WO2022247412A1 - 一种空调设备的供电系统、空调设备及数据中心 - Google Patents

一种空调设备的供电系统、空调设备及数据中心 Download PDF

Info

Publication number
WO2022247412A1
WO2022247412A1 PCT/CN2022/082168 CN2022082168W WO2022247412A1 WO 2022247412 A1 WO2022247412 A1 WO 2022247412A1 CN 2022082168 W CN2022082168 W CN 2022082168W WO 2022247412 A1 WO2022247412 A1 WO 2022247412A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
bus
power supply
branch
Prior art date
Application number
PCT/CN2022/082168
Other languages
English (en)
French (fr)
Inventor
蒲明明
刘培国
孟祥涛
付明晓
张尧
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2022247412A1 publication Critical patent/WO2022247412A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/16The load or loads being an Information and Communication Technology [ICT] facility
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/066Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems characterised by the use of dynamo-electric machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present application relates to the field of power electronics technology, and in particular to a power supply system of an air conditioner, an air conditioner and a data center.
  • Data centers include many servers.
  • CRAC Computer Room Air Conditioning
  • CRAC Computer Room Air Conditioning
  • the power supply system of air-conditioning equipment in most industries includes two power sources, and each power source includes a mains power supply and an oil generator, both of which provide AC power.
  • the two-way power supply realizes redundant power supply.
  • the air conditioner uses the mains power supply first.
  • the oil generator is used for power supply.
  • the first power supply corresponds to mains A and diesel generator 1
  • the second power supply corresponds to mains B and diesel generator 2.
  • switch the mains B corresponding to the second power supply to supply power.
  • any oil generator can supply power.
  • the current power supply system of air-conditioning equipment includes batteries and Uninterruptible Power Supply (UPS, Uninterruptible Power Supply).
  • UPS Uninterruptible Power Supply
  • the UPS can convert the electric energy of the battery into alternating current and supply it to the CRAC when the alternating current is cut off.
  • UPS needs to be equipped with low-voltage power distribution cabinets and output power distribution cabinets, and the overall cost is too high.
  • the air conditioner still has the problem of no power supply during the switch, that is, short-term power failure.
  • the application provides a power supply system for air conditioning equipment, air conditioning equipment and data center, which can continuously supply power to the air conditioner in the computer room when the two power supplies for the air conditioner in the computer room are switched, so as to ensure the normal operation of the air conditioner in the computer room.
  • An embodiment of the present application provides a power supply system for an air conditioner, including: an AC bus, a DC bus, a first AC/DC AC/DC circuit, a first DC/AC DC/AC circuit, and a power backup device;
  • the AC bus is used for Two power sources are connected through a switching circuit; the input end of the first AC/DC circuit is connected to the AC bus, the output end of the first AC/DC circuit is connected to the DC bus; the input end of the first DC/AC circuit is connected to the DC bus, and the first DC
  • the output terminal of the /AC circuit is used to supply power to the load of the first air conditioner; the backup power device is connected to the DC bus or the AC bus; The load is continuously powered.
  • the power supply system provided in the embodiment of the present application does not limit the number of air-conditioning loads or air-conditioning equipment that supply power. Multiple air-conditioning equipment can share the same power supply system, or each air-conditioning equipment can correspond to its own power supply system.
  • the backup power device of the power supply system provided by the embodiment of the present application is connected to the combined circuit after the switching of the two power sources. Therefore, no matter how the two power sources are switched or powered off, the connection between the backup power device and the load of the air-conditioning equipment will not be affected. relationship, that is, the backup power device has always been connected to the load of the air conditioner, and has not been disconnected. Therefore, when the two power sources switch or lose power, the backup power device can supply power to the load of the air conditioner, even if the two power sources switch During the period, there will be a short-term power interruption on the AC bus, but it will not affect the power supply of the backup power device to the load of the air conditioner.
  • the two-way power supply failure means that the two-way power supply has no AC power.
  • each power supply includes one mains power supply and one oil generator.
  • the embodiment of the present application does not limit whether the power backup device is connected to the DC bus or the AC bus, and the two implementation methods are respectively introduced below.
  • the first type the backup power device is connected to the DC bus; the backup power device includes a battery pack and a bidirectional DC/DC circuit; the first end of the bidirectional DC/DC circuit is connected to the DC bus, and the second end of the bidirectional DC/DC circuit is connected to the battery pack;
  • the bidirectional DC/DC circuit is used to convert the voltage of the battery pack to a voltage matching the first air conditioner load, and is also used to convert the voltage of the DC bus to a voltage matching the battery pack to charge the battery pack.
  • the backup power device includes a bidirectional DC/DC circuit, the rules of the battery pack can be flexibly selected.
  • the voltage of the battery pack can be converted to match the DC bus voltage through the bidirectional DC/DC circuit.
  • the voltage matching the bus is discharged, or the voltage of the DC bus is converted into a voltage matching the battery pack for charging.
  • the power backup device when connected to the DC bus, it may not include a bidirectional DC/DC circuit.
  • the second type the backup power device is connected to the AC bus;
  • the backup power device includes a battery pack and a bidirectional AC/DC circuit;
  • the input end of the bidirectional AC/DC circuit is connected to the AC bus bar, and the output end of the bidirectional AC/DC circuit is connected to the battery pack;
  • the bidirectional AC The /DC circuit is used to convert the AC power of the AC bus to DC to charge the battery pack, and is also used to convert the voltage of the battery pack to a voltage matching the AC bus to supply power to the first air conditioner load.
  • the power supply system includes multiple AC/DC circuits; that is, it also includes a second AC/DC circuit; the input end of the second AC/DC circuit is connected to the AC bus, and the output of the second AC/DC circuit connected to the DC bus.
  • the subsequent load capacity of the DC bus can be increased, that is, more air-conditioning loads can be connected.
  • the embodiment of the present application does not limit the number of AC/DC circuits connected in parallel between the DC bus and the AC bus.
  • a larger number of AC/DC circuits is mainly for the convenience of expanding more loads or expanding more air conditioners.
  • the load capacity of the power supply system is strong, it is not limited whether the multiple loads are located in one physical air conditioner or in multiple different physical air conditioners.
  • the power supply system provided by the embodiment of the present application may also include multiple DC/AC circuits, for example, a second DC/AC circuit; the input end of the second DC/AC circuit is connected to the DC bus, and the second DC/AC circuit The output terminal is used to supply power to the second air conditioner load.
  • a second DC/AC circuit for example, a second DC/AC circuit; the input end of the second DC/AC circuit is connected to the DC bus, and the second DC/AC circuit The output terminal is used to supply power to the second air conditioner load.
  • one air conditioner load corresponds to one DC/AC circuit, that is, there is a one-to-one correspondence between multiple air conditioner loads and multiple DC/AC circuits.
  • each DC/AC circuit can also supply power to multiple air-conditioning loads, that is, the output end of the first DC/AC circuit is used to supply power to at least two first air-conditioning loads, for example, two Compressor power supply.
  • both the first air-conditioning load and the second air-conditioning load may include a fan, a compressor, or a pump.
  • the DC buses in the power supply systems corresponding to multiple air conditioners may be connected together.
  • multiple air conditioners can share the same DC bus.
  • the power supply system provided by the embodiment of the present application may or may not include a switching circuit.
  • the switching circuit When the switching circuit is not included, the power supply system may be connected to an external switching circuit.
  • the switching circuit Including: the first branch and the second branch; the first end of the first branch is used to connect the first power supply of the two power supplies, and the first end of the second branch is used to connect the second power supply of the two power supplies Two-way power supply; the second end of the first branch and the second end of the second branch are connected together to connect to the AC bus; there are switching devices in series on the first branch and the second branch, and the switching device is used to switch the first power supply and the second power supply.
  • both the first power supply and the second power supply include their corresponding mains power and oil generators. That is, the first power supply includes the first commercial power supply and the first oil generator, and the second power supply includes the second commercial power supply and the second diesel generator;
  • the first power supply includes the first commercial power supply and the first oil generator
  • the second power supply includes the second commercial power supply and the second diesel generator
  • the power supply system further includes: a first automatic conversion The switching device ATS and the second automatic transfer switching device ATS; the first end of the first branch is connected to the first power supply through the first ATS, wherein the first input end of the first ATS is used to connect the first commercial power, the first The second input end of the ATS is used to connect the first oil generator; the output end of the first ATS is connected to the first end of the first branch; the first end of the second branch is connected to the second power supply through the second ATS, where the first The first input end of the second ATS is used to connect the second commercial power, the second input end of the second ATS is used to connect the second oil generator, and the output end of the second ATS is connected to the first end of the second branch circuit.
  • the power supply system provided by the embodiment of the present application further includes: a first automatic transfer switch appliance ATS, a second automatic transfer switch Switching appliance ATS, low-voltage power distribution cabinet, output power distribution cabinet, battery and uninterrupted power supply circuit; the first end of the first branch is connected to the first power supply through the first ATS, and the first input end of the first ATS is used for Connect the first commercial power supply, the second input end of the first ATS is used to connect the first oil generator, the output end of the first ATS is connected to the first end of the first branch; the first end of the second branch is connected to the second The ATS is connected to the second power supply, where the first input terminal of the second ATS is used to connect to the second commercial power supply, and the second input terminal of the second ATS is used to connect to the second oil generator; the output terminal of the second ATS is connected to the low-voltage distribution The input end of the electric cabinet; the output
  • the power supply system provided by the embodiment of the present application further includes: a first automatic transfer switch appliance ATS, a second automatic transfer switch Switching apparatus ATS, the first low-voltage distribution cabinet, the first output distribution cabinet, the first battery, the first uninterrupted power supply circuit, the second low-voltage distribution cabinet, the second output distribution cabinet, the second battery and the second uninterrupted power supply circuit Intermittent power supply circuit;
  • the first end of the first branch is connected to the first power supply through the first ATS, wherein the first input end of the first ATS is used to connect to the first commercial power supply, and the second input end of the first ATS is used for Connect the first oil generator;
  • the first end of the second branch is connected to the second power supply through the second ATS, wherein the first input end of the second ATS is used to connect the second mains power supply, and the second input end of the second ATS Used to connect the second oil generator;
  • the output end of the first ATS is
  • the embodiment of the present application also provides an air conditioner, which integrates a power supply system and an air conditioner load inside, including: an AC bus, a DC bus, a first AC/DC AC/DC circuit, the first DC/AC DC/AC circuit, the backup power device and the first air-conditioning load;
  • the AC bus is used to connect two power sources through the switching circuit;
  • the input end of the first AC/DC circuit is connected to the AC bus, and the first AC
  • the output terminal of the /DC circuit is connected to the DC bus;
  • the input terminal of the first DC/AC circuit is connected to the DC bus, and the output terminal of the first DC/AC circuit is used to supply power to the first air conditioner load;
  • the backup power device is connected to the DC bus or the AC bus ;
  • the backup power device is used to provide electric energy for the DC bus or the AC bus when the two power sources switch or lose power, so that the first air-conditioning load is continuously powered.
  • the power backup device is specifically connected to the DC bus;
  • the power backup device includes a battery pack and a bidirectional DC/DC circuit;
  • the first end of the bidirectional DC/DC circuit is connected to the DC bus, and the second end of the bidirectional DC/DC circuit
  • the two terminals are connected to the battery pack;
  • the bidirectional DC/DC circuit is used to convert the voltage of the battery pack to a voltage matching the first air conditioner load, and is also used to convert the voltage of the DC bus to a voltage matching the battery pack to charge the battery pack.
  • the power backup device is specifically connected to the AC bus;
  • the power backup device includes a battery pack and a bidirectional AC/DC circuit;
  • the input end of the bidirectional AC/DC circuit is connected to the AC bus bar, and the output end of the bidirectional AC/DC circuit Connect the battery pack;
  • the bidirectional AC/DC circuit is used to convert the AC power of the AC bus to DC to charge the battery pack, and is also used to convert the voltage of the battery pack to a voltage matching the AC bus to supply power to the first air conditioner load.
  • a second AC/DC circuit is further included; an input end of the second AC/DC circuit is connected to the AC bus, and an output end of the second AC/DC circuit is connected to the DC bus.
  • a second DC/AC circuit is further included; the input end of the second DC/AC circuit is connected to the DC bus, and the output end of the second DC/AC circuit is used to supply power to the second air conditioner load.
  • the first air conditioner load includes a fan, a compressor or a pump.
  • the output end of the first DC/AC circuit is used to supply power to at least two first air conditioner loads.
  • the switching circuit includes: a first branch and a second branch; the first end of the first branch is used to connect One end is used to connect the second power supply of the two power supplies; the second end of the first branch and the second end of the second branch are connected together to connect the AC bus; both the first branch and the second branch are connected in series There is a corresponding switching device, and the switching device is used to switch the first power supply and the second power supply.
  • the air-conditioning equipment provided in the above embodiments integrates all the components of the power supply system inside. There is another implementation method.
  • the air-conditioning equipment does not include a backup power device inside, and the backup power device can be installed outside the cabinet of the air-conditioning DC bus or AC bus can be connected.
  • the embodiment of the present application also provides an air conditioner, including: an AC bus, a DC bus, a first AC/DC AC/DC circuit, a first DC/AC DC/AC circuit, and a first air conditioner load; the AC bus is used to pass The switching circuit is connected to two power sources; the input end of the first AC/DC circuit is connected to the AC bus, the output end of the first AC/DC circuit is connected to the DC bus; the input end of the first DC/AC circuit is connected to the DC bus, and the first DC/DC circuit is connected to the DC bus.
  • the output terminal of the AC circuit is used to supply power to the first air-conditioning load; the DC bus or the AC bus is connected to the backup power device; An air-conditioning load is continuously powered.
  • the data center further provided in the embodiment of the present application includes air-conditioning equipment and the power supply system described above, wherein the air-conditioning equipment includes an air-conditioning load for temperature control of the data center.
  • the air-conditioning load is set separately from the power supply system, and the power supply system supplies power to the air-conditioning load, and the two are connected. When the two power sources switch or lose power, the power supply device in the power supply system can continuously supply power to the air-conditioning load.
  • the embodiment of the present application also provides another data center, including air-conditioning equipment.
  • the power supply system is integrated in the air-conditioning equipment.
  • the power supply system includes a backup power device. When the two power sources switch or lose power, the power supply system can continuously serve as the air-conditioning load. powered by.
  • the embodiment of the present application also provides another data center, including a power backup device and an air conditioner; the air conditioner is used to control the temperature of the data center. That is, the backup power device is located outside the air conditioner, and the inside of the air conditioner includes other components of the power supply system except the backup power device, and the backup power device is connected to the DC bus or AC bus of the internal power supply system of the air conditioner. When the two power sources switch or lose power, the backup power device can continuously supply power to the air-conditioning load.
  • the embodiment of the present application also provides a power supply for air-conditioning equipment, including: an AC bus, a DC bus, a first AC/DC AC/DC circuit, a first DC/AC DC/AC circuit, and a backup power device;
  • the two power sources are connected through a switching circuit; the input end of the first AC/DC circuit is connected to the AC bus, the output end of the first AC/DC circuit is connected to the DC bus; the input end of the first DC/AC circuit is connected to the DC bus, and the first The output end of the DC/AC circuit is used to supply power to the first air-conditioning load;
  • the backup power device is connected to the DC bus or the AC bus; the backup device is used to provide power for the DC bus or the AC bus when the two power sources are switched or powered off, Make the first air conditioner load uninterrupted.
  • the backup power device is connected to the DC bus;
  • the backup power device includes a battery pack and a bidirectional DC/DC circuit; the first end of the bidirectional DC/DC circuit is connected to the DC bus, and the second end of the bidirectional DC/DC circuit is connected to the Battery pack; bidirectional DC/DC circuit, used to convert the voltage of the battery pack to the load-matching voltage of the computer room air conditioner, and also used to convert the voltage of the DC bus to the matching voltage of the battery pack to charge the battery pack.
  • the backup power device is connected to the AC bus;
  • the backup power device includes a battery pack and a bidirectional AC/DC circuit;
  • the input end of the bidirectional AC/DC circuit is connected to the AC bus bar, and the output end of the bidirectional AC/DC circuit is connected to the battery pack ;
  • the bidirectional AC/DC circuit is used to convert the AC power of the AC bus to DC for charging the battery pack, and is also used to convert the voltage of the battery pack to a voltage matching the AC bus to supply power for the load of the computer room air conditioner.
  • the power supply further includes a second AC/DC circuit; an input end of the second AC/DC circuit is connected to an AC bus, and an output end of the second AC/DC circuit is connected to a DC bus.
  • the power supply further includes a second DC/AC circuit; the input end of the second DC/AC circuit is connected to the DC bus, and the output end of the second DC/AC circuit is used to supply power to the second air conditioner load.
  • the output terminal of the first DC/AC circuit is used to supply power to at least two first air conditioner loads.
  • the switching circuit includes: a first branch and a second branch; the first end of the first branch is used to connect the first power supply of the two power supplies, and the first end of the second branch Used to connect the second power supply of the two power supplies; the second end of the first branch and the second end of the second branch are connected together to connect to the AC bus; switches are connected in series on the first branch and the second branch device, the switching device is used to switch the first power supply and the second power supply.
  • the embodiment of the present application also provides a power supply chassis for air-conditioning equipment, including: an AC bus, a DC bus, a first AC/DC AC/DC circuit, a first DC/AC DC/AC circuit, and a power backup device; the The first port of the power supply box is connected to the switching circuit, and the second port of the power supply box is connected to the first air-conditioning load; the backup power device includes at least a battery pack; the AC bus is used to connect two power sources through the switching circuit; the first AC/DC circuit The input end is connected to the AC bus, the output end of the first AC/DC circuit is connected to the DC bus; the input end of the first DC/AC circuit is connected to the DC bus, and the output end of the first DC/AC circuit is used to supply power to the first air conditioner load; The backup power device is connected to the DC bus or the AC bus; the backup power device is used to provide electric energy for the DC bus or the AC bus when the two power sources switch or lose power, so that the first air-conditioning load is continuously powered.
  • the backup power device is connected to the DC bus;
  • the backup power device includes a battery pack and a bidirectional DC/DC circuit; the first end of the bidirectional DC/DC circuit is connected to the DC bus, and the second end of the bidirectional DC/DC circuit is connected to the battery pack; the bidirectional DC/DC The circuit is used to convert the voltage of the battery pack into a load matching voltage of the computer room air conditioner, and is also used to convert the voltage of the DC bus into a voltage matching the battery pack to charge the battery pack.
  • the backup power device is connected to the AC bus;
  • the backup power device includes a battery pack and a bidirectional AC/DC circuit;
  • the input end of the bidirectional AC/DC circuit is connected to the AC bus bar, and the output end of the bidirectional AC/DC circuit is connected to the battery pack;
  • the bidirectional AC/DC circuit It is used to convert the AC power of the AC bus to DC to charge the battery pack, and is also used to convert the voltage of the battery pack to a voltage that matches the AC bus to supply power for the load of the computer room air conditioner.
  • the embodiment of the present application does not specifically limit the number of AC/DC circuits included in the power supply system, and may include one AC/DC circuit, or may include multiple AC/DC circuits. Since the AC/DC circuit is connected between the AC bus and the DC bus, when multiple AC/DC circuits are connected in parallel between the AC bus and the DC bus, the current on the DC bus can be increased and the load capacity of the DC bus can be improved , if the number of air-conditioning loads mounted on the DC bus is large, the number of AC/DC circuits can be increased.
  • the embodiment of the present application does not limit the number of DC/AC circuits included in the power supply system, which may include one DC/AC circuit or multiple DC/AC circuits.
  • Those skilled in the art can set the number of DC/AC circuits according to the number of air-conditioning loads. For example, a fan corresponds to a DC/AC circuit, a compressor corresponds to a DC/AC circuit, and a pump corresponds to a DC/AC circuit.
  • one DC/AC circuit can correspond to multiple air-conditioning loads, such as one DC/AC circuit fan or multiple compressors or multiple pumps. Be specific.
  • the power supply system of the air conditioner provided in the embodiment of the present application includes a backup power device.
  • the battery pack in the backup device can be charged.
  • the backup device can The discharge powers the load of the air conditioning equipment, such as the load of the air conditioning equipment may include a fan, compressor or pump.
  • the backup power device of the power supply system provided by the embodiment of the present application is connected to the AC bus or DC bus after the two-way power supply for the air-conditioning equipment is combined, that is, the backup power device is connected to the combined circuit after the switching of the two power sources.
  • the backup power device is always connected to the load of the air conditioner and has not been disconnected. Therefore, when the two power sources are switched, The backup power device can supply power to the load of the air-conditioning equipment. Even if there is a short-term power interruption on the AC bus during the switching of the two power sources, it will not affect the power supply of the load of the air-conditioning equipment by the backup power device.
  • the backup power device in addition to supplying power to the load of the air conditioner when the two power sources switch, can also supply power to the load of the air conditioner when both power sources are cut off.
  • the power supply system of the air-conditioning equipment provided in the embodiment of the present application can always supply power to the load of the air-conditioning equipment, and there will be no short-term power supply interruption during two-way power supply switching or power failure, ensuring that the load of the air-conditioning equipment can work normally, thereby ensuring The temperature of the computer room is normal.
  • FIG. 1A is a schematic diagram of a micro-modular data center provided by an embodiment of the present application.
  • FIG. 1B is an architecture diagram of a CRAC provided in an embodiment of the present application.
  • Fig. 2 is the structure of the power supply system of traditional CRAC
  • FIG. 3 is a schematic diagram of a power supply system for a computer room air conditioner provided in an embodiment of the present application
  • FIG. 4 is a schematic diagram of another power supply system for a computer room air conditioner provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 7A is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 7B is a schematic diagram of a power supply system for paralleling multiple computer room air conditioners provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a backup device integrated within a CRAC in a power supply system provided by an embodiment of the present application;
  • FIG. 11 is a schematic diagram of a backup device installed outside the CRAC in the power supply system provided by the embodiment of the present application;
  • FIG. 12 is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another power supply system for a computer room air conditioner provided in an embodiment of the present application.
  • FIG. 16 is a structure diagram corresponding to two CRACs provided in the embodiment of the present application.
  • Words such as “first” and “second” in the following descriptions are used for description purposes only, and should not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature. In the description of the present application, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense, for example, “connection” can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection, or It can be connected indirectly through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection, or It can be connected indirectly through an intermediary.
  • coupled may be an electrical connection for signal transmission.
  • Coupling can be a direct electrical connection, or an indirect electrical connection through an intermediary.
  • the embodiment of the present application relates to a power supply system for air-conditioning equipment. Since the power supply system includes a backup power device, and the backup power device includes a battery pack, and since the battery pack is connected to the path after the two circuits are combined, it can be connected to the AC bus It can also be connected to the DC bus. When the two power sources are switched or powered off, the connection relationship between the battery pack and the air conditioner load will not be affected. Therefore, the battery pack can continue to provide power for the air conditioner load when the two circuits connected to the air conditioner are switched or powered off. powered by.
  • the embodiment of the present application does not limit the application scenario of the air conditioner, and it can be any scenario that requires temperature control, such as rail transit, factory buildings, commercial buildings, and data centers.
  • the following uses an application scenario of a data center as an example for introduction, where the air conditioner corresponding to the data center may be called a CRAC.
  • the power supply system provided in the embodiment of the present application can be applied in any scenario where uninterrupted power supply is required for the CRAC, and the application scenario of the data center is not limited.
  • a data center generally includes a plurality of servers, and the servers emit heat during work, and the servers may be shut down due to overheating, which seriously affects the normal operation of the data center. Therefore, CARC is required to cool down the servers in the data center.
  • the embodiment of the present application does not specifically limit the physical form of the data center. For example, it may be a micro-module or prefabricated. The following describes a data center in the form of a micro-module with reference to the accompanying drawings.
  • FIG. 1A this figure is a schematic diagram of a micro-modular data center provided by an embodiment of the present application.
  • the micro-modular data center 10 generally includes an indoor side and an outdoor side, wherein the indoor side includes IT modules, CRACs and power distribution modules; the outdoor side includes outdoor units of air conditioners.
  • IT modules include servers and server racks.
  • Figure 1A is only a schematic diagram of the internal architecture of a data center.
  • the embodiment of the present application does not specifically limit the number of IT modules and the number of air conditioners. Those skilled in the art can set them according to actual needs, for example, according to the number of IT modules and the temperature
  • the number of air conditioners can be set according to the requirements, and the number of air conditioners can be set through the temperature simulation test.
  • each CRAC When the CRAC is working, the air outlet direction of each CRAC is the middle passage 10a, and the bottom of the middle passage 10a is connected to the outdoor unit through a pipe for air circulation.
  • the power supply system provided by the embodiment of the present application can be integrated inside the CRAC. Since the power supply system can supply power to the CRAC load when the two power sources are switched or power-off, the UPS and battery of the power distribution module can be mainly used for the servers and batteries in the IT module. For other modules to supply power, the CRAC only needs to be connected to the two power sources of the power distribution module, so that the layout of the CRAC can be more flexible and the wiring can be simplified; at the same time, the power of the battery in the power distribution module can be used to supply power to more IT modules , or in other words, because there is no need to supply power to CRAC, when the power distribution module supplies power to IT modules with the same data, the number of batteries can be reduced and the occupied space can be reduced. Therefore, the internal architecture of the entire data center can be simplified and costs can be reduced.
  • Each power supply includes one mains power supply and one oil generator. The oil generator is generally located outside the data center due to its large size.
  • FIG. 1B this figure is a structural diagram of an air conditioner provided in an embodiment of the present application.
  • the air-conditioning equipment provided in the embodiments of the present application may include one or more air-conditioning loads (hereinafter referred to as loads), and generally the air-conditioning loads may be fans, compressors, or pumps.
  • the air-conditioning load of the air-conditioning equipment may include a fan or a compressor, or may include a fan and a pump, or may include two fans and two compressors, which is not specifically limited in this application.
  • air-conditioning loads involved in the embodiment of the present application may be inside one air-conditioning device, or may be respectively located inside different air-conditioning devices, which are not specifically limited.
  • the embodiment of the present application focuses on providing uninterrupted power supply for the air-conditioning load, and there is no limitation on the bearing form of the physical equipment of the air-conditioning load, which can be set by those skilled in the art according to actual needs.
  • one air conditioner may have one air conditioner load or multiple air conditioner loads.
  • the air-conditioning load supplied by the power supply system may be distributed in one air-conditioning device, or may be distributed in multiple air-conditioning devices.
  • the power supply system can supply power for the air-conditioning loads in multiple air-conditioning equipment, or supply power for the air-conditioning loads in one air-conditioning equipment, or supply power for part of the air-conditioning loads in one air-conditioning equipment, and the rest of the air-conditioning loads are provided by another
  • the power supply system supplies power, as long as the uninterrupted power supply of the air conditioner load is guaranteed.
  • the air-conditioning load of the air-conditioning equipment includes n fans, respectively fans F1 to Fn; and n compressors, respectively C1 to Cn, where n is an integer greater than or equal to 2. It should be understood that the number of fans and the number of compressors may or may not be equal, which is not specifically limited in this embodiment of the present application.
  • the fan and the compressor correspond to their own driving circuits, and the driving circuit converts the voltage of the AC bus AC BUS into the voltage required by the fan and compressor.
  • FIG. 2 it is a structural diagram of a power supply system of a traditional air conditioner.
  • first power source IN1 the first power source IN1
  • second power source IN2 the second power source
  • both the first power supply IN1 and the second power supply IN2 are powered, and the first power supply IN1 is connected to the AC bus AC BUS by controlling the switching of the automatic transfer switch (ATS, Automatic Transfer Switching Equipment), or
  • the second power supply IN2 is connected to the AC bus, that is, the first power supply IN1 or the second power supply IN2 is selected to supply power for the fans and compressors.
  • the power supply of the fan and compressor will be interrupted at the moment of switching, and the compressor has a start-up time requirement, and there is a power-off protection logic inside. Once the compressor is powered off and restarted, it cannot start working immediately. It needs to complete the start-up setting time before it can start to complete normal work. Therefore, once the power supply is interrupted, the compressor will not work for a period of time. At this time, if the temperature of the computer room rises rapidly, the normal operation of the server will be affected, and the server may even be damaged due to excessive temperature.
  • the embodiment of the present application provides a power supply system for air-conditioning equipment.
  • a backup power device is connected to the combined circuit after the switching of the two power sources, and the backup power device includes a battery
  • the battery pack that is, the battery pack can supply power for the fan and compressor. Since the battery pack is not disconnected from the air-conditioning load during the switching of the two power sources, that is, the battery pack is always connected to the power supply path of the air-conditioning load, and can supply power for the air-conditioning load at any time. , even if the two power sources are switched, it will not affect the power supply of the air conditioner load, that is, there is no short-term power interruption. In addition, when both power sources are powered off, the power supply system provided by the embodiment of the present application can also continue to supply power to the air conditioner load.
  • air-conditioning loads for example, fans and compressors
  • air-conditioning loads can continuously and uninterruptedly supply power, thereby ensuring that the temperature of the environment is controllable, and ensuring safe operation of the server.
  • the air conditioner in the embodiment of the present application can be applied to various scenarios that require temperature control.
  • the air conditioner can include fans, compressors, or pumps.
  • Different application scenarios may have different internal structures.
  • the power supply of the air conditioner The systems can be the same, and the power supply system provided by the embodiment of the present application is required for the continuous and uninterrupted operation of the air-conditioning load.
  • the following only uses the CRAC as an example for introduction, and the power supply of air conditioners in other application scenarios is similar.
  • the power supply system of the air conditioner includes: an AC bus, a DC bus, a first AC/DC AC/DC circuit, a first DC/AC DC/AC circuit, and a power backup device; the power backup device includes at least a battery pack ;
  • the AC bus is used to connect two power sources through the switching circuit; the input end of the first AC/DC circuit is connected to the AC bus, and the output end of the first AC/DC circuit is connected to the DC bus; the input end of the first DC/AC circuit is connected to the DC
  • the bus bar, the output end of the first DC/AC circuit is used to supply power to the load of at least one first computer room air conditioner; the backup power device is connected to the DC bus bar or the AC bus bar;
  • the DC bus or the AC bus provides electric energy, so that the load of the air conditioner in the first computer room is continuously powered.
  • the embodiment of the present application does not specifically limit the number of AC/DC circuits included in the power supply system, and may include one AC/DC circuit or multiple AC/DC circuits. Since the AC/DC circuit is connected between the AC bus and the DC bus, when multiple AC/DC circuits are connected in parallel between the AC bus and the DC bus, the current on the DC bus can be increased and the load capacity of the DC bus can be improved , if the number of air-conditioning loads mounted on the DC bus is large, the number of AC/DC circuits can be increased.
  • the embodiment of the present application does not limit the number of DC/AC circuits included in the power supply system, which may include one DC/AC circuit or multiple DC/AC circuits.
  • Those skilled in the art can set the number of DC/AC circuits according to the number of air-conditioning loads. For example, a fan corresponds to a DC/AC circuit, a compressor corresponds to a DC/AC circuit, and a pump corresponds to a DC/AC circuit.
  • one DC/AC circuit can correspond to multiple air-conditioning loads, such as one DC/AC circuit fan or multiple compressors or multiple pumps. Be specific.
  • the power supply system includes a DC/AC circuit and an AC/DC circuit as an example for introduction. Furthermore, taking a DC/AC circuit supplying power to a load of an air conditioner as an example, the number of air conditioner loads in the air conditioner is not limited, and may be one air conditioner load or multiple air conditioner loads.
  • FIG. 3 this figure is a schematic diagram of a CRAC power supply system provided by an embodiment of the present application.
  • the CRAC power supply system includes: AC bus AC BUS, DC bus DC BUS, AC/DC (AC/DC, Alternating Current/Direct Current) circuit 100, DC/AC (DC/AC, Direct Current /Direct Current) circuit 200 and power backup device 300.
  • the AC bus AC BUS is used to connect two power sources through a switching circuit.
  • the input end of the AC/DC circuit 100 is connected to the AC bus AC BUS, and the output end of the AC/DC circuit 100 is connected to the DC bus DC BUS.
  • the input end of the DC/AC circuit 200 is connected to the DC bus DC BUS, and the output end of the DC/AC circuit 200 is used to supply power to the load of the CRAC.
  • the output terminal of the DC/AC circuit 200 is used as an example to supply power to the load 400 of the CRAC. It should be understood that, for example, one CRAC may include multiple air conditioner loads, such as multiple compressors and multiple fans.
  • the output of the DC/AC circuit 200 is used to power a load or loads of a CRAC. In order to make the CRAC operate normally when the two power sources are switched or power-off, in FIG. 3 the output terminal of the DC/AC circuit 200 is used to supply power to the load 400 of the CRAC, that is, to supply power to all loads inside the CRAC.
  • the backup power device 300 can be connected to the DC bus DC BUS, and can also be connected to the AC bus AC BUS; FIG. 3 takes the backup power device 300 connected to the DC bus DC BUS as an example for introduction.
  • the backup power device 300 is used to use the stored backup power to provide power to the DC bus DC BUS or the AC bus AC BUS when the two power sources are switched or powered off, so that the load of the CRAC is powered continuously.
  • the power backup device 300 may at least include a battery pack BAT for storing electric energy.
  • the power backup device 300 may also store electric energy in other ways.
  • the battery pack BAT is mainly used as an example for illustration, but the application is not limited to the energy storage form of the battery pack.
  • the power failure of the two power sources means that the two power sources are out of power, for example, the two power sources and the two oil generators are out of power, which may be due to a fault or a power outage, that is, the two power sources cannot provide AC power.
  • the power conversion circuit may not be included inside the backup power device 300, for example, a rectification circuit does not need to be included.
  • the embodiment of the present application does not limit the type of the battery pack in the power backup device 300 , for example, it may be at least one of the following: lead-acid battery, lithium battery, or supercapacitor.
  • the embodiment of the present application does not specifically limit the voltage on the DC BUS, for example, it can be between 700V-800V, and can be set according to specific scenarios.
  • the embodiment of the present application does not limit whether the AC/DC circuit 100 includes one-stage power conversion or two-stage power conversion. Similarly, it does not limit whether the DC/AC circuit 200 includes one-stage power conversion or two-stage power conversion.
  • FIG. 4 is a schematic diagram of another CRAC power supply system provided by the embodiment of the present application.
  • Figure 3 is an example of a backup device connected to a DC bus DC BUS
  • Figure 4 is an example of a backup device connected to an AC bus AC BUS.
  • Other parts of Figure 3 are the same as Figure 4, and details can be Referring to the description of Figure 3, only the parts of Figure 4 that are different from Figure 3 will be introduced below
  • the backup power device 300 When the backup power device 300 is connected to the AC bus AC BUS, the backup power device 300 also needs to include a bidirectional AC/DC circuit 300a, the input end of the bidirectional AC/DC circuit 300a is connected to the AC bus AC BUS, and the output of the bidirectional AC/DC circuit 300a Terminal connected to the battery pack BAT.
  • the bidirectional AC/DC circuit 300a is used to convert the AC power of the AC bus AC BUS to DC to charge the battery pack BAT, and is also used to convert the voltage of the battery pack BAT to a voltage matching the AC bus AC BUS to supply power to the CRAC. That is, the bidirectional AC/DC circuit has two working modes of rectification and inverter.
  • the output terminal of the DC/AC circuit 200 is used as an example to supply power to the load 400 of a CRAC of a computer room air conditioner.
  • a CRAC of a computer room air conditioner may include multiple air conditioner loads, such as multiple compressors. and multiple fans.
  • the output of the DC/AC circuit 200 is used to power a load or loads of a CRAC.
  • the output terminal of the DC/AC circuit 200 is used to supply power to the load 400 of the CRAC, that is, to supply power to all loads inside the CRAC.
  • the backup power device 300 is connected to the DC bus DC BUS or the AC bus AC BUS.
  • the electric energy of the battery pack is used to supply power to the load of the CRAC, so that the load of the CRAC is continuously powered. , does not stop working.
  • the connection of the power backup device 300 to the DC bus DC BUS is taken as an example for introduction.
  • the switching circuit includes: a first branch and a second branch; the first end of the first branch is used to connect the first of the two power supplies Power supply IN1, the first end of the second branch is used to connect the second power supply IN2 of the two power supplies; the second end of the first branch and the second end of the second branch are connected together to connect the AC bus AC BUS ; Corresponding switching devices are connected in series on the first branch and the second branch, and the switching devices are used to switch the first power supply IN1 and the second power supply IN2.
  • the switching device may be an ATS.
  • the first branch is connected to the first power source IN1 through the first input circuit breaker K1
  • the second branch is connected to the second power source IN2 through the second input circuit breaker K2.
  • the first branch and the second branch are connected to surge protectors SPD1 and SPD2 respectively.
  • the surge protector can turn on the shunt in a very short time, thereby preventing the surge from damaging other equipment in the electrical circuit.
  • the first branch and the second branch are respectively connected to lightning protection and voltage detection boards FV1 and FV2 for lightning protection and voltage detection.
  • the CRAC power supply system includes a backup power device, which includes a battery pack, wherein the backup power device can be connected to the AC bus or DC bus after the two power sources are reasonable, because the backup power device is connected to the two Therefore, no matter how the two power sources are switched, the connection relationship between the battery pack and the load of the CRAC will not be affected, that is, the battery pack is always connected to the load of the CRAC and never disconnected. Therefore, when When the two power sources switch, the battery pack can supply power to the load of the CRAC. Even if the AC bus has a short-term power interruption during the switch between the two power sources, it will not affect the power supply of the battery pack to the load of the CRAC.
  • the CRAC power supply system provided by the embodiment of the present application can always supply power to the load of the CRAC without short-term power supply interruption when the two power sources switch, thereby ensuring the normal operation of the load of the CRAC and further ensuring the normal temperature of the equipment room.
  • CRAC For the convenience of description, a CRAC is used as an example for introduction below. When there are multiple CRACs, the principle of the basic topology of power supply is similar.
  • each DC/AC circuit can supply power to an air conditioner load, for example, a fan or a compressor.
  • the number of DC/AC circuits can be set according to the number of loads included in the CRAC. In addition, whether these air-conditioning loads are distributed in one or more air-conditioning devices is not specifically limited.
  • the power supply system includes two DC/AC circuits, wherein one DC/AC circuit supplies power to a fan, and the other DC/AC circuit supplies power to a compressor as an example for illustration.
  • FIG. 5 this figure is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • the DC bus DC BUS in the power supply system provided by the embodiment of the present application can be connected to at least two DC/AC circuits, and the input ends of at least two DC/AC circuits are connected to the DC bus DC BUS, each A DC/AC circuit is used to power the load in the CRAC.
  • FIG. 5 is only a schematic example including one fan and one compressor, wherein the first DC/AC circuit 200a supplies power to the fan F, and the second DC/AC circuit 200b supplies power to the compressor C.
  • each fan may correspond to a DC/AC circuit
  • each compressor may correspond to a DC/AC circuit. That is, each load of the CRAC corresponds to the DC/AC circuit one by one.
  • the number of battery packs in the backup power device can be flexibly configured according to actual needs, which can not only support short-term backup power, but also realize long-term backup power supply by increasing the number of battery packs.
  • the power supply system provided by the embodiment of the present application may also include multiple AC/DC circuits.
  • the purpose of setting multiple AC/DC circuits is to increase the load capacity, facilitate the expansion of more air conditioner loads, or expand more air conditioners. That is, it is convenient to expand the number of loads.
  • FIG. 5 is an introduction by taking a CRAC including one fan and a compressor as an example.
  • Each DC/AC circuit is used to power one of the at least two fans or one of the at least two compressors.
  • the first DC/AC circuit 200a is used to supply power to the fan F
  • the second DC/AC circuit 200b is used to supply power to the compressor C.
  • FIG. 5 is only for illustration, and one fan and one compressor are used for illustration, and in addition, multiple fans and multiple compressors may be included.
  • Each fan corresponds to a DC/AC circuit
  • each compressor corresponds to a DC/AC circuit.
  • one DC/AC circuit can also supply power to multiple fans at the same time
  • one DC/AC circuit can supply power to multiple compressors at the same time.
  • a single DC/AC circuit can power both the fan and the compressor.
  • the power supply system provided by the embodiment of the present application may include multiple AC/DC circuits.
  • the purpose of setting up multiple AC/DC circuits is to increase the load capacity and facilitate the expansion of more loads or capacity expansion of more air conditioners.
  • the load capacity of the power supply system is strong, it is not limited whether the multiple loads are located in one physical air conditioner or in multiple different physical air conditioners.
  • the power supply system includes multiple AC/DC circuits
  • the number of air-conditioning loads is not limited, and can be set according to actual needs.
  • it can be a fan and a compressor as shown in Figure 5, or multiple fans and multiple compressor.
  • FIG. 6 is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • the power supply system provided by the embodiment of the present application includes at least two AC/DC circuits as follows: a first AC/DC circuit 100a and a second AC/DC circuit 100b.
  • the input terminals of the first AC/DC circuit 100a and the second AC/DC circuit 100b are connected to the AC bus AC BUS, and the output terminals of the first AC/DC circuit 100a and the second AC/DC circuit 100b are connected to the DC bus DC BUS.
  • the CRAC includes multiple fans and multiple compressors as an example for introduction, that is, as shown in FIG. 6, in this embodiment, the CRAC includes at least the following two fans: a first fan F1 and a second fan F2; Also included are at least two compressors: a first compressor C1 and a second compressor C2.
  • each fan corresponds to a DC/AC circuit
  • each compressor corresponds to a DC/AC circuit
  • the input end of the first DC/AC circuit 200a1 is connected to the DC BUS, and the first DC/AC circuit 200a1
  • the output end of the second DC/AC circuit 200a2 is used to supply power to the first fan F1.
  • the input end of the second DC/AC circuit 200a2 is connected to the DC BUS, and the output end of the second DC/AC circuit 200a2 is used to supply power to the second fan F2.
  • the input end of the DC/AC circuit 200b1 is connected to the DC BUS
  • the output end of the third DC/AC circuit 200b1 is used to supply power to the first compressor C1
  • the input end of the fourth DC/AC circuit 200b2 is connected to the DC BUS
  • the fourth DC/AC circuit 200b2 is connected to the DC BUS.
  • the output terminal of the AC circuit 200b2 is used to power the second compressor C2.
  • FIG. 6 is only schematic and the power supply system includes two AC/DC circuits. It should be understood that more AC/DC circuits can be arranged between the AC bus AC BUS and the DC bus DC BUS according to actual needs.
  • FIG. 7 also schematically introduces that the power supply system includes four DC/AC circuits. It should be understood that the embodiment of the present application does not limit the number of DC/AC circuits, and more DC/AC circuits can be set according to actual needs. .
  • the power supply system provided by the embodiment of the present application can flexibly configure the number of DC/AC circuits according to the number of fans and compressors included in the CRAC, and easily realize the integrated power distribution of the CRAC. Since the number of DC/AC circuits and the number of AC/DC circuits can be flexibly configured, the power supply system can be flexibly expanded according to application scenarios.
  • the embodiment corresponding to Figure 6 is the case where one CRAC includes multiple fans and multiple compressors.
  • the embodiment of the present application does not limit the number of CRACs that can be powered by the power supply system. It can supply power to the loads included in one CRAC, or The power supply for the loads included in multiple CRACs may be specifically determined according to the power of the CRACs and the amount of power that the DC bus or the AC bus can provide for the loads. The following describes the situation that the power supply system supplies power to loads of multiple CRACs.
  • FIG. 7A this figure is a schematic diagram of a CRAC power supply system provided by an embodiment of the present application.
  • the CRAC power supply system provided in this embodiment can simultaneously supply power to loads included in multiple CRACs.
  • the embodiment of the present application does not specifically limit the number of loads included in each CRAC, which may be one or multiple loads.
  • the embodiment of the present application does not limit the number of DC/AC circuits included in the power supply system, which may correspond to the air-conditioning loads one by one, or multiple loads may correspond to the same DC/AC circuit.
  • the following only introduces a CRAC including a load as an example, and a CRAC load corresponds to a DC/AC circuit as an example.
  • the backup power device 300 connected to the DC bus DC BUS can supply power to m air conditioners at the same time, where m is an integer greater than or equal to 2.
  • the DC bus DC BUS supplies power to the load 4001 of the first CRAC through the first DC/AC circuit 2001 until the DC bus DC BUS supplies power to the load 400m of the mth CRAC through the mth DC/AC circuit 200m.
  • the power supply system supplies power to loads included in multiple CRACs
  • the loads included in multiple CRACs can be connected to the same DC bus DC BUS, as shown in Figure 7A.
  • the loads included in multiple CRACs are connected to different DC bus DC BUS, but different DC BUS can be connected together, as shown in Figure 7B.
  • each CRAC corresponding to its own backup device. Take two CRACs as an example, and the DC buses corresponding to the two CRACs are connected together, or Say the loads of two CRACs share a DC bus.
  • the DC buses of multiple CRACs are connected together, there is no limit to the number of DC/AC circuits included in the power supply system, nor the number of AC/DC circuits.
  • the power supply system includes two AC/DC circuits, the first CRAC includes a load, and the second CRAC includes a load. Each load corresponds to a DC/DC circuit. AC circuit. It should be understood that the present application does not limit the number of loads included in each CRAC, and each CRAC may include multiple loads.
  • FIG. 7B this figure is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • the power supply system architectures corresponding to the two CRACs in Figure 7B are exactly the same, and it can be seen from Figure 7B that the architecture and internal connection relationship of the first power supply system 1000 and the second power supply system 2000 are the same, and they are two independent power supply systems , only the DC BUS in the power supply system corresponding to the two CRACs are connected together.
  • the loads of the two CRACs are denoted by CRAC1 and CRAC2, respectively.
  • the internal structures of CRAC1 and CRAC2 are the same, and the corresponding driving circuits are also the same, and one of them is used as an example to introduce.
  • the power supply system of each CRAC includes the following at least two AC/DC circuits: a first AC/DC circuit 100a and a second AC/DC circuit 100b.
  • the input terminals of the first AC/DC circuit 100a and the second AC/DC circuit 100b are connected to the AC bus AC BUS, and the output terminals of the first AC/DC circuit 100a and the second AC/DC circuit 100b are connected to the DC bus DC BUS.
  • the load F1 of the first CRAC included in CRAC1 is connected to the DC bus DC BUS through the first DC/AC circuit 200a1, and the load F1 of the second CRAC included in CRAC2 is connected to the DC bus DC BUS through the first DC/AC circuit 200a1.
  • the difference between the power supply systems corresponding to CRAC1 and CRAC2 is that the respective corresponding backup power devices are different, and CRAC1 and CRAC2 correspond to the backup power device 3001 and the backup power device 3002 respectively.
  • FIG. 8 this figure is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • the backup power device in the power supply system provided in the embodiment of the present application is introduced by taking the connection of the DC bus DC BUS as an example.
  • the power backup device 300 In order to flexibly use the battery pack BAT in the power backup device 300, when the voltage of the battery pack BAT is inconsistent with the voltage of the DC bus DC BUS, the power backup device 300 also includes a bidirectional DC/DC circuit 300b; the first bidirectional DC/DC circuit 300b One end is connected to the DC bus DC BUS, and the second end of the bidirectional DC/DC circuit 300b is connected to the battery pack BAT.
  • the bidirectional DC/DC circuit 300b is used to convert the voltage of the battery pack BAT to a voltage matched by the CRAC, and is also used to convert the voltage of the DC bus DC BUS to a voltage matched to the battery pack BAT to charge the battery pack BAT.
  • the bidirectional DC/DC circuit 300b can work bidirectionally. It can not only convert the electric energy of the battery pack BAT into a DC bus DC BUS, but also convert the electric energy on the DC bus DC BUS to charge the battery pack BAT.
  • the specific topology of the bidirectional DC/DC circuit 300b is not limited in the embodiment of the present application, as long as it is a power conversion circuit capable of realizing the bidirectional DC/DC conversion function.
  • the backup power device since the backup power device includes a bidirectional DC/DC circuit, there is no limit to the specification of the battery pack, and the specification of the battery pack can be flexibly selected, even if the voltage of the battery pack is the same as the DC bus voltage. If the voltage does not match, the voltage of the battery pack can also be converted to a voltage matching the DC bus for discharge through a bidirectional DC/DC circuit, or the voltage of the DC bus can be converted to a voltage matching the battery pack for charging.
  • the power supply system described in the above embodiments can be integrated inside the CRAC, that is, the power supply system described above and the air-conditioning load can be integrated inside the CRAC cabinet, thereby forming a CRAC cabinet with self-contained power function.
  • the power supply system described above can also be used as an external drive circuit for the load power supply of the CRAC and set outside the cabinet of the CRAC, that is, the load of the CRAC is set in one CRAC cabinet, and the power supply system of the CRAC is set in another power supply device, the power supply device can be connected to the cabinet where the load of the CRAC is located. When the CRAC needs to supply power, just connect the power supply cabinet to the load of the CRAC.
  • the power backup device can be an independent cabinet, which is connected with the CRAC cabinet including one or more loads according to the above various embodiments, through the DC bus DC BUS, the AC bus AC BUS, DC/AC circuit and AC/DC circuit are connected to realize the power supply of CRAC.
  • FIG. 9 is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • the first power supply IN1 generally corresponds to one mains power A and one oil generator 1 (usually diesel engine power generation)
  • the second power supply IN2 corresponds to the mains B and the oil generator 2.
  • Both the utility power and the oil generator provide AC power
  • the battery pack BAT in the backup power device 300 provides DC power.
  • the AC power is preferentially used to power the loads of the CRAC.
  • the DC power of the battery pack BAT is used to power the load of the CRAC.
  • the power supply system of the CRAC provided in the embodiment of the present application further includes: a first automatic transfer switch device ATS1 and a second automatic transfer switch device ATS2.
  • the output end of the first ATS1 is connected to the first end of the first branch, and the output end of the second ATS2 is connected to the first end of the second branch.
  • the first input end of the first ATS1 is used to connect to the first commercial power A, and the second input end of the first ATS1 is used to connect to the first oil generator 1 .
  • the first input end of the second ATS2 is used to connect to the second commercial power B, and the second input end of the second ATS2 is used to connect to the second oil generator 2 .
  • the first automatic transfer switching device ATS1 is used to switch the commercial power A and the diesel generator 1
  • the second automatic transfer switching device ATS2 is used to switch the commercial power B and the diesel generator 2.
  • both mains A and oil generator 1 connected to the first power supply IN1 are powered off, and it is necessary to switch to the mains B or oil generator 2 connected to the second power supply IN2, that is, ATS1 and IN1 are disconnected, ATS2 and When IN2 is turned on, ATS1 and ATS2 will cause the AC BUS to be disconnected from the external AC power supply for a short time during the action process, that is, during the switching period between the first power supply IN1 and the second power supply IN2, the external AC circuit cannot be used for CRAC fan and compressor power supply.
  • the power backup device 300 provided in the embodiment of the present application can supply power to the load of the CRAC during the switching period of the two power sources, so as to ensure that the load of the CRAC is not powered off.
  • the CRAC provided by the embodiment of the present application can be shown in Figure 10.
  • the power supply system includes All components of the CRAC are integrated inside the CRAC.
  • the CRAC there are only two redundant AC power supplies externally. That is, the first power supply IN1 of the CRAC is connected to the mains A or the oil generator 1 through the ATS1, and the CRAC’s
  • the second power supply IN2 is connected to mains B or oil generator 2 through ATS2.
  • the external power supply structure only has mains power and oil generators, and the low-voltage power distribution cabinet and output power distribution cabinet are omitted, and the UPS and corresponding batteries are omitted.
  • the power supply system inside the CRAC includes a backup power device 300, which can realize self-supply power. When the external AC power fails, the backup power device 300 can provide power to keep the fans and compressors running uninterrupted, so as to ensure that the temperature of the machine room will not sudden rise.
  • the power supply system provided by the embodiment of the present application has a simpler structure and saves many components, thus saving more space and cost.
  • Fig. 10 is an introduction by taking all the components of the power supply system including the backup power device 300 integrated inside the CRAC as an example. The following describes the situation that the backup power device in the power supply system is installed outside the CRAC, and the power supply system except the backup power device Other components are integrated inside the CRAC, such as AC/DC circuit, DC/AC circuit, AC bus, and DC bus are all integrated inside the CRAC.
  • this figure is a schematic diagram of a power backup device provided by an embodiment of the present application disposed outside the CRAC.
  • the power supply system provided in this embodiment is introduced by taking the case where the power backup device 300 is set outside the CRAC as an example, and other components in the power supply system are set inside the CRAC.
  • the backup power device 300 can be connected to the DC bus DC BUS or the AC bus AC BUS in the CRAC. When the backup power device 300 is connected to the DC bus DC BUS in the CRAC, the backup power device 300 may not have an AC/DC circuit inside. When the backup power device 300 is connected to the AC bus AC BUS in the CRAC, an AC/DC circuit needs to be set inside the backup power device 300 .
  • the power backup device 300 can be connected to an AC bus or a DC bus integrated inside the CRAC.
  • the DC/AC circuit and AC/DC circuit in the power supply system corresponding to the CRAC provided in FIG. 11 can be integrated with the CRAC load inside the CRAC cabinet, and only the backup power device 300 in the power supply system is arranged outside the CRAC cabinet. .
  • each device except CRAC400 in Figure 3 is a device inside the power supply system provided by the embodiment of the present application.
  • the power supply system provided by the embodiment of the present application can be integrated inside the CRAC, or can be set outside of CRAC.
  • the power supply system provided by the above embodiments is set inside the CRAC as an example for introduction.
  • the power supply system provided by the embodiment of the present application can also make any power supply system shown in Figure 3- Figure 9 compatible with the traditional power supply system, which will be introduced in conjunction with the accompanying drawings .
  • FIG. 12 this figure is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • the first power supply corresponds to mains A and the first oil generator
  • the second power supply corresponds to mains B and the second oil generator as an example.
  • the first power supply is directly connected to the mains A or the first oil generator through the first ATS1, but the second power supply needs to be connected to the mains B or B through the output distribution cabinet, UPS, low-voltage distribution cabinet and the second ATS2 in sequence.
  • Second oil machine Second oil machine.
  • two power sources supply power to the CRAC400 at the same time as an example for introduction.
  • the first automatic transfer switch device ATS1 As shown in FIG. 12 , the first automatic transfer switch device ATS1 , the second automatic transfer switch device ATS2 , the low-voltage power distribution cabinet 1101 , the output power distribution cabinet 1103 , the battery 1103 and the uninterruptible power supply circuit 1104 provided by the embodiment of the present application.
  • the output end of the first ATS1 is connected to the first end of the first branch circuit, the first input end of the first ATS1 is used to connect the first commercial power supply, and the second input end of the first ATS1 is used to connect to the first oil generator;
  • the first input end of the second ATS2 is used to connect the second commercial power, and the second input end of the second ATS2 is used to connect the second oil generator.
  • the input end of the low-voltage power distribution cabinet 1101 is connected to the output end of the second ATS2, the output end of the low-voltage power distribution cabinet 1101 is connected to the first end of the uninterruptible power supply circuit UPS1104, and the second end of the uninterruptible power supply circuit UPS1104 is connected to the output power distribution cabinet 1103
  • the input end of the output distribution cabinet 1102 is connected to the first end of the second branch circuit; the third end of the uninterruptible power supply circuit UPS1104 is connected to the battery 1103 .
  • UPS1104 includes a rectification circuit and an inverter circuit.
  • the input end of the rectification circuit is connected to the output end of the low-voltage power distribution cabinet 1101, the output end of the rectification circuit is connected to the input end of the inverter circuit, and the output end of the inverter circuit is connected to the output power distribution cabinet 1102. input terminal.
  • the output end of the rectification circuit will charge the battery 1103, and at the same time the rectification circuit will transfer electric energy to the inverter circuit, thereby supplying power to the load of the rear-end CRAC.
  • the working mode of the two-way power supply is that as long as the AC side (mains or diesel generator) has power, the UPS1104 will not take power from the battery 1102 to supply power for the load of the CRAC. powered by.
  • FIG. 13 is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • the CRAC corresponding to the power supply system provided in this embodiment integrates the power supply system provided in the above embodiments of the present application, and the CRAC is externally compatible with a traditional power supply architecture. Such a structure can better ensure the normal power supply of the CRAC.
  • the CRAC is equipped with a battery inside and outside, a battery pack inside, and a battery and UPS outside. When the two mains and the two oil generators are powered off, the UPS can supply power to the load of the CRAC.
  • the source path of the second power supply includes low-voltage power distribution cabinets, UPS, batteries, and output power distribution cabinets.
  • the advantages are simple structure, small footprint, and low cost.
  • the mains A and the first oil generator are out of power
  • the mains B and the second oil generator are also out of power
  • the UPS fails
  • the external AC power supply of CRAC is interrupted. At this time, it can only rely on the backup power device of the power supply system of CRAC to power.
  • Both the source paths of the first power supply and the second power supply include UPS and batteries.
  • FIG. 14 this figure is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • the power supply system includes: the first automatic transfer switching device ATS1, the second automatic transfer switching device ATS2, the first low-voltage power distribution cabinet 1101a, the first output power distribution cabinet 1102a, the first battery 1103a, the first Intermittent power supply circuit 1104a, second low-voltage distribution cabinet 1101b, second output distribution cabinet 1102b, second battery 1103b and second uninterruptible power supply circuit 1104b;
  • the first input terminal of the first ATS1 is used to connect the first commercial power, that is, commercial power A, and the second input terminal of the first ATS1 is used to connect the first oil generator, that is, oil generator 1; the first input of the second ATS2 The terminal is used to connect the second mains, that is, mains B, and the second input terminal of the second ATS2 is used to connect to the second oil generator, that is, oil generator 2;
  • the output end of the first ATS1 is connected to the input end of the first low-voltage power distribution cabinet 1101a, the output end of the first low-voltage power distribution cabinet 1101a is connected to the first end of the first uninterruptible power supply circuit 1104a, and the first end of the first uninterruptible power supply circuit 1104a
  • the two ends are connected to the input end of the first output distribution cabinet 1102a, the output end of the first output distribution cabinet 1102a is connected to the first end of the first branch circuit; the third end of the first uninterruptible power supply circuit 1104a is connected to the first battery 1103a .
  • the output end of the second ATS2 is connected to the input end of the second low-voltage power distribution cabinet 1101b, the output end of the second low-voltage power distribution cabinet 1101b is connected to the first end of the second uninterruptible power supply circuit UPS1104b, and the second end of the second uninterruptible power supply circuit UPS1104b
  • the two ends are connected to the input end of the second output distribution cabinet 1102b, and the output end of the second output distribution cabinet 1102b is connected to the first end of the second branch circuit; the third end of the second uninterruptible power supply circuit UPS1104b is connected to the second battery 1103b .
  • Figure 14 includes two sets of UPS. When one UPS fails, the other UPS can continue to provide power for the load of the CRAC to ensure the normal operation of the CRAC.
  • the power supply structure of the traditional CRAC is the part other than the CRAC in Figure 12 or Figure 14, that is, the internal power supply of the traditional CRAC in Figure 12 and Figure 14 is shown in Figure 2, no matter how many UPSs are included outside the CRAC, in When the two power sources switch, the traditional power supply architecture still has short-term power outages, but the power supply system provided by the embodiment of the present application does not have short-term power outages, because the load of the CRAC is always connected to the battery pack.
  • FIG. 15 this figure is a schematic diagram of another CRAC power supply system provided by an embodiment of the present application.
  • FIG. 15 shows the expansion of a CRAC in FIG. 14 into the CRAC in FIG. 8 .
  • the CRAC corresponding to the power supply system provided in this embodiment integrates the power supply system provided in the above embodiments of the present application, and the CRAC is externally compatible with a traditional power supply architecture. Such an architecture can better ensure the normal power supply of the CRAC load.
  • the CRAC is equipped with batteries inside and outside, a battery pack inside, and batteries and UPSs on the two external power sources. When the two mains and the two oil generators are powered off, the UPS can supply power to the load of the CRAC.
  • the power supply systems provided in the above embodiments are all introduced by taking two power sources supplying power to the same CRAC as an example. It should be understood that multiple CRACs can share the two power supplies. The following will take two power supplies that can supply power to two CARCs at the same time as an example.
  • this figure is a power supply architecture diagram corresponding to two CRACs provided by the embodiment of the present application.
  • the two CRACs shown in FIG. 16 include a first CRAC400a and a second CRAC400b, and the introduction is made by taking the power supply system and load integrated inside the CRAC as an example.
  • the first CRAC400a corresponds to two power sources IN1 and IN2
  • the second CRAC400a corresponds to two power sources IN1 and IN2, where IN1 can be connected to mains A or oil generator 1 through ATS1, and IN2 can be connected to mains B or oil through ATS2.
  • Machine 2 It can be seen that when the mains A has power, the mains A can supply power to IN1 of two CRACs at the same time. Similarly, when mains B has power, mains B can supply power to IN2 of two CRACs at the same time.
  • the external power supply of the two CRACs shown in Figure 16 only includes mains power and oil generators.
  • it can also include the external power supply architecture shown in Figure 12 or Figure 14, which will not be repeated here repeat.
  • the embodiment of the present application also provides an air conditioner.
  • the embodiment of the present application does not limit the application scenario of the air conditioner, and can be applied in any scenario requiring temperature control. For example, rail transit, factory buildings, commercial buildings and data centers, etc.
  • the air conditioner load provided in the embodiment of the present application is a general concept. When there are multiple air conditioner loads involved in the embodiment of the present application, they may be inside one air conditioner or inside different air conditioners, which are not specifically limited.
  • the embodiment of the present application focuses on providing uninterrupted power supply for the air-conditioning load, and there is no limitation on the bearing form of the physical equipment of the air-conditioning load, which can be set by those skilled in the art according to actual needs.
  • the power supply system can supply power for the air-conditioning loads in multiple air-conditioning equipment, or supply power for the air-conditioning loads in one air-conditioning equipment, or supply power for part of the air-conditioning loads in one air-conditioning equipment, and the rest of the air-conditioning loads are provided by another
  • the power supply system supplies power, as long as the uninterrupted power supply of the air conditioner load is guaranteed.
  • the air-conditioning equipment provided by the embodiments of the present application not only includes air-conditioning loads such as fans or compressors, but also includes power supply systems at their front ends , that is, the power supply system is integrated inside the air conditioner, and the backup device in the power supply system can be integrated inside or outside the air conditioner.
  • the backup device When the backup device is installed outside the air conditioner, the backup device and AC bus or DC bus can be connected.
  • the air conditioner provided in this embodiment includes: an AC bus, a DC bus, a first AC/DC AC/DC circuit, a first DC/AC DC/AC circuit, a power backup device and an air conditioner load;
  • the power backup device includes at least a battery Bag;
  • the AC bus is used to connect two power sources through the switching circuit; the input end of the first AC/DC circuit is connected to the AC bus, the output end of the first AC/DC circuit is connected to the DC bus; the input end of the first DC/AC circuit is connected to the DC bus , the output terminal of the first DC/AC circuit is used to supply power to the first air-conditioning load; the backup power device is connected to the DC bus or the AC bus; Provide electric energy to make the first air conditioner load uninterrupted.
  • the air conditioner provided by the embodiment of the present application includes a power backup device, which includes a battery pack, wherein the power backup device can be connected to the AC bus or DC bus after the two power sources are reasonable, because the power backup device is connected to the two power sources Therefore, no matter how the two power sources are switched, the connection relationship between the battery pack and the air conditioner load will not be affected, that is, the battery pack is always connected to the air conditioner load and never disconnected. Or when the power is off, the battery pack can supply power to the air-conditioning load, even if the AC bus has a short-term power interruption during the switching of the two power sources, it will not affect the power supply of the battery pack to the air-conditioning load. Therefore, the air-conditioning equipment provided in the embodiment of the present application can ensure the normal operation of the air-conditioning load when the two power sources are switched or power-off, thereby providing a normal temperature environment for equipment requiring temperature control.
  • the embodiment of the present application also provides an air conditioner, the interior of the air conditioner includes an AC bus, a DC bus, an AC/DC AC/DC circuit, and a DC/AC DC/AC circuit, and the air conditioner does not include a backup device inside, That is, the power backup device is arranged outside the air conditioner, for details, refer to the corresponding introduction in FIG. 11 .
  • the power backup device may be connected to a DC bus or an AC bus provided inside the air conditioner.
  • the AC busbar, DC busbar, AC/DC AC/DC circuit and DC/AC DC/AC circuit included in the air conditioner please refer to the introductions in Fig. 3-Fig. 9 above.
  • the air conditioning load in the air conditioning equipment can be directly connected or connected to the DC/AC circuit.
  • the embodiment of the present application does not limit whether the power backup device is connected to the DC bus or the AC bus, which will be introduced respectively below.
  • the backup power device is specifically connected to the DC bus;
  • the power backup device also includes a bidirectional DC/DC circuit; the first end of the bidirectional DC/DC circuit is connected to the DC bus, and the second end of the bidirectional DC/DC circuit is connected to the battery pack; the bidirectional DC/DC circuit is used to convert the voltage of the battery pack It is converted into the load matching voltage of the air conditioner, and is also used to convert the voltage of the DC bus into a matching voltage of the battery pack to charge the battery pack.
  • the second type the backup power device is specifically connected to the AC bus;
  • the power backup device also includes a bidirectional AC/DC circuit; the input end of the bidirectional AC/DC circuit is connected to the AC bus, and the output end of the bidirectional AC/DC circuit is connected to the battery pack; the bidirectional AC/DC circuit is used to convert the AC power of the AC bus into The direct current charges the battery pack, and is also used to convert the voltage of the battery pack into a voltage matching the AC bus to supply power for the load of the air conditioner. That is, the bidirectional AC/DC circuit has two working modes: rectification and inverter. When working in rectification mode, it is used to convert the alternating current of the AC bus into direct current to charge the battery. When working in inverter mode, it is used to convert direct current into alternating current.
  • the embodiment of the present application does not specifically limit the number of AC/DC circuits, nor does it specifically limit the number of DC/AC circuits, which may be one or multiple.
  • the air conditioner further includes a second AC/DC circuit; the input end of the second AC/DC circuit is connected to the AC bus, and the output end of the second AC/DC circuit is connected to the DC bus.
  • the air conditioner further includes a second DC/AC circuit; the input end of the second DC/AC circuit is connected to the DC bus, and the output end of the second DC/AC circuit is used to supply power to the second air conditioner load.
  • the load quantity of the air conditioner is not specifically limited, for example, the load of the air conditioner includes at least two fans and at least two compressors; each DC/AC circuit is used to provide one fan or at least One of the two compressors supplies power.
  • the embodiment of the present application does not specifically limit the number of air conditioners powered by the DC/AC circuit, for example, the output end of the DC/AC circuit is used to supply power to at least two air conditioners.
  • the switching circuit includes: a first branch and a second branch; the first end of the first branch is used to connect One end is used to connect the second power supply of the two power supplies; the second end of the first branch and the second end of the second branch are connected together to connect the AC bus; both the first branch and the second branch are connected in series There is a corresponding switching device, and the switching device is used to switch the first power supply and the second power supply.
  • the air conditioner provided in the embodiment of the present application includes a power backup device, and the power backup device is connected after the two power sources are combined, so no matter how the two power sources are switched, the load connection relationship between the battery pack and the air conditioner will not be affected.
  • the battery pack can supply power to the load of the air conditioner during the switching process of the two power sources, truly ensuring that the load power supply of the air conditioner is not interrupted, thereby ensuring normal temperature.
  • the embodiment of this application also provides a data center.
  • This application does not limit the specific product form of the data center, which can be a micro-module type as shown in Figure 1A, or a Other types of data centers.
  • the air conditioner in the data center provided by the embodiment of the present application can integrate the power supply system provided by the above embodiment. Since the power supply system can include a backup power device, it can continue to supply power to the air conditioner load when the two power sources are switched or powered off, ensuring The air conditioner worked fine.
  • the embodiment of the present application provides a data center, in which the air conditioner is installed separately from the power supply system, that is, the air conditioner load is connected to the power supply system.
  • the embodiment of the present application also provides a data center, in which the power backup device in the power supply system can be set separately, and the power backup device can be connected to the DC bus or the AC bus in the power supply system.
  • the physical architecture inside the data center can adopt the above multiple implementation methods, as long as the air-conditioning equipment can continue to ensure normal operation when the two-way power supply is switched or power-off, and the air-conditioning load can continue to be maintained, thereby ensuring that the temperature of the data center is controllable. Ensure the normal operation of the server.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.

Abstract

提供了一种空调设备的供电系统、空调设备及数据中心,空调设备包括:交流母线、直流母线、第一交流/直流AC/DC电路(100)、第一直流/交流DC/AC电路(200)和备电装置(300);交流母线通过切换电路连接两路电源;第一AC/DC电路(100)的输入端连接交流母线,第一AC/DC电路(100)的输出端连接直流母线;第一DC/AC电路(200)的输入端连接直流母线,第一DC/AC电路(200)的输出端为第一空调负载(400)供电;备电装置(300)连接直流母线或交流母线;备电装置(300)在两路电源切换或掉电时为直流母线或交流母线提供电能,第一空调负载(400)不断电。无论两路电源如何切换,不影响备电装置(300)与负载(400)的连接关系,因此,备电装置(300)可以在两路电源切换或掉电时为负载(400)供电。

Description

一种空调设备的供电系统、空调设备及数据中心
本申请要求于2021年05月27日提交中国国家知识产权局的申请号为202110583921.5、申请名称为“一种空调设备的供电系统、空调设备及数据中心”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,尤其涉及一种空调设备的供电系统、空调设备及数据中心。
背景技术
目前,随着科技的发展,各个领域需要大量的各种设备,设备工作时会发热,为了保证设备的正常运行,需要空调设备来对其工作环境进行温度控制,以免温度太高造成设备损坏。例如,轨道交通、工厂厂房、商业楼宇和数据中心等。
例如,很多行业的大量数据需要处理和存储,因此,数据中心变得越来越重要,数据中心包括很多服务器,服务器工作时将产生大量的热量,需要机房空调(CRAC,Computer Room Air Conditioning)为其降温,以使服务器能够正常工作。一旦CRAC断电,则机房的温度将迅速上升,进而服务器容易因为高温而故障。
目前,大部分行业的空调设备的供电系统包括两路电源,每路电源包括一路市电和一台油机,市电和油机提供的均为交流电。两路电源实现冗余供电,正常情况下,空调优先使用市电供电,当市电断电时,使用油机供电。例如第一路电源对应市电A和油机1,第二路电源对应市电B和油机2。当第一路电源对应的市电A没电时,切换第二路电源对应的市电B供电。当市电A和市电B均没电时,可以由任意一台油机供电。另外,当两路电源对应的市电和油机提供的交流电均没电时,为了保证CRAC的持续供电,目前空调设备的供电系统包括电池和不间断电源(UPS,Uninterruptible Power Supply)。其中UPS可以在交流电断电时,将电池的电能转换为交流电提供给CRAC。但是,实际工作中,UPS需要配置低压配电柜和输出配电柜,总体成本太高。另外,两路电源在切换时,空调设备还是会存在切换期间没有电源供电,即短时掉电问题。
因此,空调设备在断电期间无法正常运行,需要降温的设备可能会因为温度太高而保护停机,从而严重影响正常运行。
发明内容
为了解决以上技术问题,本申请提供一种空调设备的供电系统、空调设备及数据中心,能够在给机房空调供电的两路电源切换时,不间断给机房空调供电,保证机房空调的正常运行。
本申请实施例提供一种空调设备的供电系统,包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路和备电装置;交流母线用于通过切换电路连接两路电源;第一AC/DC电路的输入端连接交流母线,第一AC/DC电路的输出端连接直流母线;第一DC/AC电路的输入端连接直流母线,第一DC/AC电路的输出端用于为第一空调负载供电;备电装置连接直流母线或交流母线;备电装置在两 路电源切换或掉电时为直流母线或交流母线提供电能,使第一空调负载不断电。
本申请实施例提供的供电系统不限定供电的空调负载的数量,也不限定供电的空调设备的数量,可以多个空调设备共用同一个供电系统,也可以每个空调设备对应各自的供电系统。
本申请实施例提供的供电系统的备电装置连接在两路电源切换后的合路上,因此,无论两路电源如何切换或掉电,都不影响备电装置与空调设备的负载之间的连接关系,即备电装置一直保持与空调设备的负载接通,始终没有断开连接,因此,当两路电源切换或掉电时,备电装置可以为空调设备的负载供电,即使两路电源切换期间交流母线会有短时电源中断,但是不影响备电装置为空调设备的负载供电。其中,两路电源掉电是指两路电源均没有交流电了。一般每路电源包括一路市电和一路油机。
本申请实施例不限定备电装置连接直流母线还是交流母线,下面分别介绍两种实现方式。
第一种:备电装置连接直流母线;备电装置包括电池包和双向直流/直流电路;双向直流/直流电路的第一端连接直流母线,双向直流/直流电路的第二端连接电池包;双向直流/直流电路,用于将电池包的电压转换为第一空调负载匹配的电压,还用于将直流母线的电压转换为电池包匹配的电压为电池包充电。当备电装置包括双向直流/直流电路时,可以灵活选择电池包的规则,即使电池包的电压与直流母线的电压不匹配,也可以通过双向直流/直流电路将电池包的电压变换为与直流母线匹配的电压放电,或者将直流母线的电压转换为与电池包匹配的电压进行充电。
应该理解,当备电装置连接直流母线时,也可以不包括双向直流/直流电路。
第二种:备电装置连接交流母线;备电装置包括电池包和双向交流/直流电路;双向交流/直流电路的输入端连接交流母线,双向交流/直流电路的输出端连接电池包;双向交流/直流电路,用于将交流母线的交流电转换为直流电为电池包充电,还用于将电池包的电压转换为与交流母线匹配的电压为第一空调负载供电。
在一种可能的实现方式中,供电系统包括多个AC/DC电路;即还包括第二AC/DC电路;第二AC/DC电路的输入端连接交流母线,第二AC/DC电路的输出端连接直流母线。当多个AC/DC电路并联在交流母线和直流母线之间时,可以增加直流母线后续的带载能力,即可以挂接更多的空调负载。本申请实施例不限定直流母线和交流母线之间并联的AC/DC电路的数量,更多数量的AC/DC电路主要是为了便于扩充更多的负载或者扩容更多台的空调。供电系统的带载能力强时,不限定带的多个负载位于一个实体空调,还是位于不同的多个实体空调。
另外,本申请实施例提供的供电系统也可以包括多个DC/AC电路,例如还包括第二DC/AC电路;第二DC/AC电路的输入端连接直流母线,第二DC/AC电路的输出端用于为第二空调负载供电。为了供电的独立性,一个空调负载对应一个DC/AC电路,即多个空调负载与多个DC/AC电路是一一对应的关系。
在一种可能的实现方式中,还可以每个DC/AC电路为多个空调负载供电,即第一DC/AC电路的输出端用于为至少两个第一空调负载供电,例如为两台压缩机供电。
在一种可能的实现方式中,第一空调负载和第二空调负载均可以包括风扇、压缩机或泵。
在一种可能的实现方式中,多个空调设备对应的供电系统中的直流母线可以连接在一起。还有一种可能的情况,多个空调设备可以共用同一个直流母线。
在一种可能的实现方式中,本申请实施例提供的供电系统中可以包括切换电路,也可以不包括切换电路,当不包括切换电路时,供电系统与外部的切换电路连接即可,切换电路包括:第一支路和第二支路;第一支路的第一端用于连接两路电源中的第一路电源,第二支路的第一端用于连接两路电源中的第二路电源;第一支路的第二端和第二支路的第二端连接在一起连接交流母线;第一支路和第二支路上均串联有开关器件,开关器件用于切换第一路电源和第二路电源。第一路电源和第二路电源为了实现冗余供电,第一路电源和第二路电源均包括各自对应的市电和油机。即第一路电源包括第一路市电和第一油机,第二路电源包括第二路市电和第二油机;
在一种可能的实现方式中,第一路电源包括第一路市电和第一油机,第二路电源包括第二路市电和第二油机;供电系统还包括:第一自动转换开关电器ATS和第二自动转换开关电器ATS;第一支路的第一端通过第一ATS连接第一路电源,其中第一ATS的第一输入端用于连接第一路市电,第一ATS的第二输入端用于连接第一油机;第一ATS的输出端连接第一支路的第一端;第二支路的第一端通过第二ATS连接第二路电源,其中第二ATS的第一输入端用于连接第二路市电,第二ATS的第二输入端用于连接第二油机,第二ATS的输出端连接第二支路的第一端。
在一种可能的实现方式中,为了使本申请实施例提供的供电系统与传统的供电系统进行兼容,本申请实施例提供的供电系统还包括:第一自动转换开关电器ATS、第二自动转换开关电器ATS、低压配电柜、输出配电柜、电池和不间断供电电路;第一支路的第一端通过第一ATS连接第一路电源,其中第一ATS的第一输入端用于连接第一路市电,第一ATS的第二输入端用于连接第一油机,第一ATS的输出端连接第一支路的第一端;第二支路的第一端通过第二ATS连接第二路电源,其中第二ATS的第一输入端用于连接第二路市电,第二ATS的第二输入端用于连接第二油机;第二ATS的输出端连接低压配电柜的输入端;低压配电柜的输出端连接不间断供电电路的第一端,不间断供电电路的第二端连接输出配电柜的输入端,输出配电柜的输出端连接第二支路的第一端;不间断供电电路的第三端连接电池。
在一种可能的实现方式中,为了使本申请实施例提供的供电系统与传统的供电系统进行兼容,本申请实施例提供的供电系统还包括:第一自动转换开关电器ATS、第二自动转换开关电器ATS、第一低压配电柜、第一输出配电柜、第一电池、第一不间断供电电路、第二低压配电柜、第二输出配电柜、第二电池和第二不间断供电电路;第一支路的第一端通过第一ATS连接第一路电源,其中第一ATS的第一输入端用于连接第一路市电,第一ATS的第二输入端用于连接第一油机;第二支路的第一端通过第二ATS连接第二路电源,其中第二ATS的第一输入端用于连接第二路市电,第二ATS的第二输入端用于连接第二油机;第一ATS的输出端连接第一低压配电柜的输入端, 第一低压配电柜的输出端连接第一不间断供电电路的第一端,第一不间断供电电路的第二端连接第一输出配电柜的输入端,第一输出配电柜的输出端连接第一支路的第一端;第一不间断供电电路的第三端连接第一电池;第二ATS的输出端连接第二低压配电柜的输入端,第二低压配电柜的输出端连接第二不间断供电电路的第一端,第二不间断供电电路的第二端连接第二输出配电柜的输入端,第二输出配电柜的输出端连接第二支路的第一端;第二不间断供电电路的第三端连接第二电池。
基于以上实施例提供的一种供电系统,本申请实施例还提供一种空调设备,该空调设备内部集成供电系统和空调负载,即包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路、备电装置和第一空调负载;交流母线用于通过切换电路连接两路电源;第一AC/DC电路的输入端连接交流母线,第一AC/DC电路的输出端连接直流母线;第一DC/AC电路的输入端连接直流母线,第一DC/AC电路的输出端用于为第一空调负载供电;备电装置连接直流母线或交流母线;备电装置,用于在两路电源切换或掉电时为直流母线或交流母线提供电能,使第一空调负载不断电。
以上供电系统各个实现方式的优点适用于该空调设备的各个实现方式,在此不再赘述。除此之外,由于备电装置和供电系统集成在空调设备中,这样一体式的设计使得空调设备的布局更加灵活,无需考虑与外部备电电源的连接或走线问题。
在一种可能的实现方式中,备电装置具体连接直流母线;备电装置包括电池包和双向直流/直流电路;双向直流/直流电路的第一端连接直流母线,双向直流/直流电路的第二端连接电池包;双向直流/直流电路,用于将电池包的电压转换为第一空调负载匹配的电压,还用于将直流母线的电压转换为电池包匹配的电压为电池包充电。
在一种可能的实现方式中,备电装置具体连接交流母线;备电装置包括电池包和双向交流/直流电路;双向交流/直流电路的输入端连接交流母线,双向交流/直流电路的输出端连接电池包;双向交流/直流电路,用于将交流母线的交流电转换为直流电为电池包充电,还用于将电池包的电压转换为与交流母线匹配的电压为第一空调负载供电。
在一种可能的实现方式中,还包括第二AC/DC电路;第二AC/DC电路的输入端连接交流母线,第二AC/DC电路的输出端连接直流母线。
在一种可能的实现方式中,还包括第二DC/AC电路;第二DC/AC电路的输入端连接直流母线,第二DC/AC电路的输出端用于为第二空调负载供电。
在一种可能的实现方式中,第一空调负载包括风扇、压缩机或泵。
在一种可能的实现方式中,第一DC/AC电路的输出端用于为至少两个第一空调负载供电。
在一种可能的实现方式中,切换电路包括:第一支路和第二支路;第一支路的第一端用于连接两路电源中的第一路电源,第二支路的第一端用于连接两路电源中的第二路电源;第一支路的第二端和第二支路的第二端连接在一起连接交流母线;第一支路和第二支路上均串联有对应的开关器件,开关器件用于切换第一路电源和第二路电 源。
以上实施例提供的空调设备内部集成了供电系统的所有器件,还有另一种实现方式,空调设备内部不包括备电装置,备电装置可以设置在空调设备的机柜外部,与空调设备内部的直流母线或交流母线进行连接即可。本申请实施例还提供一种空调设备,包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路和第一空调负载;交流母线用于通过切换电路连接两路电源;第一AC/DC电路的输入端连接交流母线,第一AC/DC电路的输出端连接直流母线;第一DC/AC电路的输入端连接直流母线,第一DC/AC电路的输出端用于为第一空调负载供电;直流母线或交流母线连接备电装置;备电装置,用于在两路电源切换或掉电时为直流母线或交流母线提供电能,使第一空调负载不断电。
本申请实施例还提供的数据中心包括空调设备和以上介绍的供电系统,其中,空调设备中包括空调负载,用于对数据中心进行温度控制。空调负载与供电系统分离设置,供电系统为空调负载供电,两者之间连接。当两路电源切换或掉电时,供电系统中的供电装置能够不间断为空调负载供电。
本申请实施例还提供另外一种数据中心,包括空调设备,空调设备内集成了供电系统,供电系统内部包括备电装置,当两路电源切换或掉电时,供电系统可以不间断为空调负载供电。
本申请实施例还提供另外一种数据中心,包括备电装置和空调设备;空调设备,用于对数据中心进行温度控制。即备电装置位于空调设备的外部,空调设备的内部包括供电系统除了备电装置以为的其他部件,备电装置与空调设备内部供电系统的直流母线或交流母线连接。当两路电源切换或掉电时,备电装置可以不间断为空调负载供电。
本申请实施例还提供一种空调设备的供电电源,包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路和备电装置;交流母线用于通过切换电路连接两路电源;第一AC/DC电路的输入端连接交流母线,第一AC/DC电路的输出端连接直流母线;第一DC/AC电路的输入端连接直流母线,第一DC/AC电路的输出端用于为第一空调负载供电;备电装置连接直流母线或交流母线;备电装置,用于在两路电源切换或掉电时为直流母线或交流母线提供电能,使第一空调负载不断电。
一种可能的实现方式,备电装置连接直流母线;备电装置包括电池包和双向直流/直流电路;双向直流/直流电路的第一端连接直流母线,双向直流/直流电路的第二端连接电池包;双向直流/直流电路,用于将电池包的电压转换为机房空调的负载匹配的电压,还用于将直流母线的电压转换为电池包匹配的电压为电池包充电。
一种可能的实现方式,备电装置连接交流母线;备电装置包括电池包和双向交流/直流电路;双向交流/直流电路的输入端连接交流母线,双向交流/直流电路的输出端连接电池包;双向交流/直流电路,用于将交流母线的交流电转换为直流电为电池包充电,还用于将电池包的电压转换为与交流母线匹配的电压为机房空调的负载供电。
一种可能的实现方式,供电电源还包括第二AC/DC电路;第二AC/DC电路的输入端连接交流母线,第二AC/DC电路的输出端连接直流母线。
一种可能的实现方式,供电电源还包括第二DC/AC电路;第二DC/AC电路的输入端连接直流母线,第二DC/AC电路的输出端用于为第二空调负载供电。
一种可能的实现方式,第一DC/AC电路的输出端用于为至少两个第一空调负载供电。
一种可能的实现方式,切换电路包括:第一支路和第二支路;第一支路的第一端用于连接两路电源中的第一路电源,第二支路的第一端用于连接两路电源中的第二路电源;第一支路的第二端和第二支路的第二端连接在一起连接交流母线;第一支路和第二支路上均串联有开关器件,开关器件用于切换第一路电源和第二路电源。
另外,本申请实施例还提供一种空调设备的供电机箱,包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路和备电装置;该供电机箱的第一端口连接切换电路,该供电机箱的第二端口连接第一空调负载;备电装置至少包括电池包;交流母线用于通过切换电路连接两路电源;第一AC/DC电路的输入端连接交流母线,第一AC/DC电路的输出端连接直流母线;第一DC/AC电路的输入端连接直流母线,第一DC/AC电路的输出端用于为第一空调负载供电;备电装置连接直流母线或交流母线;备电装置,用于在两路电源切换或掉电时为直流母线或交流母线提供电能,使第一空调负载不断电。
备电装置连接直流母线;备电装置包括电池包和双向直流/直流电路;双向直流/直流电路的第一端连接直流母线,双向直流/直流电路的第二端连接电池包;双向直流/直流电路,用于将电池包的电压转换为机房空调的负载匹配的电压,还用于将直流母线的电压转换为电池包匹配的电压为电池包充电。
备电装置连接交流母线;备电装置包括电池包和双向交流/直流电路;双向交流/直流电路的输入端连接交流母线,双向交流/直流电路的输出端连接电池包;双向交流/直流电路,用于将交流母线的交流电转换为直流电为电池包充电,还用于将电池包的电压转换为与交流母线匹配的电压为机房空调的负载供电。
本申请实施例不具体限定供电系统包括的AC/DC电路的数目,可以包括一个AC/DC电路,也可以包括多个AC/DC电路。由于AC/DC电路连接在交流母线与直流母线之间,因此,当交流母线和直流母线之间并联多个AC/DC电路时,可以增大直流母线上的电流,提高直流母线的带载能力,如果直流母线上挂载的空调负载的数量很多,则可以增加AC/DC电路的数目。
另外,本申请实施例也不限定供电系统包括的DC/AC电路的数目,可以包括一个DC/AC电路,也可以包括多个DC/AC电路。本领域技术人员可以根据空调负载的数目来设置DC/AC电路的数目。例如一个风扇对应一个DC/AC电路,一个压缩机对应一个DC/AC电路,一个泵对应一个DC/AC电路。另外,如果DC/AC电路的驱动能力足够大,也可以一个DC/AC电路对应多个空调负载,例如一个DC/AC电路风扇或多个压缩机或多个泵,本申请实施例中均不做具体限定。
本申请至少具有以下优点:
本申请实施例提供的空调设备的供电系统,包括备电装置,空调设备连接的两路电源正常供电时,可以为备电装置中的电池包充电,当两路电源切换时,备电装置可以放电为空调设备的负载供电,例如空调设备的负载可以包括风扇、压缩机或泵。本申请实施例提供的供电系统的备电装置连接在空调设备供电的两路电源合路之后的交流母线或直流母线,即备电装置连接在两路电源切换后的合路上,因此,无论两路电源如何切换,都不影响电池包与空调设备的负载之间的连接关系,即备电装置一直保持与空调设备的负载接通,始终没有断开连接,因此,当两路电源切换时,备电装置可以为空调设备的负载供电,即使两路电源切换期间交流母线会有短时电源中断,但是不影响备电装置为空调设备的负载供电。另外,备电装置除了在两路电源切换时为空调设备的负载供电以外,备电装置还可以在两路电源均断电时为空调设备的负载供电。因此,本申请实施例提供的空调设备的供电系统可以一直为空调设备的负载供电,不会出现两路电源切换或掉电时短时供电中断情况,保证空调设备的负载可以正常工作,进而保证机房的温度正常。
附图说明
图1A本申请实施例提供的一种微模块型数据中心的示意图;
图1B为本申请实施例提供的一种CRAC的架构图;
图2为传统的CRAC的供电系统的架构;
图3为本申请实施例提供的一种机房空调的供电系统的示意图;
图4为本申请实施例提供的另一种机房空调的供电系统的示意图;
图5为本申请实施例提供的再一种机房空调的供电系统的示意图;
图6为本申请实施例提供的又一种机房空调的供电系统的示意图;
图7A为本申请实施例提供的又一种机房空调的供电系统的示意图;
图7B为本申请实施例提供的多个机房空调并机的供电系统的示意图;
图8为本申请实施例提供的再一种机房空调的供电系统的示意图;
图9为本申请实施例提供的另一种机房空调的供电系统的示意图;
图10为本申请实施例提供的供电系统中备电装置集成在CRAC内部的示意图;
图11为本申请实施例提供的供电系统中备电装置设置在CRAC外部的示意图;
图12为本申请实施例提供的再一种机房空调的供电系统的示意图;
图13为本申请实施例提供的另一种机房空调的供电系统的示意图;
图14为本申请实施例提供的又一种机房空调的供电系统的示意图;
图15为本申请实施例提供的再一种机房空调的供电系统的示意图;
图16为本申请实施例提供的一种两台CRAC对应的架构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
以下说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二” 等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“耦接”可以是实现信号传输的电性连接的方式。“耦接”可以是直接的电性连接,也可以通过中间媒介间接电性连接。
