007-03-14 应用材料公司 减少斜壁沉积的硬件设备
JP5165952B2 (ja) * 2007-07-20 2013-03-21 株式会社ニューフレアテクノロジー 気相成長装置及び気相成長方法
US8597462B2 (en) * 2010-05-21 2013-12-03 Lam Research Corporation Movable chamber liner plasma confinement screen combination for plasma processing apparatuses
US10344380B2 (en) * 2013-02-11 2019-07-09 Globalwafers Co., Ltd. Liner assemblies for substrate processing systems
KR20150077853A (ko) * 2013-12-30 2015-07-08 주식회사 테스 파우더 축적방지용 챔버
CN108085649B (zh) * 2016-11-23 2020-03-27 北京北方华创微电子装备有限公司 反应腔室及半导体加工设备
CN108950519B (zh) * 2017-05-19 2021-03-02 北京北方华创微电子装备有限公司 腔室的内衬和腔室
JP2022540372A (ja) * 2019-07-04 2022-09-15 アプライド マテリアルズ インコーポレイテッド 基板処理チャンバのためのアイソレータ装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846332A (en) * 1996-07-12 1998-12-08 Applied Materials, Inc. Thermally floating pedestal collar in a chemical vapor deposition chamber
CN101202206A (zh) * 2006-12-11 2008-06-18 北京北方微电子基地设备工艺研究中心有限责任公司 反应腔室内衬及包含该内衬的反应腔室
CN102691100A (zh) * 2011-03-22 2012-09-26 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室装置和具有该工艺腔室装置的外延设备
CN111996590A (zh) * 2020-08-14 2020-11-27 北京北方华创微电子装备有限公司 一种工艺腔室
CN113337810A (zh) * 2021-05-26 2021-09-03 北京北方华创微电子装备有限公司 内衬装置及半导体加工设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438277A (zh) * 2023-12-19 2024-01-23 北京北方华创微电子装备有限公司 匀流组件、进气装置及半导体设备
CN117438277B (zh) * 2023-12-19 2024-04-12 北京北方华创微电子装备有限公司 匀流组件、进气装置及半导体设备

Also Published As

Publication number Publication date
CN113337810B (zh) 2022-04-22
TWI797008B (zh) 2023-03-21
TW202246566A (zh) 2022-12-01
CN113337810A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2022247621A1 (zh) 内衬装置及半导体加工设备
US6364949B1 (en) 300 mm CVD chamber design for metal-organic thin film deposition
US6106625A (en) Reactor useful for chemical vapor deposition of titanium nitride
US6553932B2 (en) Reduction of plasma edge effect on plasma enhanced CVD processes
US6079356A (en) Reactor optimized for chemical vapor deposition of titanium
US6050506A (en) Pattern of apertures in a showerhead for chemical vapor deposition
US5846332A (en) Thermally floating pedestal collar in a chemical vapor deposition chamber
US9218997B2 (en) Electrostatic chuck having reduced arcing
US6063441A (en) Processing chamber and method for confining plasma
US20090034148A1 (en) Method of making an electrostatic chuck with reduced plasma penetration and arcing
WO2022242594A1 (zh) 半导体工艺设备中的承载装置和半导体工艺设备
US10784139B2 (en) Rotatable electrostatic chuck having backside gas supply
JP2022511063A (ja) 温度の影響を受けやすいプロセスのための改善された熱的結合を有する静電チャック
TWI749301B (zh) 腔室組件及反應腔室
US20240055289A1 (en) Vacuum seal for electrostatic chuck
US20220127723A1 (en) High heat loss heater and electrostatic chuck for semiconductor processing
TW202222435A (zh) 具有遞迴式氣體通道的噴頭組件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE