WO2024093536A1 - 音频信号处理方法及装置、音频播放设备、存储介质 - Google Patents

音频信号处理方法及装置、音频播放设备、存储介质 Download PDF

Info

Publication number
WO2024093536A1
WO2024093536A1 PCT/CN2023/118456 CN2023118456W WO2024093536A1 WO 2024093536 A1 WO2024093536 A1 WO 2024093536A1 CN 2023118456 W CN2023118456 W CN 2023118456W WO 2024093536 A1 WO2024093536 A1 WO 2024093536A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
detection
hearing
audio
playback device
Prior art date
Application number
PCT/CN2023/118456
Other languages
English (en)
French (fr)
Inventor
练添富
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024093536A1 publication Critical patent/WO2024093536A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to an audio signal processing method and device, an audio playback device, and a storage medium.
  • the embodiments of the present application disclose an audio signal processing method and apparatus, an audio playback device, and a storage medium.
  • an embodiment of the present application discloses an audio signal processing method, which is applied to an audio playback device, wherein the audio playback device includes a feedforward microphone, and the method includes:
  • Acquiring hearing feature information for a first detection audio signal wherein the first detection audio signal is output by a terminal device that establishes a communication connection with the audio playback device;
  • a transparent transmission parameter is determined according to the hearing feature information, and the transparent transmission parameter is used to perform transparent transmission processing on the target audio signal to be received by the feedforward microphone.
  • a second aspect of an embodiment of the present application discloses an audio signal processing device, which is applied to an audio playback device, wherein the audio playback device includes a feedforward microphone, and the audio signal processing device includes:
  • a first information acquisition unit configured to acquire hearing feature information for a first detection audio signal, wherein the first detection audio signal is output by a terminal device that establishes a communication connection with the audio playback device;
  • a parameter determination unit is used to determine a transparent transmission parameter according to the hearing feature information, wherein the transparent transmission parameter is used to perform transparent transmission processing on the target audio signal to be received by the feedforward microphone.
  • a third aspect of an embodiment of the present application discloses an audio playback device, including a memory and a processor, wherein the memory stores a computer program, and when the computer program is executed by the processor, the processor implements all or part of the steps in the audio signal processing method disclosed in the first aspect of the embodiment of the present application.
  • a fourth aspect of an embodiment of the present application discloses a computer-readable storage medium storing a computer program, wherein when the computer program is executed by a processor, all or part of the steps in the audio signal processing method disclosed in the first aspect of the embodiment of the present application are implemented.
  • FIG1A is a schematic diagram of an application scenario of the audio signal processing method disclosed in an embodiment of the present application.
  • FIG1B is a schematic diagram of another application scenario of the audio signal processing method disclosed in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of an audio playback device disclosed in an embodiment of the present application.
  • FIG3 is a flow chart of an audio signal processing method disclosed in an embodiment of the present application.
  • FIG4A is a schematic diagram of a signal transmission link applied to an audio playback device disclosed in an embodiment of the present application.
  • FIG4B is a schematic diagram of another signal transmission link applied to an audio playback device disclosed in an embodiment of the present application.
  • FIG4C is a schematic diagram of another signal transmission link applied to an audio playback device disclosed in an embodiment of the present application.
  • FIG4D is a schematic diagram of a fourth signal transmission link applied to an audio playback device disclosed in an embodiment of the present application.
  • FIG5 is a flow chart of another audio signal processing method disclosed in an embodiment of the present application.
  • FIG6 is a schematic diagram of a process for obtaining ear canal feature information disclosed in an embodiment of the present application.
  • FIG7 is a schematic diagram of an amplitude-frequency response corresponding to an ear canal equalization transfer function disclosed in an embodiment of the present application.
  • FIG8 is a schematic diagram of a process for obtaining hearing feature information disclosed in an embodiment of the present application.
  • FIG9 is a schematic diagram of fitting a corresponding hearing compensation transfer function according to hearing feature information disclosed in an embodiment of the present application.
  • FIG10 is a flow chart of another audio signal processing method disclosed in an embodiment of the present application.
  • FIG11 is a schematic diagram of the amplitude-frequency response corresponding to the cascade connection of the first filter and the second filter disclosed in an embodiment of the present application;
  • FIG12 is a schematic diagram showing the effect of performing personalized hearing compensation processing and personalized ear canal equalization processing by the filter shown in FIG11;
  • FIG13 is a modular schematic diagram of an audio signal processing device disclosed in an embodiment of the present application.
  • FIG. 14 is a modular schematic diagram of an audio playback device disclosed in an embodiment of the present application.
  • the embodiments of the present application disclose an audio signal processing method and apparatus, an audio playback device, and a storage medium, which can perform personalized transparent transmission compensation on the external audio signal received by the audio playback device according to the differences in hearing characteristics of different users, thereby providing the user with a suitable audio signal after transparent transmission processing, which is beneficial to improving the accuracy of the audio playback device in transparent transmission processing of the external audio signal.
  • Figure 1A is a schematic diagram of an application scenario of the audio signal processing method disclosed in the embodiment of the present application
  • Figure 1B is another schematic diagram of an application scenario of the audio signal processing method disclosed in the embodiment of the present application
  • the application scenario may include a user 10 and an audio playback device 20.
  • the user 10 can detect the impact of the user's own hearing-related characteristics (such as personalized ear canal structure differences, personalized hearing characteristics, etc.) on its listening effect through the audio playback device 20, and in particular, it may include the different effects that the above-mentioned hearing-related characteristics may cause on the audio signal received by the user 10 when the audio signal in the external environment needs to be transparently transmitted through the audio playback device 20.
  • the user's own hearing-related characteristics such as personalized ear canal structure differences, personalized hearing characteristics, etc.
  • the external audio signal to be received by the audio playback device 20 can be subjected to corresponding filtering processing to achieve personalized transparent transmission compensation, so that the audio signal received by the user 10 can be as close as possible to the actual external audio signal, thereby improving the user 10's experience when using the transparent transmission function of the audio playback device 20.
  • the audio playback device 20 may include a first speaker 21 and a feedback microphone 22 disposed in front of the first speaker 21 (i.e., when the user wears the audio playback device, the feedback microphone is between the first speaker and the user's eardrum), so that the feedback microphone 22 can collect the audio signal output by the first speaker 21 and transmitted through the ear canal of the user 10; and collect the audio signal transmitted to the user 10 by the external environment "through" the audio playback device 20.
  • the audio playback device 20 may also include a feedforward microphone 23, which may be disposed behind the first speaker 21 (i.e., when the user wears the audio playback device, the feedforward microphone is between the first speaker and the external environment), so as to collect the audio signal in the external environment through the feedforward microphone 23.
  • a feedforward microphone 23 may be disposed behind the first speaker 21 (i.e., when the user wears the audio playback device, the feedforward microphone is between the first speaker and the external environment), so as to collect the audio signal in the external environment through the feedforward microphone 23.
  • the above-mentioned transparent transmission function means that the audio playback device 20 can output the external audio signal received through the feedforward microphone 23 to the user 10 through its first speaker 21 after a certain transparent transmission compensation, so that the external audio signal can "pass through” the audio playback device 20 and be received by the eardrum of the user 10, so that the user 10 can still accurately receive the audio signal in the external environment (such as ambient sound, human voice, etc.) when wearing the audio playback device 20.
  • the audio playback device 20 in order to realize the transparent transmission function of the external audio signal, can first detect the hearing-related characteristics such as the personalized ear canal structure difference and personalized hearing characteristics of the user 10, and determine the corresponding transparent transmission parameters according to the detection results to configure a suitable transparent transmission compensation filter.
  • the user 10 in addition to outputting and receiving the corresponding detection audio signal through the audio playback device 20, the user 10 can also perform necessary interactive operations through the audio playback device 20 (for example, interacting with the audio playback device by clicking, touching, etc.) to assist in obtaining the ear canal feature information, hearing feature information, etc. corresponding to the user 10.
  • the audio playback device 20 may also establish a communication connection with the terminal device 30, and the terminal device 30 may transmit the required detection audio data to the audio playback device 20 based on the above communication connection, so that the audio playback device 20 can transmit the required detection audio data to the audio playback device 20 through its first A speaker 21 outputs a corresponding detection audio signal; it can also directly output the required detection audio signal through its built-in second speaker (not specifically shown) in an external speaker manner.
  • the user 10 can also interact with the terminal device 30 to trigger the audio playback device 20 to perform the above-mentioned detection through the terminal device 30.
  • the terminal device 30 when the terminal device 30 detects the user 10's test interaction operation for it (such as a touch operation such as clicking or swiping the test button on the terminal device 30, sending a voice operation containing a specified keyword such as "test" to the terminal device 30, and moving the terminal device 30 according to a preset trajectory), it can send a corresponding test instruction to the audio playback device 20 to trigger the audio playback device 20 to output the corresponding detection audio signal.
  • the user 10 can also perform other necessary interactive operations (such as interacting with the terminal device by clicking, touching, etc.) through the terminal device 30 to assist in obtaining the ear canal feature information, hearing feature information, etc. corresponding to the user 10.
  • the audio playback device 20 may include various electronic devices with audio receiving and output functions, such as headphones and hearing aids, and may particularly include TWS (True Wireless Stereo) headphones.
  • the terminal device 30 may include various devices or systems with communication functions that can establish a communication connection with the audio playback device 20, such as mobile phones, smart wearable devices, vehicle-mounted terminals, tablet computers, PCs (Personal Computers), PDAs (Personal Digital Assistants), etc., which are not specifically limited in the embodiments of the present application.
  • the audio playback device 20 in order to determine the above-mentioned transparent transmission parameters, can obtain hearing feature information for the first detection audio signal, wherein the first detection audio signal can be output by the terminal device 30 that establishes a communication connection with the audio playback device 20. On this basis, the audio playback device 20 can determine the corresponding transparent transmission parameters according to the above-mentioned hearing feature information, and the transparent transmission parameters can be used to perform transparent transmission processing on the target audio signal to be received by the feedforward microphone 23.
  • the audio playback device 20 can accurately determine the corresponding transparent transmission parameters according to the differences in hearing characteristics of different users 10, so as to perform personalized transparent transmission compensation on the external audio signal subsequently received by the audio playback device 20, so that the audio playback device 20 can transmit the external audio signal to the user 10 as accurately as possible.
  • the audio playback device 20 may also obtain ear canal feature information calculated based on the first received audio signal, wherein the first received audio signal is a received audio signal corresponding to the first detection audio signal collected by the feedback microphone 22, and the first detection audio signal may be output by the audio playback device 20 through its first speaker 21.
  • the audio playback device 20 may jointly determine corresponding transparent transmission parameters based on the ear canal feature information and the hearing feature information.
  • Such an audio signal processing method can effectively improve the accuracy of the audio playback device 20 in transparent transmission processing of external audio signals, thereby providing different users 10 with external audio signals that have undergone adaptive transparent transmission processing and match the hearing-related characteristics of the user 10, which is beneficial to improving the user 10's experience of using the audio playback device.
  • FIG 3 is a flowchart of an audio signal processing method disclosed in an embodiment of the present application.
  • the method can be applied to the above-mentioned audio playback device, and the audio playback device can include a first speaker, a feedforward microphone, and a feedback microphone.
  • the audio signal processing method can include the following steps:
  • a user uses an audio playback device (for example, wearing headphones or hearing aids, etc.)
  • an audio playback device for example, wearing headphones or hearing aids, etc.
  • all or part of the audio signals in the external environment can be transmitted to the user's eardrum as accurately as possible, so as to achieve the effect of the external audio signal "transmitting through” the audio playback device to the user (that is, as close as possible to the listening effect when not wearing the audio playback device).
  • the audio playback device can first detect the user's own personalized ear canal structure differences, personalized hearing characteristics and other hearing-related characteristics, and obtain corresponding ear canal feature information, hearing feature information, etc., so as to perform corresponding transparent transmission compensation on the target audio signal received from the outside in subsequent steps.
  • the above-mentioned hearing feature information can correspond to the user's personalized hearing characteristics, that is, it is used to indicate that due to the different sensitivities of different users to audio signals in different frequency bands or with different spectral changes, the same audio signal transmitted to different users can present differentiated listening effects.
  • the above-mentioned first detection audio signal may include a pure tone signal at a specific frequency, such as a pure tone signal at a medium and low frequency point such as 500Hz, 1000Hz, 2000Hz, and a pure tone signal at a high frequency point such as 4000Hz, 6000Hz, 8000Hz.
  • the above-mentioned different frequency points to be tested can cover a certain frequency range, so as to be used for a more comprehensive detection of the hearing characteristics of the user in different frequency bands (i.e., the sensitivity to audio signals in different frequency bands), and it is also beneficial to reduce the number of detections and save detection time.
  • the above-mentioned hearing detection process is carried out when the user uses the above-mentioned audio playback device, so it can relatively accurately reflect the different sensitivity of the user to different frequency bands or audio signals with different spectrum changes in actual scenarios such as wearing headphones and hearing aids, so as to improve the accuracy and reliability of the user's use of the audio playback device to transparently process the external audio signal.
  • the above-mentioned first detection audio signal can be output through a device in the external environment, for example, it can be output through a terminal device that establishes a communication connection with the above-mentioned audio playback device, or it can be output through another independent audio playback device, etc.
  • the terminal device can be provided with a second speaker.
  • the terminal device can output the first detection audio signal through its second speaker under the triggering of the above-mentioned audio playback device; in other embodiments, the terminal device can also output the first detection audio signal through its second speaker under the direct triggering of the user.
  • the audio playback device can analyze and determine the hearing feature information for the first detection audio signal based on the user's feedback on the above-mentioned first detection audio signal, such as whether the user has heard the feedback on the first detection audio signal, and then comprehensively determine the hearing feature information of the user corresponding to each frequency point to be tested, so that the hearing feature information can be used in subsequent steps to perform more accurate transparent transmission compensation for the target audio signal to be received by the audio playback device.
  • the audio playback device can perform analysis and calculation based on the hearing feature information to evaluate the impact of the audio signal in the external environment on the process of transmission to the user's eardrum when the user uses the audio playback device, and then calculate the corresponding transparent transmission parameters for transparent transmission compensation of the subsequently received audio signals.
  • the audio playback device may further detect the personalized ear canal structure differences of the user to obtain the ear canal feature information corresponding to the user.
  • the ear canal feature information may correspond to the personalized ear canal structure differences of the user, that is, it is used to indicate that due to the ear canal structure differences of different users, the same audio signal transmitted to different users may present differentiated listening effects.
  • the above-mentioned personalized ear canal structure difference detection it can be realized by outputting a specified second detection audio signal to the user through an audio playback device.
  • the above-mentioned second detection audio signal may include a white noise signal, and may also include an audio data signal corresponding to audio data with actual information such as music files, recording files, chat voices, etc., which can cover a larger frequency range, especially the main frequency band included in the human ear hearing range, so that it can be used to detect the audio system in which the audio playback device is located (that is, the path for the audio signal output by the audio playback device to be transmitted between the audio playback device and the user, which can be understood as the user's "ear canal")
  • the audio system in which the audio playback device that is, the path for the audio signal output by the audio playback device to be transmitted between the audio playback device and the user, which can be understood as the user's "ear canal”
  • the audio playback device that when the user uses the audio playback device, its feedback microphone can be between its
  • the second detection audio signal can be obtained locally by the audio player device, or it can be obtained from outside the audio player device.
  • the detection audio signal can be pre-stored in the storage module of the audio player device, so that when the detection audio signal needs to be obtained, the audio player device can directly call the specified second detection audio signal, and output it through its built-in first speaker.
  • the detection audio data (such as the amplitude-frequency data, signal-to-noise ratio data, etc. used to generate the detection audio signal) can also be stored in the above-mentioned storage module, so that the audio player device can call the detection audio data, generate the specified second detection audio signal locally, and then output it through the above-mentioned first speaker.
  • the detection audio signal can be stored in a terminal device connected to the audio player device for communication, and when the detection audio signal needs to be obtained, the terminal device can send the specified second detection audio signal to the audio player device, and then the audio player device outputs it through its first speaker.
  • the audio playback device After the audio playback device outputs the above-mentioned second detection audio signal through its built-in first speaker, it can further receive a first received audio signal corresponding to the second detection audio signal through its feedback microphone. On this basis, the audio playback device can analyze and calculate according to the first received audio signal to determine the corresponding ear canal feature information. In some embodiments, the audio playback device can also analyze and calculate together according to the first received audio signal and the above-mentioned second detection audio signal to obtain the corresponding ear canal feature information.
  • the audio playback device can analyze and calculate the above-mentioned ear canal characteristic information and hearing characteristic information, and jointly determine the corresponding transparent transmission parameters for transparent transmission compensation of the subsequently received audio signals.
  • the corresponding filter i.e., personalized transparent transmission filter
  • the corresponding filter can be configured according to the above-mentioned transparent transmission parameters, and based on the above-mentioned filter, the target audio signal received by the audio playback device through its feedforward microphone can be subjected to corresponding transparent transmission processing, and then the target audio signal after transparent transmission processing can be output through its first speaker, thereby being able to balance the possible impacts on the target audio signal when it is transmitted in the audio system where the audio playback device is located, so that the target audio signal heard by the user is as close as possible to the listening effect when the user is not wearing the audio playback device.
  • the above-mentioned filter may be composed of one or more filters, which may include a FIR (Finite Impulse Response) filter or an IIR (Infinite Impulse Response) filter, which is not specifically limited in the embodiments of the present application.
  • filters which may include a FIR (Finite Impulse Response) filter or an IIR (Infinite Impulse Response) filter, which is not specifically limited in the embodiments of the present application.
  • FIG. 4A is a signal transmission chain disclosed in an embodiment of the present application and applied to the above-mentioned audio playback device.
  • the target audio signal may first be processed by analog-to-digital conversion (ADC), a factory-cured transparent transmission filter (obtained by other necessary transparent transmission parameter configurations that can be determined before the audio playback device leaves the factory), and then further processed by a personalized transparent transmission filter for corresponding transparent transmission compensation, and then may be converted to digital-to-analogue (DAC) and output by the first speaker.
  • ADC analog-to-digital conversion
  • DAC digital-to-analogue
  • the above-mentioned personalized transparent transmission filter may include a personalized hearing compensation filter, which may represent the hearing compensation parameters determined based on the above-mentioned hearing feature information, and the filter required to be configured for performing corresponding personalized hearing compensation on the target audio signal, that is, the above-mentioned transparent transmission processing may only include the process of personalized hearing compensation.
  • a personalized hearing compensation filter which may represent the hearing compensation parameters determined based on the above-mentioned hearing feature information, and the filter required to be configured for performing corresponding personalized hearing compensation on the target audio signal, that is, the above-mentioned transparent transmission processing may only include the process of personalized hearing compensation.
  • the personalized transmission filter may also include a personalized ear canal equalization filter, which may represent the ear canal equalization parameters determined based on the ear canal characteristic information, and may be a filter configured to perform corresponding personalized ear canal equalization on the target audio signal, that is, the transmission processing may only include the process of personalized ear canal equalization.
  • a personalized ear canal equalization filter which may represent the ear canal equalization parameters determined based on the ear canal characteristic information, and may be a filter configured to perform corresponding personalized ear canal equalization on the target audio signal, that is, the transmission processing may only include the process of personalized ear canal equalization.
  • the personalized transparent transmission filter may include a personalized hearing compensation filter and a personalized ear canal equalization filter, that is, the transparent transmission processing may include a personalized ear canal equalization and a personalized hearing compensation process.
  • the audio playback device may perform transparent transmission compensation on the target audio signal through a personalized hearing compensation filter and a personalized ear canal equalization filter in sequence (as shown in FIG4D), or may adopt the opposite order, that is, perform transparent transmission compensation on the target audio signal through a personalized ear canal equalization filter and a personalized hearing compensation filter in sequence (not specifically shown in the figure), which is not specifically limited in the embodiments of the present application.
  • the audio playback device can accurately determine the corresponding transparent transmission parameters according to the differences in hearing characteristics of different users, so as to perform personalized transparent transmission compensation for the external audio signals subsequently received by the audio playback device, so that the audio playback device can transparently transmit the external audio signals to the user as accurately as possible.
  • Such an audio signal processing method can effectively improve the accuracy of the transparent transmission processing of the external audio signal by the audio playback device, so as to provide different users with external audio signals that have undergone adaptive transparent transmission processing and match the user's hearing-related characteristics, which is conducive to improving the user's experience of using the audio playback device.
  • FIG. 5 is a flowchart of another audio signal processing method disclosed in an embodiment of the present application.
  • the method can be applied to the above-mentioned audio playback device, which can include a first speaker, a feedforward microphone, and a feedback microphone.
  • the audio playback device can also establish a communication connection with a terminal device, and the terminal device can include a second speaker.
  • the audio signal processing method can include the following steps:
  • ear canal difference detection instruction In response to the ear canal difference detection instruction, obtain a second detection audio signal corresponding to the ear canal difference detection instruction from a storage module of the audio playback device, or obtain detection audio data corresponding to the ear canal difference detection instruction, and generate a second detection audio signal based on the detection audio data.
  • the second detection audio signal for detecting the difference in the personalized ear canal structure of the user can be generated in real time when the audio playback device needs to perform the above detection, or can be generated in advance and stored in the storage module of the audio playback device.
  • the audio playback device can respond to the ear canal difference detection instruction, obtain the detection audio data corresponding to the ear canal difference detection instruction from the storage module (for example, for determining the amplitude-frequency data, signal-to-noise ratio data, etc.
  • the audio playback device can respond to the ear canal difference detection instruction, and directly call the second detection audio signal corresponding to the ear canal difference detection instruction from its storage module.
  • the above-mentioned storage module may include various storage components built into the audio playback device, such as built-in read-only memory (ROM), programmable read-only memory (PROM), electronically erasable programmable read-only memory (EEPROM), etc., which are not specifically limited in the embodiments of the present application.
  • ROM built-in read-only memory
  • PROM programmable read-only memory
  • EEPROM electronically erasable programmable read-only memory
  • the ear canal difference detection instruction may be triggered by a user.
  • the ear canal difference detection instruction for the audio playback device may be triggered by the user operating the audio playback device (e.g., a touch operation, voice operation, or movement operation on the audio playback device).
  • the ear canal difference detection instruction may be sent to the audio playback device through the user operating a terminal device that is communicatively connected to the audio playback device (e.g., a touch operation, voice operation, or the like on the terminal device) to trigger the audio playback device to perform the above-mentioned personalized ear canal structure difference detection.
  • the audio playback device can output the second detection audio signal through its built-in first speaker.
  • Figure 6 is a flow chart of obtaining ear canal feature information disclosed in an embodiment of the present application.
  • the audio playback device can perform digital-to-analog conversion on the acquired second detection audio signal and output it through the first speaker.
  • the audio playback device can receive a first received audio signal corresponding to the above-mentioned second detection audio signal through its feedback microphone.
  • the above-mentioned second detection audio signal is transmitted in the user's ear canal (approximately replaced by the path through which the audio signal is transmitted between the first speaker and the feedback microphone).
  • the audio playback device can calculate the corresponding ear canal structure transfer function He '(f) in combination with the second detected audio signal. Further, in subsequent steps, the audio playback device can also calculate the corresponding ear canal equalization transfer function Heq (f) based on the ear canal structure transfer function He ' (f) to serve as a transparent transmission parameter (i.e., ear canal equalization parameter) for transparent transmission compensation according to the individual ear canal structure difference of the user.
  • a transparent transmission parameter i.e., ear canal equalization parameter
  • the audio playback device may immediately collect a first received audio signal corresponding to the second detection audio signal through its built-in feedback microphone.
  • the feedback microphone of the audio playback device can continuously collect audio signals, so that according to the timestamp when the first speaker outputs the second detection audio signal, the first received audio signal collected by the feedback microphone at a time near the timestamp (such as a delay of 0.01 milliseconds, a delay of 0.1 milliseconds, etc.) can be obtained.
  • the feedback microphone of the audio playback device may not be turned on continuously, but is triggered to turn on by the first speaker after the first speaker outputs the second detection audio signal, and the audio signal collected after the feedback microphone is turned on is used as the first received audio signal corresponding to the second detection audio signal.
  • the audio playback device can also use its built-in processing module to compare the waveform of the second detection audio signal output by the first speaker with the received audio signal.
  • the comparison result indicates that the waveform similarity between the second detection audio signal and the received audio signal meets the similarity threshold (such as 50%, 80%, etc.)
  • the first received audio signal can be confirmed as the first received audio signal corresponding to the second detection audio signal.
  • the above-mentioned ear canal feature information may include the ear canal structure transfer function He '(f) corresponding to the user, and the ear canal structure transfer function He '(f) can be used to calculate the corresponding ear canal equalization transfer function Heq (f) in the subsequent steps to achieve transparent compensation for the personalized ear canal structure differences of the user.
  • the audio playback device in order to calculate the above-mentioned ear canal structure transfer function He '(f), can window and segment the above-mentioned first received audio signal according to the unit window length to obtain at least one frame of received audio sub-signal, and then determine the ear canal structure transfer function He'(f) corresponding to the first received audio signal based on each frame of received audio sub-signal to reduce the calculation difficulty and amount of calculation for determining the ear canal structure transfer function He ' (f).
  • the audio playback device when the audio playback device derives the corresponding ear canal structure transfer function He '(f) according to the above-mentioned first received audio signal, it can first perform Fourier transform on the first received audio signal, and then perform subsequent calculations based on the first received audio signal after Fourier transform.
  • the built-in processing module of the audio playback device can first perform frame division and windowing processing on the first received audio signal, that is, divide the macroscopically unstable audio signal into multiple audio signal frames with short-term stability (such as audio signal frames with a frame length of 10 to 30 milliseconds), and then perform windowing and truncation on the above audio signal frames according to the specified window function to obtain each frame of received audio sub-signal.
  • windowing and truncation can be achieved by a window function as shown in Formula 1:
  • the piecewise function w(n) is a window function, and N is a unit window length.
  • a certain frame of received audio sub-signal obtained after frame division and windowing can be subjected to short-time Fourier transform through algorithms such as FFT (Fast Fourier Transform), and its expression can be shown as the following formula 2:
  • n discrete time
  • continuous frequency ⁇ 2 ⁇ k/N
  • x(m) The audio sub-signal is received for the mth frame.
  • the transformed sequence can be represented by X(f,m), and the corresponding ear canal structure transfer function He '(f,m) can be shown as the following formula 3:
  • f represents the frequency domain subband sequence
  • m represents the time series
  • represents the iteration factor (ie, the weight factor of the subband spectrum of the current frame).
  • the audio playback device may further determine a corresponding ear canal equalization transfer function He eq (f) according to the ear canal structure transfer function He ' (f) and the set reference transfer function He (f), and the calculation method thereof may be as shown in the following formula 4:
  • f represents the divided frequency domain subband
  • represents the correction factor
  • the differences in personalized ear canal structures of different users mainly affect the audio signal transmission process in a higher frequency range (such as 1000 Hz or above)
  • a higher frequency range such as 1000 Hz or above
  • more obvious personalized ear canal equalization can be achieved in subsequent steps, which is beneficial to improving the effectiveness of the audio playback device in performing transparent compensation on the target audio signal to be received.
  • FIG7 is a schematic diagram of the amplitude-frequency response corresponding to an ear canal equalization transfer function disclosed in an embodiment of the present application.
  • the dotted line can represent an amplitude-frequency response of the ear canal structure transfer function He '(f)
  • the solid line can represent the amplitude-frequency response of the corresponding ear canal equalization transfer function Heq (f), which is relatively unobvious for the equalization of lower frequency bands (such as the frequency band below 1000Hz), and relatively obvious for the equalization of higher frequency bands, thereby helping to achieve the above-mentioned personalized ear canal equalization processing.
  • a first detection audio signal for detecting a user's personalized hearing characteristics can be output by a terminal device that establishes a communication connection with an audio playback device.
  • the audio playback device can establish a Bluetooth communication connection with the terminal device, and in particular may include a Bluetooth audio connection based on A2DP (Advanced Audio Distribution Profile, Bluetooth audio transmission model protocol).
  • A2DP Advanced Audio Distribution Profile, Bluetooth audio transmission model protocol
  • the audio playback device can disconnect the audio data transmission link between the terminal device (and at the same time, other data transmission links for transmitting instruction information can be retained or established) to ensure that the terminal device can be used to perform subsequent hearing detection steps.
  • the audio playback device may respond to the hearing feature detection instruction and execute the corresponding process of disconnecting the audio data transmission link between the audio playback device and the terminal device.
  • the above-mentioned hearing feature detection instruction may be triggered by a user.
  • the hearing feature detection instruction for the audio playback device may be triggered by the user operating the audio playback device (e.g., touch operation, voice operation, mobile operation, etc. for the audio playback device).
  • the hearing feature detection instruction may also be sent to the audio playback device by the user operating the above-mentioned terminal device (e.g., touch operation, voice operation, etc. for the terminal device) to trigger the audio playback device to disconnect the audio data transmission link between it and the terminal device.
  • the terminal device after the terminal device disconnects the audio data transmission link from the audio playback device, it can further receive a detection trigger instruction sent by the audio playback device, and under the triggering of the detection trigger instruction, play the specified first detection audio signal through its built-in second speaker.
  • the terminal device can also use the above-mentioned event of disconnecting the audio data transmission link as a detection trigger instruction, and directly play the above-mentioned first detection audio signal in response to the detection trigger instruction.
  • the first detection audio signal output by the terminal device can be a pure tone signal, that is, an audio signal composed only of an audio signal component corresponding to a certain frequency point to be tested (such as 500Hz, 1000Hz, etc.), and does not contain audio signal components of other frequencies.
  • the first detection audio signal to be output by the terminal device may also be calibrated for loudness to ensure that the subsequent hearing detection process can be performed under a suitable benchmark.
  • the minimum sound pressure level that can be heard by a large number of users at a certain frequency point to be tested can be set as the reference volume 0dB HL (dB HL is the unit of sound loudness).
  • the audio playback device may first send a specified loudness calibration trigger instruction to trigger the terminal device to output the corresponding loudness calibration test signal through its second speaker.
  • the audio playback device may collect the loudness calibration test signal played by the terminal device through its feedforward microphone, and then determine the corresponding loudness calibration parameters according to the loudness calibration test signal, and in the process of sending the detection trigger instruction to the terminal device,
  • the detection trigger instruction carries the loudness calibration parameter to trigger the terminal device to perform loudness compensation calibration on the first detection audio signal to be played according to the loudness calibration parameter.
  • the terminal device can play the first detection audio signal after loudness compensation calibration through its second speaker.
  • the audio playback device can separate N (N is a positive integer greater than or equal to 1) test sub-signals corresponding to the test frequency points (such as 500 Hz, 1000 Hz, etc.) from the loudness calibration test signal. It can be understood that each of the above test sub-signals can also be a pure tone signal. Furthermore, the audio playback device can determine the loudness calibration parameters corresponding to each of the N test frequency points according to the signal strength value of each test sub-signal and the preset corresponding reference strength values.
  • the audio playback device can package the N loudness calibration parameters separately and send them to the terminal device, or directly send a detection trigger instruction containing the loudness calibration parameters corresponding to the N frequency points to be tested to the terminal device, so as to trigger the terminal device to perform loudness compensation calibration on the first detection audio signals corresponding to the N frequency points to be tested according to the loudness calibration parameters corresponding to the N frequency points to be tested, and play the first detection audio signals corresponding to the frequency points to be tested after the loudness compensation calibration through the second speaker.
  • step 514 is similar to the above step 302. It should be noted that when the audio playback device obtains the hearing feature information fed back by the user for the first detection audio signal, it can be achieved through interaction with the user, that is, based on the feedback of whether the user hears the first detection audio signal, the hearing feature information corresponding to the first detection audio signal is determined.
  • the above hearing feature information may include subjective judgment information of whether the user hears the first detection audio signal, and may also include the critical sound loudness further determined according to the above subjective judgment information (that is, the sound loudness of the first detection audio signal when the user can just hear the first detection audio signal), the audible sound loudness range, etc.
  • FIG8 is a schematic diagram of a flow chart of obtaining hearing feature information disclosed in an embodiment of the present application.
  • the terminal device can perform digital-to-analog conversion on the first detection audio signal generated or stored by the terminal device, and output it through the second speaker.
  • the audio playback device can obtain the corresponding hearing feature information.
  • the audio playback device can also further determine the corresponding hearing compensation transfer function Hh (f) according to the hearing feature information, as a transparent transmission parameter (i.e., hearing compensation parameter) for realizing transparent transmission compensation for the personalized hearing characteristics of the user.
  • Hh transparent transmission parameter
  • the user when the user obtains the above-mentioned feedback hearing feature information only through an audio playback device, it can be achieved by detecting user operations on the audio playback device.
  • the user operations on the audio playback device may include touch operations, voice operations, movement operations, etc.
  • a user listens to a first detection audio signal corresponding to a certain frequency point to be tested, he can touch a designated touch point on the audio playback device.
  • the audio playback device detects the touch operation on the designated touch point, it can determine the hearing state of the user when listening to the first detection audio signal, and then obtain the corresponding hearing feature information.
  • the audio playback device can parse the voice command it detects to determine whether the user has heard the first detection audio signal.
  • the user can also move, rotate or shake the head in different directions according to different situations of whether the first detection audio signal is heard, so that the audio playback device can detect its own motion state through the sensor to determine whether the corresponding user hears the hearing state of the first detection audio signal.
  • the head can be tilted to the left so that the audio playback device detects a trend of moving to the left; when the user does not hear the first detection audio signal, the head can be tilted to the right so that the audio playback device detects a trend of moving to the right, and then the audio playback device can determine the hearing feature information of the user for the first detection audio signal feedback according to the movement trend detected by it.
  • the head when the user hears the first detection audio signal, the head can be turned horizontally to the left (or turned horizontally to the right); when the user does not hear the first detection audio signal, the head can be turned horizontally to the right (or turned horizontally to the left), so that the audio playback device can determine the hearing feature information of the user for the first detection audio signal feedback according to the motion trajectory detected by it.
  • the audio playback device can determine the hearing feature information of the user for the first detection audio signal feedback according to the motion trajectory detected by it.
  • the audio playback device when the user hears the first detection audio signal, he can shake his head back and forth (i.e. nod); when the user does not hear the first detection audio signal, he can shake his head left and right (i.e. shake his head), so that the audio playback device can also determine the hearing feature information of the user's feedback on the first detection audio signal based on the movement direction or frequency detected by it.
  • the user when the user obtains the above-mentioned feedback hearing feature information through a terminal device that is communicatively connected to the audio playback device, it can also be achieved by obtaining a user operation on the terminal device.
  • the user operation on the terminal device may include a touch operation, a button click operation, etc.
  • the terminal device detects the above-mentioned user operation, it can determine the user's hearing feature information according to the user operation. The hearing status of whether the first detection audio signal is heard and the hearing status is sent to the audio playback device. On this basis, the audio playback device can further obtain the hearing feature information fed back for the first detection audio signal according to the hearing status it receives.
  • the audio playback device can obtain the hearing status fed back for the first detection audio signal, and adjust the first sound loudness of the first detection audio signal output by the terminal device according to the hearing status, so as to finally determine the sound loudness threshold corresponding to the first frequency point to be tested, and the sound loudness threshold represents the critical sound loudness at which the user can hear the first detection audio signal corresponding to the first frequency point to be tested when using the audio playback device.
  • the audio playback device can use the sound loudness threshold as the hearing feature information fed back for the first detection audio signal corresponding to the first frequency point to be tested.
  • the hearing state indicates that the first sound loudness of the first detection audio signal does not meet the critical condition
  • the sound loudness of the first detection audio signal can be adjusted through the terminal device, and then the adjusted correction audio signal is output through its second speaker, and the step of obtaining the hearing state of the user feedback is re-executed until the first sound loudness of the first detection audio signal obtained meets the critical condition.
  • the audio playback device can determine the first sound loudness (i.e., the sound loudness threshold) of the first detection audio signal that meets the critical condition as the hearing feature information corresponding to the first frequency point.
  • the above critical condition can refer to the situation where the user can just hear the first detection audio signal.
  • the audio playback device may first perform steps 502 to 508 and then perform steps 510 to 514 to sequentially obtain the ear canal feature information and hearing feature information corresponding to the user.
  • the hearing feature information and ear canal feature information corresponding to the user may be sequentially obtained by first performing steps 510 to 514 and then performing steps 502 to 508, which is not specifically limited in the embodiments of the present application.
  • ear canal equalization parameters based on the ear canal feature information, where the ear canal equalization parameters are used to perform personalized ear canal equalization processing on the target audio signal to be received by the feedforward microphone; and, determine hearing compensation parameters based on the hearing feature information, where the hearing compensation parameters are used to perform personalized hearing compensation processing on the target audio signal.
  • the above-mentioned transparent transmission parameters may include ear canal equalization parameters and hearing compensation parameters, etc.
  • the above-mentioned ear canal equalization parameters can be used to configure the corresponding personalized ear canal equalization filter (see Figures 4C-4D) to perform personalized ear canal equalization processing on the audio signal received by the feedforward microphone from the external environment;
  • the above-mentioned hearing compensation parameters can be used to configure the corresponding personalized hearing compensation filter (see Figures 4B and 4D) to perform personalized hearing compensation processing on the audio signal received by the feedforward microphone from the external environment.
  • the above-mentioned ear canal equalization parameters may include an ear canal equalization transfer function Heq (f).
  • Heq ear canal equalization transfer function
  • the process of determining the ear canal equalization parameters according to the above-mentioned ear canal characteristic information may be specifically referred to the above-mentioned steps 504 to 508, and the relevant descriptions of Figures 6-7, which will not be repeated here.
  • the hearing compensation parameter may include a hearing compensation transfer function H h (f).
  • FIG9 is a schematic diagram of fitting a corresponding hearing compensation transfer function according to hearing feature information disclosed in an embodiment of the present application.
  • the points connected by the dotted lines may represent the sound loudness thresholds corresponding to the respective frequency points to be measured in the hearing feature information
  • the solid lines may represent the amplitude-frequency response curve corresponding to the hearing compensation transfer function H h (f) obtained by fitting the above points.
  • H h (f) [hs 1 , (hs 1 +hs 2 +hs 3 ) / 3, (hs 1 +hs 2 +hs 3 +hs 4 +hs 5 )/5, (hs 2 +hs 3 +hs 4 +hs 5 +hs 6 )/5,...]
  • hs n ⁇ n *( hn +Cf n )
  • ⁇ n the hearing weight correction factor corresponding to hn
  • Cf n the sound loudness calibration factor corresponding to hn .
  • the audio playback device when it obtains the hearing feature information for the first detection audio signal, it can use the audio playback device that has performed personalized ear canal equalization (i.e., the signal transmission link shown in FIG. 4C is applied) to perform subsequent hearing feature detection steps, or it can synchronously perform personalized ear canal equalization and personalized hearing compensation after the hearing feature detection is completed.
  • personalized ear canal equalization i.e., the signal transmission link shown in FIG. 4C is applied
  • the audio playback device can accurately determine the corresponding transparent transmission parameters according to the differences in ear canal structure and hearing characteristics of different users, so as to perform personalized transparent transmission compensation for the external audio signals subsequently received by the audio playback device, so that the audio playback device can transparently transmit the external audio signals to the user as accurately as possible, thereby effectively improving the accuracy of the audio playback device's transparent transmission processing of the external audio signals, which is conducive to improving the user's experience of the audio playback device.
  • the detection process of the user's hearing-related characteristics can be completed conveniently and reliably without the need for special detection equipment, effectively reducing the difficulty of configuring personalized transparent transmission filters using audio playback devices, and improving the convenience of the audio playback device in transparent transmission processing of external audio signals.
  • FIG 10 is a flow chart of another audio signal processing method disclosed in an embodiment of the present application.
  • the method can be applied to the above-mentioned audio playback device, which can include a first speaker, a feedforward microphone, and a feedback microphone.
  • the audio playback device can also establish a communication connection with a terminal device, and the terminal device can include a second speaker.
  • the audio signal processing method can include the following steps:
  • the audio playback device can perform the various detection steps in the above embodiment only when it is normally worn by the user. For example, the audio playback device can first detect its own device wearing state, and when the device wearing state is worn, perform the above ear canal difference detection and hearing feature detection in subsequent steps.
  • the audio playback device before the audio playback device outputs the second detection audio signal through its first speaker, it can first collect ambient sound in the external environment through its feedforward microphone, and then determine whether the current environment of the audio playback device is suitable for subsequent ear canal difference detection and hearing feature detection based on the collected ambient sound.
  • the second received audio signal can be collected through its feedforward microphone, and then the corresponding ambient sound parameters (such as noise frequency, noise energy, etc.) can be analyzed and calculated based on the second received audio signal.
  • the audio playback device can first filter the second received audio signal through a preset bandpass filter or low-pass filter to obtain a corresponding low-frequency ambient sound signal.
  • the preset bandpass filter or low-pass filter can be used to specifically obtain the low-frequency ambient sound signal in the second received audio signal that may interfere with the ear canal difference detection or hearing feature detection.
  • the audio playback device can also calculate the noise energy corresponding to the low-frequency ambient sound signal, and when the noise energy is lower than the noise energy threshold (which can be set to 0, indicating that a test environment with no interference noise is required), the subsequent response to the ear canal difference detection instruction is executed, and the second detection audio signal is output through the first speaker.
  • the noise energy threshold which can be set to 0, indicating that a test environment with no interference noise is required
  • step 1008 is similar to the above step 502.
  • the audio playback device can respond to the ear canal difference detection instruction, obtain the second detection audio signal corresponding to the ear canal difference detection instruction from its storage module, or obtain the detection audio data corresponding to the ear canal difference detection instruction, and generate a second detection audio signal according to the detection audio data, and then output the second detection audio signal through its first speaker.
  • step 1010 and step 1012 are similar to the above-mentioned step 506 and step 508, and are not repeated here.
  • step 1014 is similar to the above-mentioned step 510 and step 512, and will not be repeated here.
  • step 1016 and step 1018 are similar to the above-mentioned step 514 and step 516, and will not be repeated here.
  • the above-mentioned first filter may include a personalized hearing compensation filter for performing personalized hearing compensation processing on the audio signal received by the feedforward microphone from the external environment;
  • the above-mentioned second filter may include a personalized ear canal equalization filter for performing personalized ear canal equalization processing on the above-mentioned audio signal.
  • the audio playback device can sequentially perform personalized hearing compensation processing and personalized ear canal equalization processing on the target audio signal to be received by the feedforward microphone.
  • the target audio signal can first undergo conventional processing such as analog-to-digital conversion and factory-cured transparent transmission filters, and then further undergo corresponding personalized transparent transmission compensation through the first filter and the second filter, and then can be converted digitally to analog and output by the first speaker.
  • the corresponding filter configuration parameters can be determined according to the required filter type.
  • the audio playback device can determine the center frequency f 0 , the gain coefficient Gain value and the quality factor Q value of the first filter according to the corresponding ear canal equalization transfer function Heq (f), so that the corresponding first filter can be configured according to the above-mentioned filter configuration parameters for personalized ear canal equalization processing of the target audio signal to be received.
  • FIG. 11 and FIG. 12 After the filter configuration parameters corresponding to the above-mentioned hearing compensation parameters and ear canal equalization parameters are determined respectively, and the corresponding first filter and second filter are configured, a frequency response obtained by cascading the first filter and the second filter can be shown in FIG. 11, and the effect of transparent compensation of the target audio signal to be received by the audio playback device using the first filter and the second filter can be shown in FIG. 12.
  • the dotted line in FIG. 12 can represent the system frequency response before transparent compensation
  • the solid line can represent the system frequency response after transparent compensation. It can be seen that the transparent compensation corresponding to the frequency point A in FIG. 11 is small, and the transparent compensation effect near the frequency point A in FIG. 12 is not obvious; the transparent compensation corresponding to the frequency point B in FIG. 11 is large, and the transparent compensation effect near the frequency point B in FIG. 12 is more obvious.
  • the audio playback device can accurately determine the corresponding transparent transmission parameters according to the differences in ear canal structure and hearing characteristics of different users, so as to perform personalized transparent transmission compensation for the external audio signals subsequently received by the audio playback device, so that the audio playback device can transparently transmit the external audio signals to the user as accurately as possible, thereby effectively improving the accuracy of the audio playback device's transparent transmission processing of the external audio signals, which is conducive to improving the user's experience of the audio playback device.
  • the audio playback device by detecting the ambient sound of the environment in which the audio playback device is located, it helps to ensure the reliability of subsequent ear canal difference detection and hearing characteristic detection, which is conducive to further improving the accuracy of the audio playback device's transparent transmission processing of the external audio signals.
  • FIG. 13 is a modular schematic diagram of an audio signal processing device disclosed in an embodiment of the present application.
  • the audio signal processing device can be the audio playback device involved in the aforementioned Figures 1 to 12, or it can be a device applied to the above-mentioned audio playback device, and there is no limitation here.
  • the audio playback device may include a first speaker, a feedforward microphone, and a feedback microphone.
  • the audio playback device may also establish a communication connection with a terminal device, and the terminal device may include a second speaker.
  • the audio signal processing device may include a first information acquisition unit 1301 and a parameter determination unit 1302, wherein:
  • a first information acquisition unit 1301 is configured to acquire hearing feature information for a first detection audio signal, wherein the first detection audio signal is output by a terminal device that establishes a communication connection with an audio playback device;
  • the parameter determination unit 1302 is used to determine a transparent transmission parameter according to the hearing feature information, and the transparent transmission parameter is used to perform transparent transmission processing on the target audio signal to be received by the feedforward microphone.
  • the audio playback device can accurately determine the corresponding transparent transmission parameters according to the differences in hearing characteristics of different users, so as to perform personalized transparent transmission compensation for the external audio signals subsequently received by the audio playback device, so that the audio playback device can transparently transmit the external audio signals to the user as accurately as possible.
  • Such an audio signal processing method can effectively improve the accuracy of the transparent transmission processing of the external audio signal by the audio playback device, thereby providing different users with external audio signals that have undergone adaptive transparent transmission processing and match the user's hearing-related characteristics, which is conducive to improving the user's experience of the audio playback device.
  • the audio signal processing device may further include a second information acquisition unit (not shown), which may be used to:
  • the first received audio signal is a received audio signal collected by a feedback microphone and corresponding to a second detection audio signal, where the second detection audio signal is output by an audio playback device through a first speaker;
  • the parameter determination unit 1302 may be specifically used for:
  • the transparent transmission parameters are determined based on the above-mentioned ear canal characteristic information and hearing characteristic information.
  • the audio signal processing device may further include a first response unit and an instruction sending unit (not shown), wherein:
  • a first responding unit configured to disconnect the audio data transmission link with the terminal device in response to a hearing feature detection instruction before the first information acquiring unit 1301 acquires the hearing feature information for the first detection audio signal;
  • the instruction sending unit is used to send a detection trigger instruction to the above-mentioned terminal device, and the detection trigger instruction is used to trigger the terminal device to play the first detection audio signal through its second speaker.
  • the audio signal processing device may further include a first audio receiving unit (not shown), which may be used to collect, through a feedforward microphone, a loudness calibration test signal played by the terminal device through the second speaker before the instruction sending unit sends the detection trigger instruction to the terminal device;
  • a first audio receiving unit (not shown), which may be used to collect, through a feedforward microphone, a loudness calibration test signal played by the terminal device through the second speaker before the instruction sending unit sends the detection trigger instruction to the terminal device;
  • the parameter determination unit 1302 may also be used to determine a loudness calibration parameter according to the loudness calibration test signal
  • the above-mentioned instruction sending unit can be specifically used to send a detection trigger instruction containing the loudness calibration parameter to the terminal device, and the detection trigger instruction is used to trigger the terminal device to perform loudness compensation calibration on the first detection audio signal to be played according to the loudness calibration parameter, and play the first detection audio signal after loudness compensation calibration through the second speaker.
  • the parameter determination unit 1302 when used to determine the loudness calibration parameter according to the loudness calibration test signal, the following steps may be specifically included:
  • the above-mentioned instruction sending unit can be specifically used to send a detection trigger instruction including the loudness calibration parameters corresponding to the above-mentioned N frequency points to be tested to the terminal device, and the detection trigger instruction is used to trigger the terminal device to perform loudness compensation calibration on the first detection audio signals corresponding to the N frequency points to be tested to be played according to the loudness calibration parameters corresponding to the N frequency points to be tested, and play the first detection audio signals corresponding to the N frequency points to be tested after the loudness compensation calibration through the second speaker.
  • test sub-signals corresponding to the N to-be-tested frequency points and the first detection audio signal may both be pure tone signals.
  • the first information acquisition unit 1301 can be specifically used for:
  • the sound loudness threshold is used as hearing feature information fed back for a first detection audio signal corresponding to a first frequency point to be tested.
  • the audio signal processing device described in the above embodiment based on the above-mentioned ear canal difference detection and hearing feature detection performed by the audio playback device and the terminal device, can conveniently and reliably complete the detection process of the user's hearing-related characteristics without the need for special detection equipment, effectively reducing the difficulty of configuring a personalized transparent filter using the audio playback device, and improving the convenience of the audio playback device in transparent processing of external audio signals.
  • the transparent transmission parameters may include at least an ear canal equalization parameter and a hearing compensation parameter.
  • the parameter determination unit 1302 is used to determine the transparent transmission parameters according to the ear canal feature information and the hearing feature information, the following steps may be specifically included:
  • ear canal equalization parameters Determine ear canal equalization parameters according to the ear canal characteristic information, where the ear canal equalization parameters are used to perform personalized ear canal equalization processing on the target audio signal to be received by the feedforward microphone;
  • a hearing compensation parameter is determined, and the hearing compensation parameter is used to perform personalized hearing compensation processing on the target audio signal to be received by the feedforward microphone.
  • the second information acquisition unit when used to acquire the ear canal feature information calculated according to the first received audio signal, it may specifically include:
  • the parameter determination unit 1302 when used to determine the ear canal equalization parameter according to the ear canal characteristic information, it may specifically include:
  • a corresponding ear canal equalization transfer function is determined as an ear canal equalization parameter.
  • the parameter determination unit 1302 is used to determine the hearing compensation according to the hearing feature information.
  • Parameters can include:
  • the corresponding hearing compensation transfer function is determined by fitting as a hearing compensation parameter.
  • the audio signal processing device may further include a first configuration unit and a second configuration unit (not shown), wherein:
  • a first configuration unit configured to configure a first filter according to the hearing compensation parameters, and to configure a second equalizer according to the ear canal equalization parameters;
  • the second configuration unit is used to cascade the above-mentioned first filter and second filter, wherein the first equalizer is used to perform personalized hearing compensation processing on the target audio signal to be received by the feedforward microphone, and the second equalizer is used to perform personalized ear canal equalization processing on the target audio signal after the personalized hearing compensation processing.
  • the audio signal processing device may further include a wearing state detection unit (not shown), which may be used to detect the wearing state of the audio playback device before the second information acquisition unit acquires the ear canal feature information calculated according to the first received audio signal;
  • a wearing state detection unit (not shown), which may be used to detect the wearing state of the audio playback device before the second information acquisition unit acquires the ear canal feature information calculated according to the first received audio signal;
  • the first audio receiving unit may also be used to collect a second received audio signal through a feedforward microphone when the device is in the worn state;
  • the above-mentioned parameter determination unit 1302 can also be used to determine the corresponding ambient sound parameters based on the second received audio signal, so that when the ambient sound parameters meet the audio transparent processing conditions, the above-mentioned second information acquisition unit can execute the step of acquiring the ear canal feature information calculated based on the first received audio signal.
  • the audio playback device can accurately determine the corresponding transparent transmission parameters according to the differences in ear canal structure and hearing characteristics of different users, so as to perform personalized transparent transmission compensation for the external audio signals subsequently received by the audio playback device, so that the audio playback device can transparently transmit the external audio signals to the user as accurately as possible, thereby effectively improving the accuracy of the audio playback device's transparent transmission processing of the external audio signals, which is conducive to improving the user's experience of the audio playback device.
  • the audio playback device by detecting the ambient sound of the environment in which the audio playback device is located, it helps to ensure the reliability of subsequent ear canal difference detection and hearing characteristic detection, which is conducive to further improving the accuracy of the audio playback device's transparent transmission processing of the external audio signals.
  • Figure 14 is a modular schematic diagram of an audio playback device disclosed in an embodiment of the present application.
  • the audio playback device may include:
  • a memory 1401 storing executable program codes, and a processor 1402 coupled to the memory 1401 .
  • the processor 1402 calls the executable program code stored in the memory 1401 to execute all or part of the steps in any one of the audio signal processing methods described in the above embodiments.
  • an embodiment of the present application further discloses a computer-readable storage medium, which stores a computer program for electronic data exchange, wherein the computer program enables a computer to execute all or part of the steps in any one of the audio signal processing methods described in the above embodiments.
  • the embodiments of the present application further disclose a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer can execute all or part of the steps in any one of the audio signal processing methods described in the above embodiments.
  • ROM read-only memory
  • RAM random access memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • OTPROM one-time programmable read-only memory
  • EEPROM electronically erasable rewritable read-only memory
  • CD-ROM compact disc

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本申请实施例公开了一种音频信号处理方法及装置、音频播放设备、存储介质,该方法应用于音频播放设备,包括:获取针对第一检测音频信号的听力特征信息,第一检测音频信号是由与音频播放设备建立通信连接的终端设备输出的;根据上述听力特征信息,确定透传参数,该透传参数用于对待接收的目标音频信号进行透传处理。实施本申请实施例,能够针对不同用户的听力特征差异,对音频播放设备接收的外界音频信号进行个性化的透传补偿,从而有利于提升音频播放设备对外界音频信号进行透传处理的准确性。

Description

音频信号处理方法及装置、音频播放设备、存储介质
本申请要求于2022年11月03日提交、申请号为202211370718.0、发明名称为“音频信号处理方 法及装置、音频播放设备、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种音频信号处理方法及装置、音频播放设备、存储介质。
背景技术
当前,用户在佩戴使用音频播放设备(例如耳机、助听器等)时,由于不同用户在耳道结构等各类听力相关特性上存在差异,往往会导致不同用户使用音频播放设备的体验大不相同。在实践中发现,当需要利用音频播放设备对外界环境中的音频信号进行透传处理时,传统的音频处理方法(如音量调整、降噪等)通常无法针对上述差异进行有效的调整,从而导致音频播放设备难以对外界音频信号进行合适的透传处理。
发明内容
本申请实施例公开了一种音频信号处理方法及装置、音频播放设备、存储介质。
本申请实施例第一方面公开一种音频信号处理方法,应用于音频播放设备,所述音频播放设备包括前馈麦克风,所述方法包括:
获取针对第一检测音频信号的听力特征信息,其中,所述第一检测音频信号是由与所述音频播放设备建立通信连接的终端设备输出的;
根据所述听力特征信息,确定透传参数,所述透传参数用于对所述前馈麦克风待接收的目标音频信号进行透传处理。
本申请实施例第二方面公开一种音频信号处理装置,应用于音频播放设备,所述音频播放设备包括前馈麦克风,所述音频信号处理装置包括:
第一信息获取单元,用于获取针对第一检测音频信号的听力特征信息,其中,所述第一检测音频信号是由与所述音频播放设备建立通信连接的终端设备输出的;
参数确定单元,用于根据所述听力特征信息,确定透传参数,所述透传参数用于对所述前馈麦克风待接收的目标音频信号进行透传处理。
本申请实施例第三方面公开了一种音频播放设备,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现如本申请实施例第一方面公开的音频信号处理方法中的全部或部分步骤。
本申请实施例第四方面公开了一种计算机可读存储介质,其存储计算机程序,其中,所述计算机程序被处理器执行时实现如本申请实施例第一方面公开的音频信号处理方法中的全部或部分步骤。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图进行简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是本申请实施例公开的音频信号处理方法的一种应用场景示意图;
图1B是本申请实施例公开的音频信号处理方法的另一种应用场景示意图;
图2是本申请实施例公开的一种音频播放设备的结构示意图;
图3是本申请实施例公开的一种音频信号处理方法的流程示意图;
图4A是本申请实施例公开的应用于音频播放设备的一种信号传输链路的示意图;
图4B是本申请实施例公开的应用于音频播放设备的另一种信号传输链路的示意图;
图4C是本申请实施例公开的应用于音频播放设备的又一种信号传输链路的示意图;
图4D是本申请实施例公开的应用于音频播放设备的第四种信号传输链路的示意图;
图5是本申请实施例公开的另一种音频信号处理方法的流程示意图;
图6是本申请实施例公开的一种获取耳道特征信息的流程示意图;
图7是本申请实施例公开的一种耳道均衡传递函数对应的幅频响应示意图;
图8是本申请实施例公开的一种获取听力特征信息的流程示意图;
图9是本申请实施例公开的一种根据听力特征信息拟合相应的听力补偿传递函数的示意图;
图10是本申请实施例公开的又一种音频信号处理方法的流程示意图;
图11是本申请实施例公开的第一滤波器以及第二滤波器级联对应的幅频响应示意图;
图12是由图11所示的滤波器进行个性化听力补偿处理以及个性化耳道均衡处理的效果示意图;
图13是本申请实施例公开的一种音频信号处理装置的模块化示意图;
图14是本申请实施例公开的一种音频播放设备的模块化示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例公开了一种音频信号处理方法及装置、音频播放设备、存储介质,能够针对不同用户的听力特征差异,对音频播放设备接收的外界音频信号进行个性化的透传补偿,从而可以向用户提供经过透传处理后合适的音频信号,有利于提升音频播放设备对外界音频信号进行透传处理的准确性。
以下将结合附图进行详细描述。
请一并参阅图1A及图1B,图1A是本申请实施例公开的音频信号处理方法的一种应用场景示意图,图1B则是本申请实施例公开的音频信号处理方法的另一种应用场景示意图。如图1A所示,该应用场景可以包括用户10及音频播放设备20,用户10可以通过该音频播放设备20检测用户10自身的听力相关特性(例如个性化耳道结构差异、个性化听力特征等)对其听音效果的影响,尤其可以包括在需要通过该音频播放设备20对外界环境中的音频信号进行透传处理的情况下,上述听力相关特性对用户10所接收到的音频信号可能造成的不同影响。在此基础上,通过在该音频播放设备20中配置合适的滤波器,可以对该音频播放设备20待接收的外界音频信号进行相应的滤波处理,以实现个性化的透传补偿,使得用户10所接收到的音频信号能够尽可能接近实际的外界音频信号,从而可以提升用户10在使用音频播放设备20的透传功能时的使用体验。
其中,如图2所示,上述音频播放设备20可以包括第一扬声器21,以及设置于该第一扬声器21前方的反馈麦克风22(即当用户佩戴该音频播放设备时,反馈麦克风处于第一扬声器与用户的耳膜之间),从而可以通过该反馈麦克风22采集第一扬声器21所输出,并通过用户10的耳道传输的音频信号;以及,采集外界环境“透过”该音频播放设备20,向用户10所传输的音频信号。此外,该音频播放设备20还可以包括前馈麦克风23,该前馈麦克风23可以设置于第一扬声器21后方(即当用户佩戴该音频播放设备时,前馈麦克风处于第一扬声器与外界环境之间),以通过该前馈麦克风23采集外界环境中的音频信号。
在此基础上,上述透传功能,指的是音频播放设备20可以将其通过前馈麦克风23所接收到的外界音频信号,经过一定的透传补偿后,通过其第一扬声器21向用户10输出,以使外界音频信号能够“透过”该音频播放设备20,被用户10的耳膜所接收,使得用户10在佩戴音频播放设备20的情况下,仍能够准确接收外界环境中的音频信号(例如环境音、人声等)。
在本申请实施例中,为了实现对外界音频信号的透传功能,音频播放设备20可以先对用户10的个性化耳道结构差异、个性化听力特征等听力相关特性进行检测,并根据检测结果确定出相应的透传参数,以用于配置合适的透传补偿滤波器。在一些实施例中,为了实现上述检测,除了通过音频播放设备20进行相应检测音频信号的输出以及接收之外,用户10还可以通过该音频播放设备20进行必要的交互操作(例如通过点击、触控等方式与音频播放设备进行交互),以辅助获取用户10对应的耳道特征信息、听力特征信息等。
可选地,如图1B所示,音频播放设备20还可以与终端设备30建立通信连接,该终端设备30可以基于上述通信连接,将所需的检测音频数据传输至音频播放设备20,以使该音频播放设备20通过其第 一扬声器21输出相应的检测音频信号;也可以通过其内置的第二扬声器(未具体图示),采用外放的方式直接输出所需的检测音频信号。在一些实施例中,用户10也可以与终端设备30进行交互,以通过该终端设备30触发音频播放设备20进行上述检测。示例性地,终端设备30在检测到用户10针对其的测试交互操作(如点击或划动终端设备30上的测试按钮等触控操作、向终端设备30发出“测试”等包含指定关键字的语音操作、将终端设备30按照预设轨迹进行移动等移动操作)时,可以向音频播放设备20发出相应的测试指令,以触发该音频播放设备20输出相应的检测音频信号。在另一些实施例中,用户10还可以通过该终端设备30进行其他必要的交互操作(例如通过点击、触控等方式与终端设备进行交互),以辅助获取用户10对应的耳道特征信息、听力特征信息等。
示例性地,上述音频播放设备20,可以包括耳机、助听器等各类具备音频接收及输出功能的电子设备,尤其可以包括TWS(True Wireless Stereo,真无线立体声)耳机。示例性地,上述终端设备30,则可以包括具备通信功能,能够与上述音频播放设备20建立通信连接的各类设备或系统,如手机、智能可穿戴设备、车载终端、平板电脑、PC(Personal Computer,个人电脑)、PDA(Personal Digital Assistant,个人数字助理)等,本申请实施例中不作具体限定。
在本申请实施例中,为了确定出上述透传参数,音频播放设备20可以获取针对第一检测音频信号的听力特征信息,其中,该第一检测音频信号可以是由与该音频播放设备20建立通信连接的终端设备30输出的。在此基础上,该音频播放设备20可以根据上述听力特征信息,确定出相应的透传参数,该透传参数可以用于对前馈麦克风23待接收的目标音频信号进行透传处理。
可见,通过实施这样的音频信号处理方法,音频播放设备20能够针对不同用户10的听力特征差异,准确确定出相应的透传参数,以用于对该音频播放设备20后续接收的外界音频信号进行个性化的透传补偿,使得音频播放设备20可以将外界音频信号尽可能准确地透传至用户10。
可选地,音频播放设备20还可以获取根据第一接收音频信号计算得到的耳道特征信息,其中,上述第一接收音频信号为通过反馈麦克风22采集的与第一检测音频信号对应的接收音频信号,该第一检测音频信号可以是由音频播放设备20通过其第一扬声器21输出的。在此基础上,该音频播放设备20可以根据上述耳道特征信息以及听力特征信息,共同确定出相应的透传参数。
这样的音频信号处理方法,能够有效提升音频播放设备20对外界音频信号进行透传处理的准确性,从而可以为不同用户10提供经过适应性的透传处理,且与用户10听力相关特性相匹配的外界音频信号,有利于提升用户10对音频播放设备的使用体验。
请参阅图3,图3是本申请实施例公开的一种音频信号处理方法的流程示意图,该方法可以应用于上述的音频播放设备,该音频播放设备可以包括第一扬声器、前馈麦克风以及反馈麦克风。如图3所示,该音频信号处理方法可以包括以下步骤:
302、获取针对第一检测音频信号的听力特征信息,其中,该第一检测音频信号是由与音频播放设备建立通信连接的终端设备输出的。
在本申请实施例中,用户在使用音频播放设备(例如佩戴耳机或助听器等)的情况下,通过开启透传功能,能够将外界环境中的全部或部分音频信号尽可能准确地传输至用户的耳膜,以实现外界音频信号“透过”该音频播放设备向用户传输的效果(即尽可能接近未佩戴音频播放设备的状态下的听音效果)。为了实现上述透传功能,音频播放设备可以先对用户自身的个性化耳道结构差异、个性化听力特征等听力相关特性进行检测,获取相应的耳道特征信息、听力特征信息等,以在后续步骤中对待从外界接收的目标音频信号进行相应的透传补偿。
其中,上述听力特征信息,可以对应于用户的个性化听力特征,即用于表示由于不同用户对不同频段或存在不同频谱变化的音频信号的敏感程度存在差异,而导致向不同用户传输的同一音频信号可以呈现出差异化的听音效果。
在本申请实施例中,为了对用户的个性化听力特征进行检测,以获取该用户对应的听力特征信息,可以通过向用户输出指定的第一检测音频信号来实现。示例性地,上述第一检测音频信号可以包括特定频率下的纯音信号,例如500Hz、1000Hz、2000Hz等中低频频率点的纯音信号,又例如4000Hz、6000Hz、8000Hz等高频频率点的纯音信号。可以理解,上述不同的待测频点均可覆盖一定的频率范围,以用于针对用户在不同频段的听力特性(即对不同频段的音频信号的敏感性)进行较为全面的检测,同时也有利于减少检测次数,节省检测时间。需要说明的是,上述听力检测的过程是在用户使用上述音频播放设备的情况下进行的,因而可以相对准确地反映用户在佩戴耳机、助听器等实际场景下对不同频段或存在不同频谱变化的音频信号的不同敏感程度,从而有利于提升用户使用音频播放设备对外界的音频信号进行透传处理的准确性和可靠性。
其中,上述第一检测音频信号可以通过处于外界环境中的设备输出,例如,可以通过与上述音频播放设备建立通信连接的终端设备进行输出,也可以通过独立的另一音频播放设备进行输出等。以上述终端设备输出第一检测音频信号为例,该终端设备可以设有第二扬声器。在一些实施例中,终端设备可以在上述音频播放设备的触发下,通过其第二扬声器输出第一检测音频信号;在另一些实施例中,终端设备也可以在用户的直接触发下,通过其第二扬声器输出第一检测音频信号。
在此基础上,音频播放设备可以基于用户针对上述第一检测音频信号的反馈情况,例如用户是否收听到该第一检测音频信号的反馈,分析确定出针对该第一检测音频信号的听力特征信息,进而可以全面地确定该用户在各个待测频点对应的听力特征信息,从而可以在后续步骤中利用该听力特征信息对音频播放设备待接收的目标音频信号进行更准确的透传补偿。
304、根据上述听力特征信息,确定透传参数,该透传参数用于对前馈麦克风待接收的目标音频信号进行透传处理。
在本申请实施例中,音频播放设备在确定出上述听力特征信息之后,可以根据该听力特征信息进行分析计算,以评估在用户使用该音频播放设备的情况下,外界环境中的音频信号在传输至用户耳膜的过程中所受到的影响,进而可以计算出相应的透传参数,以用于对后续接收的音频信号进行透传补偿。
作为一种可选的实施方式,音频播放设备还可以进一步对用户的个性化耳道结构差异进行检测,以获取该用户对应的耳道特征信息。其中,上述耳道特征信息,可以对应于用户的个性化耳道结构差异,即用于表示由于不同用户的耳道结构差异,导致向不同用户传输的同一音频信号可以呈现出差异化的听音效果。
为了进行上述的个性化耳道结构差异检测,可以通过音频播放设备向用户输出指定的第二检测音频信号来实现。示例性地,上述第二检测音频信号可以包括白噪声信号,也可以包括音乐文件、录音文件、聊天语音等具有实际信息的音频数据对应的音频数据信号,其能够覆盖较大的频率范围,尤其是人耳听音范围所包括的主要频段,从而可以用于检测该音频播放设备所处的音频系统(即音频播放设备所输出的音频信号在该音频播放设备与用户之间传输的通路,可理解为该用户的“耳道”)对上述第二检测音频信号的影响。需要说明的是,当用户使用该音频播放设备时,其反馈麦克风可以处于其第一扬声器与用户之间,从而上述音频系统也可以通过音频信号在该第一扬声器以及反馈麦克风之间传输的通路来近似替代。
可选地,上述第二检测音频信号可以在由音频播放设备从本地获取,也可以从该音频播放设备外获取。在一些实施例中,检测音频信号可以预先存储在该音频播放设备的存储模块中,从而在需要获取检测音频信号的情况下,音频播放设备可以直接调用指定的第二检测音频信号,并通过其内置的第一扬声器来进行输出。在另一些实施例中,上述存储模块中也可以存储有用于生成检测音频信号的检测音频数据(例如用于确定检测音频信号的幅频数据、信噪比数据等),从而音频播放设备可以调用该检测音频数据,在本地生成指定的第二检测音频信号,再通过上述第一扬声器进行输出。还有一些实施例中,检测音频信号可以存储在与该音频播放设备通信连接的终端设备上,当需要获取检测音频信号时,该终端设备可以将指定的第二检测音频信号发送至音频播放设备,再由该音频播放设备通过其第一扬声器进行输出。
音频播放设备在通过其内置的第一扬声器输出上述第二检测音频信号之后,可以进一步通过其反馈麦克风,接收与该第二检测音频信号对应的第一接收音频信号。在此基础上,音频播放设备可以根据该第一接收音频信号进行分析计算,以确定出相应的耳道特征信息。在一些实施例中,音频播放设备也可以根据该第一接收音频信号以及上述第二检测音频信号,共同进行分析计算,得到相应的耳道特征信息。
在此基础上,音频播放设备可以综合上述耳道特征信息以及听力特征信息进行分析计算,共同确定出相应的透传参数,以用于对后续接收的音频信号进行透传补偿。
在一些实施例中,当音频播放设备需要对其待接收的目标音频信号进行透传补偿时,可以根据上述透传参数来配置相应的滤波器(即个性化透传滤波器),并基于上述滤波器对音频播放设备通过其前馈麦克风所接收到的目标音频信号进行相应的透传处理,再通过其第一扬声器输出透传处理后的目标音频信号,从而能够均衡目标音频信号在该音频播放设备所处的音频系统中传输时所可能受到的影响,使得用户收听到的目标音频信号尽可能接近其在未佩戴音频播放设备的状态下的听音效果。
可选地,上述滤波器可以由一个或多个滤波器组成,该滤波器可以包括FIR(Finite Impulse Response,有限长单位冲激响应)滤波器,也可以包括IIR(Infinite Impulse Response,无限长单位冲激响应)滤波器,本申请实施例中不作具体限定。
示例性地,请参阅图4A,图4A是本申请实施例公开的应用于上述音频播放设备的一种信号传输链 路的示意图。如图4A所示,音频播放设备在通过其前馈麦克风接收到目标音频信号的时候,该目标音频信号可以先经过模数转换(Analogue-to-Digital Conversion,ADC)、出厂固化透传滤波器(由音频播放设备出厂前可确定的其他必要透传参数配置得到)等处理,再进一步经由个性化透传滤波器进行相应透传补偿,继而可以进行数模转换(Digital-to-Analogue Conversion,DAC)并由第一扬声器进行输出。
在一些实施例中,如图4B所示,上述个性化透传滤波器可以包括个性化听力补偿滤波器,该个性化听力补偿滤波器可以表示基于上述听力特征信息所确定出的听力补偿参数,对目标音频信号进行相应的个性化听力补偿所需配置的滤波器,即,上述透传处理可以仅包括个性化听力补偿的过程。
在另一些实施例中,如图4C所示,上述个性化透传滤波器也可以包括个性化耳道均衡滤波器,该个性化耳道均衡滤波器可以表示基于上述耳道特征信息所确定出的耳道均衡参数,对目标音频信号进行相应的个性化耳道均衡所需配置的滤波器,即,上述透传处理可以仅包括个性化耳道均衡这一过程。
还有一些实施例中,如图4D所示,上述个性化透传滤波器可以包括个性化听力补偿滤波器以及个性化耳道均衡滤波器,即,上述透传处理可以包括个性化耳道均衡以及个性化听力补偿的过程。可选地,音频播放设备可以依次通过个性化听力补偿滤波器、个性化耳道均衡滤波器对目标音频信号进行透传补偿(如图4D所示),也可以采用相反的顺序,即依次通过个性化耳道均衡滤波器、个性化听力补偿滤波器来对该目标音频信号进行透传补偿(未具体图示),本申请实施例中不作具体限定。
可见,实施上述实施例所描述的音频信号处理方法,音频播放设备能够针对不同用户的听力特征差异,准确确定出相应的透传参数,以用于对该音频播放设备后续接收的外界音频信号进行个性化的透传补偿,使得音频播放设备可以将外界音频信号尽可能准确地透传至用户。这样的音频信号处理方法,能够有效提升音频播放设备对外界音频信号进行透传处理的准确性,从而可以为不同用户提供经过适应性的透传处理,且与用户听力相关特性相匹配的外界音频信号,有利于提升用户对音频播放设备的使用体验。
请参阅图5,图5是本申请实施例公开的另一种音频信号处理方法的流程示意图,该方法可以应用于上述的音频播放设备,该音频播放设备可以包括第一扬声器、前馈麦克风以及反馈麦克风。该音频播放设备还可以与终端设备建立通信连接,该终端设备可以包括第二扬声器。如图5所示,该音频信号处理方法可以包括以下步骤:
502、响应于耳道差异检测指令,从音频播放设备的存储模块中获取该耳道差异检测指令对应的第二检测音频信号,或者,获取该耳道差异检测指令对应的检测音频数据,并根据该检测音频数据生成第二检测音频信号。
在本申请实施例中,用于检测用户个性化耳道结构差异的第二检测音频信号,既可以在音频播放设备需要执行上述检测的时候实时生成,也可以预先生成,并存储在该音频播放设备的存储模块中。示例性地,针对实时生成第二检测音频信号的情形,音频播放设备可以响应于耳道差异检测指令,从存储模块中获取该耳道差异检测指令对应的检测音频数据(例如用于确定检测音频信号的幅频数据、信噪比数据等),并根据该检测音频数据生成相应的第二检测音频信号;针对预先存储第二检测音频信号的情形,音频播放设备可以响应于耳道差异检测指令,从其存储模块中直接调用该耳道差异检测指令对应的第二检测音频信号。
其中,上述存储模块,可以包括内置于音频播放设备的各类存储部件,例如内置的只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable Read-only Memory,PROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)等,本申请实施例中不作具体限定。
在一种实施例中,上述耳道差异检测指令可以是由用户触发的。在一些实施例中,可以通过用户操作音频播放设备(例如针对该音频播放设备的触控操作、语音操作、移动操作等),来触发针对该音频播放设备的耳道差异检测指令。在另一些实施例中,也可以通过用户操作与该音频播放设备通信连接的终端设备(例如针对该终端设备的触控操作、语音操作等),向音频播放设备发送耳道差异检测指令,以触发该音频播放设备执行上述的个性化耳道结构差异检测。
504、通过第一扬声器输出第二检测音频信号。
音频播放设备在获取上述第二检测音频信号之后,可以通过其内置的第一扬声器输出该第二检测音频信号。示例性地,请参阅图6,图6是本申请实施例公开的一种获取耳道特征信息的流程示意图。如图6所示,音频播放设备可以对其所获取的第二检测音频信号进行数模转换,并通过第一扬声器进行输出。在后续步骤中,该音频播放设备可以通过其反馈麦克风接收与上述第二检测音频信号对应的第一接收音频信号。
其中,上述第二检测音频信号在用户的耳道内传输(由音频信号在第一扬声器以及反馈麦克风之间传输的通路来近似替代),此过程中所受到的影响可以通过耳道结构传递函数He'(f)来表示,即,第二检测音频信号(以X作为其频域表示)与第一接收音频信号(以Y作为其频域表示)可以满足关系式He'(f)=Y/X。
在此基础上,如图6所示,对上述第一接收音频信号进行模数转换后,音频播放设备可以结合上述第二检测音频信号,计算相应的耳道结构传递函数He'(f)。进一步地,在后续步骤中,音频播放设备还可以根据该耳道结构传递函数He'(f),计算相应的耳道均衡传递函数Heq(f),以作为针对用户的个性化耳道结构差异实现透传补偿的透传参数(即耳道均衡参数)。
506、通过反馈麦克风采集与上述第二检测音频信号对应的第一接收音频信号。
在本申请实施例中,音频播放设备在输出上述第二检测音频信号之后,可以立即通过其内置的反馈麦克风采集与该第二检测音频信号对应的第一接收音频信号。
示例性地,音频播放设备的反馈麦克风可以持续采集音频信号,从而可以根据第一扬声器输出上述第二检测音频信号的时间戳,获取反馈麦克风在该时间戳附近(如延后0.01毫秒、延后0.1毫秒等)的时刻所采集到的第一接收音频信号。在一些实施例中,音频播放设备的反馈麦克风也可以不持续开启,而是在第一扬声器输出上述第二检测音频信号之后,由该第一扬声器触发开启,并将该反馈麦克风开启后采集到的音频信号作为与上述第二检测音频信号对应的第一接收音频信号。
可选地,对于通过反馈麦克风采集到的接收音频信号,音频播放设备还可以利用其内置的处理模块,将上述第一扬声器输出的第二检测音频信号与该接收音频信号进行波形对比,当对比结果表示该第二检测音频信号与该接收音频信号的波形相似度满足相似度阈值(如50%、80%等)时,可以将该第一接收音频信号确认为与上述第二检测音频信号对应的第一接收音频信号。
508、获取根据第一接收音频信号计算得到的耳道特征信息。
其中,上述耳道特征信息可以包括用户对应的耳道结构传递函数He'(f),该耳道结构传递函数He'(f)可以用于在后续步骤中计算相应的耳道均衡传递函数Heq(f),以实现针对该用户的个性化耳道结构差异的透传补偿。
在本申请实施例中,为了计算上述耳道结构传递函数He'(f),音频播放设备可以按照单位窗口长度对上述第一接收音频信号进行加窗分割,得到至少一帧接收音频子信号,再根据各帧接收音频子信号,确定出该第一接收音频信号对应的耳道结构传递函数He'(f),以降低确定该耳道结构传递函数He'(f)的计算难度以及运算量。
示例性地,音频播放设备在根据上述第一接收音频信号推导其对应的耳道结构传递函数He'(f)时,可以先对该第一接收音频信号进行傅里叶变换,再根据傅里叶变换后的第一接收音频信号进行后续计算。具体地,音频播放设备内置的处理模块(例如数字信号处理DSP模块等)可以先对第一接收音频信号进行分帧加窗处理,即,将宏观上不平稳的音频信号分割为具备短时平稳性的多个音频信号帧(如帧长为10~30毫秒的音频信号帧),再根据指定的窗函数对上述音频信号帧进行加窗截断,得到每一帧接收音频子信号。示例性地,加窗截断可以通过如公式1所示的窗函数来实现:
公式1:
w(n)=1,0≤n≤N-1;
w(n)=0,其他
其中,分段函数w(n)为窗函数,N为单位窗口长度。通过将上述第一接收音频信号与该窗函数进行时域上的卷积,即可实现加窗截断的效果。
进一步地,对分帧加窗后得到的某一帧接收音频子信号,可以通过FFT(Fast Fourier Transform,快速傅里叶变换)等算法进行短时傅里叶变换,其表达式可以如以下公式2所示:
公式2:
其中,n为离散时间,连续频率ω=2πk/N,k=0,1,...,N-1,式中N为傅里叶变换长度,x(m)则 为第m帧接收音频子信号。在此基础上,可以通过X(f,m)表示变换后的序列,则相应的耳道结构传递函数He'(f,m)可以如以下公式3所示:
公式3:
He'(f,m)=(1-μ)*He'(f,m-1)+μ*X(f,m)
其中,f表示频域子带序列,m表示时间序列,μ表示迭代因子(即当前帧子带频谱的权重因子)。
在后续步骤中,音频播放设备可以进一步根据上述耳道结构传递函数He'(f),以及设定的参考传递函数He(f),确定出相应的耳道均衡传递函数Heq(f),其计算方式可以如以下公式4所示:
公式4:
其中,f表示所划分的频域子带,θ则表示修正因子。
在一些实施例中,由于不同用户的个性化耳道结构差异主要影响较高频率范围内(如1000Hz或以上频段)的音频信号传递过程,通过对该较高频率范围内的频谱变化进行分析,可以在后续步骤中实现更为明显的个性化耳道均衡,有利于提升音频播放设备对待接收的目标音频信号进行透传补偿的有效性。
示例性地,请参阅图7,图7是本申请实施例公开的一种耳道均衡传递函数对应的幅频响应示意图。如图7所示,虚线可以表示上述耳道结构传递函数He'(f)的一种幅频响应,实线则可以表示相应的耳道均衡传递函数Heq(f)的幅频响应,其针对较低频段(如1000Hz以下频段)的均衡相对不明显,针对较高频段的均衡相对明显,从而有助于实现上述的个性化耳道均衡处理。
510、响应于听力特征检测指令,断开与终端设备之间的音频数据传输链路。
在本申请实施例中,用于检测用户个性化听力特征的第一检测音频信号,可以由与音频播放设备建立通信连接的终端设备进行输出。在一些实施例中,音频播放设备可以与终端设备建立蓝牙通信连接,尤其可以包括基于A2DP(Advanced Audio Distribution Profile,蓝牙音频传输模型协定)的蓝牙音频连接。为了使终端设备可以通过外放的方式输出上述第一检测音频信号,音频播放设备可以断开与该终端设备之间的音频数据传输链路(同时可以保留或建立用于传输指令信息的其他数据传输链路),以确保终端设备可用于执行后续的听力检测步骤。
示例性地,音频播放设备可以响应于听力特征检测指令,执行其断开与终端设备之间的音频数据传输链路的相应流程。在一种实施例中,上述听力特征检测指令可以是由用户触发的。在一些实施例中,可以通过用户操作音频播放设备(例如针对该音频播放设备的触控操作、语音操作、移动操作等),来触发针对该音频播放设备的听力特征检测指令。在另一些实施例中,也可以通过用户操作上述终端设备(例如针对该终端设备的触控操作、语音操作等),向该音频播放设备发送听力特征检测指令,以触发该音频播放设备断开其与终端设备之间的音频数据传输链路。
512、向终端设备发送检测触发指令,该检测触发指令用于触发终端设备通过第二扬声器播放第一检测音频信号。
在本申请实施例中,终端设备在与音频播放设备断开音频数据传输链路之后,可以进一步接收该音频播放设备所发送的检测触发指令,并在该检测触发指令的触发下,通过其内置的第二扬声器播放指定的第一检测音频信号。可选地,终端设备也可以将上述断开音频数据传输链路的事件作为检测触发指令,并响应于该检测触发指令,直接播放上述第一检测音频信号。
其中,终端设备所输出的第一检测音频信号可以均为纯音信号,即仅由某一待测频点(如500Hz、1000Hz等)对应的音频信号分量组成,而不包含其他频率的音频信号分量的音频信号。
在一些实施例中,为了提升听力检测的准确性,还可以对终端设备待输出的第一检测音频信号进行响度校准,以确保后续的听力检测过程可以在合适的基准下进行。其中,对大量用户统计其在某一待测频点可听到的最小声压级可设定为基准音量0dB HL(dB HL为声音响度单位)。音频播放设备在向终端设备发送上述检测触发指令之前,可以先发送指定的响度校准触发指令,以触发终端设备通过其第二扬声器输出相应的响度校准测试信号。
示例性地,音频播放设备可以通过其前馈麦克风,采集终端设备播放的响度校准测试信号,进而可以根据该响度校准测试信号,确定出相应的响度校准参数,并在向终端设备发送检测触发指令的过程中, 在该检测触发指令中携带上述响度校准参数,以触发终端设备根据该响度校准参数对待播放的第一检测音频信号进行响度补偿校准。在此基础上,终端设备可以通过其第二扬声器播放经过响度补偿校准后的第一检测音频信号。
具体举例来说,音频播放设备在接收到上述响度校准测试信号之后,可以从该响度校准测试信号中,分离出N个(N为大于或等于1的正整数)待测频点(如500Hz、1000Hz等)对应的测试子信号。可以理解,上述各个测试子信号同样可以均为纯音信号。进而,音频播放设备可以分别根据各个测试子信号的信号强度值,以及预先设定的、相应的各个参考强度值,确定该N个待测频点各自对应的响度校准参数。
在此基础上,音频播放设备可以将该N个响度校准参数单独打包发送至终端设备,也可以直接向终端设备发送包含该N个待测频点各自对应的响度校准参数的检测触发指令,以触发终端设备根据该N个待测频点各自对应的响度校准参数,分别对待播放的该N个待测频点对应的第一检测音频信号进行响度补偿校准,并通过第二扬声器分别播放经过响度补偿校准后的各个待测频点对应的第一检测音频信号。
514、获取针对第一检测音频信号的听力特征信息。
其中,步骤514与上述步骤302类似。需要说明的是,音频播放设备在获取用户针对第一检测音频信号反馈的听力特征信息时,可以通过与用户的交互实现,即基于用户是否收听到该第一检测音频信号的反馈,确定与该第一检测音频信号对应的听力特征信息。其中,上述听力特征信息可以包括用户是否收听到第一检测音频信号的主观判断信息,也可以包括根据上述主观判断信息进一步确定出的临界声音响度(即用户恰好能收听到第一检测音频信号时,该第一检测音频信号的声音响度)、可收听的声音响度范围等。
示例性地,请参阅图8,图8是本申请实施例公开的一种获取听力特征信息的流程示意图。如图8所示,终端设备可以对其所生成或存储的第一检测音频信号进行数模转换,并通过第二扬声器进行输出。在此基础上,基于用户是否收听到该第一检测音频信号的反馈情况(例如用户通过操作音频播放设备进行反馈,或者通过操作终端设备进行反馈等),该音频播放设备可以获取相应的听力特征信息。在后续步骤中,音频播放设备还可以根据该听力特征信息,进一步确定相应的听力补偿传递函数Hh(f),以作为针对用户的个性化听力特征实现透传补偿的透传参数(即听力补偿参数)。
在一种实施例中,当用户仅通过音频播放设备获取上述反馈的听力特征信息时,可以通过检测针对该音频播放设备的用户操作来实现。示例性地,针对该音频播放设备的用户操作可以包括触控操作、语音操作、移动操作等。
例如,当用户收听到某一待测频点对应的第一检测音频信号时,可以触摸该音频播放设备上指定的触控点,从而该音频播放设备在检测到针对上述指定触控点的触控操作时,可以确定用户收听到第一检测音频信号的听力状态,进而获取相应的听力特征信息。
又例如,当用户收听到第一检测音频信号时,可以直接发出“听到”的语音指令;而当用户未收听到第一检测音频信号时,则可以直接发出“没听到”的语音指令,从而该音频播放设备可以对其检测到的语音指令进行解析,以确定用户是否收听到第一检测音频信号的情况。
再例如,用户还可以根据是否收听到第一检测音频信号的不同情况,进行不同方向的头部移动、转动或晃动等,从而该音频播放设备可以通过传感器检测其自身的运动状态,以确定相应的用户是否收听到第一检测音频信号的听力状态。具体举例来说,当用户收听到第一检测音频信号时,可以使头部左倾,以使音频播放设备检测到向左移动的趋势;当用户未收听到第一检测音频信号时,则可以使头部右倾,以使该音频播放设备检测到向右移动的趋势,进而音频播放设备可以根据其检测到的移动趋势确定用户针对第一检测音频信号反馈的听力特征信息。又举例来说,当用户收听到第一检测音频信号时,可以使头部朝左水平转动(或朝右水平转动);当用户未收听到第一检测音频信号时,则可以使头部朝右水平转动(或朝左水平转动),从而音频播放设备可以根据其检测到的运动轨迹来确定用户针对第一检测音频信号反馈的听力特征信息。再举例来说,当用户收听到第一检测音频信号时,可以使头部前后晃动(即点头);当用户未收听到第一检测音频信号时,则可以使头部左右晃动(即摇头),从而音频播放设备也可以根据其检测到的运动方向或频率,来确定用户针对第一检测音频信号反馈的听力特征信息。
在另一种实施例中,当用户还通过与音频播放设备通信连接的终端设备来获取上述反馈的听力特征信息时,也可以通过获取针对该终端设备的用户操作来实现。示例性地,针对该终端设备的用户操作可以包括触控操作、按钮点击操作等。当终端设备检测到上述用户操作时,可以根据该用户操作确定用户 是否收听到第一检测音频信号的听力状态,并将该听力状态发送至音频播放设备。在此基础上,音频播放设备可以根据其接收到的听力状态,进一步获取针对上述第一检测音频信号反馈的听力特征信息。
具体举例来说,针对第一待测频点(即上述N个待测频点中的任一频点)对应的第一检测音频信号,音频播放设备可以获取针对该第一检测音频信号所反馈的听力状态,并根据该听力状态调整终端设备输出上述第一检测音频信号的第一声音响度,以最终确定出第一待测频点对应的声音响度阈值,该声音响度阈值即表示用户在使用音频播放设备的情况下,能够听到该第一待测频点对应的第一检测音频信号的临界声音响度。在此基础上,音频播放设备可以将上述声音响度阈值作为针对第一待测频点对应的第一检测音频信号反馈的听力特征信息。
示例性地,若上述听力状态表示上述第一检测音频信号的第一声音响度不符合临界条件,则可以通过终端设备对上述第一检测音频信号的声音响度进行调整,再通过其第二扬声器输出调整后的校正音频信号,并重新执行上述获取用户反馈的听力状态的步骤,直至所得到的第一检测音频信号的第一声音响度符合临界条件为止。在此基础上,音频播放设备可以将符合临界条件的第一检测音频信号的第一声音响度(即声音响度阈值)确定为该第一频率点对应的听力特征信息。其中,上述临界条件,可以指用户恰好能够收听到第一检测音频信号的情形。
需要说明的是,音频播放设备可以按照先执行步骤502至步骤508,后执行步骤510至步骤514的顺序,依次获取用户对应的耳道特征信息以及听力特征信息。也可以按照先执行步骤510至步骤514,后执行步骤502至步骤508的顺序,依次获取用户对应的听力特征信息以及耳道特征信息,本申请实施例中不作具体限定。
516、根据上述耳道特征信息,确定耳道均衡参数,该耳道均衡参数用于对前馈麦克风待接收的目标音频信号进行个性化耳道均衡处理;以及,根据上述听力特征信息,确定听力补偿参数,该听力补偿参数用于对上述目标音频信号进行个性化听力补偿处理。
在本申请实施例中,上述的透传参数可以包括耳道均衡参数以及听力补偿参数等。其中,上述耳道均衡参数可以用于配置相应的个性化耳道均衡滤波器(参见附图4C-4D),以用于对前馈麦克风从外界环境中所接收的音频信号进行个性化耳道均衡处理;上述听力补偿参数则可以用于配置相应的个性化听力补偿滤波器(参见附图4B以及4D),以用于对前馈麦克风从外界环境中所接收的音频信号进行个性化听力补偿处理。
示例性地,上述耳道均衡参数可以包括耳道均衡传递函数Heq(f),则根据上述耳道特征信息确定耳道均衡参数的过程,具体可参阅上述步骤504至步骤508,以及附图6-7的相关说明,此处不再赘述。
示例性地,上述听力补偿参数可以包括听力补偿传递函数Hh(f)。请参阅图9,图9是本申请实施例公开的一种根据听力特征信息拟合相应的听力补偿传递函数的示意图。如图9所示,虚线所串连的各点可以表示上述听力特征信息中,各个待测频点对应的声音响度阈值,实线则可以表示根据上述各点拟合得到的听力补偿传递函数Hh(f)对应的幅频响应曲线。
具体举例来说,若将上述听力特征信息表示为:
公式5:
Hr=[h1,h2,h3,h4,h5,h6,...]
其中,hn表示第n个待测频点对应的声音响度阈值,则经过拟合以及平滑处理后,相应的听力补偿传递函数Hh(f)可以如以下公式6所示:
Hh(f)=[hs1,(hs1+hs2+hs3)/3,
(hs1+hs2+hs3+hs4+hs5)/5,
(hs2+hs3+hs4+hs5+hs6)/5,...]
其中,hsn=βn*(hn+Cfn),βn表示与hn相对应的听力权重修正因子,Cfn表示与hn相对应的声音响度校准因子。通过对Hh(f)的各点进行拟合,即可得到相应的听力补偿传递函数对应的幅频响应曲线。
作为一种可选的实施方式,音频播放设备在获取针对第一检测音频信号的听力特征信息时,可以利用已进行个性化耳道均衡的音频播放设备(即应用附图4C所示的信号传输链路)执行后续的听力特征检测步骤,也可以在听力特征检测结束后再同步进行个性化耳道均衡以及个性化听力补偿,本申请实施 例中不作具体限定。
可见,实施上述实施例所描述的音频信号处理方法,音频播放设备能够针对不同用户的耳道结构差异以及听力特征差异,准确确定出相应的透传参数,以用于对该音频播放设备后续接收的外界音频信号进行个性化的透传补偿,使得音频播放设备可以将外界音频信号尽可能准确地透传至用户,从而能够有效提升音频播放设备对外界音频信号进行透传处理的准确性,有利于提升用户对音频播放设备的使用体验。此外,基于音频播放设备以及终端设备进行的上述耳道差异检测和听力特征检测,可以在无需专门检测设备的情况下,便捷、可靠地完成对用户听力相关特性的检测过程,有效降低了利用音频播放设备配置个性化透传滤波器的难度,提升了音频播放设备对外界音频信号进行透传处理的便利性。
请参阅图10,图10是本申请实施例公开的又一种音频信号处理方法的流程示意图,该方法可以应用于上述的音频播放设备,该音频播放设备可以包括第一扬声器、前馈麦克风以及反馈麦克风。该音频播放设备还可以与终端设备建立通信连接,该终端设备可以包括第二扬声器。如图10所示,该音频信号处理方法可以包括以下步骤:
1002、检测音频播放设备的设备佩戴状态。
在本申请实施例中,音频播放设备可以在其被用户正常佩戴的情况下,才执行上述实施例中的各项检测步骤。示例性地,音频播放设备可以先检测其自身的设备佩戴状态,并在该设备佩戴状态为已佩戴的情况下,在后续步骤中实行上述的耳道差异检测和听力特征检测。
1004、在上述设备佩戴状态为已佩戴的情况下,通过前馈麦克风采集第二接收音频信号。
1006、根据上述第二接收音频信号,确定出相应的环境音参数。
在本申请实施例中,音频播放设备在通过其第一扬声器输出第二检测音频信号之前,可以先通过其前馈麦克风采集外界环境中的环境音,进而可以根据所采集到的环境音,判断该音频播放设备当前所处的环境是否适于进行后续的耳道差异检测以及听力特征检测。
示例性地,音频播放设备在用户已佩戴的情况下,可以通过其前馈麦克风采集第二接收音频信号,进而可以根据该第二接收音频信号,分析计算相应的环境音参数(例如噪声频率、噪声能量等)。在一些实施例中,音频播放设备可以先通过预设的带通滤波器或低通滤波器,对上述第二接收音频信号进行滤波处理,得到相应的低频环境音信号。其中,上述预设的带通滤波器或低通滤波器,可以用于针对性地获取第二接收音频信号中可能对耳道差异检测或听力特征检测造成干扰的低频环境音信号。进一步地,音频播放设备还可以计算该低频环境音信号对应的噪声能量,并在该噪声能量低于噪声能量阈值(可设为0,表示要求完全无干扰噪声的测试环境)的情况下,执行后续响应于耳道差异检测指令,通过第一扬声器输出第二检测音频信号的步骤。
1008、在上述环境音参数符合音频透传处理条件的情况下,响应于耳道差异检测指令,通过第一扬声器输出第二检测音频信号。
其中,步骤1008与上述步骤502类似。在本申请实施例中,若上述环境音参数符合预先设定的音频透传处理条件(例如上述噪声能量低于指定的噪声能量阈值,或者处于指定的噪声能力阈值范围内等),则音频播放设备可以响应于耳道差异检测指令,从其存储模块中获取该耳道差异检测指令对应的第二检测音频信号,或者,获取该耳道差异检测指令对应的检测音频数据,并根据该检测音频数据生成第二检测音频信号,进而可以通过其第一扬声器输出该第二检测音频信号。
1010、通过反馈麦克风采集与上述第二检测音频信号对应的第一接收音频信号。
1012、获取根据第一接收音频信号计算得到的耳道特征信息。
其中,步骤1010以及步骤1012与上述步骤506以及步骤508类似,此处不再赘述。
1014、响应于听力特征检测指令,断开与终端设备之间的音频数据传输链路,并向终端设备发送检测触发指令,该检测触发指令用于触发终端设备通过第二扬声器播放第一检测音频信号。
其中,步骤1014与上述步骤510以及步骤512类似,此处不再赘述。
1016、获取针对第一检测音频信号的听力特征信息。
1018、根据上述耳道特征信息,确定耳道均衡参数;以及,根据上述听力特征信息,确定听力补偿参数。
其中,步骤1016以及步骤1018与上述步骤514以及步骤516类似,此处不再赘述。
1020、根据上述听力补偿参数配置第一滤波器,以及根据上述耳道均衡参数配置第二均衡器。
1022、将上述第一滤波器以及第二滤波器级联,其中,第一均衡器用于对前馈麦克风待接收的目标音频信号进行个性化听力补偿处理,第二均衡器用于对进行个性化听力补偿处理后的目标音频信号进行个性化耳道均衡处理。
在本申请实施例中,上述第一滤波器,可以包括用于对前馈麦克风从外界环境中所接收的音频信号进行个性化听力补偿处理的个性化听力补偿滤波器;上述第二滤波器,则可以包括用于对上述音频信号进行个性化耳道均衡处理的个性化耳道均衡滤波器。
需要说明的是,在对上述第一滤波器以及第二滤波器进行级联后,音频播放设备可以依次对前馈麦克风待接收的目标音频信号进行个性化听力补偿处理和个性化耳道均衡处理。示例性地,如图4C中的信号传输链路所示,音频播放设备在通过其前馈麦克风接收到目标音频信号的时候,该目标音频信号可以先经过模数转换以及出厂固化透传滤波器等常规处理,再进一步经由第一滤波器及第二滤波器进行相应的个性化透传补偿,继而可以进行数模转换并由第一扬声器进行输出。
在一些实施例中,音频播放设备在基于上述听力补偿参数以及耳道均衡参数配置相应的第一滤波器和第二滤波器时,可以根据所需的滤波器类型,确定相应的滤波器配置参数。示例性地,以根据上述听力补偿参数配置第一滤波器为例,音频播放设备可以根据相应的耳道均衡传递函数Heq(f),确定该第一滤波器的中心频率f0,增益系数Gain值和品质因素Q值等,从而可以根据上述滤波器配置参数配置相应的第一滤波器,以用于对待接收的目标音频信号进行个性化耳道均衡处理。
示例性地,请一并参阅图11及图12,当分别确定出上述听力补偿参数以及耳道均衡参数对应的滤波器配置参数,并配置出相应的第一滤波器和第二滤波器之后,由该第一滤波器和第二滤波器级联所得到的一种频率响应可以如图11所示,而利用该第一滤波器和第二滤波器对音频播放设备待接收的目标音频信号进行透传补偿的效果则可以如图12所示。其中,图12中的虚线可以表示进行透传补偿前的系统频率响应,实线则可以表示进行透传补偿后的系统频率响应。可见,在图11中频率点A处对应的透传补偿较小,则相应地在图12中频率点A附近的透传补偿效果不明显;图11中频率点B处对应的透传补偿较大,则相应地在图12中频率点B附近的透传补偿效果较为明显。
可见,实施上述实施例所描述的音频信号处理方法,音频播放设备能够针对不同用户的耳道结构差异以及听力特征差异,准确确定出相应的透传参数,以用于对该音频播放设备后续接收的外界音频信号进行个性化的透传补偿,使得音频播放设备可以将外界音频信号尽可能准确地透传至用户,从而能够有效提升音频播放设备对外界音频信号进行透传处理的准确性,有利于提升用户对音频播放设备的使用体验。此外,通过对音频播放设备所处环境的环境音进行检测,有助于确保后续进行耳道差异检测以及听力特征检测的可靠性,从而有利于进一步提升音频播放设备对外界音频信号进行透传处理的准确性。
以上对本申请实施例中的方法进行了详细说明,下面结合附图对本申请实施例中的装置进行介绍。
请参阅图13,图13是本申请实施例公开的一种音频信号处理装置的模块化示意图,该音频信号处理装置可以是前述图1~图12中所涉及的音频播放设备,也可以是应用于上述音频播放设备中的装置,在此不作限制。在本申请实施例中,该音频播放设备可以包括第一扬声器、前馈麦克风以及反馈麦克风。该音频播放设备还可以与终端设备建立通信连接,该终端设备可以包括第二扬声器。如图13所示,该音频信号处理装置可以包括第一信息获取单元1301以及参数确定单元1302,其中:
第一信息获取单元1301,用于获取针对第一检测音频信号的听力特征信息,其中,该第一检测音频信号是由与音频播放设备建立通信连接的终端设备输出的;
参数确定单元1302,用于根据上述听力特征信息,确定透传参数,该透传参数用于对前馈麦克风待接收的目标音频信号进行透传处理。
可见,采用上述实施例所描述的音频信号处理装置,音频播放设备能够针对不同用户的听力特征差异,准确确定出相应的透传参数,以用于对该音频播放设备后续接收的外界音频信号进行个性化的透传补偿,使得音频播放设备可以将外界音频信号尽可能准确地透传至用户。这样的音频信号处理方法,能够有效提升音频播放设备对外界音频信号进行透传处理的准确性,从而可以为不同用户提供经过适应性的透传处理,且与用户听力相关特性相匹配的外界音频信号,有利于提升用户对音频播放设备的使用体验。
在一种实施例中,上述音频信号处理装置还可以包括未图示的第二信息获取单元,该第二信息获取单元可以用于:
用于获取根据第一接收音频信号计算得到的耳道特征信息,上述第一接收音频信号为通过反馈麦克风采集的与第二检测音频信号对应的接收音频信号,该第二检测音频信号是由音频播放设备通过第一扬声器输出的;
则上述参数确定单元1302,具体可以用于:
根据上述耳道特征信息以及听力特征信息,确定透传参数。
在一种实施例中,上述音频信号处理装置还可以包括未图示的第一响应单元以及指令发送单元,其中:
第一响应单元,用于在上述第一信息获取单元1301获取针对第一检测音频信号的听力特征信息之前,响应于听力特征检测指令,断开与上述终端设备之间的音频数据传输链路;
指令发送单元,用于向上述终端设备发送检测触发指令,该检测触发指令用于触发终端设备通过其第二扬声器播放第一检测音频信号。
在一种实施例中,上述音频信号处理装置还可以包括未图示的第一音频接收单元,该第一音频接收单元可以用于在上述指令发送单元向上述终端设备发送检测触发指令之前,通过前馈麦克风,采集终端设备通过第二扬声器播放的响度校准测试信号;
上述参数确定单元1302,还可以用于根据该响度校准测试信号,确定响度校准参数;
则上述指令发送单元,具体可以用于向终端设备发送包含该响度校准参数的检测触发指令,该检测触发指令用于触发终端设备根据该响度校准参数对待播放的第一检测音频信号进行响度补偿校准,并通过第二扬声器播放经过响度补偿校准后的第一检测音频信号。
作为一种可选的实施方式,上述参数确定单元1302在用于根据该响度校准测试信号,确定响度校准参数时,具体可以包括以下步骤:
从响度校准测试信号中,分离出N个待测频点对应的测试子信号,其中,N为大于或等于1的正整数;
分别根据各个测试子信号的信号强度值以及相应的参考强度值,确定上述N个待测频点各自对应的响度校准参数;
则上述指令发送单元,具体可以用于向终端设备发送包含上述N个待测频点各自对应的响度校准参数的检测触发指令,该检测触发指令用于触发终端设备根据该N个待测频点各自对应的响度校准参数,分别对待播放的N个待测频点对应的第一检测音频信号进行响度补偿校准,并通过第二扬声器分别播放经过响度补偿校准后的N个待测频点对应的第一检测音频信号。
其中,上述N个待测频点对应的测试子信号以及第一检测音频信号可以均为纯音信号。
在此基础上,上述第一信息获取单元1301,具体可以用于:
获取针对第一待测频点对应的第一检测音频信号反馈的听力状态,该第一待测频点为上述N个待测频点中的任一频点;
根据上述听力状态调整第一检测音频信号的第一声音响度,以确定第一待测频点对应的声音响度阈值,该声音响度阈值为用户能够听到第一检测音频信号的临界声音响度;
将该声音响度阈值作为针对第一待测频点对应的第一检测音频信号反馈的听力特征信息。
可见,采用上述实施例所描述的音频信号处理装置,基于音频播放设备以及终端设备进行的上述耳道差异检测和听力特征检测,可以在无需专门检测设备的情况下,便捷、可靠地完成对用户听力相关特性的检测过程,有效降低了利用音频播放设备配置个性化透传滤波器的难度,提升了音频播放设备对外界音频信号进行透传处理的便利性。
在一种实施例中,上述透传参数至少可以包括耳道均衡参数以及听力补偿参数,则上述参数确定单元1302在用于根据上述耳道特征信息以及听力特征信息,确定透传参数时,具体可以包括以下步骤:
根据上述耳道特征信息,确定耳道均衡参数,该耳道均衡参数用于对前馈麦克风待接收的目标音频信号进行个性化耳道均衡处理;以及,
根据上述听力特征信息,确定听力补偿参数,该听力补偿参数用于对前馈麦克风待接收的目标音频信号进行个性化听力补偿处理。
作为一种可选的实施方式,上述第二信息获取单元在用于获取根据第一接收音频信号计算得到的耳道特征信息时,具体可以包括:
按照单位窗口长度对第一接收音频信号进行加窗分割,得到至少一帧接收音频子信号;
根据各帧接收音频子信号,确定第一接收音频信号对应的耳道结构传递函数,上述耳道特征信息包括该耳道结构传递函数;
则在此基础上,上述参数确定单元1302在用于根据上述耳道特征信息,确定耳道均衡参数时,具体可以包括:
根据上述耳道结构传递函数以及参考传递函数,确定出相应的耳道均衡传递函数,作为耳道均衡参数。
作为一种可选的实施方式,上述参数确定单元1302在用于根据上述听力特征信息,确定听力补偿 参数时,具体可以包括:
根据各个待测频点对应的声音响度阈值,拟合确定出相应的听力补偿传递函数,作为听力补偿参数。
在一种实施例中,上述音频信号处理装置还可以包括未图示的第一配置单元以及第二配置单元,其中:
第一配置单元,用于根据上述听力补偿参数配置第一滤波器,以及根据上述耳道均衡参数配置第二均衡器;
第二配置单元,用于将上述第一滤波器以及第二滤波器级联,其中,第一均衡器用于对前馈麦克风待接收的目标音频信号进行个性化听力补偿处理,第二均衡器则用于对进行个性化听力补偿处理后的目标音频信号进行个性化耳道均衡处理。
在一种实施例中,上述音频信号处理装置还可以包括未图示的佩戴状态检测单元,该佩戴状态检测单元可以用于在上述第二信息获取单元获取根据第一接收音频信号计算得到的耳道特征信息之前,检测音频播放设备的设备佩戴状态;
则上述第一音频接收单元,还可以用于在该设备佩戴状态为已佩戴的情况下,通过前馈麦克风采集第二接收音频信号;
上述参数确定单元1302,还可以用于根据该第二接收音频信号,确定出相应的环境音参数,从而在该环境音参数符合音频透传处理条件的情况下,上述第二信息获取单元可以执行获取根据第一接收音频信号计算得到的耳道特征信息的步骤。
可见,采用上述实施例所描述的音频信号处理装置,音频播放设备能够针对不同用户的耳道结构差异以及听力特征差异,准确确定出相应的透传参数,以用于对该音频播放设备后续接收的外界音频信号进行个性化的透传补偿,使得音频播放设备可以将外界音频信号尽可能准确地透传至用户,从而能够有效提升音频播放设备对外界音频信号进行透传处理的准确性,有利于提升用户对音频播放设备的使用体验。此外,通过对音频播放设备所处环境的环境音进行检测,有助于确保后续进行耳道差异检测以及听力特征检测的可靠性,从而有利于进一步提升音频播放设备对外界音频信号进行透传处理的准确性。
请参阅图14,图14是本申请实施例公开的一种音频播放设备的模块化示意图。如图14所示,该音频播放设备可以包括:
存储有可执行程序代码的存储器1401,以及与存储器1401耦合的处理器1402。
其中,处理器1402调用存储器1401中存储的可执行程序代码,可以执行上述实施例所描述的任意一种音频信号处理方法中的全部或部分步骤。
此外,本申请实施例进一步公开了一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,该计算机程序使得计算机可以执行上述实施例所描述的任意一种音频信号处理方法中的全部或部分步骤。
此外,本申请实施例进一步公开一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机可以执行上述实施例所描述的任意一种音频信号处理方法中的全部或部分步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本申请实施例公开的一种音频信号处理方法及装置、音频播放设备、存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种音频信号处理方法,其特征在于,应用于音频播放设备,所述音频播放设备包括前馈麦克风,所述方法包括:
    获取针对第一检测音频信号的听力特征信息,其中,所述第一检测音频信号是由与所述音频播放设备建立通信连接的终端设备输出的;
    根据所述听力特征信息,确定透传参数,所述透传参数用于对所述前馈麦克风待接收的目标音频信号进行透传处理。
  2. 根据权利要求1所述的方法,其特征在于,所述音频播放设备还包括第一扬声器以及反馈麦克风,所述方法还包括:
    获取根据第一接收音频信号计算得到的耳道特征信息,所述第一接收音频信号为通过所述反馈麦克风采集的与第二检测音频信号对应的接收音频信号,所述第二检测音频信号是由所述音频播放设备通过所述第一扬声器输出的;
    所述根据所述听力特征信息,确定透传参数,包括:
    根据所述耳道特征信息以及所述听力特征信息,确定透传参数。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备包括第二扬声器,在所述获取针对第一检测音频信号的听力特征信息之前,所述方法还包括:
    响应于听力特征检测指令,断开与所述终端设备之间的音频数据传输链路;
    向所述终端设备发送检测触发指令,所述检测触发指令用于触发所述终端设备通过所述第二扬声器播放所述第一检测音频信号。
  4. 根据权利要求3所述的方法,其特征在于,在所述向所述终端设备发送检测触发指令之前,所述方法还包括:
    通过所述前馈麦克风,采集所述终端设备通过所述第二扬声器播放的响度校准测试信号;
    根据所述响度校准测试信号,确定响度校准参数;
    所述向所述终端设备发送检测触发指令,包括:
    向所述终端设备发送包含所述响度校准参数的检测触发指令,所述检测触发指令用于触发所述终端设备根据所述响度校准参数对待播放的第一检测音频信号进行响度补偿校准,并通过所述第二扬声器播放经过响度补偿校准后的第一检测音频信号。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述响度校准测试信号,确定响度校准参数,包括:
    从所述响度校准测试信号中,分离出N个待测频点对应的测试子信号,其中,N为大于或等于1的正整数;
    分别根据各个测试子信号的信号强度值以及相应的参考强度值,确定所述N个待测频点各自对应的响度校准参数;
    所述向所述终端设备发送包含所述响度校准参数的检测触发指令,包括:
    向所述终端设备发送包含所述N个待测频点各自对应的响度校准参数的检测触发指令,所述检测触发指令用于触发所述终端设备根据所述N个待测频点各自对应的响度校准参数,分别对待播放的所述N个待测频点对应的第一检测音频信号进行响度补偿校准,并通过所述第二扬声器分别播放经过响度补偿校准后的所述N个待测频点对应的第一检测音频信号。
  6. 根据权利要求5所述的方法,其特征在于,所述N个待测频点对应的测试子信号以及第一检测音频信号均为纯音信号。
  7. 根据权利要求5所述的方法,其特征在于,所述获取针对第一检测音频信号的听力特征信息,包括:
    获取针对第一待测频点对应的第一检测音频信号反馈的听力状态,所述第一待测频点为所述N个待测频点中的任一频点;
    根据所述听力状态调整所述第一检测音频信号的第一声音响度,以确定所述第一待测频点对应的声音响度阈值,所述声音响度阈值为用户能够听到所述第一检测音频信号的临界声音响度;
    将所述声音响度阈值作为针对所述第一待测频点对应的第一检测音频信号反馈的听力特征信息。
  8. 根据权利要求2至7任一项所述的方法,其特征在于,所述透传参数至少包括耳道均衡参数以及听力补偿参数,所述根据所述耳道特征信息以及所述听力特征信息,确定透传参数,包括:
    根据所述耳道特征信息,确定所述耳道均衡参数,所述耳道均衡参数用于对所述前馈麦克风待接收 的目标音频信号进行个性化耳道均衡处理;以及,
    根据所述听力特征信息,确定所述听力补偿参数,所述听力补偿参数用于对所述前馈麦克风待接收的目标音频信号进行个性化听力补偿处理。
  9. 根据权利要求8所述的方法,其特征在于,所述获取根据第一接收音频信号计算得到的耳道特征信息,包括:
    按照单位窗口长度对第一接收音频信号进行加窗分割,得到至少一帧接收音频子信号;
    根据各帧接收音频子信号,确定所述第一接收音频信号对应的耳道结构传递函数,所述耳道特征信息包括所述耳道结构传递函数;
    所述根据所述耳道特征信息,确定所述耳道均衡参数,包括:
    根据所述耳道结构传递函数以及参考传递函数,确定出相应的耳道均衡传递函数,作为所述耳道均衡参数。
  10. 根据权利要求8所述的方法,其特征在于,所述根据所述听力特征信息,确定所述听力补偿参数,包括:
    根据各个待测频点对应的声音响度阈值,拟合确定出相应的听力补偿传递函数,作为所述听力补偿参数。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    根据所述听力补偿参数配置第一滤波器,以及根据所述耳道均衡参数配置第二均衡器;
    将所述第一滤波器以及所述第二滤波器级联,其中,所述第一均衡器用于对所述前馈麦克风待接收的目标音频信号进行个性化听力补偿处理,所述第二均衡器用于对进行个性化听力补偿处理后的目标音频信号进行个性化耳道均衡处理。
  12. 根据权利要求1至7任一项所述的方法,其特征在于,在所述获取针对第一检测音频信号的听力特征信息之前,所述方法还包括:
    检测所述音频播放设备的设备佩戴状态;
    在所述设备佩戴状态为已佩戴的情况下,通过所述前馈麦克风采集第二接收音频信号;
    根据所述第二接收音频信号,确定出相应的环境音参数,并在所述环境音参数符合音频透传处理条件的情况下,执行所述获取针对第一检测音频信号的听力特征信息的步骤。
  13. 一种音频信号处理装置,其特征在于,应用于音频播放设备,所述音频播放设备包括前馈麦克风,所述音频信号处理装置包括:
    第一信息获取单元,用于获取针对第一检测音频信号的听力特征信息,其中,所述第一检测音频信号是由与所述音频播放设备建立通信连接的终端设备输出的;
    参数确定单元,用于根据所述听力特征信息,确定透传参数,所述透传参数用于对所述前馈麦克风待接收的目标音频信号进行透传处理。
  14. 根据权利要求13所述的装置,其特征在于,所述音频播放设备还包括第一扬声器以及反馈麦克风,所述音频信号处理装置还包括:
    第二信息获取单元,用于获取根据第一接收音频信号计算得到的耳道特征信息,所述第一接收音频信号为通过所述反馈麦克风采集的与第二检测音频信号对应的接收音频信号,所述第二检测音频信号是由所述音频播放设备通过所述第一扬声器输出的;
    所述参数确定单元具体用于:根据所述耳道特征信息以及所述听力特征信息,确定透传参数。
  15. 根据权利要求13所述的装置,其特征在于,所述终端设备包括第二扬声器,所述音频信号处理装置还包括:
    第一响应单元,用于响应于听力特征检测指令,断开与所述终端设备之间的音频数据传输链路;
    指令发送单元,用于向所述终端设备发送检测触发指令,所述检测触发指令用于触发所述终端设备通过所述第二扬声器播放所述第一检测音频信号。
  16. 根据权利要求15所述的装置,其特征在于,所述音频信号处理装置还包括:
    第一音频接收单元,用于通过所述前馈麦克风,采集所述终端设备通过所述第二扬声器播放的响度校准测试信号;
    所述参数确定单元,还用于根据所述响度校准测试信号,确定响度校准参数;
    所述指令发送单元具体用于:向所述终端设备发送包含所述响度校准参数的检测触发指令,所述检测触发指令用于触发所述终端设备根据所述响度校准参数对待播放的第一检测音频信号进行响度补偿校准,并通过所述第二扬声器播放经过响度补偿校准后的第一检测音频信号。
  17. 根据权利要求16所述的装置,其特征在于,所述参数确定单元具体用于:
    从所述响度校准测试信号中,分离出N个待测频点对应的测试子信号,其中,N为大于或等于1的正整数;
    分别根据各个测试子信号的信号强度值以及相应的参考强度值,确定所述N个待测频点各自对应的响度校准参数;
    所述指令发送单元具体用于:
    向所述终端设备发送包含所述N个待测频点各自对应的响度校准参数的检测触发指令,所述检测触发指令用于触发所述终端设备根据所述N个待测频点各自对应的响度校准参数,分别对待播放的所述N个待测频点对应的第一检测音频信号进行响度补偿校准,并通过所述第二扬声器分别播放经过响度补偿校准后的所述N个待测频点对应的第一检测音频信号。
  18. 根据权利要求17所述的装置,其特征在于,所述第一信息获取单元具体用于:
    获取针对第一待测频点对应的第一检测音频信号反馈的听力状态,所述第一待测频点为所述N个待测频点中的任一频点;
    根据所述听力状态调整所述第一检测音频信号的第一声音响度,以确定所述第一待测频点对应的声音响度阈值,所述声音响度阈值为用户能够听到所述第一检测音频信号的临界声音响度;
    将所述声音响度阈值作为针对所述第一待测频点对应的第一检测音频信号反馈的听力特征信息。
  19. 一种音频播放设备,其特征在于,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现如权利要求1至12任一项所述的方法。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至12任一项所述的方法。
PCT/CN2023/118456 2022-11-03 2023-09-13 音频信号处理方法及装置、音频播放设备、存储介质 WO2024093536A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211370718.0A CN117998251A (zh) 2022-11-03 2022-11-03 音频信号处理方法及装置、音频播放设备、存储介质
CN202211370718.0 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024093536A1 true WO2024093536A1 (zh) 2024-05-10

Family

ID=90900271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118456 WO2024093536A1 (zh) 2022-11-03 2023-09-13 音频信号处理方法及装置、音频播放设备、存储介质

Country Status (2)

Country Link
CN (1) CN117998251A (zh)
WO (1) WO2024093536A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113362839A (zh) * 2021-06-01 2021-09-07 平安科技(深圳)有限公司 音频数据处理方法、装置、计算机设备及存储介质
CN114390391A (zh) * 2021-12-29 2022-04-22 联想(北京)有限公司 一种音频处理方法以及设备
WO2022218093A1 (zh) * 2021-04-14 2022-10-20 Oppo广东移动通信有限公司 音频信号补偿方法及装置、耳机、存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022218093A1 (zh) * 2021-04-14 2022-10-20 Oppo广东移动通信有限公司 音频信号补偿方法及装置、耳机、存储介质
CN113362839A (zh) * 2021-06-01 2021-09-07 平安科技(深圳)有限公司 音频数据处理方法、装置、计算机设备及存储介质
CN114390391A (zh) * 2021-12-29 2022-04-22 联想(北京)有限公司 一种音频处理方法以及设备

Also Published As

Publication number Publication date
CN117998251A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
EP3348047B1 (en) Audio signal processing
US8675884B2 (en) Method and a system for processing signals
EP1111960B1 (en) Digital hearing device and method
US9560456B2 (en) Hearing aid and method of detecting vibration
US20140177868A1 (en) Audio processing device comprising artifact reduction
JP5493611B2 (ja) 情報処理装置、情報処理方法およびプログラム
EP3282678B1 (en) Signal processor with side-tone noise reduction for a headset
EP2700161B1 (en) Processing audio signals
KR102004460B1 (ko) 블루투스 회로와 디지털 신호 처리를 이용한 디지털 히어링 디바이스
US10204637B2 (en) Noise reduction methodology for wearable devices employing multitude of sensors
US20140341386A1 (en) Noise reduction
WO2022218093A1 (zh) 音频信号补偿方法及装置、耳机、存储介质
WO2022247494A1 (zh) 音频信号补偿方法及装置、耳机、存储介质
US20160173047A1 (en) Audio enhancement via beamforming and multichannel filtering of an input audio signal
CN111629313B (zh) 包括环路增益限制器的听力装置
EP3840402B1 (en) Wearable electronic device with low frequency noise reduction
US11445307B2 (en) Personal communication device as a hearing aid with real-time interactive user interface
GB2490092A (en) Reducing howling by applying a noise attenuation factor to a frequency which has above average gain
WO2024093536A1 (zh) 音频信号处理方法及装置、音频播放设备、存储介质
EP4021017A1 (en) A hearing aid comprising a feedback control system
WO2023020208A1 (zh) 音频信号处理方法及装置、耳机、存储介质
US11875769B2 (en) Baby monitor system with noise filtering and method thereof
WO2023138252A1 (zh) 音频信号处理方法及装置、耳机设备、存储介质
CN116782084A (zh) 音频信号处理方法及装置、耳机、存储介质
TWI700004B (zh) 減少干擾音影響之方法及聲音播放裝置