本申请实施例涉及一种空调设备的供电系统,由于该供电系统包括备电装置,而且备电装置包括电池包,并且由于电池包连接在两路电路合路之后的路径上,可以连接交流母线也可以连接直流母线,两路电源在切换或掉电时,不影响电池包与空调负载的连接关系,因此,电池包可以在空调设备连接的两路电路切换或掉电时,继续为空调负载供电。
本申请实施例不限定空调设备的应用场景,可以为需要控制温度任何场景,例如轨道交通、工厂厂房、商业楼宇和数据中心等。下面以应用场景为数据中心为例进行介绍,其中数据中心对应的空调设备可以称为CRAC。本申请实施例提供的供电系统可以应用在任何需要为CRAC进行不间断供电的场景,不限定数据中心的应用场景。
数据中心一般包括多个服务器,服务器在工作过程中会散发热量,服务器可能会因为温度太高而保护停机,从而严重影响数据中心的正常运行。因此,需要CARC为数据中心的服务器进行散热降温。本申请实施例不具体限定数据中心的实体形态,例如可以为微模块,也可以为预制化的,下面结合附图介绍一种微模块形态的数据中心。
参见图1A,该图为本申请实施例提供的一种微模块型数据中心的示意图。
微模块型的数据中心10一般包括室内侧和室外侧,其中室内侧包括IT模块、CRAC和配电模块;室外侧包括空调的室外机。IT模块包括服务器和服务器机架。
图1A仅是一种数据中心内部架构的示意图,本申请实施例对于IT模块的数目以及空调的数目不做具体限定,本领域技术人员根据实际需要进行设置,例如可以根据IT模块的数量以及温度需求来设置空调的数量,具体可以通过温度仿真测试来设置空调的数量。
CRAC工作时,每个CRAC的出风口的出风方向为中间通道10a,中间通道10a的下方通过管道与室外机接通,进行空气循环。
本申请实施例提供的供电系统可以集成在CRAC内部,由于供电系统可以在两路电源切换或掉电时为CRAC负载供电,因此,配电模块的UPS和电池可以主要为IT模块中的服务器以及其他模块供电,CRAC只连接配电模块的两路电源即可,从而可以使CRAC的布局更为灵活,走线更为简化;同时也能使配电模块中电池的电能为更多IT模块供电,或者说,由于无需为CRAC供电,配电模块在为相同数据的IT模块供电时,电池数量可以减少,缩小占用空间。从而可以简化整个数据中心的内部架构,降低成本。每路电源包括一路市电和一路油机,油机由于体积较大,一般位于数据中心外部。
为了使本领域技术人员更好地理解本申请实施例提供的空调设备的供电系统,下 面先介绍空调设备的架构。
参见图1B,该图为本申请实施例提供的一种空调设备的架构图。
本申请实施例提供的空调设备可以包括一个或多个空调负载(后文也简称负载),一般空调负载可以为风扇、压缩机或泵。例如,空调设备的空调负载可以包括一个风扇或一个压缩机,也可以包括一个风扇和一个泵,还可以包括两个风扇和两个压缩机,本申请不作具体限定。
本申请实施例涉及的空调负载为多个时,可以在一台空调设备内部,也可以分别位于不同台的空调设备内部,均不作具体限定。本申请实施例关注的是为空调负载进行不间断供电,至于空调负载的实体设备的承载形式不作限定,本领域技术人员可以根据实际需要来设置。例如,一个空调设备中可以有一个空调负载,也可以有多个空调负载。而供电系统进行供电的空调负载,可以是分布在一个空调设备中的,也可以是分布在多个空调设备中的。例如,供电系统可以为多台空调设备内的空调负载供电,也可以为一台空调设备内的空调负载供电,也可以为一台空调设备内的部分空调负载供电,其余部分空调负载由另一个供电系统供电,只要保证空调负载不间断供电即可。
如图1B所示,空调设备的空调负载包括n个风扇,分别为风扇F1至Fn;还包括n个压缩机,分别为C1至Cn,其中n为大于等于2的整数。应该理解,风扇的数量和压缩机的数量可以相等,也可以不相等,本申请实施例不做具体限定。一般情况下,风扇和压缩机各自对应自身的驱动电路,驱动电路将交流母线AC BUS的电压转换为风扇和压缩机需求的电压。
为了突出本申请实施例提供的空调设备的供电系统的优势,下面先介绍传统的空调设备的供电系统的架构。
参见图2,该图为传统的空调设备的供电系统的架构图。
为了尽量使空调设备的供电不间断,一般设置两路电源,分别为第一路电源IN1和第二路电源IN2。
正常情况下第一路电源IN1和第二路电源IN2均有电,通过控制自动转换开关电器(ATS,Automatic Transfer Switching Equipment)的切换,使第一路电源IN1与交流母线AC BUS接通,或者第二路电源IN2与交流母线AC BUS接通,即选择第一路电源IN1或第二路电源IN2为风扇和压缩机供电。但是,ATS切换过程中,切换瞬间风扇和压缩机的供电会被中断,而压缩机有启动时间要求,内部设有断电保护逻辑,压缩机一旦断电重新启动,并不是立马可以启动工作,需要完成启动设定的时间才可以启动完成正常工作。因此,一旦供电中断,压缩机有一段时间不会工作,此时如果机房温度迅速升高,将会影响服务器的正常工作,甚至服务器因为温度过高而损坏。
为了解决两路电源切换引起短时供电中断的技术问题,本申请实施例提供了一种空调设备的供电系统,在两路电源切换后的合路上连接有备电装置,其中备电装置包括电池包,即电池包可以为风扇和压缩机供电,由于两路电源切换期间,电池包并没有断开与空调负载连接,即电池包一直连接在空调负载的供电通路上,可以随时为空调负载供电,即使两路电源切换,也不会影响空调负载供电,即不存在短时的供电中 断情况。除此之外,当两路电源均掉电时,本申请实施例提供的供电系统也可以为空调负载继续供电。
因此,空调负载(例如,风扇和压缩机)可以持续不间断供电,进而保证环境的温度可控,保证服务器的安全工作。
可以理解的,本申请实施例的空调设备可以应用于各个需要温度控制的场景,一般空调设备可以包括风扇、压缩机或泵等,不同的应用场景可能内部架构有所区别,但是,空调的供电系统可以相同,为了空调负载的持续不间断运行,需要本申请实施例提供的供电系统。为了使本领域技术人员更好地理解供电系统的工作原理,下面仅是以CRAC为例进行介绍,其他应用场景的空调设备的供电类似。本实施例提供的空调设备的供电系统包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路和备电装置;备电装置至少包括电池包;交流母线用于通过切换电路连接两路电源;第一AC/DC电路的输入端连接交流母线,第一AC/DC电路的输出端连接直流母线;第一DC/AC电路的输入端连接直流母线,第一DC/AC电路的输出端用于为至少一个第一机房空调的负载供电;备电装置连接直流母线或交流母线;备电装置,用于在两路电源切换或掉电时为直流母线或交流母线提供电能,使第一机房空调的负载不断电。
应该理解,本申请实施例不具体限定供电系统包括的AC/DC电路的数目,可以包括一个AC/DC电路,也可以包括多个AC/DC电路。由于AC/DC电路连接在交流母线与直流母线之间,因此,当交流母线和直流母线之间并联多个AC/DC电路时,可以增大直流母线上的电流,提高直流母线的带载能力,如果直流母线上挂载的空调负载的数量很多,则可以增加AC/DC电路的数目。
另外,本申请实施例也不限定供电系统包括的DC/AC电路的数目,可以包括一个DC/AC电路,也可以包括多个DC/AC电路。本领域技术人员可以根据空调负载的数目来设置DC/AC电路的数目。例如一个风扇对应一个DC/AC电路,一个压缩机对应一个DC/AC电路,一个泵对应一个DC/AC电路。另外,如果DC/AC电路的驱动能力足够大,也可以一个DC/AC电路对应多个空调负载,例如一个DC/AC电路风扇或多个压缩机或多个泵,本申请实施例中均不做具体限定。
下面为了使本领域技术人员方便理解本申请实施例提供的供电系统的工作原理,下面以供电系统包括一个DC/AC电路和一个AC/DC电路为例进行介绍。并且,以一个DC/AC电路为一个空调设备的负载供电为例,不限定空调设备中的空调负载的数目,可以为一个空调负载,也可以为多个空调负载。
参见图3,该图为本申请实施例提供的一种CRAC的供电系统的示意图。
本申请实施例提供的CRAC的供电系统,包括:交流母线AC BUS、直流母线DC BUS、交流/直流(AC/DC,Alternating Current/Direct Current)电路100、直流/交流(DC/AC,Direct Current/Direct Current)电路200和备电装置300。
交流母线AC BUS用于通过切换电路连接两路电源。
AC/DC电路100的输入端连接交流母线AC BUS,AC/DC电路100的输出端连接 直流母线DC BUS。
DC/AC电路200的输入端连接直流母线DC BUS,DC/AC电路200的输出端用于为CRAC的负载供电。
图3中以DC/AC电路200的输出端用于为CRAC的负载400供电为例进行介绍,应该理解,例如一个CRAC可以包括多个空调负载,例如包括多个压缩机和多个风扇。DC/AC电路200的输出端用于为一个CRAC的一个负载或多个负载供电。为了使两路电源切换或掉电时,CRAC能够正常运行,图3中以DC/AC电路200的输出端为CRAC的负载400供电,即为CRAC内部所有的负载供电。
备电装置300可以连接直流母线DC BUS,也可以连接交流母线AC BUS;图3中以备电装置300连接直流母线DC BUS为例进行介绍。
备电装置300,用于在两路电源切换或掉电时利用存储的备电电能为直流母线DC BUS或交流母线AC BUS提供电能,使CRAC的负载不断电。在一些实施例中,备电装置300可以至少包括电池包BAT,用于存储电能。当然,在其他实施例中,备电装置300也可以采用其他方式进行电能存储,后文中,主要以电池包BAT为例进行说明,但本申请不限于电池包的储能形式。
其中两路电源掉电是指两路电源均没有电了,例如两路市电和两路油机均没电了,可能因为故障,也可以因为断电,即两路电源均无法提供交流电。
由于电池包需要直流电为其充电,因此,当备电装置300连接直流母线DC BUS时,备电装置300内部可以不包括功率变换电路,例如不必包括整流电路。
本申请实施例不限定备电装置300中电池包的类型,例如可以为以下至少一种:铅酸电池、锂电池或超级电容等。
本申请实施例也不具体限定直流母线DC BUS上的电压大小,例如可以为700V-800V之间,可以根据具体场景来设置。
本申请实施例也不限定AC/DC电路100包括一级功率变换还是两级功率变换,同理,也不限定DC/AC电路200包括一级功率变换,还是两级功率变换。
当备电装置300连接交流母线AC BUS时,备电装置300内部还需要包括整流电路,具体可以参见图4,该图为本申请实施例提供的又一种CRAC的供电系统的示意图。
图3和图4的区别是,图3是以备电装置连接直流母线DC BUS为例,图4是以备电装置连接交流母线AC BUS为例,其他部分图3和图4一样,具体可以参见图3的描述,以下仅介绍图4区别于图3的部分
当备电装置300连接交流母线AC BUS时,备电装置300内部还需要包括双向交流/直流电路300a,双向交流/直流电路300a的输入端连接交流母线AC BUS,双向交流/直流电路300a的输出端连接电池包BAT。双向交流/直流电路300a,用于将交流母线AC BUS的交流电转换为直流电为电池包BAT充电,还用于将电池包BAT的电压转换为与交流母线AC BUS匹配的电压为CRAC供电。即双向交流/直流电路有整流和逆变两种工作模式,工作在整流模式时,用于将交流母线AC BUS的交流电转换为直流 电为电池充电,工作在逆变模式时,用于将直流电转换为交流电,连接到交流母线AC BUS,配合连接于交流母线AC BUS和直流母线DC BUS之间的AC/DC电路为空调负载供电。
图4中以DC/AC电路200的输出端用于为一个机房空调的CRAC的负载400供电为例进行介绍,应该理解,例如一个机房空调CRAC可以包括多个空调负载,例如包括多个压缩机和多个风扇。DC/AC电路200的输出端用于为一个CRAC的一个负载或多个负载供电。为了使两路电源切换或掉电时,CRAC能够正常运行,图4中以DC/AC电路200的输出端为CRAC的负载400供电,即为CRAC内部所有的负载供电。
本申请实施例中不限定备电装置300连接直流母线DC BUS还是连接交流母线AC BUS,均可以实现两路电源切换时,利用电池包的电能为CRAC的负载供电,以使CRAC的负载不断电,不停止工作。以下实施例中以备电装置300连接直流母线DC BUS为例进行介绍。
图3中仅示意性给出一种切换电路的实现方式,例如切换电路包括:第一支路和第二支路;第一支路的第一端用于连接两路电源中的第一路电源IN1,第二支路的第一端用于连接两路电源中的第二路电源IN2;第一支路的第二端和第二支路的第二端连接在一起连接交流母线AC BUS;第一支路和第二支路上均串联有对应的开关器件,开关器件用于切换第一路电源IN1和第二路电源IN2。例如,开关器件可以为ATS,另外为了安全检修,第一支路通过第一输入断路器K1连接第一路电源IN1,第二支路通过第二输入断路器K2连接第二路电源IN2。另外为了实现防雷保护,第一支路和第二支路还分别连接浪涌保护器SPD1和SPD2。当电气回路因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对电气回路中其他设备的损害。另外,为了实现防雷保护,第一支路和第二支路还分别连接防雷及电压检测板FV1和FV2,用于进行防雷保护和电压检测。
对比图2和图3可以看出,由于图3中备电装置始终连接CRAC的负载,因此,无论两路电源如何切换或发生掉电,均不会影响备电装置为CRAC的负载供电。
本申请实施例提供的CRAC的供电系统,包括备电装置,备电装置中包括电池包,其中备电装置可以连接在两路电源合理之后的交流母线或直流母线,由于备电装置连接在两路电源切换后的合路上,因此,无论两路电源如何切换,都不影响电池包与CRAC的负载的连接关系,即电池包一直保持与CRAC的负载接通,始终没有断开,因此,当两路电源切换时,电池包可以为CRAC的负载供电,即使两路电源切换期间交流母线会有短时电源中断,但是不影响电池包为CRAC的负载供电。因此,本申请实施例提供的CRAC的供电系统可以一直为CRAC的负载供电,不会出现两路电源切换时的短时供电中断情况,保证CRAC的负载的正常工作,进而保证机房的温度正常。
为了叙述方便,下面以一个CRAC为例进行介绍,当多个CRAC时,供电的基本拓扑的原理类似。
下面结合附图介绍供电系统包括多个DC/AC电路的实现情况,每个DC/AC电路可以为一个空调负载供电,例如为一个风扇供电,或者为一个压缩机供电。DC/AC电 路的数目可以根据CRAC中包括的负载的个数来设置。并且,这些空调负载具体分布在一个还是多个空调设备中,不作具体限定。下面为了描述简单,以供电系统包括两个DC/AC电路,其中一个DC/AC电路为风扇供电,一个DC/AC电路为压缩机供电为例进行说明。
参见图5,该图为本申请实施例提供的再一种CRAC的供电系统的示意图。
一种可能的实现方式,本申请实施例提供的供电系统中的直流母线DC BUS可以连接至少两个DC/AC电路,至少两个DC/AC电路的输入端均连接直流母线DC BUS,每个DC/AC电路用于为CRAC中的负载供电。
本申请实施例不限定一个CRAC包括的风扇数量和压缩机数量。图5中仅是示意包括一个风扇和一个压缩机为例,其中第一DC/AC电路200a为风扇F供电,第二DC/AC电路200b为压缩机C供电。
应该理解,为了供电的独立性,可以每个风扇对应一个DC/AC电路,每个压缩机对应一个DC/AC电路。即CRAC的每个负载与DC/AC电路可以一一对应。
另外,备电装置中的电池包的数量可以根据实际需要灵活配置,既可以支持短时备电,又可以通过增加电池包的数量来实现长时间备电供电。
本申请实施例提供的供电系统也可以包括多个AC/DC电路,设置多个AC/DC电路的目的是为了增加带载能力,便于扩充更多的空调负载,或者扩充更多台的空调,即方便扩容负载数量。
图5是以CRAC包括一个风扇和一个压缩机为例进行的介绍,下面介绍CRAC的负载包括至少两个风扇和至少两个压缩机。
即分别为:第一风扇F1和第二风扇F2,第一压缩机C1和第二压缩机C2。每个DC/AC电路用于为至少两个风扇中的一个风扇或至少两个压缩机中的一个压缩机供电。如图5所示,第一DC/AC电路200a用于为风扇F供电,第二DC/AC电路200b用于为压缩机C供电。应该理解,图5中仅是示意,以一个风扇和一个压缩机示意,另外,可以包括多个风扇和多个压缩机。每个风扇对应一个DC/AC电路,每个压缩机对应一个DC/AC电路。当然,也可以一个DC/AC电路为多个风扇同时供电,一个DC/AC电路同时为多个压缩机同时供电。另外,也可以一个DC/AC电路同时为风扇和压缩机供电。
本申请实施例提供的供电系统可以包括多个AC/DC电路,设置多个AC/DC电路的目的是为了增加带载能力,便于扩充更多的负载或者扩容更多台的空调。供电系统的带载能力强时,不限定带的多个负载位于一个实体空调,还是位于不同的多个实体空调。
下面结合附图6介绍供电系统包括多个AC/DC电路的实现方式。当供电系统包括多个AC/DC电路时,不限定空调负载的数量,可以根据实际需要来设置,例如可以为图5所示的一个风扇和一个压缩机,也可以为多个风扇和多个压缩机。
参见图6,该图为本申请实施例提供的又一种CRAC的供电系统的示意图。
本申请实施例提供的供电系统包括以下至少两个AC/DC电路:第一AC/DC电路 100a和第二AC/DC电路100b。
第一AC/DC电路100a和第二AC/DC电路100b的输入端均连接交流母线AC BUS,第一AC/DC电路100a和第二AC/DC电路100b的输出端均连接直流母线DC BUS。
本实施例中以CRAC包括多个风扇和多个压缩机为例进行介绍,即如图6所示,本实施例中以CRAC至少包括以下两个风扇:第一风扇F1和第二风扇F2;还包括以下至少两个压缩机:第一压缩机C1和第二压缩机C2。
当每个风扇对应一个DC/AC电路,每个压缩机对应一个DC/AC电路时,如图6所示,第一DC/AC电路200a1的输入端连接DC BUS,第一DC/AC电路200a1的输出端用于为第一风扇F1供电,同理,第二DC/AC电路200a2的输入端连接DC BUS,第二DC/AC电路200a2的输出端用于为第二风扇F2供电,第三DC/AC电路200b1的输入端连接DC BUS,第三DC/AC电路200b1的输出端用于为第一压缩机C1供电,第四DC/AC电路200b2的输入端连接DC BUS,第四DC/AC电路200b2的输出端用于为第二压缩机C2供电。
图6中仅是示意性以供电系统包括两个AC/DC电路,应该理解,可以根据实际需求在交流母线AC BUS和直流母线DC BUS之间设置更多数量的AC/DC电路。另外,图7中也是示意性介绍供电系统包括四个DC/AC电路,应该理解,本申请实施例也不限定DC/AC电路的数量,可以根据实际需求来设置更多数量的DC/AC电路。
本申请实施例提供的供电系统,可以根据CRAC包括的风扇和压缩机的数量,灵活配置DC/AC电路的数量,容易实现CRAC的配电一体化。由于DC/AC电路的数量以及AC/DC电路的数量均可以灵活配置,因此,该供电系统可以根据应用场景灵活扩容。
图6对应的实施例是一个CRAC包括多个风扇和多个压缩机的情况,另外,本申请实施例中不限定供电系统可以供电的CRAC的数量,可以为一个CRAC包括的负载供电,也可以为多个CRAC包括的负载进行供电,具体可以根据CRAC的功率以及直流母线或者交流母线可以为负载的提供的功率大小来决定。下面介绍供电系统为多个CRAC的负载供电的情况。
参见图7A,该图为本申请实施例提供的一种CRAC的供电系统的示意图。
本实施例提供的CRAC的供电系统可以同时为多个CRAC包括的负载供电。本申请实施例不具体限定每个CRAC包括的负载的数目,可以为一个,也可以为多个。并且,本申请实施例也不限定供电系统包括的DC/AC电路的数目,可以与空调负载一一对应,也可以多个负载对应同一个DC/AC电路。下面仅以一个CRAC包括一个负载为例进行介绍,一个CRAC的负载对应一个DC/AC电路为例。
如图7A所示,以备电装置300连接直流母线DC BUS为例,可以同时为m个空调供电,m为大于或等于2的整数。直流母线DC BUS通过第一DC/AC电路2001为第一CRAC的负载4001供电,直至直流母线DC BUS通过第mDC/AC电路200m为第mCRAC的负载400m供电。
应该理解,当供电系统为多个CRAC包括的负载供电时,DC BUS可以为一个, DC BUS也可以为多个。当DC BUS为一个时,多个CRAC包括的负载可以均连接在同一个直流母线DC BUS,如图7A所示。当DC BUS为多个时,多个CRAC包括的负载连接在不同的直流母线DC BUS上,但是不同的DC BUS可以连接在一起,如图7B所示。
以上介绍的是一个备电装置同时为多台CRAC包括的负载供电,下面介绍每个CRAC对应各自的备电装置,以两个CRAC为例,并且两个CRAC对应的直流母线连接在一起,或者说两个CRAC的负载共用一条直流母线。当多台CRAC的直流母线连接在一起,不限定供电系统中包括的DC/AC电路的数目,也不限定AC/DC电路的数目。下面为了说明两台CRAC对应的供电系统的直流母线连接在一起,简单示意供电系统包括两个AC/DC电路,第一CRAC包括一个负载,第二CRAC包括一个负载,每个负载对应一个DC/AC电路。应该理解,本申请也不限定每个CRAC包括的负载的数量,可以每个CRAC包括多个负载。
参见图7B,该图为本申请实施例提供的又一种CRAC的供电系统的示意图。
图7B中的两个CRAC对应的供电系统架构完全相同,从图7B可以看出第一供电系统1000和第二供电系统2000的架构和内部的连接关系均相同,并且是两个独立的供电系统,仅是两个CRAC对应的供电系统中的DC BUS连接在一起。
两个CRAC的负载分别用CRAC1和CRAC2表示。
CRAC1和CRAC2的内部架构相同,并且各自对应的驱动电路也相同,以其中一个为例进行介绍。每个CRAC的供电系统包括以下至少两个AC/DC电路:第一AC/DC电路100a和第二AC/DC电路100b。
第一AC/DC电路100a和第二AC/DC电路100b的输入端均连接交流母线AC BUS,第一AC/DC电路100a和第二AC/DC电路100b的输出端均连接直流母线DC BUS。
CRAC1包括的第一CRAC的负载F1通过第一DC/AC电路200a1连接直流母线DC BUS,CRAC2包括的第二CRAC的负载F1通过第一DC/AC电路200a1连接直流母线DC BUS。
CRAC1和CRAC2对应的供电系统的区别是,各自对应的备电装置不同,CRAC1和CRAC2分别对应备电装置3001和备电装置3002。
下面结合附图介绍本申请实施例提供的供电系统中的备电装置还可以包括双向直流/直流电路的实施场景。
参见图8,该图为本申请实施例提供的又一种CRAC的供电系统的示意图。
本申请实施例提供的供电系统中的备电装置以连接直流母线DC BUS为例介绍。
为了灵活使用备电装置300中的电池包BAT,当电池包BAT的电压与直流母线DC BUS的电压不一致时,备电装置300还包括双向直流/直流电路300b;双向直流/直流电路300b的第一端连接直流母线DC BUS,双向直流/直流电路300b的第二端连接电池包BAT。
双向直流/直流电路300b,用于将电池包BAT的电压转换为CRAC匹配的电压,还用于将直流母线DC BUS的电压转换为电池包BAT匹配的电压为电池包BAT充电。 双向直流/直流电路300b可以双向工作,既可以将电池包BAT的电能变换后提供为直流母线DC BUS,又可以将直流母线DC BUS上的电能转换后给电池包BAT充电。
本申请实施例中不限定双向直流/直流电路300b的具体拓扑,只要能够实现双向DC/DC变换功能的功率变换电路均可以。
本申请实施例提供的CRAC的供电系统,由于备电装置中包括双向直流/直流电路,因此,对于电池包的规格没有限制,可以灵活选用电池包的规格,即使电池包的电压与直流母线的电压不匹配,也可以通过双向直流/直流电路将电池包的电压变换为与直流母线匹配的电压放电,或者将直流母线的电压转换为与电池包匹配的电压进行充电。
应该理解,以上各个实施例介绍的供电系统,可以集成在CRAC的内部,即以上介绍的供电系统可以和空调负载均集成在CRAC的机柜内部,从而形成具有自备电功能的CRAC机柜。另外一种可能的实现方式为,以上介绍的供电系统也可以作为CRAC的负载供电的外部驱动电路设置在CRAC的机柜外部,即CRAC的负载设置在一个CRAC机柜,CRAC的供电系统设置另一个供电装置,供电装置可以与CRAC的负载所在的机柜进行式的连接。当CRAC需要供电时,将供电机柜与CRAC的负载连接即可。本申请实施例不具体限定以上供电系统与CARC的负载的具体产品体现形态,可以根据实际需要来设置。又一种可能的实现方式中,备电装置可以是一个独立的机柜,其与包括一个或多个负载的CRAC机柜按照上文的各种实施例的方式,通过直流母线DC BUS、交流母线AC BUS、DC/AC电路和AC/DC电路进行连接以实现CRAC的供电。
下面介绍外部为CRAC供电的冗余方式。
参见图9,该图为本申请实施例提供的另一种CRAC的供电系统的示意图。
一般情况下,对于一台CRAC来说,为了保证第一路电源IN和第二路电源IN2的可靠供电,一般第一路电源IN1对应一路市电A和一路油机1(一般为柴油机发电),第二路电源IN2对应一路市电B和一路油机2。市电和油机提供的均为交流电,备电装置300内的电池包BAT提供的为直流电,当交流电有电时,优先使用交流电为CRAC的负载供电。当交流电没电时,才利用电池包BAT的直流电为CRAC的负载供电。
另外,为了切换市电和油机,本申请实施例提供的CRAC的供电系统,还包括:第一自动转换开关电器ATS1和第二自动转换开关电器ATS2。
第一ATS1的输出端连接第一支路的第一端,第二ATS2的输出端连接第二支路的第一端。
第一ATS1的第一输入端用于连接第一路市电A,第一ATS1的第二输入端用于连接第一油机1。
第二ATS2的第一输入端用于连接第二路市电B,第二ATS2的第二输入端用于连接第二油机2。
第一自动转换开关电器ATS1用于切换市电A和油机1,第二自动转换开关电器ATS2用于切换市电B和油机2。
实际工作时,例如第一路电源IN1连接的市电A和油机1均断电,需要切换到第 二路电源IN2连接的市电B或油机2,即ATS1与IN1断开,ATS2与IN2接通,ATS1和ATS2在动作过程中,会导致AC BUS与外部的交流电源短时断开连接,即在第一路电源IN1和第二路电源IN2切换期间,无法利用外部的交流电路为CRAC的风扇和压缩机的供电。而本申请实施例提供的备电装置300可以在两路电源切换期间为CRAC的负载供电,保证CRAC的负载不断电。
当以上实施例提供的供电系统中的备电装置、DC/AC电路、AC/DC电路均与CRAC的负载集成在一起时,本申请实施例提供的CRAC可以如图10所示,供电系统包括的所有部件均集成在CRAC的内部,对于CRAC来说,外部仅有两路冗余供电的交流电即可,即CRAC的第一路电源IN1通过ATS1连接市电A或连接油机1,CRAC的第二路电源IN2通过ATS2连接市电B或连接油机2。
从图10可以看出,对于CRAC来说,外部的供电架构仅剩市电和油机,省去了低压配电柜和输出配电柜,而且省去了UPS以及对应的电池。CRAC内部的供电系统包括备电装置300,可以实现自备电,在外界交流电掉电时,可以由备电装置300来供电,保持风扇和压缩机的不间断运行,进行保证机房的温度不会突然升高。由于本申请实施例提供的供电系统相比于传统的供电系统结构更加简单,节省了很多部件,因此,更加节省空间和成本。
图10是以供电系统的所有部件包括备电装置300均集成在CRAC的内部为例进行的介绍,下面介绍供电系统中的备电装置设置在CRAC的外部的情况,而供电系统除了备电装置以外的部件均集成在CRAC的内部,例如AC/DC电路、DC/AC电路、交流母线、直流母线均集成在CRAC的内部。
参见图11,该图为本申请实施例提供的备电装置设置在CRAC的外部的示意图。
本实施例提供的供电系统以备电装置300设置在CRAC的外部为例进行介绍,供电系统中的其他部件设置在CRAC的内部的情况。
备电装置300可以连接CRAC中的直流母线DC BUS或交流母线AC BUS,当备电装置300连接CRAC中的直流母线DC BUS时,备电装置300内部可以不设置AC/DC电路。当备电装置300连接CRAC中的交流母线AC BUS时,备电装置300内部需要设置AC/DC电路。备电装置300可以式与集成在CRAC内部的交流母线或直流母线进行连接。
图11提供的CRAC对应的供电系统中的DC/AC电路和AC/DC电路可以和CRAC的负载均集成在CRAC的机柜内部,仅是将供电系统中的备电装置300设置在CRAC的机柜外部。
从图10和图11可以看出,无论备电装置300设置在CRAC的内部还是外部,CRAC的外部供电架构都得以精简。
下面介绍本申请实施例提供的CRAC的供电系统与传统的CRAC的外部供电系统的兼容实现方式。
以上各个实施例中,例如图3中除了CRAC400以外的各个器件为本申请实施例提供的供电系统内部的器件,应该理解,本申请实施例提供的供电系统可以集成在 CRAC的内部,也可以设置在CRAC的外部。下面以以上各个实施例提供的供电系统设置在CRAC的内部为例进行介绍。
本申请实施例提供的供电系统除了图10和图11所示的架构以外,还可以将图3-图9所示的任何一种供电系统与传统的供电系统进行兼容,下面结合附图进行介绍。
参见图12,该图为本申请实施例提供的再一种CRAC的供电系统的示意图。
下面以第一路电源对应市电A和第一油机,第二路电源对应市电B和第二油机为例进行介绍。
其中,第一路电源通过第一ATS1直接连接市电A或第一油机,但是,第二路电源需要依次通过输出配电柜、UPS、低压配电柜和第二ATS2连接市电B或第二油机。
为了方便理解,本申请实施例中以两路电源同时为CRAC400供电为例进行介绍。
如图12所示,本申请实施例提供的第一自动转换开关电器ATS1、第二自动转换开关电器ATS2、低压配电柜1101、输出配电柜1103、电池1103和不间断供电电路1104。
第一ATS1的输出端连接第一支路的第一端,第一ATS1的第一输入端用于连接第一路市电,第一ATS1的第二输入端用于连接第一油机;第二ATS2的第一输入端用于连接第二路市电,第二ATS2的第二输入端用于连接第二油机。
对于提供第二路电源的电路:
低压配电柜1101的输入端连接第二ATS2的输出端,低压配电柜1101的输出端连接不间断供电电路UPS1104的第一端,不间断供电电路UPS1104的第二端连接输出配电柜1103的输入端,输出配电柜1102的输出端连接第二支路的第一端;不间断供电电路UPS1104的第三端连接电池1103。
一般UPS1104包括整流电路和逆变电路,整流电路的输入端连接低压配电柜1101的输出端,整流电路的输出端连接逆变电路的输入端,逆变电路的输出端连接输出配电柜1102的输入端。在交流侧(市电B或第二油机)有电时,整流电路的输出端会为电池1103充电,同时整流电路会传递电能给逆变电路,从而为后端的CRAC的负载供电。两路电源的工作模式为,只要交流侧(市电或油机)有电,则UPS1104不会从电池1102取电为CRAC的负载供电,优先使用市电和油机提供的电能为CRAC的负载供电。
将图12的架构中的一个CRAC展开为图8中的CRAC,具体可以参见图13所示,该图为本申请实施例提供的另一种CRAC的供电系统的示意图。
本实施例提供的供电系统对应的CRAC内部集成了本申请以上实施例提供的供电系统,CRAC外部兼容传统的供电架构。这样的架构可以更加保证CRAC的正常供电,CRAC的内部和外部均设有电池,内部设有电池包,外部设有电池和UPS。当两路市电和两路油机均断电时,可以通过UPS为CRAC的负载供电。
图12中仅第二路电源的来源路径上包括低压配电柜、UPS、电池和输出配电柜,优点是结构简单,占地面积小,成本低。但是当市电A和第一油机没电,市电B和第二油机也没电,且UPS故障时,CRAC的外部交流供电中断,此时只能依靠CRAC的供电系统的备电装置来供电。
下面介绍另一种备电方式,第一路电源和第二路电源的来源路径上均包括UPS和电池。
参见图14,该图为本申请实施例提供的又一种CRAC的供电系统的示意图。
对比图12和图14可以看出,本申请实施例提供的CRAC的供电系统更加复杂,两路电源的来源路径架构相同。
本申请实施例提供的供电系统包括:第一自动转换开关电器ATS1、第二自动转换开关电器ATS2、第一低压配电柜1101a、第一输出配电柜1102a、第一电池1103a、第一不间断供电电路1104a、第二低压配电柜1101b、第二输出配电柜1102b、第二电池1103b和第二不间断供电电路1104b;
第一ATS1的第一输入端用于连接第一路市电,即市电A,第一ATS1的第二输入端用于连接第一油机,即油机1;第二ATS2的第一输入端用于连接第二路市电,即市电B,第二ATS2的第二输入端用于连接第二油机,即油机2;
第一ATS1的输出端连接第一低压配电柜1101a的输入端,第一低压配电柜1101a的输出端连接第一不间断供电电路1104a的第一端,第一不间断供电电路1104a的第二端连接第一输出配电柜1102a的输入端,第一输出配电柜1102a的输出端连接第一支路的第一端;第一不间断供电电路1104a的第三端连接第一电池1103a。
第二ATS2的输出端连接第二低压配电柜1101b的输入端,第二低压配电柜1101b的输出端连接第二不间断供电电路UPS1104b的第一端,第二不间断供电电路UPS1104b的第二端连接第二输出配电柜1102b的输入端,第二输出配电柜1102b的输出端连接第二支路的第一端;第二不间断供电电路UPS1104b的第三端连接第二电池1103b。
对比图14和图12可知,图14中包括两套UPS,在一路UPS故障时,另一路UPS可以继续为CRAC的负载提供电源,保证CRAC的正常工作。
应该理解,传统的CRAC的供电架构为图12或图14中CRAC以外的部分,即传统的CRAC在图12和图14中的内部供电如图2所示,无论CRAC外部包括几路UPS,在两路电源切换时,传统的供电架构还是会存在短时断电的情况,但是本申请实施例提供的供电系统不会存在短时断电情况,因为CRAC的负载一直与电池包接通。
另外,将图10和图11与图12和图14比较,可以看出,图10和图11对应的CRAC外部的供电架构比图12和图14要精简,成本更低。
参见图15,该图为本申请实施例提供的再一种CRAC的供电系统的示意图。
图15为将图14中的一个CRAC展开为图8中的CRAC。
本实施例提供的供电系统对应的CRAC内部集成了本申请以上实施例提供的供电系统,CRAC外部兼容传统的供电架构。这样的架构可以更加保证CRAC的负载正常供电,CRAC的内部和外部均设有电池,内部设有电池包,外部两路电源均设有电池和UPS。当两路市电和两路油机均断电时,可以通过UPS为CRAC的负载供电。
以上各个实施例提供的供电系统,均是以两路电源为同一台CRAC供电为例进行的介绍。应该理解,可以多台CRAC共用两路电源,下面以两路电源可以同时为两台 CARC供电为例进行介绍。
参见图16,该图为本申请实施例提供的一种两台CRAC对应的供电架构图。
图16中所示的两台CRAC包括第一CRAC400a和第二CRAC400b,其中,以CRAC内部集成了供电系统和负载为例进行介绍。可以看出,第一CRAC400a对应两路电源IN1和IN2,第二CRAC400a对应两路电源IN1和IN2,其中IN1通过ATS1可以连接市电A或油机1,IN2可以通过ATS2连接市电B或油机2。可以看出,当市电A有电时,市电A可以同时为两台CRAC的IN1进行供电。同理,当市电B有电时,市电B可以同时为两台CRAC的IN2进行供电。
另外,图16仅是以两台CRAC共用外部交流电,也可以更多台CRAC共用外部交流电源,在此不再赘述。并且,图16所示的两台CRAC的外部供电仅包括市电和油机,除此以外,为了兼容传统供电系统,也可以包括图12或图14所示的外部供电架构,在此不再赘述。
空调设备实施例
基于以上实施例提供的一种空调设备的供电系统,本申请实施例还提供一种空调设备,本申请实施例不限定该空调设备的应用场景,可以应用在任何需要温度控制的场景。例如,轨道交通、工厂厂房、商业楼宇和数据中心等。
本申请实施例提供的空调负载为一个泛指概念,本申请实施例涉及的空调负载为多个时,可以在一台空调内部,也可以分别位于不同台的空调内部,均不作具体限定。本申请实施例关注的是为空调负载进行不间断供电,至于空调负载的实体设备的承载形式不作限定,本领域技术人员可以根据实际需要来设置。例如,供电系统可以为多台空调设备内的空调负载供电,也可以为一台空调设备内的空调负载供电,也可以为一台空调设备内的部分空调负载供电,其余部分空调负载由另一个供电系统供电,只要保证空调负载不间断供电即可。
为了使本领域技术人员更好地理解本申请实施例提供的空调设备,下面进行详细介绍,本申请实施例提供的空调设备不仅包括空调负载例如风扇或压缩机,还可以包括其前端的供电系统,即供电系统集成在空调设备内部,其中供电系统中的备电装置可以集成在空调设备内部,也可以集成在空调设备的外部,当备电装置设置在空调设备的外部时,备电装置与交流母线或直流母线进行连接即可。
本实施例提供的空调设备,包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路、备电装置和空调负载;备电装置至少包括电池包;
交流母线用于通过切换电路连接两路电源;第一AC/DC电路的输入端连接交流母线,第一AC/DC电路的输出端连接直流母线;第一DC/AC电路的输入端连接直流母线,第一DC/AC电路的输出端用于为第一空调负载供电;备电装置连接直流母线或交流母线;备电装置,用于在两路电源切换或掉电时为直流母线或交流母线提供电能,使第一空调负载不断电。
本申请实施例提供的空调设备,包括备电装置,备电装置中包括电池包,其中备电装置可以连接在两路电源合理之后的交流母线或直流母线,由于备电装置连接在两 路电源切换后的合路上,因此,无论两路电源如何切换,都不影响电池包与空调负载的连接关系,即电池包一直保持与空调负载接通,始终没有断开,因此,当两路电源切换或掉电时,电池包可以为空调负载供电,即使两路电源切换期间交流母线会有短时电源中断,但是不影响电池包为空调负载供电。因此,本申请实施例提供的空调设备可以在两路电源切换或掉电时保证空调负载正常工作,进而为需要温度控制的设备提供正常的温度环境。
以上是以供电系统包括的交流母线、直流母线、交流/直流AC/DC电路、直流/交流DC/AC电路和备电装置均集成在空调设备内部为例进行介绍,具体可以参见以上图10的介绍。供电系统内部包括的交流母线、直流母线、交流/直流AC/DC电路、直流/交流DC/AC电路和备电装置可以参见以上图3-图9的介绍。
另外,本申请实施例还提供一种空调设备,空调设备的内部包括交流母线、直流母线、交流/直流AC/DC电路和直流/交流DC/AC电路,该空调设备内部不包括备电装置,即备电装置设置在空调设备外部,具体可以参见图11对应的介绍。备电装置可以与设置在空调设备内部的直流母线或交流母线连接。空调设备内部包括的交流母线、直流母线、交流/直流AC/DC电路和直流/交流DC/AC电路可以参见以上图3-图9的介绍。
空调设备内的空调负载可以与DC/AC电路直接连接或者连接。本申请实施例不限定备电装置连接的是直流母线还是交流母线,下面分别来介绍。
第一种:备电装置具体连接直流母线;
备电装置还包括双向直流/直流电路;双向直流/直流电路的第一端连接直流母线,双向直流/直流电路的第二端连接电池包;双向直流/直流电路,用于将电池包的电压转换为空调的负载匹配的电压,还用于将直流母线的电压转换为电池包匹配的电压为电池包充电。
第二种:备电装置具体连接交流母线;
备电装置还包括双向交流/直流电路;双向交流/直流电路的输入端连接交流母线,双向交流/直流电路的输出端连接电池包;双向交流/直流电路,用于将交流母线的交流电转换为直流电为电池包充电,还用于将电池包的电压转换为与所述交流母线匹配的电压为空调的负载供电。即双向交流/直流电路有整流和逆变两种工作模式,工作在整流模式时,用于将交流母线的交流电转换为直流电为电池充电,工作在逆变模式时,用于将直流电转换为交流电,连接到交流母线,配合连接与交流母线和直流母线之间的AC/DC电路为空调的负载供电。本申请实施例不具体限定AC/DC电路的数量,也不具体限定DC/AC电路的数量,可以为一个,也可以为多个。
例如,AC/DC电路为至少两个;至少两个AC/DC电路的输入端均连接交流母线,至少两个AC/DC电路的输出端均连接直流母线。即空调设备还包括第二AC/DC电路;第二AC/DC电路的输入端连接交流母线,第二AC/DC电路的输出端连接所述直流母线。
例如,DC/AC电路为至少两个;至少两个DC/AC电路的输入端均连接直流母线, 每个DC/AC电路用于为空调的负载供电。即空调设备还包括第二DC/AC电路;第二DC/AC电路的输入端连接直流母线,第二DC/AC电路的输出端用于为第二空调负载供电。
本申请实施例中也不具体限定空调的负载数量,例如,空调的负载包括至少两个风扇和至少两个压缩机;每个DC/AC电路用于为至少两个风扇中的一个风扇或至少两个压缩机中的一个压缩机供电。
本申请实施例也不具体限定DC/AC电路供电的空调数量,例如,DC/AC电路的输出端用于为至少两个空调供电。
在一种可能的实现方式中,切换电路包括:第一支路和第二支路;第一支路的第一端用于连接两路电源中的第一路电源,第二支路的第一端用于连接两路电源中的第二路电源;第一支路的第二端和第二支路的第二端连接在一起连接交流母线;第一支路和第二支路上均串联有对应的开关器件,开关器件用于切换第一路电源和第二路电源。
本申请实施例提供的空调设备,由于包括备电装置,而且备电装置连接在两路电源合路之后,因此,无论两路电源如何切换,均不会影响电池包与空调的负载连接关系,电池包可以在两路电源切换过程中为空调的负载供电,真正保证空调的负载供电不被中断,从而保证正常的温度。
基于以上实施例提供的一种供电系统及空调设备,本申请实施例还提供一种数据中心,本申请不限定数据中心的具体产品形态,可以为图1A所示的微模块型,也可以为其他类型的数据中心。本申请实施例提供的数据中心的空调设备中可以集成以上实施例提供的供电系统,由于供电系统可以包括备电装置,因此,可以在两路电源切换或掉电时继续为空调负载供电,保证空调的正常工作。
另外,本申请实施例提供一种数据中心,其中的空调设备与供电系统分离设置,即空调负载与供电系统连接。
另外,本申请实施例还提供一种数据中心,其中的供电系统中的备电装置可以单独设置,备电装置与供电系统中的直流母线或交流母线连接即可。
总之,数据中心内部的实体架构可以采用以上多种实现方式,只要其中的空调设备可以在两路电源切换或掉电时空调负载不断电,继续保证正常运行,从而保证数据中心的温度可控,保证服务器的正常运行。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制。 虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (21)

  1. 一种空调设备的供电系统,其特征在于,包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路和备电装置;
    所述交流母线用于通过切换电路连接两路电源;
    所述第一AC/DC电路的输入端连接所述交流母线,所述第一AC/DC电路的输出端连接所述直流母线;
    所述第一DC/AC电路的输入端连接所述直流母线,所述第一DC/AC电路的输出端用于为第一空调负载供电;
    所述备电装置连接所述直流母线或所述交流母线;
    所述备电装置,用于在所述两路电源切换或掉电时为所述直流母线或所述交流母线提供电能,使所述第一空调负载不断电。
  2. 根据权利要求1所述的供电系统,其特征在于,所述备电装置连接所述直流母线;所述备电装置包括电池包和双向直流/直流电路;
    所述双向直流/直流电路的第一端连接所述直流母线,所述双向直流/直流电路的第二端连接所述电池包;
    所述双向直流/直流电路,用于将所述电池包的电压转换为所述第一空调负载匹配的电压,还用于将所述直流母线的电压转换为所述电池包匹配的电压为所述电池包充电。
  3. 根据权利要求1所述的供电系统,其特征在于,所述备电装置连接所述交流母线;所述备电装置包括电池包和双向交流/直流电路;
    所述双向交流/直流电路的输入端连接所述交流母线,所述双向交流/直流电路的输出端连接所述电池包;
    所述双向交流/直流电路,用于将所述交流母线的交流电转换为直流电为所述电池包充电,还用于将所述电池包的电压转换为与所述交流母线匹配的电压为所述第一空调负载供电。
  4. 根据权利要求1-3任一项所述的供电系统,其特征在于,还包括第二AC/DC电路;
    所述第二AC/DC电路的输入端连接所述交流母线,所述第二AC/DC电路的输出端连接所述直流母线。
  5. 根据权利要求1-4任一项所述的供电系统,其特征在于,还包括第二DC/AC电路;
    所述第二DC/AC电路的输入端连接所述直流母线,所述第二DC/AC电路的输出端用于为第二空调负载供电。
  6. 根据权利要求1-5任一项所述的供电系统,其特征在于,所述第一空调负载包括风扇、压缩机或泵。
  7. 根据权利要求1-6任一项所述的供电系统,其特征在于,所述第一DC/AC电路的输出端用于为至少两个所述第一空调负载供电。
  8. 根据权利要求1-7任一项所述的供电系统,其特征在于,所述切换电路包括:第一支路和第二支路;
    所述第一支路的第一端用于连接所述两路电源中的第一路电源,所述第二支路的第一端用于连接所述两路电源中的第二路电源;
    所述第一支路的第二端和所述第二支路的第二端连接在一起连接所述交流母线;
    所述第一支路和第二支路上均串联有开关器件,所述开关器件用于切换所述第一路电源和所述第二路电源。
  9. 根据权利要求8所述的供电系统,其特征在于,所述第一路电源包括第一路市电和第一油机,所述第二路电源包括第二路市电和第二油机;所述供电系统还包括:第一自动转换开关电器ATS和第二自动转换开关电器ATS;
    所述第一支路的第一端通过所述第一ATS连接所述第一路电源,其中所述第一ATS的第一输入端用于连接第一路市电,所述第一ATS的第二输入端用于连接第一油机;所述第一ATS的输出端连接所述第一支路的第一端;
    所述第二支路的第一端通过所述第二ATS连接所述第二路电源,其中所述第二ATS的第一输入端用于连接第二路市电,所述第二ATS的第二输入端用于连接第二油机,所述第二ATS的输出端连接所述第二支路的第一端。
  10. 根据权利要求8所述的供电系统,其特征在于,所述第一路电源包括第一路市电和第一油机,所述第二路电源包括第二路市电和第二油机;所述供电系统还包括:第一自动转换开关电器ATS、第二自动转换开关电器ATS、低压配电柜、输出配电柜、电池和不间断供电电路;
    所述第一支路的第一端通过所述第一ATS连接所述第一路电源,其中所述第一ATS的第一输入端用于连接第一路市电,所述第一ATS的第二输入端用于连接第一油机,所述第一ATS的输出端连接所述第一支路的第一端;所述第二支路的第一端通过所述第二ATS连接所述第二路电源,其中所述第二ATS的第一输入端用于连接第二路市电,所述第二ATS的第二输入端用于连接第二油机;所述第二ATS的输出端连接所述低压配电柜的输入端;
    所述低压配电柜的输出端连接所述不间断供电电路的第一端,所述不间断供电电路的第二端连接所述输出配电柜的输入端,所述输出配电柜的输出端连接所述第二支路的第一端;所述不间断供电电路的第三端连接所述电池。
  11. 根据权利要求8所述的供电系统,其特征在于,所述第一路电源包括第一路市电和第一油机,所述第二路电源包括第二路市电和第二油机;所述供电系统还包括:第一自动转换开关电器ATS、第二自动转换开关电器ATS、第一低压配电柜、第一输出配电柜、第一电池、第一不间断供电电路、第二低压配电柜、第二输出配电柜、第二电池和第二不间断供电电路;
    所述第一支路的第一端通过所述第一ATS连接所述第一路电源,其中所述第一ATS的第一输入端用于连接第一路市电,所述第一ATS的第二输入端用于连接第一油机;所述第二支路的第一端通过所述第二ATS连接所述第二路电源,其中所述第二ATS 的第一输入端用于连接第二路市电,所述第二ATS的第二输入端用于连接第二油机;
    所述第一ATS的输出端连接所述第一低压配电柜的输入端,所述第一低压配电柜的输出端连接所述第一不间断供电电路的第一端,所述第一不间断供电电路的第二端连接所述第一输出配电柜的输入端,所述第一输出配电柜的输出端连接所述第一支路的第一端;所述第一不间断供电电路的第三端连接所述第一电池;
    所述第二ATS的输出端连接所述第二低压配电柜的输入端,所述第二低压配电柜的输出端连接所述第二不间断供电电路的第一端,所述第二不间断供电电路的第二端连接所述第二输出配电柜的输入端,所述第二输出配电柜的输出端连接所述第二支路的第一端;所述第二不间断供电电路的第三端连接所述第二电池。
  12. 一种空调设备,其特征在于,包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路、备电装置和第一空调负载;
    所述交流母线用于通过切换电路连接两路电源;
    所述第一AC/DC电路的输入端连接所述交流母线,所述第一AC/DC电路的输出端连接所述直流母线;
    所述第一DC/AC电路的输入端连接所述直流母线,所述第一DC/AC电路的输出端用于为第一空调负载供电;
    所述备电装置连接所述直流母线或所述交流母线;
    所述备电装置,用于在所述两路电源切换或掉电时为所述直流母线或所述交流母线提供电能,使所述第一空调负载不断电。
  13. 根据权利要求12所述的设备,其特征在于,所述备电装置具体连接所述直流母线;所述备电装置包括电池包和双向直流/直流电路;
    所述双向直流/直流电路的第一端连接所述直流母线,所述双向直流/直流电路的第二端连接所述电池包;
    所述双向直流/直流电路,用于将所述电池包的电压转换为所述第一空调负载匹配的电压,还用于将所述直流母线的电压转换为所述电池包匹配的电压为所述电池包充电。
  14. 根据权利要求12所述的设备,其特征在于,所述备电装置具体连接所述交流母线;所述备电装置包括电池包和双向交流/直流电路;
    所述双向交流/直流电路的输入端连接所述交流母线,所述双向交流/直流电路的输出端连接所述电池包;
    所述双向交流/直流电路,用于将所述交流母线的交流电转换为直流电为所述电池包充电,还用于将所述电池包的电压转换为与所述交流母线匹配的电压为所述第一空调负载供电。
  15. 根据权利要求12-14任一项所述的设备,其特征在于,还包括第二AC/DC电路;
    所述第二AC/DC电路的输入端连接所述交流母线,所述第二AC/DC电路的输出端连接所述直流母线。
  16. 根据权利要求12-15任一项所述的设备,其特征在于,还包括第二DC/AC电路;
    所述第二DC/AC电路的输入端连接所述直流母线,所述第二DC/AC电路的输出端用于为第二空调负载供电。
  17. 根据权利要求16所述的设备,其特征在于,所述第一空调负载包括风扇、压缩机或泵。
  18. 根据权利要求12-17任一项所述的设备,其特征在于,所述第一DC/AC电路的输出端用于为至少两个所述第一空调负载供电。
  19. 根据权利要求12-18任一项所述的设备,其特征在于,所述切换电路包括:第一支路和第二支路;
    所述第一支路的第一端用于连接所述两路电源中的第一路电源,所述第二支路的第一端用于连接所述两路电源中的第二路电源;
    所述第一支路的第二端和所述第二支路的第二端连接在一起连接所述交流母线;
    所述第一支路和第二支路上均串联有对应的开关器件,所述开关器件用于切换所述第一路电源和所述第二路电源。
  20. 一种空调设备,其特征在于,包括:交流母线、直流母线、第一交流/直流AC/DC电路、第一直流/交流DC/AC电路和第一空调的负载;
    所述交流母线用于通过切换电路连接两路电源;
    所述第一AC/DC电路的输入端连接所述交流母线,所述第一AC/DC电路的输出端连接所述直流母线;
    所述第一DC/AC电路的输入端连接所述直流母线,所述第一DC/AC电路的输出端用于为第一空调负载供电;
    所述直流母线或所述交流母线连接备电装置;所述备电装置至少包括电池包;
    所述备电装置,用于在所述两路电源切换或掉电时为所述直流母线或所述交流母线提供电能,使所述第一空调负载不断电。
  21. 一种数据中心,其特征在于,所述数据中心包括空调设备和权利要求1-11任一项所述的供电系统,其中,所述空调设备中包括空调负载;或,所述数据中心包括权利要求12-19任一项所述的空调设备;或,所述数据中心包括备电装置和权利要求20所述的空调设备;
    所述空调设备,用于对所述数据中心进行温度控制。
PCT/CN2022/082168 2021-05-27 2022-03-22 一种空调设备的供电系统、空调设备及数据中心 WO2022247412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110583921.5A CN113489128B (zh) 2021-05-27 2021-05-27 一种空调设备的供电系统、空调设备及数据中心
CN202110583921.5 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022247412A1 true WO2022247412A1 (zh) 2022-12-01

Family

ID=77933072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082168 WO2022247412A1 (zh) 2021-05-27 2022-03-22 一种空调设备的供电系统、空调设备及数据中心

Country Status (4)

Country Link
US (1) US20220385102A1 (zh)
EP (1) EP4096055A1 (zh)
CN (1) CN113489128B (zh)
WO (1) WO2022247412A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489128B (zh) * 2021-05-27 2024-04-12 华为数字能源技术有限公司 一种空调设备的供电系统、空调设备及数据中心
CN116317088A (zh) * 2023-03-29 2023-06-23 佛山长意云信息技术有限公司 一种用于轨道交通的安全供电自动切换系统
CN116667494A (zh) * 2023-06-07 2023-08-29 深圳市正浩创新科技股份有限公司 供电电路及储能设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050200205A1 (en) * 2004-01-30 2005-09-15 Winn David W. On-site power generation system with redundant uninterruptible power supply
US20140247537A1 (en) * 2013-03-01 2014-09-04 Panduit Corp. Medium Voltage Power Distribution in Data Centers
US20160370830A1 (en) * 2015-06-22 2016-12-22 Fortrust, Llc Power distribution visibility in data center environments
CN111668915A (zh) * 2020-05-19 2020-09-15 株洲航发动科南方燃气轮机有限公司 一种应用于中小型发电机组的一体化低压配电系统
CN212796591U (zh) * 2020-03-27 2021-03-26 比亚迪股份有限公司 轨道交通供电系统
CN112821547A (zh) * 2021-03-29 2021-05-18 广东电网有限责任公司电力科学研究院 一种应急供电电源及控制方法
CN113489128A (zh) * 2021-05-27 2021-10-08 华为技术有限公司 一种空调设备的供电系统、空调设备及数据中心

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191500B1 (en) * 1998-11-06 2001-02-20 Kling Lindquist Partnership, Inc. System and method for providing an uninterruptible power supply to a critical load
US7239045B2 (en) * 2003-12-19 2007-07-03 Eaton Corporation Power distribution system and control system for same
US7723863B2 (en) * 2007-07-20 2010-05-25 Eaton Corporation Power systems and methods using an uniterruptible power supply to transition to generator-powered operation
US8294297B2 (en) * 2007-08-03 2012-10-23 Ragingwire Enterprise Solutions, Inc. Scalable distributed redundancy
US8212401B2 (en) * 2007-08-03 2012-07-03 Stratascale, Inc. Redundant isolation and bypass of critical power equipment
US9184592B2 (en) * 2008-08-05 2015-11-10 Lennox Industries Inc. Utility-interactive inverter system architecture and method of operation thereof
CN101509694B (zh) * 2009-03-16 2012-12-26 宁波德业变频技术有限公司 一种直流变频空调压缩机智能控制器及其控制方法
TW201128906A (en) * 2010-04-13 2011-08-16 Eneraiser Technology Co Ltd High-reliability dual power automatic switching loop and isolation device thereof
US8698354B2 (en) * 2010-11-05 2014-04-15 Schneider Electric It Corporation System and method for bidirectional DC-AC power conversion
EP2724439B1 (en) * 2011-06-27 2016-06-01 Bloom Energy Corporation B-side feed for critical power applications
CN102368631B (zh) * 2011-09-30 2014-05-21 百度在线网络技术(北京)有限公司 一种高效可靠的数据中心电子设备供电架构
KR101427680B1 (ko) * 2013-01-02 2014-09-18 네이버비즈니스플랫폼 주식회사 고효율 전원 공급 장치 및 이를 이용한 전원 공급 방법
WO2014012120A1 (en) * 2012-07-13 2014-01-16 Inertech Ip Llc Energy efficient electrical systems and methods for modular data centers and modular data pods
CN203800614U (zh) * 2013-12-24 2014-08-27 珠海格力电器股份有限公司 中央空调控制系统
DK3123592T3 (da) * 2014-03-27 2019-10-14 Schneider Electric It Corp Bidirektionel DC-DC-konverter
US10447075B2 (en) * 2016-10-31 2019-10-15 Oath Inc. ASTS-less block redundant electrical topology with variable UPS walk-ins
CN109210655A (zh) * 2018-10-17 2019-01-15 珠海格力电器股份有限公司 空调设备以及用于空调设备的电能处理方法
US10958098B1 (en) * 2019-10-07 2021-03-23 Google Llc UPS system for powering alternating and direct current loads
CN112467869A (zh) * 2020-12-04 2021-03-09 中天通信技术有限公司 供电系统及供电方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050200205A1 (en) * 2004-01-30 2005-09-15 Winn David W. On-site power generation system with redundant uninterruptible power supply
US20140247537A1 (en) * 2013-03-01 2014-09-04 Panduit Corp. Medium Voltage Power Distribution in Data Centers
US20160370830A1 (en) * 2015-06-22 2016-12-22 Fortrust, Llc Power distribution visibility in data center environments
CN212796591U (zh) * 2020-03-27 2021-03-26 比亚迪股份有限公司 轨道交通供电系统
CN111668915A (zh) * 2020-05-19 2020-09-15 株洲航发动科南方燃气轮机有限公司 一种应用于中小型发电机组的一体化低压配电系统
CN112821547A (zh) * 2021-03-29 2021-05-18 广东电网有限责任公司电力科学研究院 一种应急供电电源及控制方法
CN113489128A (zh) * 2021-05-27 2021-10-08 华为技术有限公司 一种空调设备的供电系统、空调设备及数据中心

Also Published As

Publication number Publication date
EP4096055A1 (en) 2022-11-30
CN113489128A (zh) 2021-10-08
US20220385102A1 (en) 2022-12-01
CN113489128B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2022247412A1 (zh) 一种空调设备的供电系统、空调设备及数据中心
US7495415B2 (en) DC backup power supply system
EP3141983B1 (en) Power supply method and apparatus
US7462954B2 (en) Apparatus for providing high quality power
US10756568B2 (en) UPS systems and methods using variable configuration modules
US10375850B2 (en) Rack power system and method
EP2333930A2 (en) Server and uninterruptable power supply housed in that server
CN108988479B (zh) 一种数据中心及其控制方法
KR101378503B1 (ko) Dc 전력 시스템
US9159981B2 (en) Array-type battery power management apparatus and battery power integration units thereof
US9614400B2 (en) DC energy store systems and methods of operating the same
CN110856427B (zh) 模块化数据中心
CN106557144B (zh) 直流备援设备
JP7470750B2 (ja) 電源システム
CN220492692U (zh) 一种基于ups技术的供电系统
CN218958615U (zh) 一种配电柜
CN217134487U (zh) 储能柜
RU216659U1 (ru) Устройство питания сервера
US11614783B2 (en) Method and system for providing power from a utility power source or a photovoltaic (PV) system to information technology
CN208272696U (zh) 供电装置及精密空调
CN115189359A (zh) 一种多重冗余高可靠电压暂降治理系统和实现方法
CN112688413A (zh) 应用于集装箱数据中心的供电系统及集装箱数据中心
CN117220261A (zh) 一种储能系统及供电方法
CN117477740A (zh) 一种储能系统和储能系统的控制方法
Griffith et al. Transistorized 5th Generation UPS Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE