WO2022247494A1 - 音频信号补偿方法及装置、耳机、存储介质 - Google Patents

音频信号补偿方法及装置、耳机、存储介质 Download PDF

Info

Publication number
WO2022247494A1
WO2022247494A1 PCT/CN2022/086087 CN2022086087W WO2022247494A1 WO 2022247494 A1 WO2022247494 A1 WO 2022247494A1 CN 2022086087 W CN2022086087 W CN 2022086087W WO 2022247494 A1 WO2022247494 A1 WO 2022247494A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
compensation
audio
filter
compensation filter
Prior art date
Application number
PCT/CN2022/086087
Other languages
English (en)
French (fr)
Inventor
练添富
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022247494A1 publication Critical patent/WO2022247494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present application relates to the technical field of audio processing, in particular to an audio signal compensation method and device, earphones, and storage media.
  • earphone users often have diverse listening preferences. When faced with different audio effects or styles (such as rock music, classical music, electronic music, etc.), different users may have different preferences or dislikes. .
  • audio effects or styles such as rock music, classical music, electronic music, etc.
  • traditional earphones usually can only provide relatively simple audio signal adjustments (such as volume adjustment, noise reduction, etc.), resulting in poor flexibility and effectiveness of audio signal compensation.
  • the embodiment of the present application discloses an audio signal compensation method and device, an earphone, and a storage medium, which can conveniently provide different users with personalized audio signals that meet their listening preferences, and improve the flexibility of audio signal compensation according to user preferences and effectiveness.
  • the first aspect of the embodiment of the present application discloses an audio signal compensation method, which is applied to earphones, and the method includes:
  • an interactive audio signal wherein the interactive audio signal includes one or more audio clips, and the one or more audio clips respectively correspond to different music styles;
  • a compensation parameter is determined according to the user preference information, and the compensation parameter is used to compensate the target audio signal to be output.
  • the second aspect of the embodiment of the present application discloses an audio signal compensation device, which is applied to earphones, and the audio signal compensation device includes:
  • An output unit configured to output an interactive audio signal, wherein the interactive audio signal includes one or more audio clips, and the one or more audio clips respectively correspond to different music styles;
  • an acquisition unit configured to acquire user preference information for interactive audio signal feedback for each of the audio clips
  • a compensation unit configured to determine a compensation parameter according to the user preference information, where the compensation parameter is used to compensate the target audio signal to be output.
  • the third aspect of the embodiment of the present application discloses an earphone, including a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor realizes the implementation of the present application. For example, all or part of the steps in any audio signal compensation method disclosed in the first aspect.
  • the fourth aspect of the embodiment of the present application discloses a computer-readable storage medium, which stores a computer program, wherein, when the computer program is executed by a processor, any audio signal compensation as disclosed in the first aspect of the embodiment of the present application is realized. All or part of the steps in the method.
  • FIG. 1A is a schematic diagram of an application scenario of the audio signal compensation method disclosed in the embodiment of the present application.
  • FIG. 1B is a schematic diagram of another application scenario of the audio signal compensation method disclosed in the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an audio signal compensation method disclosed in an embodiment of the present application
  • Fig. 3 is a schematic flowchart of another audio signal compensation method disclosed in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a frequency response of a compensation filter disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the effect of audio signal compensation by the compensation filter shown in Fig. 4;
  • Fig. 6 is a schematic flowchart of another audio signal compensation method disclosed in the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an earphone disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of the effect of a system frequency response correction disclosed in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a system impulse response change effect after system frequency response correction disclosed in an embodiment of the present application.
  • Fig. 10 is a modular schematic diagram of an audio signal compensation device disclosed in an embodiment of the present application.
  • Fig. 11 is a schematic modular diagram of an earphone disclosed in an embodiment of the present application.
  • the embodiment of the present application discloses an audio signal compensation method and device, an earphone, and a storage medium, which can conveniently provide different users with personalized audio signals that meet their listening preferences, and improve the flexibility of audio signal compensation according to user preferences and effectiveness.
  • Figure 1A is a schematic diagram of an application scenario of the audio signal compensation method disclosed in the embodiment of the application
  • Figure 1B is another application scenario of the audio signal compensation method disclosed in the embodiment of the application schematic diagram.
  • this application scene can comprise user 10 and earphone 20, and user 10 can detect oneself to the listening preference of different music styles through this earphone 20, namely user 10 is faced with different music styles (such as subwoofer, Stereo effects or rock music, classical music, electronic music, etc.), the degree of its own preferences or dislikes, so that the earphone 20 can accurately obtain the user preference information of the user 10. Further, the earphone 20 can perform corresponding audio signal compensation according to the above user preference information, and output the compensated target audio signal, so that the user 10 can listen to the personalized audio signal that meets his listening preference.
  • different music styles such as subwoofer, Stereo effects or rock music, classical music, electronic music, etc.
  • the user 10 may interact with the earphone 20, and send a corresponding detection instruction to the earphone 20, so as to trigger the earphone 20 to start performing user audio signal compensation.
  • Preference information detection can be performed using one or more audio clips corresponding to different music styles, that is, the earphone 20 can output interactive audio signals corresponding to audio clips with different music styles, and collect user 10 for the interactive audio signals.
  • the feedback situation of user 10 is used to evaluate the preference situation of different music styles.
  • the earphone 20 may output an interactive audio signal, and the interactive audio signal may include the above-mentioned one or more audio clips, and each audio clip may correspond to a different music style.
  • the earphone 20 can obtain the user preference information fed back by the user 10 for the above-mentioned interactive audio signal, and then can determine the corresponding compensation parameter according to the user preference information, so as to use the compensation parameter for the target audio to be output by the above-mentioned speaker. The signal is compensated.
  • the above method can conveniently detect the preference of the user 10 for different music styles with the help of the earphone 20, and calculate the compensation parameters for the user 10 according to the preference, so as to perform corresponding audio signal compensation in the follow-up, which effectively improves the user's preference.
  • the flexibility and effectiveness of audio signal compensation based on user preference information is conducive to providing different users 10 with the effect of providing personalized audio signals that meet their listening preferences, so that the audio signals (especially music) played by the earphone 20 present the user 10
  • the preferred style greatly improves the earphone experience of the user 10.
  • the earphone 20 can also be connected to the terminal device 30, so that when the user preference information of the user 10 needs to be obtained, the user 10 can interact with the terminal device 30, so as to send the earphone information to the earphone through the terminal device 30.
  • 20 issues a corresponding detection instruction, triggering the earphone 20 to start detecting user preference information.
  • the above-mentioned terminal device 30 may include various devices or systems with wireless communication functions, such as mobile phones, smart wearable devices, vehicle-mounted terminals, tablet computers, PCs (Personal Computers, personal computers), PDAs (Personal Digital Assistants, personal digital assistant), etc., are not specifically limited in this embodiment of the application.
  • the earphone 20 when it obtains the user preference information fed back by the user 10 for the above-mentioned interactive audio signal, it may acquire the interaction data directly fed back by the user 10 through the earphone 20, and obtain corresponding user preference information according to the interaction data; Alternatively, after the terminal device 30 acquires the interaction data fed back by the user 10 and obtains the corresponding user preference information, the headset 20 communicates with the terminal device 30 to obtain the user preference information sent by the terminal device 30 .
  • FIG. 2 is a schematic flowchart of an audio signal compensation method disclosed in an embodiment of the present application, and the method can be applied to the above-mentioned earphone.
  • the audio signal compensation method may include the following steps:
  • the audio clips used to detect user preference information may respectively correspond to different music styles.
  • the music style mentioned above may include various types of audio effects (such as subwoofer effects, stereo effects, etc.) or music types (such as rock music, classical music, electronic music, etc.), etc. limited.
  • each audio segment may only correspond to a certain music style, or may correspond to multiple music styles at the same time, and the music styles corresponding to each audio segment may be stored together with its corresponding audio segment data, for example, stored in The file header of the corresponding audio clip data, stored as a tag bound with the corresponding audio clip data, etc.
  • the above earphone may respectively output interactive audio signals of one or more audio segments with different music styles through its built-in speakers.
  • the above-mentioned audio clips can be stored in a terminal device connected to the earphone, that is, the terminal device is used as a sound source device, and the terminal device can use the communication connection between the terminal device and the above-mentioned earphone to store the stored audio clip data to the headset.
  • the earphone can decode and generate an audio signal corresponding to the audio segment, and use the audio signal as an interactive audio signal for detecting user preference information, and directly output it through the speaker.
  • the earphone can further process the generated audio signal, such as segment interception, gain adjustment, system frequency response correction, etc., to obtain an interactive audio signal more suitable for detection, and finally output it.
  • the above-mentioned audio clips can also be stored in the earphone, that is, the earphone itself is used as a sound source device, and the earphone can decode one or more audio clips with different music styles stored therein, and generate corresponding audio clips.
  • the interactive audio signals are output separately.
  • the earphone after the earphone outputs the interactive audio signal to the user, it can further detect the user's feedback on the interactive audio signal, so as to determine the user's preference for different music styles, and then obtain the corresponding user preference information.
  • the above-mentioned feedback situation may include interaction data collected by the interactive terminal (such as an earphone, a terminal device connected to the earphone, etc.) when the user performs a feedback operation on an interactive audio signal.
  • the interaction data may include non-quantitative data such as "likes", “dislikes” or “no special feelings”, and quantitative data such as the degree of "likes” or “dislikes” (such as ratings, percentages, levels, etc.) .
  • the interactive terminal can collect corresponding interactive data according to the detected feedback operation, and analyze and determine the user's user preference information for different music styles according to the interactive data.
  • the user when the user acquires the user preference information only through the earphone, it may be realized by detecting a feedback operation on the earphone.
  • the feedback operation for the earphone may include a touch operation, a voice operation, a moving operation, and the like.
  • the user listens to the interactive audio signal, he can touch the specified touch point on the headset, so that when the headset detects the touch operation on the specified touch point, it can be determined accordingly preferences, and then obtain the corresponding user preference information.
  • the headset can analyze the detected voice commands to determine the user's preference for the interactive audio signal situation, and further obtain corresponding user preference information.
  • the user can also move his head in different directions according to his different preferences in listening to interactive audio signals, so that the earphone can detect its own moving state through sensors to determine corresponding user preference information.
  • the user listens to the interactive audio signal, if he likes the interactive audio signal, he can tilt his head to the left, so that the earphone can detect the tendency of moving to the left; The head is tilted to the right, so that the earphone detects a tendency to move to the right, and then the earphone can determine the user's preference for the interactive audio signal according to the detected movement tendency, so as to obtain corresponding user preference information.
  • the user when the user obtains the user preference information through a terminal device communicatively connected to the earphone, it may also be realized by detecting a feedback operation on the terminal device.
  • the feedback operation for the terminal device may include a touch operation, a button click operation, and the like.
  • the terminal device detects the above-mentioned feedback operation, it may determine the user's preference for the corresponding interactive audio signal according to the feedback operation, and send the preference to the earphone. On this basis, the earphone can further obtain the user's user preference information for different music styles according to various preferences received by the earphone.
  • the earphone can call the user preference information through its built-in processor, and analyze the user's listening preference according to the user preference information, so as to determine the compensation that needs to be made for different frequency components of the target audio signal to be output. For example, if the user prefers bass style, the earphone can properly enhance the low-frequency component of the target audio signal to be output, while attenuating its high-frequency component appropriately; if the user prefers metal music, the earphone can treat the target audio signal to be output The high-frequency components are properly enhanced while the low-frequency components are preserved or attenuated.
  • the earphone can calculate the corresponding compensation parameters according to the user's listening preference obtained from the analysis of the above user preference information, and the compensation parameters can be used for different frequency components of the target audio signal, respectively Compensation corresponding to the user's listening preference is performed.
  • the above-mentioned compensation parameters may include compensation filter parameters (such as tap coefficients for configuring compensation filters, the gain of each tap and its gain coefficient, etc.), that is, the earphone may , respectively calculate the compensation filter parameters corresponding to each compensation filter, and then, according to the frequency components that need to be compensated in the target audio signal to be output, the corresponding compensation filters can be configured respectively through the compensation filter parameters to perform compensation filtering.
  • the audio signal of a specific frequency band when it is necessary to compensate the audio signal of a specific frequency band, it can be compensated and filtered by configuring a band-pass filter or a band-stop filter of the corresponding frequency band; when it is necessary to perform more complex compensation for audio signals of multiple frequency bands
  • FIR Finite Impulse Response, finite-length unit impulse response
  • IIR Infinite Impulse Response, infinite-length unit impulse response
  • the audio signal compensation method described in the above embodiments can easily detect the user's preference for different music styles with the help of earphones, and calculate the compensation parameters for the user according to the preference, so that the target output to the user can be treated
  • the audio signal is compensated accordingly, realizing the effect of providing different users with personalized audio signals that meet their listening preferences, so that the audio signals played by the earphones (especially music) present the user's preferred style, which greatly improves the user's listening experience. Headphone experience, while also improving the flexibility and effectiveness of audio signal compensation based on user preferences.
  • FIG. 3 is a schematic flowchart of another audio signal compensation method disclosed in an embodiment of the present application, which can be applied to the above-mentioned earphone.
  • the audio signal compensation method may include the following steps:
  • step 302 and step 304 are similar to the above-mentioned step 202 and step 204, and will not be repeated here.
  • each audio segment may only correspond to a certain music style, or may correspond to multiple music styles at the same time.
  • each music style may also correspond to one or more compensation filters for subsequent audio compensation.
  • each compensation filter can compensate for different frequency components in the target audio signal to be output, so that by configuring the corresponding compensation filter, one or more frequency components that need to be compensated for a specific music style can be compensated , to satisfy the user's listening preference for a specific music style.
  • the earphone after the earphone acquires the user preference information fed back by the interactive audio signal for each audio segment, it can first determine the music style corresponding to each audio segment, and determine one or more frequencies that require audio compensation according to the music style. point. On this basis, the earphone can determine the compensation filter with the above-mentioned frequency point as the center frequency as the compensation filter corresponding to the above-mentioned music style, and then can use these compensation filters in the subsequent steps to treat the target audio signal to be output. The frequency components corresponding to the above frequency points are compensated.
  • compensation filter parameters corresponding to each audio segment may be calculated, so as to configure the corresponding compensation filter.
  • the compensation filter parameter may include a gain coefficient, that is, a gain weight corresponding to a frequency component to be compensated in the target audio signal. It can be understood that the above compensation filter parameters may also include gain, center frequency, quality factor, etc., and then the corresponding tap coefficients of the compensation filter can be calculated according to these specific compensation filter parameters, so that the corresponding compensation filter.
  • the earphone may first calculate the basic gain coefficients of the compensation filters corresponding to each audio segment.
  • the compensation filter is the compensation filter determined in step 306 above, and the basic gain coefficient of the compensation filter is in one-to-one correspondence with the audio segments related to the compensation filter. Further, if each of the above-mentioned audio clips only corresponds to a certain music style, the basic gain coefficient of the compensation filter may be in one-to-one correspondence with the music style related to the compensation filter.
  • the earphone can calculate the comprehensive gain coefficient of its actual configuration according to each basic gain coefficient corresponding to each compensation filter.
  • the sum of the basic gain coefficients of the corresponding compensation filters may be 1, so as to realize the normalization of the basic gain coefficients.
  • the constraint condition may be as shown in Formula 1 below.
  • a ij is the basic gain coefficient corresponding to the i-th audio segment and the j-th compensation filter, and the i-th audio segment may correspond to Q compensation filters (Q is a positive integer), so that the i-th audio segment The sum of the corresponding Q basic gain coefficients may be 1.
  • each compensation filter can be calculated based on one or more basic gain coefficients corresponding to each compensation filter.
  • the aforementioned comprehensive gain coefficient may be a statistic of each corresponding basic gain coefficient, such as mean, median, mode, and the like.
  • the earphone can calculate the average value of each basic gain coefficient based on each basic gain coefficient corresponding to the first compensation filter (that is, any compensation filter in the above-mentioned compensation filters), and calculate the The mean value is determined as the integrated gain coefficient of the first compensation filter, as shown in Equation 2 below.
  • a ij is the basic gain coefficient corresponding to the i-th audio clip and the j-th compensation filter
  • the integrated gain coefficient of the j-th compensation filter can be the P basic gain coefficients corresponding to the j-th compensation filter mean value.
  • each corresponding compensation filter through a compensation filter parameter, and each compensation filter is used to filter and compensate the target audio signal to be output, wherein the compensation filter parameter includes the above-mentioned gain coefficient.
  • the above-mentioned compensation filter parameters may also include gain, center frequency, quality factor, etc., and then the tap coefficients of the corresponding compensation filter may be calculated according to these specific compensation filter parameters to uniquely determine out the corresponding compensation filter.
  • the target audio signal to be output can be filtered and compensated to meet the user's listening preference for a specific music style.
  • the frequency response of the compensation filter obtained by configuring the compensation filter parameters can be as shown in Fig. 4, and using the compensation
  • the effect of the filter to compensate the target audio signal to be output by the earphone can be shown in Figure 5, where the dotted line in Figure 5 represents the system frequency response before filter compensation, and the solid line represents the system frequency after filter compensation response.
  • corresponding compensation filter parameters can be calculated to configure corresponding compensation filters to perform targeted compensation for different frequency components corresponding to the music styles involved in the user preference information, thereby The accuracy and effectiveness of audio signal compensation according to user preference can be improved.
  • the audio signal compensation method described in the above embodiments can easily detect the user's preference for different music styles with the help of earphones, and then can conveniently provide different users with personalized audio signals that meet their listening preferences.
  • FIG. 6 is a schematic flowchart of another audio signal compensation method disclosed in the embodiment of the present application.
  • the method can be applied to the above-mentioned earphone, and the earphone can specifically include a speaker, a feed-forward microphone, and a feedback microphone.
  • the audio signal compensation method may include the following steps:
  • the above-mentioned preference detection instruction may include a detection trigger operation performed by the user directly on the headset (such as a specified touch operation, voice operation, mobile operation, etc.), or may include a user's action on a terminal device communicatively connected to the headset.
  • the detection trigger operation (such as specified touch operation, button click operation, etc.), and for the latter, when the terminal device detects the detection trigger operation, it can also send a corresponding preference detection instruction to the above-mentioned earphone.
  • the earphone when it detects a detection trigger operation for itself, or receives a preference detection instruction sent by a terminal device connected to it, it can trigger its feed-forward microphone to collect external ambient sound for subsequent steps Evaluate the impact of ambient sounds on detecting user preference information.
  • the earphone disclosed by the embodiment of the present application can be shown in FIG. It is arranged behind the speaker 71 (that is, when the user wears the earphone, the feed-forward microphone is between the speaker and the external environment), so that the feed-forward microphone 73 collects the ambient sound of the outside world.
  • the environmental sound parameters may include various parameters used to characterize the intensity of environmental noise, such as sound intensity, sound energy, sound power, and the like.
  • the earphone collects the environmental sound through its feed-forward microphone, it can analyze the environmental sound to calculate its corresponding environmental sound parameters.
  • the built-in processor of the earphone can first perform window segmentation on the environmental sound according to the unit window length to obtain at least one frame of the environmental sound child signal.
  • the window function used for windowing and segmenting the environmental sound may include a rectangular window function, or other forms of window functions, such as a triangular window function, a Hamming window function, and the like.
  • the above windowing segmentation step can be performed only by using a rectangular window function.
  • the built-in processor of the earphone can separately calculate the short-term average energy of each frame of the environmental sound sub-signal, and smooth the calculated short-term average energy to obtain the environmental sound parameters corresponding to the environmental sound.
  • the calculation can be performed in the manner shown in the following formula 3:
  • E n represents the short-term average energy of the environmental sound signal in the nth frame (or at time n)
  • n is the discrete time
  • w(nm) is the time shift representation of the window function w(n)
  • x(m) represents Environmental sound sub-signals of each frame
  • N is the unit window length.
  • E n (m) ⁇ ⁇ E n (m-1) + (1- ⁇ ) ⁇ E n (m), 0 ⁇ 1
  • E n (m) is the energy of the smoothed audio signal
  • is a coefficient for performing the above-mentioned exponential smoothing.
  • the built-in processor of the earphone can determine the smoothed audio signal energy E n (m) as the environmental sound parameter corresponding to the environmental sound.
  • the earphone may compare the above-mentioned environmental sound parameter with an environmental sound threshold (such as 5dB, 10dB, etc.), and may determine whether to proceed with subsequent steps according to the comparison result. Specifically, if the environmental sound parameter is lower than the environmental sound threshold, it means that the environmental sound of the environment where the earphone is located has little influence, and the subsequent steps such as hearing detection can be continued; if the environmental sound parameter is higher than the environmental sound threshold, it means that the earphone is located The ambient sound of the environment where the earphone is located has a great impact, and the execution of the next steps can be suspended.
  • an environmental sound threshold such as 5dB, 10dB, etc.
  • the earphone can output corresponding reminder information through the speaker to remind the user to change to an environment with less ambient sound (especially less ambient noise) to reduce the
  • the impact of the small environmental sound on subsequent steps such as user preference information detection ensures the accuracy and reliability of audio signal compensation based on user preference information.
  • the earphone when the earphone determines that the environmental sound parameter is lower than the environmental sound threshold, it may further determine the test sound intensity of the test audio signal subsequently output by the speaker.
  • the test audio signal may include a white noise signal, and the test sound intensity of the white noise signal may be positively correlated with the sound intensity of the ambient sound collected by the feedforward microphone.
  • the earphone can calculate the test sound intensity corresponding to the white noise signal according to the sound intensity of the ambient sound and the specified positive correlation function, so as to output a white noise signal with the test sound intensity in the subsequent steps , in order to improve the signal-to-noise ratio of the audio signal, and avoid the environmental sound from interfering with the subsequent system frequency response correction.
  • the earphone may first output a test audio signal through its speaker.
  • the test audio signal may include a short segment of audio signal, which is used for transmission in the audio system where the earphone is located (that is, the path through which the audio signal output by the earphone is transmitted between the earphone and the user), and is fed back to the microphone Received to calculate the corresponding system frequency response of the audio system.
  • the feedback microphone is located between the speaker and the user, the above audio system can also be approximately replaced by a path through which audio signals are transmitted between the speaker and the feedback microphone.
  • the earphone when the earphone outputs the test audio signal through its speaker, the influence of the ambient sound in the environment where the earphone is located can also be considered. If the sound intensity of the ambient sound is relatively large, the output test audio signal The sound intensity of the audio signal should also be increased to improve the signal-to-noise ratio of the audio signal and prevent the ambient sound from interfering with the frequency response correction of the system.
  • the received audio signal corresponding to the test audio signal collected by its built-in feedback microphone can be obtained immediately.
  • the feedback microphone of the earphone can continuously collect audio signals, so that according to the time stamp of the above-mentioned test audio signal output by the speaker, the feedback microphone can be obtained at a time near the time stamp (such as delayed by 0.01 milliseconds, delayed by 0.1 milliseconds, etc.). The collected received audio signal.
  • the feedback microphone of the earphone may not be continuously turned on, but is triggered to be turned on by the speaker after the speaker outputs the above-mentioned test audio signal, and the audio signal collected after the feedback microphone is turned on is used as the audio signal related to the above-mentioned test audio signal corresponding to the received audio signal.
  • the earphone can also use its built-in processor to compare the waveform of the test audio signal output by the speaker with the received audio signal, and when the comparison result indicates that the test audio signal
  • a similarity threshold such as 50%, 80%, etc.
  • the earphone can first calculate the system frequency response of the audio system where the earphone is located based on the above-mentioned test audio signal and the received audio signal, so as to determine the environment that the audio signal is subjected to during the transmission of the audio system. influences. On this basis, the earphone may further calculate a system correction parameter corresponding to the system frequency response based on the system frequency response.
  • the system correction parameters may include filter parameters (such as tap coefficients used to configure filters, etc.), equalizer parameters (such as tap coefficients and gain coefficients used to configure filters included in the equalizer), etc., It is used to correct the system frequency response of the above-mentioned audio system, so as to eliminate the environmental influence of the audio signal during the transmission of the audio system as much as possible.
  • the earphone when it calculates system correction parameters based on the above-mentioned test audio signal and the received audio signal, it may perform Fourier transform on the above-mentioned test audio signal and the received audio signal respectively, and then perform the Fourier-transformed received audio The signal is compared with the test audio signal to obtain the system frequency response.
  • the built-in processor of the earphone can first perform frame division and windowing processing on the above-mentioned test audio signal and the received audio signal, that is, the macroscopically unstable audio signal is divided into multiple audio signal frames with short-term stationarity ( For example, an audio signal frame with a frame length of 10-30 milliseconds), and then perform windowing and truncation on the audio signal frame according to a specified window function to obtain each frame of a test audio signal and a received audio signal.
  • the windowing truncation can be realized by the window function shown in formula 5:
  • the piecewise function w(n) is a window function
  • N is the unit window length.
  • the effect of windowing and truncation can be realized by performing time-domain convolution on the test audio signal or the received audio signal with the window function.
  • short-time Fourier transform can be carried out by algorithms such as FFT (Fast Fourier Transform, Fast Fourier Transform) for a certain frame of test audio signal or received audio signal obtained after frame division and windowing, and its expression
  • FFT Fast Fourier Transform
  • the formula can be shown as the following formula 6:
  • n discrete time
  • continuous frequency ⁇ 2 ⁇ k/N
  • k 0,1,...,N-1
  • N is the Fourier transform length
  • x(m) is the audio signal of the mth frame.
  • the system frequency response can be obtained by comparing the received audio signal after Fourier transform with the test audio signal, that is, the system frequency response H(k) can be obtained by the frequency domain received audio signal Y(k) and The ratio Y(k)/X(k) of the frequency domain test audio signal X(k) is obtained.
  • the earphone can also calculate the target equalizer parameters according to the above-mentioned system frequency response based on the least squares criterion, wherein the above-mentioned target equalization parameters can include tap coefficients, gain Coefficient etc.
  • the target equalizer obtained by configuring the target equalizer parameters, the initial audio signal can be equalized and corrected in a subsequent step to obtain an interactive audio signal.
  • the target equalizer may include an equalizer composed of FIR (Finite Unit Impulse Response) filters, so that regularization filters, ideal bandpass filters, etc. may be used, and based on the above-mentioned least squares criterion and A target equalizer is designed with the goal of minimizing the equalization error through a regularization filter.
  • FIR Finite Unit Impulse Response
  • H(k) is the frequency response of the above system
  • D(k) can represent the Fourier transform of the ideal bandpass filter response
  • B(k) can represent the Fourier transform of the regularized filter response
  • can be A scalar representing the weights of this regularization filter.
  • the earphone by performing system frequency response correction on the initial audio signals of one or more audio segments, the earphone can obtain an interactive audio signal corresponding to the initial audio signals.
  • the above-mentioned system frequency response correction can eliminate the influence of the audio signal during the transmission process of the audio system as much as possible, so that after the interactive audio signal actually output by the earphone is transmitted and heard by the user, the audio signal heard by the user
  • the above-mentioned original audio signal can be restored as much as possible.
  • the above-mentioned audio system refers to a channel through which audio signals output by the earphone are transmitted between the earphone and the user.
  • the earphone may include a loudspeaker and a feedback microphone.
  • the feedback microphone is between the loudspeaker and the user, so that the above-mentioned audio system may also transmit audio signals through the path between the loudspeaker and the feedback microphone. as an approximate replacement.
  • the fidelity of audio signal transmission by the audio system can be improved, and the subsequent transmitted interactive audio signal can be restored to the original audio signal as much as possible, thereby improving the accuracy and reliability of obtaining user preference information.
  • the earphone can specifically adjust the initial audio signal through the target equalizer obtained by configuring the target equalizer parameters.
  • Equalization correction is performed to obtain a corrected audio signal.
  • FIG. 8 is a schematic diagram of the effect of system frequency response correction disclosed in the embodiment of the present application, where the dotted line represents the system frequency response before system frequency response correction is performed, and the solid line represents the system frequency response after system frequency response correction. The frequency response of the system after frequency correction.
  • Figure 9 is a schematic diagram of the system impulse response change effect after the system frequency response correction disclosed in the embodiment of the present application, where the dotted line represents the system impulse response before the system frequency response correction, and the actual The line represents the system impulse response after system frequency response correction. It can be seen that by performing the above system frequency response correction, the system impulse response in the time domain can be attenuated faster after the pulse, effectively reducing multipath interference, making the subsequent transmitted interactive audio signal closer to the initial audio signal, which helps Improves the fidelity of audio signals.
  • step 616 and step 618 are similar to the above-mentioned step 202 and step 204, and will not be repeated here.
  • the compensation filter parameters may include the gain coefficient involved in the above embodiments, and may also include other parameters, such as gain Gain value, quality factor Q value, etc., so that the corresponding compensation filter parameters can be uniquely determined according to the above compensation filter parameters device.
  • the compensation filter obtained through the configuration of the above compensation filter parameters may include an IIR (infinite unit impulse response) filter.
  • an IIR filter may be used to accomplish.
  • the second-order IIR filter can be expressed as follows by the difference equation shown in formula 8:
  • a 0 1+ ⁇ /A
  • a 1 -2cos(w 0 )
  • a 2 1- ⁇ /A
  • b 0 1+ ⁇ A
  • b 1 -2cos(w 0 )
  • b 2 1- ⁇ A
  • w 0 2 ⁇ f 0 /f s
  • A 10 Gain/40
  • sin(w 0 )/(2Q)
  • f 0 is the center frequency of the compensation filter
  • f s is the sampling rate of the target audio signal to be output
  • the Gain value is the gain of the compensation filter
  • A is the gain coefficient (that is, the weight of the gain corresponding to the frequency component to be compensated in the target audio signal)
  • the Q value is The quality factor of the compensation filter.
  • each compensation filter Configures each corresponding compensation filter through compensation filter parameters, and each compensation filter is used to filter and compensate the target audio signal to be output.
  • the earphone can obtain corresponding compensation filters based on the above compensation filter parameter configuration.
  • the earphone may determine the center frequency f 0 of the compensation filter according to one or more frequency points that require audio compensation corresponding to the music style involved in the user preference information, and The sampling rate f s of the target audio signal to be output by the earphone through the loudspeaker.
  • the earphone can determine a matching compensation level according to the user preference information, and further obtain the gain Gain value and the quality factor Q value of the target compensation filter corresponding to the compensation level; a unified default gain Gain value and Quality factor Q value.
  • each compensation filter obtained according to the configuration of the above compensation filter parameters can be used to filter and compensate the target audio signal to be output by the loudspeaker.
  • the earphone can first calculate multiple sets of compensation filter parameters corresponding to the user preference information according to the above user preference information, and use the multiple sets of compensation filter parameters Compensation filter parameter configuration results in multiple compensation filters. For example, if there are M compensation filters, that is, M groups of compensation filter parameters (actually corresponding to M frequency points) can be calculated according to the above user preference information, then the earphone can correspond to each frequency point to be detected. The compensation filter parameters configure corresponding M compensation filters. On this basis, the earphone can cascade the M target compensation filters, so that the target audio signal to be output can be filtered and compensated through the cascaded M compensation filters.
  • the audio signal compensation method described in the above embodiments can easily detect the user's preference for different music styles with the help of earphones, and then can conveniently provide different users with personalized audio signals that meet their listening preferences.
  • the flexibility and effectiveness of audio signal compensation according to user preferences in addition, through simple interactive operations, user-specific preference detection can be achieved without special environments such as silent rooms or anechoic rooms, and relatively accurate user preferences can be obtained information, which is conducive to improving the flexibility and convenience of audio signal compensation based on user preference information; in addition, through filter compensation, the target audio signal to be output can be effectively compensated in real time, further improving audio signal compensation based on user preference information. Flexibility and accuracy of signal compensation.
  • FIG. 10 is a modular schematic diagram of an audio signal compensation device disclosed in an embodiment of the present application.
  • the audio signal compensation device may be applied to the above-mentioned earphone, and the earphone may include a speaker, a feedback microphone and a feed-forward microphone.
  • the audio signal compensation device may include an output unit 1001, an acquisition unit 1002, and a compensation unit 1003, wherein:
  • the output unit 1001 is configured to output an interactive audio signal, where the interactive audio signal includes one or more audio clips, and the one or more audio clips respectively correspond to different music styles;
  • An obtaining unit 1002 configured to obtain user preference information for interactive audio signal feedback for each audio clip
  • the compensation unit 1003 is configured to determine a compensation parameter according to user preference information, where the compensation parameter is used to compensate the target audio signal to be output.
  • the audio signal compensation device described in the above embodiments, it is possible to conveniently detect the user's preference for different music styles with the help of earphones, and calculate the compensation parameters for the user according to the preference, so that the target output to the user can be treated.
  • the audio signal is compensated accordingly, realizing the effect of providing different users with personalized audio signals that meet their listening preferences, so that the audio signals played by the earphones (especially music) present the user's preferred style, which greatly improves the user's listening experience. Headphone experience, while also improving the flexibility and effectiveness of audio signal compensation based on user preferences.
  • the above-mentioned compensation parameters may include compensation filter parameters
  • the audio signal compensation device may also include a configuration unit not shown, wherein:
  • the above-mentioned compensation unit 1003 can be specifically configured to calculate compensation filter parameters corresponding to each compensation filter according to user preference information corresponding to each audio segment;
  • the configuration unit can be used to configure each corresponding compensation filter through compensation filter parameters, and each compensation filter is used to filter and compensate the target audio signal to be output.
  • the above-mentioned compensation filter parameters may include a gain coefficient
  • the above-mentioned compensation unit 1003 may include an unillustrated determination subunit, a first calculation subunit, and a second calculation subunit, wherein:
  • the first calculation subunit is used to calculate the basic gain coefficient of the compensation filter corresponding to each audio segment according to the user preference information corresponding to each audio segment;
  • the second calculation subunit is used to calculate the comprehensive gain coefficient of each compensation filter based on the respective basic gain coefficients corresponding to each compensation filter, and the respective basic gain coefficients corresponding to each compensation filter correspond to different music styles. .
  • the above-mentioned second calculation subunit can specifically calculate the mean value of each basic gain coefficient based on the respective basic gain coefficients corresponding to the first compensation filter, and determine the mean value as the comprehensive value of the first compensation filter gain factor,
  • the sum of the basic gain coefficients of all compensation filters corresponding to the same audio segment may be 1.
  • the aforementioned compensation filter may include an infinite-length unit impulse response IIR filter.
  • the configuration unit may further cascade the M compensation filters, where M is a positive integer greater than or equal to 1.
  • the audio signal compensating device shown in FIG. 10 may further include a frequency response correction unit not shown in the figure, and the frequency response correction unit may be used to perform systematic frequency response correction to obtain the above-mentioned interactive audio signal.
  • the audio signal compensation device may also include a receiving unit and a computing unit not shown, wherein:
  • the above-mentioned output unit 1001 can also be used to output a test audio signal through a speaker before the frequency response correction unit performs system frequency response correction on the initial audio signals of one or more audio segments to obtain the above-mentioned interactive audio signal;
  • the receiving unit is used to collect the received audio signal corresponding to the test audio signal through the feedback microphone;
  • a calculation unit used to calculate and obtain system correction parameters according to the test audio signal and the received audio signal
  • the above-mentioned frequency response correction unit may be specifically configured to perform system frequency response correction on the initial audio signals of one or more audio segments according to the system correction parameters to obtain interactive audio signals.
  • the audio signal compensation device may also include a determination unit not shown, wherein:
  • the above-mentioned receiving unit can also be used to collect environmental sound through a feed-forward microphone before the above-mentioned output unit 1001 outputs a test audio signal through a speaker;
  • a determining unit configured to determine the test sound intensity of the speaker outputting the test audio signal according to the ambient sound intensity of the ambient sound;
  • the above-mentioned output unit 1001 may specifically be configured to output a test audio signal having the test sound intensity through a speaker.
  • the test audio signal may include a white noise signal
  • the test sound intensity of the white noise signal may be positively correlated with the environmental sound intensity of the environmental sound collected by the feedforward microphone.
  • the above-mentioned system correction parameters may include target equalizer parameters, and the above-mentioned calculation unit may specifically be used to respectively perform Fourier transform on the test audio signal and the received audio signal; The signal is compared with the test audio signal to obtain the system frequency response; based on the least squares criterion, the target equalizer parameters are calculated according to the above system frequency response;
  • the above-mentioned frequency response correction unit may perform equalization correction on the initial audio signal through the target equalizer obtained by configuring the target equalizer parameters to obtain the corrected audio signal.
  • the above-mentioned target equalizer may include an equalizer composed of a finite-length unit impulse response FIR filter.
  • the above-mentioned receiving unit may also be used to respond to the preference detection instruction before the frequency response correction unit respectively performs system frequency response correction on the initial audio signals of one or more audio segments to obtain the above-mentioned interactive audio signal, Acquire ambient sound through a feed-forward microphone;
  • the above calculation unit can also be used to calculate the environmental sound parameters according to the environmental sound. If the environmental sound parameters are lower than the environmental sound threshold, the frequency response correction unit 901 is triggered to perform system frequency response correction on the initial audio signal to obtain the corrected audio signal steps.
  • the above calculation unit can specifically window-segment the environmental sound according to the unit window length to obtain at least one frame of the environmental sound sub-signal; respectively calculate the short-term average energy of each frame of the environmental sound sub-signal; for each frame of the environmental sound sub-signal The short-term average energy is smoothed to obtain the environmental sound parameters corresponding to the above environmental sound.
  • the audio signal compensation device described in the above-mentioned embodiments, it is possible to conveniently detect the user's preference for different music styles with the help of earphones, and then it is convenient to provide different users with personalized audio signals that meet their listening preferences.
  • the flexibility and effectiveness of audio signal compensation according to user preferences in addition, through simple interactive operations, user-specific preference detection can be achieved without special environments such as silent rooms or anechoic rooms, and relatively accurate user preferences can be obtained information, which is conducive to improving the flexibility and convenience of audio signal compensation based on user preference information; in addition, through filter compensation, the target audio signal to be output can be effectively compensated in real time, which further improves audio signal compensation based on user preference information. Flexibility and accuracy of signal compensation.
  • FIG. 11 is a schematic modular diagram of an earphone disclosed in an embodiment of the present application.
  • the headset may include:
  • a memory 1101 storing executable program codes
  • processor 1102 coupled to the memory 1101;
  • the processor 1102 invokes the executable program code stored in the memory 1101 to execute all or part of the steps in any audio signal compensation method described in the above-mentioned embodiments.
  • the embodiment of the present application further discloses a computer-readable storage medium, which stores a computer program for electronic data exchange, wherein the computer program enables the computer to execute any audio signal compensation method described in the above-mentioned embodiments All or some of the steps in .
  • the embodiments of the present application further disclose a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer can execute all or part of the steps in any audio signal compensation method described in the above embodiments.
  • ROM read-only Memory
  • RAM random access memory
  • PROM programmable read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种音频信号补偿方法及装置、耳机、存储介质,该方法应用于耳机,该方法包括:输出交互音频信号,其中,该交互音频信号包括一个或多个音频片段,该一个或多个音频片段分别对应不同的音乐风格;获取针对每个音频片段的交互音频信号反馈的用户偏好信息;根据该用户偏好信息确定补偿参数,该补偿参数用于对待输出的目标音频信号进行补偿。实施本申请实施例,能够方便地为不同用户提供符合其听音偏好的个性化音频信号,提高了根据用户偏好进行音频信号补偿的灵活性和有效性。

Description

音频信号补偿方法及装置、耳机、存储介质
本申请要求于2021年5月26日提交、申请号为202110580650.8、发明名称为“音频信号补偿方法及装置、耳机、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及音频处理技术领域,尤其涉及一种音频信号补偿方法及装置、耳机、存储介质。
背景技术
当前,耳机用户往往有着多样化的听音偏好,不同用户在面对不同的音频效果或风格(如摇滚音乐、古典音乐、电子音乐等)时,其喜好或不喜好的程度均可能有所不同。然而,在实践中发现,传统的耳机通常只能提供相对简单的音频信号调整(如音量调整、降噪等),导致音频信号补偿的灵活性和有效性较差。
发明内容
本申请实施例公开了一种音频信号补偿方法及装置、耳机、存储介质,能够方便地为不同用户提供符合其听音偏好的个性化音频信号,提高了根据用户偏好进行音频信号补偿的灵活性和有效性。
本申请实施例第一方面公开一种音频信号补偿方法,应用于耳机,所述方法包括:
输出交互音频信号,其中,所述交互音频信号包括一个或多个音频片段,所述一个或多个音频片段分别对应不同的音乐风格;
获取针对每个所述音频片段的交互音频信号反馈的用户偏好信息;
根据所述用户偏好信息确定补偿参数,所述补偿参数用于对待输出的目标音频信号进行补偿。
本申请实施例第二方面公开一种音频信号补偿装置,应用于耳机,所述音频信号补偿装置包括:
输出单元,用于输出交互音频信号,其中,所述交互音频信号包括一个或多个音频片段,所述一个或多个音频片段分别对应不同的音乐风格;
获取单元,用于获取针对每个所述音频片段的交互音频信号反馈的用户偏好信息;
补偿单元,用于根据所述用户偏好信息确定补偿参数,所述补偿参数用于对待输出的目标音频信号进行补偿。
本申请实施例第三方面公开了一种耳机,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现如本申请实施例第一方面公开的任意一种音频信号补偿方法中的全部或部分步骤。
本申请实施例第四方面公开了一种计算机可读存储介质,其存储计算机程序,其中,所述计算机程序被处理器执行时实现如本申请实施例第一方面公开的任意一种音频信号补偿方法中的全部或部分步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和有益效果将从说明书、附图以及权利要求书中体现。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图进行简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是本申请实施例公开的音频信号补偿方法的一种应用场景示意图;
图1B是本申请实施例公开的音频信号补偿方法的另一种应用场景示意图;
图2是本申请实施例公开的一种音频信号补偿方法的流程示意图;
图3是本申请实施例公开的另一种音频信号补偿方法的流程示意图;
图4是本申请实施例公开的一种补偿滤波器的频率响应示意图;
图5是由图4所示的补偿滤波器进行音频信号补偿的效果示意图;
图6是本申请实施例公开的又一种音频信号补偿方法的流程示意图;
图7是本申请实施例公开的一种耳机的结构示意图;
图8是本申请实施例公开的一种系统频响校正的效果示意图;
图9是本申请实施例公开的一种经过系统频响校正后的系统脉冲响应变化效果示意图;
图10是本申请实施例公开的一种音频信号补偿装置的模块化示意图;
图11是本申请实施例公开的一种耳机的模块化示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例公开了一种音频信号补偿方法及装置、耳机、存储介质,能够方便地为不同用户提供符合其听音偏好的个性化音频信号,提高了根据用户偏好进行音频信号补偿的灵活性和有效性。
以下将结合附图进行详细描述。
请一并参阅图1A及图1B,图1A是本申请实施例公开的音频信号补偿方法的一种应用场景示意图,图1B则是本申请实施例公开的音频信号补偿方法的另一种应用场景示意图。如图1A所示,该应用场景可以包括用户10及耳机20,用户10可以通过该耳机20检测自身对不同音乐风格的听音偏好,即用户10在面对不同的音乐风格(如重低音、立体声等效果或者摇滚音乐、古典音乐、电子音乐等类型)的时候,其自身喜好或不喜好的程度,以使该耳机20可以准确地获取用户10的用户偏好信息。进一步地,该耳机20可以根据上述用户偏好信息进行相应的音频信号补偿,并输出经过补偿的目标音频信号,以使用户10能够收听到符合其听音偏好的个性化音频信号。
示例性地,当需要获取用户10的用户偏好信息,以进行相应的音频信号补偿时,用户10可以与耳机20进行交互,向该耳机20发出相应的检测指令,以触发该耳机20开始进 行用户偏好信息检测。具体地,该检测可以利用一个或多个对应于不同音乐风格的音频片段来进行,即耳机20可以通过输出具有不同音乐风格的音频片段对应的交互音频信号,并采集用户10针对该交互音频信号的反馈情况,来评估用户10对不同音乐风格的偏好情况。
在本申请实施例中,耳机20可以输出交互音频信号,该交互音频信号可以包括上述一个或多个音频片段,各个音频片段可以分别对应于不同的音乐风格。在此基础上,耳机20可以获取用户10针对上述交互音频信号反馈的用户偏好信息,进而可以根据该用户偏好信息确定相应的补偿参数,以将该补偿参数用于对上述扬声器待输出的目标音频信号进行补偿。可见,上述方法能够借助耳机20方便地检测得到用户10对不同音乐风格的偏好情况,并根据其偏好情况计算针对该用户10的补偿参数,以在后续进行相应的音频信号补偿,有效提高了根据用户偏好信息进行音频信号补偿的灵活性和有效性,有利于实现为不同用户10提供符合其听音偏好的个性化音频信号的效果,使得耳机20播放的音频信号(尤其是音乐)呈现用户10喜好的风格,大大提升了用户10的耳机使用体验。
可选地,如图1B所示,耳机20还可以与终端设备30连接,从而当需要获取用户10的用户偏好信息时,用户10可以与终端设备30进行交互,以通过该终端设备30向耳机20发出相应的检测指令,触发该耳机20开始进行用户偏好信息检测。示例性地,上述终端设备30可以包括具备无线通信功能的各类设备或系统,如手机、智能可穿戴设备、车载终端、平板电脑、PC(Personal Computer,个人电脑)、PDA(Personal Digital Assistant,个人数字助理)等,本申请实施例中不作具体限定。需要说明的是,耳机20在获取用户10针对上述交互音频信号反馈的用户偏好信息时,可以是获取用户10直接通过该耳机20反馈的交互数据,并根据该交互数据得到相应的用户偏好信息;也可以是由终端设备30获取用户10反馈的交互数据并得到相应的用户偏好信息之后,耳机20再与该终端设备30进行通信,获取该终端设备30发送的上述用户偏好信息。
请参阅图2,图2是本申请实施例公开的一种音频信号补偿方法的流程示意图,该方法可以应用于上述的耳机。如图2所示,该音频信号补偿方法可以包括以下步骤:
202、输出交互音频信号,其中,该交互音频信号包括一个或多个音频片段,该一个或多个音频片段分别对应不同的音乐风格。
在本申请实施例中,用于检测用户偏好信息的音频片段可以分别对应不同的音乐风格。示例性地,上述音乐风格,可以包括各种类型的音频效果(如重低音效果、立体声效果等)或音乐类型(如摇滚音乐、古典音乐、电子音乐等)等,本申请实施例中不作具体限定。需要说明的是,每个音频片段可以仅对应于某一种音乐风格,也可以同时对应于多种音乐风格,各个音频片段对应的音乐风格分别可以与其相应的音频片段数据一起存储,例如存储在相应音频片段数据的文件头、存储为与相应音频片段数据绑定的标签等。
具体地,上述耳机可以通过其内置的扬声器对具有不同音乐风格的一个或多个音频片段的交互音频信号分别进行输出。在一些实施例中,上述音频片段可以存储在与该耳机连接的终端设备中,即以该终端设备作为音源设备,终端设备可以通过其与上述耳机之间的通信连接,将存储的音频片段数据传输至耳机。耳机在接收到该音频片段数据之后,可以解码并生成上述音频片段对应的音频信号,并将该音频信号作为用于检测用户偏好信息的交互音频信号,直接通过扬声器进行输出。可选地,耳机还可以对其生成的音频信号作进一步处理,如进行片段截取、增益调整、系统频响校正等,以得到更适于检测的交互音频信号,并最终进行输出。
在另一些实施例中,上述音频片段也可以存储在该耳机中,即以该耳机自身作为音源设备,耳机可以对其存储的具有不同音乐风格的一个或多个音频片段进行解码,并生成相应的交互音频信号,分别进行输出。
204、获取针对每个音频片段的交互音频信号反馈的用户偏好信息。
在本申请实施例中,耳机在向用户输出上述交互音频信号之后,可以进一步检测用户针对该交互音频信号的反馈情况,从而确定用户对不同音乐风格的偏好情况,进而得到相应的用户偏好信息。示例性地,上述反馈情况,可以包括用户针对某一交互音频信号而在交互端(如耳机、与该耳机连接的终端设备等)上执行反馈操作时,该交互端所采集到的交互数据。其中,该交互数据可以包括“喜好”“不喜好”或“无特别感受”等非量化数据,也可以包括“喜好”或“不喜好”的程度(如评分、百分比、等级等)等量化数据。
具体举例来说,用户在收听到耳机输出的上述一个或多个音频片段的交互音频信号之后,可以结合自身对不同音乐风格的听音偏好,分别针对每个交互音频信号在交互端上执行相应的反馈操作。在此基础上,交互端可以根据其检测到的反馈操作,采集得到相应的交互数据,并根据该交互数据分析确定出用户针对不同音乐风格的用户偏好信息。
在一种实施例中,当用户仅通过耳机获取上述用户偏好信息时,可以通过检测针对该耳机的反馈操作来实现。示例性地,针对该耳机的反馈操作可以包括触控操作、语音操作、移动操作等。
例如,当用户收听到交互音频信号时,可以触摸该耳机上指定的触控点,从而该耳机在检测到针对上述指定触控点的触控操作时,可以据此确定用户针对该交互音频信号的偏好情况,进而获取相应的用户偏好信息。
又例如,当用户收听到交互音频信号时,可以直接发出“好听”“不好听”等语音指令,从而该耳机可以对其检测到的语音指令进行解析,以确定用户针对该交互音频信号的偏好情况,并进一步获取相应的用户偏好信息。
再例如,用户还可以根据其收听到交互音频信号的不同偏好情况,进行不同方向的头部移动,从而该耳机可以通过传感器检测其自身的移动状态,以确定相应的用户偏好信息。具体举例来说,当用户收听到交互音频信号时,若喜好该交互音频信号,可以使头部左倾,以使耳机检测到向左移动的趋势;若不喜好该交互音频信号,则可以使头部右倾,以使该耳机检测到向右移动的趋势,进而耳机可以根据其检测到的移动趋势确定用户针对该交互音频信号的偏好情况,以获取相应的用户偏好信息。
在另一种实施例中,当用户还通过与耳机通信连接的终端设备来获取上述用户偏好信息时,也可以通过检测针对该终端设备的反馈操作来实现。示例性地,针对该终端设备的反馈操作可以包括触控操作、按钮点击操作等。当终端设备检测到上述反馈操作时,可以根据该反馈操作确定用户对相应的交互音频信号的偏好情况,并将该偏好情况发送至耳机。在此基础上,耳机可以根据其接收到的各种偏好情况,进一步获取该用户对不同音乐风格的用户偏好信息。
206、根据该用户偏好信息确定补偿参数,该补偿参数用于对待输出的目标音频信号进行补偿。
具体地,耳机可以通过其内置的处理器调用上述用户偏好信息,并根据该用户偏好信息分析用户的听音偏好,以确定需要对待输出的目标音频信号的不同频率分量所做的补偿。示例性地,若用户偏好低音风格,则耳机可以对待输出的目标音频信号的低频分量适当增强,同时对其高频分量适当衰减;若用户偏好金属音乐,则耳机可以对待输出的目标音频信号的高频分量适当增强,同时对其低频分量进行保留或衰减。
在需要对目标音频信号进行补偿时,根据上述用户偏好信息分析得到的该用户的听音偏好,耳机可以计算出相应的补偿参数,该补偿参数可以用于针对目标音频信号的不同频率分量,分别进行与用户的听音偏好相对应的补偿。示例性地,上述补偿参数可以包括补偿滤波器参数(如用于配置补偿滤波器的抽头系数、各个抽头的增益及其增益系数等), 即耳机可以根据上述每个音频片段对应的用户偏好信息,分别计算出各个补偿滤波器对应的补偿滤波器参数,进而可以针对待输出的目标音频信号中需要补偿的频率分量,分别通过补偿滤波器参数来配置相应的补偿滤波器,以进行补偿滤波。具体举例来说,当需要对特定频段的音频信号进行补偿时,可以通过配置相应频带的带通滤波器或带阻滤波器进行补偿滤波;当需要对多个频段的音频信号进行较复杂的补偿时,也可以通过配置级联的FIR(Finite Impulse Response,有限长单位冲激响应)滤波器或IIR(Infinite Impulse Response,无限长单位冲激响应)滤波器来进行相应的补偿滤波。
可见,实施上述实施例所描述的音频信号补偿方法,能够借助耳机方便地检测用户对不同音乐风格的偏好情况,以根据其偏好情况计算针对该用户的补偿参数,从而可以对待向用户输出的目标音频信号进行相应的音频信号补偿,实现了为不同用户提供符合其听音偏好的个性化音频信号的效果,使得耳机播放的音频信号(尤其是音乐)呈现用户喜好的风格,大大提升了用户的耳机使用体验,同时也提高了根据用户偏好进行音频信号补偿的灵活性和有效性。
请参阅图3,图3是本申请实施例公开的另一种音频信号补偿方法的流程示意图,该方法可以应用于上述的耳机。如图3所示,该音频信号补偿方法可以包括以下步骤:
302、输出交互音频信号,其中,该交互音频信号包括一个或多个音频片段,该一个或多个音频片段分别对应不同的音乐风格。
304、获取针对每个音频片段的交互音频信号反馈的用户偏好信息。
其中,步骤302以及步骤304与上述步骤202以及步骤204类似,此处不再赘述。
306、确定与每个音频片段的音乐风格对应的补偿滤波器。
在本申请实施例中,每个音频片段可以仅对应于某一种音乐风格,也可以同时对应于多种音乐风格。进一步地,每种音乐风格也可以对应后续用于音频补偿的一个或多个补偿滤波器。其中,各个补偿滤波器可以分别针对待输出的目标音频信号中的不同频率分量进行补偿,从而通过配置相应的补偿滤波器,即可针对特定音乐风格所需补偿的一个或多个频率分量进行补偿,以满足用户对特定音乐风格的听音偏好。
具体地,耳机在获取针对每个音频片段的交互音频信号所反馈的用户偏好信息之后,可以先确定各个音频片段对应的音乐风格,并根据该音乐风格确定一个或多个需要进行音频补偿的频率点。在此基础上,耳机可以将以上述频率点为中心频率的补偿滤波器确定为与上述音乐风格对应的补偿滤波器,进而可以在后续步骤中利用这些补偿滤波器,对待输出的目标音频信号中与上述频率点对应的频率分量进行补偿。
308、根据每个音频片段对应的用户偏好信息,分别计算与每个音频片段对应的补偿滤波器的基础增益系数。
在本申请实施例中,根据每个音频片段对应的用户偏好信息,可以计算出与每个音频片段分别对应的补偿滤波器参数,以用于配置相应的补偿滤波器。其中,补偿滤波器参数可以包括增益系数,即针对目标音频信号中需补偿的频率分量对应的增益的权重。可以理解的是,上述补偿滤波器参数还可以包括增益、中心频率、品质因数等,进而可以根据这些具体的补偿滤波器参数计算出相应的补偿滤波器的抽头系数,从而可以唯一确定出相应的补偿滤波器。
针对上述增益系数,耳机在获取每个音频片段对应的用户偏好信息之后,可以先分别计算各个音频片段对应的补偿滤波器的基础增益系数。其中,该补偿滤波器为上述步骤306中确定出的补偿滤波器,补偿滤波器的基础增益系数与涉及该补偿滤波器的音频片段一一对应。进一步地,若上述每个音频片段仅对应于某一种音乐风格,则补偿滤波器的基础增 益系数可以与涉及该补偿滤波器的音乐风格一一对应。在此基础上,耳机可以在后续步骤中根据每个补偿滤波器对应的各个基础增益系数,计算出其实际配置的综合增益系数。
示例性地,第j个补偿滤波器的基础增益系数可以用A ij来表示,其中i可以表示涉及该补偿滤波器的第i个音频片段,则根据上述用户偏好信息,尤其是涉及第j个补偿滤波器的P个音频片段对应的用户偏好信息,可以先计算出对应的P个基础增益系数A ij(P为自然数)。其中,当P大于0时,i=1,2,...,P。在此基础上,根据第j个补偿滤波器对应的P个基础增益系数A ij(i=1,2,...,P),可以在后续步骤中计算出据第j个补偿滤波器的综合增益系数A J
可选地,对于同一音频片段,其对应的各个补偿滤波器的基础增益系数之和可以为1,从而实现基础增益系数的归一化。示例性地,该约束条件可以如以下公式1所示。
公式1:
Figure PCTCN2022086087-appb-000001
其中,A ij为第i个音频片段、第j个补偿滤波器对应的基础增益系数,该第i个音频片段可以对应于Q个补偿滤波器(Q为正整数),从而第i个音频片段对应的Q个基础增益系数之和可以为1。
310、基于每个补偿滤波器对应的一个或多个基础增益系数,计算每个补偿滤波器的综合增益系数,上述每个补偿滤波器对应的各个基础增益系数分别与不同的音乐风格对应。
在本申请实施例中,当耳机计算出每个音频片段对应的补偿滤波器的基础增益系数之后,可以基于每个补偿滤波器对应的一个或多个基础增益系数,分别计算出各个补偿滤波器实际配置的综合增益系数。示例性地,上述综合增益系数可以为其对应的各个基础增益系数的统计量,如均值、中位数、众数等。具体地,以均值为例,耳机可以基于第一补偿滤波器(即上述各个补偿滤波器中的任一补偿滤波器)对应的各个基础增益系数,计算出各个基础增益系数的均值,并将该均值确定为该第一补偿滤波器的综合增益系数,如以下公式2所示。
公式2:
Figure PCTCN2022086087-appb-000002
其中,A ij为第i个音频片段、第j个补偿滤波器对应的基础增益系数,则第j个补偿滤波器的综合增益系数可以为该第j个补偿滤波器对应的P个基础增益系数的均值。
312、通过补偿滤波器参数配置对应的各个补偿滤波器,各个补偿滤波器用于对待输出的目标音频信号进行滤波补偿,其中,补偿滤波器参数包括上述增益系数。
其中,上述补偿滤波器参数除了包括增益系数之外,还可以包括增益、中心频率、品质因数等,进而可以根据这些具体的补偿滤波器参数计算出相应的补偿滤波器的抽头系数,以唯一确定出相应的补偿滤波器。在此基础上,通过上述补偿滤波器参数配置相应的各个补偿滤波器,可以对待输出的目标音频信号进行滤波补偿,以满足用户对特定音乐风格的 听音偏好。
示例性地,请一并参阅图4及图5,当确定出上述补偿滤波器参数之后,由该补偿滤波器参数配置得到的补偿滤波器的频率响应可以如图4所示,而利用该补偿滤波器对耳机待输出的目标音频信号进行补偿的效果则可以如图5所示,其中,图5中的虚线表示进行滤波补偿前的系统频率响应,实线则表示进行滤波补偿后的系统频率响应。可见,在图4中频率点A处对应的补偿较小,则相应地在图5中频率点A附近的频率分量的滤波补偿效果不明显;图4中频率点B处对应的补偿较大,则相应地在图5中频率点B附近的频率分量的滤波补偿较明显。可以理解,针对不同的用户偏好信息,可以计算出相应的补偿滤波器参数,以配置相应的补偿滤波器,对该用户偏好信息涉及的音乐风格所对应的不同频率分量进行针对性的补偿,从而可以提高了根据用户偏好进行音频信号补偿的准确性和有效性。
可见,实施上述实施例所描述的音频信号补偿方法,能够借助耳机方便地检测用户对不同音乐风格的偏好情况,进而可以方便地为不同用户提供符合其听音偏好的个性化音频信号,提高了根据用户偏好进行音频信号补偿的灵活性和有效性;此外,通过配置相应的补偿滤波器,可以对耳机待输出的目标音频信号进行针对性的补偿,进一步提高了根据用户偏好进行音频信号补偿的准确性和有效性。
请参阅图6,图6是本申请实施例公开的又一种音频信号补偿方法的流程示意图,该方法可以应用于上述的耳机,该耳机具体可以包括扬声器、前馈麦克风以及反馈麦克风。如图6所示,该音频信号补偿方法可以包括以下步骤:
602、响应偏好检测指令,通过前馈麦克风采集环境音。
示例性地,上述偏好检测指令可以包括用户直接针对该耳机进行的检测触发操作(如指定的触控操作、语音操作、移动操作等),也可以包括用户针对与该耳机通信连接的终端设备进行的检测触发操作(如指定的触控操作、按钮点击操作等),且对于后者,终端设备在检测到检测触发操作时,还可以向上述耳机发出相应的偏好检测指令。在此基础上,当耳机检测到针对其自身的检测触发操作,或者接收到与其连接的终端设备发送的偏好检测指令时,则可以触发其前馈麦克风采集外界的环境音,以在后续步骤中评估环境音对于检测用户偏好信息的影响。
其中,本申请实施例公开的耳机可以如图7所示,该耳机除了包括扬声器71以及设置于该扬声器71前方的反馈麦克风72之外,还可以包括前馈麦克风73,该前馈麦克风73可以设置于扬声器71后方(即当用户佩戴该耳机时,前馈麦克风处于扬声器与外界环境之间),以通过该前馈麦克风73采集外界的环境音。
604、根据该环境音,计算得到环境音参数。
示例性地,环境音参数可以包括用于表征环境噪声强弱的各种参数,如声音强度、声音能量、声音功率等。在本申请实施例中,上述耳机在通过其前馈麦克风采集到环境音之后,可以对该环境音进行解析,以计算出其对应的环境音参数。
示例性地,以环境音参数包括声音能量为例,对于前馈麦克风采集到环境音,该耳机内置的处理器可以先按照单位窗口长度对该环境音进行加窗分割,得到至少一帧环境音子信号。其中,对环境音进行加窗分割所采用的窗函数可以包括矩形窗函数,也可以包括其他形态的窗函数,如三角窗函数、汉明窗函数等。优选地,为了减少加窗分割前后的计算量,可以仅采用矩形窗函数进行上述的加窗分割步骤。
在此基础上,该耳机内置的处理器可以分别计算每帧环境音子信号的短时平均能量,并对计算得到的短时平均能量进行平滑处理,得到该环境音对应的环境音参数。示例性地, 在对每帧环境音子信号分别计算其短时平均能量时,可以采用如以下公式3所示的方式进行计算:
公式3:
Figure PCTCN2022086087-appb-000003
其中,E n表示第n帧(或n时刻的)环境音子信号的短时平均能量,n为离散时间,w(n-m)为窗函数w(n)的时移表示,x(m)表示各帧环境音子信号,N为单位窗口长度。通过计算环境音子信号的短时平均能量,能够快速确定某一帧环境音子信号的强弱,以便于在后续步骤中减少环境音参数相关计算的计算量。进一步地,在得到各帧环境音子信号的短时平均能量后,还可以采用如以下公式4所示的方式进行平滑处理:
公式4:
E n(m)=α·E n(m-1)+(1-α)·E n(m),0<α<1
其中,E n(m)为平滑后的音频信号能量,α则为进行上述指数平滑的系数。该耳机内置的处理器可以将上述平滑后的音频信号能量E n(m)确定为上述环境音对应的环境音参数。
606、若环境音参数低于环境音阈值,则根据该环境音的声音强度,确定扬声器输出测试音频信号的测试声音强度。
示例性地,耳机可以将上述环境音参数与环境音阈值(如5dB、10dB等)进行比较,并可以根据比较结果确定是否继续执行后续步骤。具体地,若环境音参数低于环境音阈值,则表示该耳机所处环境的环境音影响较小,可以继续执行后续的听力检测等步骤;若环境音参数高于环境音阈值,则表示该耳机所处环境的环境音影响较大,可以中止执行后续步骤。可选地,当判断出环境音参数高于环境音阈值时,该耳机可以通过扬声器输出相应的提醒信息,以提醒用户更换至环境音较小(尤其是环境噪声较小)的环境,以减小环境音对后续的用户偏好信息检测等步骤的影响,确保根据用户偏好信息进行音频信号补偿的准确性和可靠性。
在本申请实施例中,耳机在判断出环境音参数低于环境音阈值时,可以进一步确定扬声器后续输出测试音频信号的测试声音强度。示例性地,测试音频信号可以包括白噪声信号,该白噪声信号的测试声音强度可以与上述前馈麦克风采集到的环境音的声音强度成正相关关系。在此基础上,该耳机可以根据该环境音的声音强度,以及指定的正相关函数关系,计算出白噪声信号对应的测试声音强度,以便在后续步骤中输出具备该测试声音强度的白噪声信号,以提高音频信号的信噪比,避免环境音对后续的系统频响校正造成干扰。
608、通过扬声器输出具备该测试声音强度的测试音频信号。
在本申请实施例中,当需要获取用户对于不同音乐风格的用户偏好信息时,在耳机输出实际的交互音频信号之前,该耳机还可以先通过其扬声器输出测试音频信号。其中,该测试音频信号可以包括一小段短暂的音频信号,用于在该耳机所处的音频系统(即耳机输出的音频信号在耳机与用户之间传输的通路)中进行传输,并被反馈麦克风所接收,以计算该音频系统对应的系统频率响应。可以理解,由于反馈麦克风处于扬声器与用户之间, 上述音频系统也可以由音频信号在该扬声器以及反馈麦克风之间传输的通路来近似替代。通过计算该音频系统的系统频率响应,可以确定音频信号在该音频系统的传输过程中所受到的环境影响,进而可以在后续步骤中针对该系统频率响应进行校正,以得到经过系统频响校正的交互音频信号。
作为一种可选的实施方式,在耳机通过其扬声器输出测试音频信号时,还可以考虑耳机所处环境中的环境音的影响,若环境音的声音强度较大,则所输出的测试音频信号的声音强度也应当增大,以提高音频信号的信噪比,避免环境音对系统频响校正造成干扰。
610、通过反馈麦克风采集该测试音频信号对应的接收音频信号。
在本申请实施例中,当耳机通过扬声器输出上述测试音频信号之后,可以立即获取其内置的反馈麦克风所采集的与该测试音频信号对应的接收音频信号。可以理解,耳机的反馈麦克风可以持续采集音频信号,从而可以根据扬声器输出上述测试音频信号的时间戳,获取反馈麦克风在该时间戳附近(如延后0.01毫秒、延后0.1毫秒等)的时刻所采集到的接收音频信号。在一些实施例中,耳机的反馈麦克风也可以不持续开启,而是在扬声器输出上述测试音频信号之后,由该扬声器触发开启,并将该反馈麦克风开启后采集到的音频信号作为与上述测试音频信号对应的接收音频信号。可选地,对于通过反馈麦克风采集到的接收音频信号,耳机还可以利用其内置的处理器,将上述扬声器输出的测试音频信号与该接收音频信号进行波形对比,当对比结果表示该测试音频信号与该接收音频信号的波形相似度满足相似度阈值(如50%、80%等)时,可以将该接收音频信号确认为与上述测试音频信号对应的接收音频信号。
612、根据该测试音频信号以及接收音频信号,计算得到系统校正参数。
在本申请实施例中,耳机可以先根据上述测试音频信号以及接收音频信号,计算得到该耳机所处的音频系统的系统频率响应,以确定音频信号在该音频系统的传输过程中所受到的环境影响。在此基础上,耳机可以基于该系统频率响应,进一步计算该系统频率响应对应的系统校正参数。其中,该系统校正参数可以包括滤波器参数(如用于配置滤波器的抽头系数等)、均衡器参数(如用于配置均衡器中所包含的滤波器的抽头系数、增益系数等)等,以用于对上述音频系统的系统频率响应进行校正,以尽可能消除音频信号在音频系统的传输过程中所受到的环境影响。
示例性地,耳机在根据上述测试音频信号以及接收音频信号计算系统校正参数时,可以先分别对上述测试音频信号以及接收音频信号进行傅里叶变换,再将进行傅里叶变换后的接收音频信号与测试音频信号相比,得到系统频率响应。具体地,耳机内置的处理器可以先对上述测试音频信号以及接收音频信号进行分帧加窗处理,即,将宏观上不平稳的音频信号分割为具备短时平稳性的多个音频信号帧(如帧长为10~30毫秒的音频信号帧),再根据指定的窗函数对上述音频信号帧进行加窗截断,得到每一帧测试音频信号以及接收音频信号。示例性地,加窗截断可以通过如公式5所示的窗函数来实现:
公式5:
w(n)=1,0≤n≤N-1;
w(n)=0,其他
其中,分段函数w(n)为窗函数,N为单位窗口长度。通过将上述测试音频信号或接收音频信号与该窗函数进行时域上的卷积,即可实现加窗截断的效果。
在此基础上,对分帧加窗后得到的某一帧测试音频信号或接收音频信号,可以通过FFT(Fast Fourier Transform,快速傅里叶变换)等算法进行短时傅里叶变换,其表达式可以如 以下公式6所示:
公式6:
Figure PCTCN2022086087-appb-000004
其中,n为离散时间,连续频率ω=2πk/N,k=0,1,...,N-1,N为傅里叶变换长度,x(m)则为第m帧音频信号。在此基础上,将进行傅里叶变换后的接收音频信号与测试音频信号相比,即可得到系统频率响应,即系统频率响应H(k)可以由频域接收音频信号Y(k)与频域测试音频信号X(k)的比Y(k)/X(k)得到。
进一步地,该耳机还可以基于最小二乘准则,根据上述系统频率响应计算得到目标均衡器参数,其中,上述目标均衡参数可以包括用于配置目标均衡器中所包含的滤波器的抽头系数、增益系数等。通过由该目标均衡器参数配置得到的目标均衡器,可以在后续步骤中对初始音频信号进行均衡校正,以得到交互音频信号。可选地,该目标均衡器可以包括由FIR(有限长单位冲激响应)滤波器组成的均衡器,从而可以采用正则化滤波器、理想带通滤波器等,并基于上述最小二乘准则以及通过正则化滤波器使均衡误差最小化的目标设计目标均衡器,示例性地,该目标均衡器的响应M(k)在频域上的表达式可以如以下公式7所示:
公式7:
Figure PCTCN2022086087-appb-000005
其中,H(k)为上述系统频率响应,D(k)可以表示理想带通滤波器响应的傅里叶变换,B(k)则可以表示正则化滤波器响应的傅里叶变换,β可以表示该正则化滤波器的加权标量。通过配置上述FIR均衡器,可以实现以平直幅频响应为目标的幅度均衡和以线性相位为目标的相位均衡。
614、根据系统校正参数分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号。
在本申请实施例中,通过对一个或多个音频片段的初始音频信号进行系统频响校正,耳机可以得到与该初始音频信号对应的交互音频信号。其中,上述系统频响校正可以尽可能消除音频信号在音频系统的传输过程中所受到的影响,使得耳机实际输出的交互音频信号在经过传输并被用户收听到之后,用户所收听到的音频信号可以尽可能还原上述初始音频信号。需要说明的是,上述音频系统,指的是耳机输出的音频信号在耳机与用户之间传输的通路。示例性地,该耳机可以包括扬声器以及反馈麦克风,当用户佩戴该耳机时,该反馈麦克风处于扬声器与用户之间,从而上述音频系统也可以通过音频信号在该扬声器以及反馈麦克风之间传输的通路来近似替代。通过进行上述系统频响校正,可以提升音频系统对音频信号传输的保真度,尽可能将后续经过传输的交互音频信号还原为初始音频信号,从而提升获取用户偏好信息的准确性和可靠性。
需要说明的是,当采用如上述实施例中示例的系统校正参数计算方法计算得到上述目标均衡器参数时,该耳机具体可以通过由该目标均衡器参数配置得到的目标均衡器来对初始音频信号进行均衡校正,进而得到校正音频信号。示例性地,如图8所示,图8是本申请实施例公开的一种系统频响校正的效果示意图,其中虚线表示进行系统频响校正前的系统频率响应,实线则表示进行系统频响校正后的系统频率响应。可见,通过进行上述系统频响校正,可以使得系统频率响应更加平直,并保持线性相位,有利于尽可能消除音频信号在传输过程中所受到的环境影响。另一方面,如图9所示,图9是本申请实施例公开的一种经过系统频响校正后的系统脉冲响应变化效果示意图,其中虚线表示进行系统频响校正前的系统脉冲响应,实线则表示进行系统频响校正后额系统脉冲响应。可见,通过进行上述系统频响校正,可以使得时域上的系统脉冲响应在脉冲之后衰减更快,有效降低了多径干扰,使得后续经过传输的交互音频信号更接近初始音频信号,有助于提高音频信号的保真度。
616、输出交互音频信号,其中,该交互音频信号包括一个或多个音频片段,该一个或多个音频片段分别对应不同的音乐风格。
618、获取针对每个音频片段的交互音频信号反馈的用户偏好信息。
其中,步骤616以及步骤618与上述步骤202以及步骤204类似,此处不再赘述。
620、根据每个音频片段对应的用户偏好信息,计算各个补偿滤波器对应的补偿滤波器参数。
其中,补偿滤波器参数可以包括上述实施例中涉及的增益系数,此外还可以包括其他参数,如增益Gain值、品质因素Q值等,从而根据上述补偿滤波器参数可以唯一确定出相应的补偿滤波器。
可选地,通过上述补偿滤波器参数配置得到的补偿滤波器可以包括IIR(无限长单位冲激响应)滤波器,当需要针对某个频率分量进行音频信号补偿时,可以通过一个IIR滤波器来实现。示例性地,当采用二阶IIR滤波器作为补偿滤波器时,该二阶IIR滤波器可以通过公式8所示的差分方程表示如下:
公式8:
Figure PCTCN2022086087-appb-000006
其中,a 0=1+α/A,a 1=-2cos(w 0),a 2=1-α/A,b 0=1+α·A,b 1=-2cos(w 0),b 2=1-α·A;进一步地,w 0=2πf 0/f s,A=10 Gain/40,α=sin(w 0)/(2Q),其中f 0为补偿滤波器的中心频率,f s为待输出的目标音频信号的采样率,Gain值为该补偿滤波器的增益,A则为增益系数(即针对目标音频信号中需补偿的频率分量对应的增益的权重),Q值为该补偿滤波器的的品质因数。
622、通过补偿滤波器参数配置对应的各个补偿滤波器,各个补偿滤波器用于对待输出的目标音频信号进行滤波补偿。
在本申请实施例中,该耳机可以基于上述补偿滤波器参数配置得到相应的各个补偿滤波器。示例性地,当该耳机获取上述用户偏好信息之后,可以根据该用户偏好信息涉及的 音乐风格所对应的一个或多个需要进行音频补偿的频率点,确定补偿滤波器的中心频率f 0,以及该耳机通过扬声器待输出的目标音频信号的采样率f s。进一步地,该耳机可以根据该用户偏好信息确定出匹配的补偿等级,并进一步获取该补偿等级对应的目标补偿滤波器的增益Gain值和品质因数Q值;也可以采用统一默认的增益Gain值和品质因数Q值。在此基础上,根据上述补偿滤波器参数配置得到的各个补偿滤波器,可以用于对扬声器待输出的目标音频信号进行滤波补偿。
作为一种可选地实施方式,对于需要配置多个补偿滤波器的情况,该耳机可以先根据上述用户偏好信息计算出与该用户偏好信息对应的多组补偿滤波器参数,并由该多组补偿滤波器参数配置得到多个补偿滤波器。示例性地,若存在M个补偿滤波器,即根据上述用户偏好信息可以计算出M组补偿滤波器参数(实际上对应于M个频率点),则该耳机可以根据每个待检测频率点对应的补偿滤波器参数配置相应的M个补偿滤波器。在此基础上,该耳机可以将上述M个目标补偿滤波器进行级联,从而可以通过级联的M个补偿滤波器共同对待输出的目标音频信号进行滤波补偿。
可见,实施上述实施例所描述的音频信号补偿方法,能够借助耳机方便地检测用户对不同音乐风格的偏好情况,进而可以方便地为不同用户提供符合其听音偏好的个性化音频信号,提高了根据用户偏好进行音频信号补偿的灵活性和有效性;此外,通过借助简单的交互操作,无需在静音房或消声室等专门环境即可实现针对用户的偏好检测,并获取相对准确的用户偏好信息,有利于提升根据用户偏好信息进行音频信号补偿的灵活性和便利性;此外,通过滤波补偿的方式,能够有效地对待输出的目标音频信号进行实时补偿,进一步提高了根据用户偏好信息进行音频信号补偿的灵活性和准确性。
请参阅图10,图10是本申请实施例公开的一种音频信号补偿装置的模块化示意图,该音频信号补偿装置可以应用于上述的耳机,该耳机可以包括扬声器、反馈麦克风以及前馈麦克风。如图10所示,该音频信号补偿装置可以包括输出单元1001、获取单元1002以及补偿单元1003,其中:
输出单元1001,用于输出交互音频信号,其中,该交互音频信号包括一个或多个音频片段,该一个或多个音频片段分别对应不同的音乐风格;
获取单元1002,用于获取针对每个音频片段的交互音频信号反馈的用户偏好信息;
补偿单元1003,用于根据用户偏好信息确定补偿参数,该补偿参数用于对待输出的目标音频信号进行补偿。
可见,采用上述实施例所描述的音频信号补偿装置,能够借助耳机方便地检测用户对不同音乐风格的偏好情况,以根据其偏好情况计算针对该用户的补偿参数,从而可以对待向用户输出的目标音频信号进行相应的音频信号补偿,实现了为不同用户提供符合其听音偏好的个性化音频信号的效果,使得耳机播放的音频信号(尤其是音乐)呈现用户喜好的风格,大大提升了用户的耳机使用体验,同时也提高了根据用户偏好进行音频信号补偿的灵活性和有效性。
在一种实施例中,上述补偿参数可以包括补偿滤波器参数,该音频信号补偿装置还可以包括未图示的配置单元,其中:
上述补偿单元1003,具体可以用于根据每个音频片段对应的用户偏好信息,计算各个补偿滤波器对应的补偿滤波器参数;
配置单元,可以用于通过补偿滤波器参数配置对应的各个补偿滤波器,各个补偿滤波 器用于对待输出的目标音频信号进行滤波补偿。
在一种实施例中,上述补偿滤波器参数可以包括增益系数,上述补偿单元1003可以包括未图示的确定子单元、第一计算子单元以及第二计算子单元,其中:
确定子单元,用于确定与每个音频片段的音乐风格对应的补偿滤波器;
第一计算子单元,用于根据每个音频片段对应的用户偏好信息,分别计算与每个音频片段对应的补偿滤波器的基础增益系数;
第二计算子单元,用于基于每个补偿滤波器对应的各个基础增益系数,计算每个补偿滤波器的综合增益系数,每个补偿滤波器对应的各个基础增益系数分别与不同的音乐风格对应。
在一种实施例中,上述第二计算子单元,具体可以基于第一补偿滤波器对应的各个基础增益系数,计算各个基础增益系数的均值,并将该均值确定为第一补偿滤波器的综合增益系数,
其中,同一音频片段对应的所有补偿滤波器的基础增益系数之和可以为1。
其中,上述补偿滤波器可以包括无限长单位冲激响应IIR滤波器。
可选地,若存在M个补偿滤波器,则上述配置单元还可以将该M个补偿滤波器进行级联,其中,M为大于或等于1的正整数。
可见,采用上述实施例所描述的音频信号补偿装置,通过配置相应的补偿滤波器,可以对耳机待输出的目标音频信号进行针对性的补偿,进一步提高了根据用户偏好进行音频信号补偿的准确性和有效性。
在一种实施例中,图10所示的音频信号补偿装置还可以包括未图示的频响校正单元,该频响校正单元可以用于分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到上述交互音频信号。
在一种实施例中,该音频信号补偿装置还可以包括未图示的接收单元以及计算单元,其中:
上述输出单元1001,还可以用于在频响校正单元分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到上述交互音频信号之前,通过扬声器输出测试音频信号;
接收单元,用于通过反馈麦克风采集测试音频信号对应的接收音频信号;
计算单元,用于根据测试音频信号以及接收音频信号,计算得到系统校正参数;
上述频响校正单元,具体可以用于根据系统校正参数分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号。
在一种实施例中,该音频信号补偿装置还可以包括未图示的确定单元,其中:
上述接收单元,还可以用于在上述输出单元1001通过扬声器输出测试音频信号之前,通过前馈麦克风采集环境音;
确定单元,用于根据该环境音的环境声音强度,确定扬声器输出测试音频信号的测试声音强度;
上述输出单元1001,具体可以用于通过扬声器输出具备该测试声音强度的测试音频信号。
示例性地,该测试音频信号可以包括白噪声信号,该白噪声信号的测试声音强度可以与前馈麦克风采集到的环境音的环境声音强度成正相关关系。
在一种实施例中,上述系统校正参数可以包括目标均衡器参数,上述计算单元具体可以用于分别对测试音频信号以及接收音频信号进行傅里叶变换;将进行傅里叶变换后的接收音频信号与测试音频信号相比,得到系统频率响应;基于最小二乘准则,根据上述系统频率响应计算得到目标均衡器参数;
上述频响校正单元,具体可以通过由目标均衡器参数配置得到的目标均衡器对初始音频信号进行均衡校正,得到校正音频信号。
示例性地,上述目标均衡器可以包括由有限长单位冲激响应FIR滤波器组成的均衡器。
在一种实施例中,上述接收单元,还可以用于在频响校正单元分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到上述交互音频信号之前,响应偏好检测指令,通过前馈麦克风采集环境音;
上述计算单元,还可以用于根据该环境音,计算得到环境音参数,若该环境音参数低于环境音阈值,则触发频响校正单元901执行对初始音频信号进行系统频响校正,得到校正音频信号的步骤。
其中,上述计算单元,具体可以按照单位窗口长度对环境音进行加窗分割,得到至少一帧环境音子信号;分别计算每帧环境音子信号的短时平均能量;对每帧环境音子信号的短时平均能量进行平滑处理,得到上述环境音对应的环境音参数。
可见,采用上述实施例所描述的音频信号补偿装置,能够借助耳机方便地检测用户对不同音乐风格的偏好情况,进而可以方便地为不同用户提供符合其听音偏好的个性化音频信号,提高了根据用户偏好进行音频信号补偿的灵活性和有效性;此外,通过借助简单的交互操作,无需在静音房或消声室等专门环境即可实现针对用户的偏好检测,并获取相对准确的用户偏好信息,有利于提升根据用户偏好信息进行音频信号补偿的灵活性和便利性;此外,通过滤波补偿的方式,能够有效地对待输出的目标音频信号进行实时补偿,进一步提高了根据用户偏好信息进行音频信号补偿的灵活性和准确性。
请参阅图11,图11是本申请实施例公开的一种耳机的模块化示意图。如图11所示,该耳机可以包括:
存储有可执行程序代码的存储器1101;
与存储器1101耦合的处理器1102;
其中,处理器1102调用存储器1101中存储的可执行程序代码,可以执行上述实施例所描述的任意一种音频信号补偿方法中的全部或部分步骤。
此外,本申请实施例进一步公开了一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,该计算机程序使得计算机可以执行上述实施例所描述的任意一种音频信号补偿方法中的全部或部分步骤。
此外,本申请实施例进一步公开一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机可以执行上述实施例所描述的任意一种音频信号补偿方法中的全部或部分步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本申请实施例公开的一种音频信号补偿方法及装置、耳机、存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说 明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (32)

  1. 一种音频信号补偿方法,其特征在于,应用于耳机,所述方法包括:
    输出交互音频信号,其中,所述交互音频信号包括一个或多个音频片段,所述一个或多个音频片段分别对应不同的音乐风格;
    获取针对每个所述音频片段的交互音频信号反馈的用户偏好信息;
    根据所述用户偏好信息确定补偿参数,所述补偿参数用于对待输出的目标音频信号进行补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述补偿参数包括补偿滤波器参数,所述根据所述用户偏好信息确定补偿参数,包括:
    根据每个所述音频片段对应的用户偏好信息,计算各个补偿滤波器对应的补偿滤波器参数;
    所述方法还包括:
    通过所述各个补偿滤波器对应的补偿滤波器参数配置所述各个补偿滤波器,所述各个补偿滤波器用于对待输出的目标音频信号进行滤波补偿。
  3. 根据权利要求2所述的方法,其特征在于,所述补偿滤波器参数包括增益系数,所述根据每个所述音频片段对应的用户偏好信息,计算各个补偿滤波器对应的补偿滤波器参数,包括:
    确定与每个音频片段的音乐风格对应的补偿滤波器;
    根据每个音频片段对应的用户偏好信息,分别计算与所述每个音频片段对应的补偿滤波器的基础增益系数;
    基于每个补偿滤波器对应的一个或多个基础增益系数,计算所述每个补偿滤波器的综合增益系数,所述每个补偿滤波器对应的各个基础增益系数分别与不同的音乐风格对应。
  4. 根据权利要求3所述的方法,其特征在于,所述基于每个补偿滤波器对应的各个基础增益系数,计算所述每个补偿滤波器的综合增益系数,包括:
    基于第一补偿滤波器对应的各个基础增益系数,计算所述各个基础增益系数的均值,并将所述均值确定为所述第一补偿滤波器的综合增益系数,所述第一补偿滤波器为所述各个补偿滤波器中的任一补偿滤波器。
  5. 根据权利要求3所述的方法,其特征在于,同一所述音频片段对应的所有补偿滤波器的基础增益系数之和为1。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述补偿滤波器包括无限长单位冲激响应IIR滤波器。
  7. 根据权利要求2至5任一项所述的方法,其特征在于,在所述通过所述补偿滤波器参数配置对应的各个所述补偿滤波器之后,所述方法还包括:
    若存在M个补偿滤波器,将所述M个补偿滤波器进行级联,其中,M为大于或等于1的正整数。
  8. 根据权利要求1至5任一项所述的方法,其特征在于,在所述输出交互音频信号之前,所述方法还包括:
    分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号。
  9. 根据权利要求8所述的方法,其特征在于,所述耳机包括扬声器及反馈麦克风,在所述分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号之前,所述方法还包括:
    通过所述扬声器输出测试音频信号;
    通过所述反馈麦克风采集所述测试音频信号对应的接收音频信号;
    根据所述测试音频信号以及所述接收音频信号,计算得到系统校正参数;
    所述分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号,包括:
    根据所述系统校正参数分别对所述一个或多个音频片段的初始音频信号进行系统频响校正,得到所述交互音频信号。
  10. 根据权利要求9所述的方法,其特征在于,所述耳机还包括前馈麦克风,在所述通过所述扬声器输出测试音频信号之前,所述方法还包括:
    通过所述前馈麦克风采集环境音;
    根据所述环境音的环境声音强度,确定所述扬声器输出所述测试音频信号的测试声音强度;
    所述通过所述扬声器输出测试音频信号,包括:
    通过所述扬声器输出具备所述测试声音强度的测试音频信号。
  11. 根据权利要求10所述的方法,其特征在于,所述测试音频信号包括白噪声信号,所述白噪声信号的测试声音强度与所述前馈麦克风采集到的环境音的环境声音强度成正相关关系。
  12. 根据权利要求9所述的方法,其特征在于,所述系统校正参数包括目标均衡器参数,所述根据所述测试音频信号以及所述接收音频信号,计算得到系统校正参数,包括:
    分别对所述测试音频信号以及所述接收音频信号进行傅里叶变换;
    计算变换后的接收音频信号与变换后的测试音频信号之间的比,得到系统频率响应;
    基于最小二乘准则,根据所述系统频率响应计算得到所述目标均衡器参数;
    所述根据所述系统校正参数分别对所述一个或多个音频片段的初始音频信号进行系统频响校正,得到所述交互音频信号,包括:
    通过由所述目标均衡器参数配置得到的目标均衡器分别对所述一个或多个音频片段的初始音频信号进行系统频响校正,得到所述交互音频信号。
  13. 根据权利要求12所述的方法,其特征在于,所述目标均衡器包括由有限长单位冲激响应FIR滤波器组成的均衡器。
  14. 根据权利要求8所述的方法,其特征在于,所述耳机包括前馈麦克风,在所述分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号之前,所述方法还包括:
    响应偏好检测指令,通过所述前馈麦克风采集环境音;
    根据所述环境音,计算得到环境音参数;
    若所述环境音参数低于环境音阈值,则执行所述分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号的步骤。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述环境音,计算得到环境音参数,包括:
    按照单位窗口长度对所述环境音进行加窗分割,得到至少一帧环境音子信号;
    分别计算每帧环境音子信号的短时平均能量;
    对所述每帧环境音子信号的短时平均能量进行平滑处理,得到所述环境音对应的环境音参数。
  16. 一种音频信号补偿装置,其特征在于,应用于耳机,所述音频信号补偿装置包括:
    输出单元,用于输出交互音频信号,其中,所述交互音频信号包括一个或多个音频片段,所述一个或多个音频片段分别对应不同的音乐风格;
    获取单元,用于获取针对每个所述音频片段的交互音频信号反馈的用户偏好信息;
    补偿单元,用于根据所述用户偏好信息确定补偿参数,所述补偿参数用于对待输出的目标音频信号进行补偿。
  17. 根据权利要求16所述的音频信号补偿装置,其特征在于,所述补偿参数包括补偿滤波器参数,所述补偿单元,用于根据每个所述音频片段对应的用户偏好信息,计算各个补偿滤波器对应的补偿滤波器参数;
    所述音频信号补偿装置还包括:
    配置单元,用于通过所述各个补偿滤波器对应的补偿滤波器参数配置所述各个补偿滤波器,所述各个补偿滤波器用于对待输出的目标音频信号进行滤波补偿。
  18. 根据权利要求17所述的音频信号补偿装置,其特征在于,所述补偿滤波器参数包括增益系数,所述补偿单元,包括:
    确定子单元,用于确定与每个音频片段的音乐风格对应的补偿滤波器;
    第一计算子单元,用于根据每个音频片段对应的用户偏好信息,分别计算与所述每个音频片段对应的补偿滤波器的基础增益系数;
    第二计算子单元,用于基于每个补偿滤波器对应的一个或多个基础增益系数,计算所述每个补偿滤波器的综合增益系数,所述每个补偿滤波器对应的各个基础增益系数分别与不同的音乐风格对应。
  19. 根据权利要求18所述的音频信号补偿装置,其特征在于,所述第二计算子单元,用于基于第一补偿滤波器对应的各个基础增益系数,计算所述各个基础增益系数的均值,并将所述均值确定为所述第一补偿滤波器的综合增益系数,所述第一补偿滤波器为所述各个补偿滤波器中的任一补偿滤波器。
  20. 根据权利要求18所述的音频信号补偿装置,其特征在于,同一所述音频片段对应的所有补偿滤波器的基础增益系数之和为1。
  21. 根据权利要求17至20任一项所述的音频信号补偿装置,其特征在于,所述补偿滤波器包括无限长单位冲激响应IIR滤波器。
  22. 根据权利要求17至20任一项所述的音频信号补偿装置,其特征在于,所述配置单元,还用于在通过所述各个补偿滤波器对应的补偿滤波器参数配置所述各个补偿滤波器之后,在存在M个补偿滤波器的情况下,将所述M个补偿滤波器进行级联,其中,M为大于或等于1的正整数。
  23. 根据权利要求16至20任一项所述的音频信号补偿装置,其特征在于,所述音频信号补偿装置还包括:
    频响校正单元,用于在所述输出单元输出交互音频信号之前,分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号。
  24. 根据权利要求23所述的音频信号补偿装置,其特征在于,所述耳机包括扬声器及反馈麦克风,所述输出单元,还用于在所述频响校正单元分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号之前,通过所述扬声器输出测试音频信号;
    所述音频信号补偿装置还包括:
    接收单元,用于通过所述反馈麦克风采集所述测试音频信号对应的接收音频信号;
    计算单元,用于根据所述测试音频信号以及所述接收音频信号,计算得到系统校正参数;
    所述频响校正单元,用于根据所述系统校正参数分别对所述一个或多个音频片段的初始音频信号进行系统频响校正,得到所述交互音频信号。
  25. 根据权利要求24所述的音频信号补偿装置,其特征在于,所述耳机还包括前馈麦 克风,所述接收单元,还用于在所述输出单元通过所述扬声器输出测试音频信号之前,通过所述前馈麦克风采集环境音;
    所述音频信号补偿装置还包括:
    确定单元,用于根据所述环境音的环境声音强度,确定所述扬声器输出所述测试音频信号的测试声音强度;
    所述输出单元,用于通过所述扬声器输出具备所述测试声音强度的测试音频信号。
  26. 根据权利要求25所述的音频信号补偿装置,其特征在于,所述测试音频信号包括白噪声信号,所述白噪声信号的测试声音强度与所述前馈麦克风采集到的环境音的环境声音强度成正相关关系。
  27. 根据权利要求24所述的音频信号补偿装置,其特征在于,所述系统校正参数包括目标均衡器参数,所述计算单元,用于分别对所述测试音频信号以及所述接收音频信号进行傅里叶变换;以及,计算变换后的接收音频信号与变换后的测试音频信号之间的比,得到系统频率响应;以及,基于最小二乘准则,根据所述系统频率响应计算得到所述目标均衡器参数;
    所述频响校正单元,用于通过由所述目标均衡器参数配置得到的目标均衡器分别对所述一个或多个音频片段的初始音频信号进行系统频响校正,得到所述交互音频信号。
  28. 根据权利要求27所述的音频信号补偿装置,其特征在于,所述目标均衡器包括由有限长单位冲激响应FIR滤波器组成的均衡器。
  29. 根据权利要求23所述的音频信号补偿装置,其特征在于,所述耳机包括前馈麦克风,所述音频信号补偿装置还包括:
    接收单元,用于在所述频响校正单元分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号之前,响应偏好检测指令,通过所述前馈麦克风采集环境音;
    计算单元,用于根据所述环境音,计算得到环境音参数;
    所述频响校正单元,用于在所述环境音参数低于环境音阈值的情况下,分别对一个或多个音频片段的初始音频信号进行系统频响校正,得到交互音频信号。
  30. 根据权利要求29所述的音频信号补偿装置,其特征在于,所述计算单元,用于按照单位窗口长度对所述环境音进行加窗分割,得到至少一帧环境音子信号;以及,分别计算每帧环境音子信号的短时平均能量;以及,对所述每帧环境音子信号的短时平均能量进行平滑处理,得到所述环境音对应的环境音参数。
  31. 一种耳机,其特征在于,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现如权利要求1至15任一项所述的音频信号补偿方法。
  32. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至15任一项所述的音频信号补偿方法。
PCT/CN2022/086087 2021-05-26 2022-04-11 音频信号补偿方法及装置、耳机、存储介质 WO2022247494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110580650.8A CN115412803A (zh) 2021-05-26 2021-05-26 音频信号补偿方法及装置、耳机、存储介质
CN202110580650.8 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022247494A1 true WO2022247494A1 (zh) 2022-12-01

Family

ID=84156228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086087 WO2022247494A1 (zh) 2021-05-26 2022-04-11 音频信号补偿方法及装置、耳机、存储介质

Country Status (2)

Country Link
CN (1) CN115412803A (zh)
WO (1) WO2022247494A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116782095A (zh) * 2023-08-23 2023-09-19 苏州爱情之音科技有限公司 一种车载音响系统的响度补偿方法及车载音响系统
CN117292698A (zh) * 2023-11-22 2023-12-26 科大讯飞(苏州)科技有限公司 车载音频数据的处理方法、装置和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030089218A1 (en) * 2000-06-29 2003-05-15 Dan Gang System and method for prediction of musical preferences
CN111399795A (zh) * 2019-01-03 2020-07-10 哈曼国际工业有限公司 多步声音偏好确定
CN111988690A (zh) * 2019-05-23 2020-11-24 北京小鸟听听科技有限公司 一种耳机佩戴状态检测方法、装置和耳机
CN112333596A (zh) * 2020-11-05 2021-02-05 江苏紫米电子技术有限公司 一种耳机均衡器的调整方法、装置、服务器及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030089218A1 (en) * 2000-06-29 2003-05-15 Dan Gang System and method for prediction of musical preferences
CN111399795A (zh) * 2019-01-03 2020-07-10 哈曼国际工业有限公司 多步声音偏好确定
CN111988690A (zh) * 2019-05-23 2020-11-24 北京小鸟听听科技有限公司 一种耳机佩戴状态检测方法、装置和耳机
CN112333596A (zh) * 2020-11-05 2021-02-05 江苏紫米电子技术有限公司 一种耳机均衡器的调整方法、装置、服务器及介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116782095A (zh) * 2023-08-23 2023-09-19 苏州爱情之音科技有限公司 一种车载音响系统的响度补偿方法及车载音响系统
CN116782095B (zh) * 2023-08-23 2023-11-28 苏州爱情之音科技有限公司 一种车载音响系统的响度补偿方法及车载音响系统
CN117292698A (zh) * 2023-11-22 2023-12-26 科大讯飞(苏州)科技有限公司 车载音频数据的处理方法、装置和电子设备
CN117292698B (zh) * 2023-11-22 2024-04-12 科大讯飞(苏州)科技有限公司 车载音频数据的处理方法、装置和电子设备

Also Published As

Publication number Publication date
CN115412803A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
JP6490641B2 (ja) ラウドネスに基づくオーディ信号補償
CN113676803B (zh) 一种主动降噪方法及装置
CN106664473B (zh) 信息处理装置、信息处理方法和程序
WO2022247494A1 (zh) 音频信号补偿方法及装置、耳机、存储介质
CN103871421B (zh) 一种基于子带噪声分析的自适应降噪方法与系统
WO2011141772A1 (en) Method and apparatus for processing an audio signal based on an estimated loudness
WO2022218093A1 (zh) 音频信号补偿方法及装置、耳机、存储介质
US11580966B2 (en) Pre-processing for automatic speech recognition
JP2011061422A (ja) 情報処理装置、情報処理方法およびプログラム
US10204637B2 (en) Noise reduction methodology for wearable devices employing multitude of sensors
JP4914319B2 (ja) コミュニケーション音声処理方法とその装置、及びそのプログラム
WO2022256577A1 (en) A method of speech enhancement and a mobile computing device implementing the method
CN113424558A (zh) 智能个人助理
WO2023016208A1 (zh) 音频信号补偿方法及装置、耳机、存储介质
CN111163411B (zh) 减少干扰音影响的方法及声音播放装置
WO2023020208A1 (zh) 音频信号处理方法及装置、耳机、存储介质
WO2021103262A1 (zh) 耳机的控制方法、耳机及可读存储介质
WO2024093536A1 (zh) 音频信号处理方法及装置、音频播放设备、存储介质
TWI700004B (zh) 減少干擾音影響之方法及聲音播放裝置
WO2023138252A1 (zh) 音频信号处理方法及装置、耳机设备、存储介质
Ruiz et al. Cascade algorithms for combined acoustic feedback cancelation and noise reduction
TWI837867B (zh) 聲音補償方法及頭戴式裝置
CN116782084A (zh) 音频信号处理方法及装置、耳机、存储介质
CN115914911A (zh) 音频信号处理方法及装置、耳机、存储介质
EP4158625A1 (en) A own voice detector of a hearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810227

Country of ref document: EP

Kind code of ref document: A1