DK3123592T3 - Bidirektionel DC-DC-konverter - Google Patents
Bidirektionel DC-DC-konverter Download PDFInfo
- Publication number
- DK3123592T3 DK3123592T3 DK14887384.7T DK14887384T DK3123592T3 DK 3123592 T3 DK3123592 T3 DK 3123592T3 DK 14887384 T DK14887384 T DK 14887384T DK 3123592 T3 DK3123592 T3 DK 3123592T3
- Authority
- DK
- Denmark
- Prior art keywords
- directional
- converter
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/061—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/062—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4241—Arrangements for improving power factor of AC input using a resonant converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33538—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
- H02M3/33546—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Dc-Dc Converters (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2014/031994 WO2015147828A1 (en) | 2014-03-27 | 2014-03-27 | Bi-directional dc-dc converter |
Publications (1)
Publication Number | Publication Date |
---|---|
DK3123592T3 true DK3123592T3 (da) | 2019-10-14 |
Family
ID=54196146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK14887384.7T DK3123592T3 (da) | 2014-03-27 | 2014-03-27 | Bidirektionel DC-DC-konverter |
Country Status (6)
Country | Link |
---|---|
US (1) | US10574084B2 (da) |
EP (1) | EP3123592B1 (da) |
CN (1) | CN106134034B (da) |
DK (1) | DK3123592T3 (da) |
PH (1) | PH12016501855A1 (da) |
WO (1) | WO2015147828A1 (da) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014214542A1 (de) * | 2014-07-24 | 2016-02-11 | Rheinisch-Westfälisch-Technische Hochschule Aachen | Gleichspannungswandler mit Transformator |
US10097034B2 (en) * | 2014-12-16 | 2018-10-09 | Cyberpower Systems, Inc. | UPS system with network monitoring and attached battery pack information sensing functions |
KR20170089350A (ko) * | 2016-01-26 | 2017-08-03 | 삼성전기주식회사 | 무선 전력 송수신 장치 |
CN105915065B (zh) * | 2016-06-20 | 2019-05-14 | 杭州电子科技大学 | 基于三绕组变压器的隔离型双有源全桥dc-dc变换器 |
CN105896997B (zh) * | 2016-06-20 | 2019-06-18 | 杭州电子科技大学 | 一种基于三绕组变压器的双向有源全桥变换器 |
US10333959B2 (en) | 2016-08-31 | 2019-06-25 | Nicira, Inc. | Use of public cloud inventory tags to configure data compute node for logical network |
US10484302B2 (en) | 2016-08-27 | 2019-11-19 | Nicira, Inc. | Managed forwarding element executing in public cloud data compute node with different internal and external network addresses |
US10686385B2 (en) * | 2017-03-23 | 2020-06-16 | HELLA GmbH & Co. KGaA | Apparatus to realize fast battery charging and motor driving for electric vehicles using one AC/DC converter |
US10491516B2 (en) | 2017-08-24 | 2019-11-26 | Nicira, Inc. | Packet communication between logical networks and public cloud service providers native networks using a single network interface and a single routing table |
US10567482B2 (en) | 2017-08-24 | 2020-02-18 | Nicira, Inc. | Accessing endpoints in logical networks and public cloud service providers native networks using a single network interface and a single routing table |
US10778579B2 (en) | 2017-08-27 | 2020-09-15 | Nicira, Inc. | Performing in-line service in public cloud |
US11053096B2 (en) * | 2017-08-28 | 2021-07-06 | Otis Elevator Company | Automatic rescue and charging system for elevator drive |
CN107579591B (zh) * | 2017-09-08 | 2021-05-11 | 华为技术有限公司 | 一种交流电源供电的备电系统 |
US10601705B2 (en) | 2017-12-04 | 2020-03-24 | Nicira, Inc. | Failover of centralized routers in public cloud logical networks |
US10862753B2 (en) | 2017-12-04 | 2020-12-08 | Nicira, Inc. | High availability for stateful services in public cloud logical networks |
FR3076123B1 (fr) * | 2017-12-21 | 2021-01-08 | Renault Sas | Convertisseur dc-dc pour chargeur bidirectionnel. |
CN108306512A (zh) * | 2018-02-01 | 2018-07-20 | 深圳市矗能科技有限公司 | 一种新颖的软开关双向dc-dc变换器 |
CN110401348A (zh) * | 2018-04-25 | 2019-11-01 | 维谛公司 | 一种双向谐振直流-直流变换电路及不间断电源 |
CN108711928B (zh) * | 2018-04-25 | 2020-10-23 | 华为技术有限公司 | 一种控制电路和控制方法 |
US11343229B2 (en) | 2018-06-28 | 2022-05-24 | Vmware, Inc. | Managed forwarding element detecting invalid packet addresses |
US10491466B1 (en) | 2018-08-24 | 2019-11-26 | Vmware, Inc. | Intelligent use of peering in public cloud |
US11196591B2 (en) | 2018-08-24 | 2021-12-07 | Vmware, Inc. | Centralized overlay gateway in public cloud |
US11374794B2 (en) | 2018-08-24 | 2022-06-28 | Vmware, Inc. | Transitive routing in public cloud |
EP3888225A1 (en) | 2018-11-30 | 2021-10-06 | Witricity Corporation | Systems and methods for low power excitation in high power wireless power systems |
EP3977592A1 (en) * | 2019-05-24 | 2022-04-06 | Witricity Corporation | Protection circuits for wireless power receivers |
CN116961250A (zh) | 2019-08-26 | 2023-10-27 | 韦特里西提公司 | 无线电力系统中的有源整流控制 |
TWI700881B (zh) * | 2019-08-30 | 2020-08-01 | 崑山科技大學 | 雙向式直流-直流轉換器 |
US10958098B1 (en) * | 2019-10-07 | 2021-03-23 | Google Llc | UPS system for powering alternating and direct current loads |
US11258294B2 (en) * | 2019-11-19 | 2022-02-22 | Bloom Energy Corporation | Microgrid with power equalizer bus and method of operating same |
WO2021154968A1 (en) | 2020-01-29 | 2021-08-05 | Witricity Corporation | Auxiliary power dropout protection for a wireless power transfer system |
US11631999B2 (en) | 2020-03-06 | 2023-04-18 | Witricity Corporation | Active rectification in wireless power systems |
US11482881B2 (en) * | 2020-04-10 | 2022-10-25 | Electronic Controls, Inc. | Emergency power for a facility |
US11594976B2 (en) * | 2020-06-05 | 2023-02-28 | Delta Electronics, Inc. | Power converter and control method thereof |
US11594973B2 (en) * | 2020-08-04 | 2023-02-28 | Delta Electronics Inc. | Multiple-port bidirectional converter and control method thereof |
JP7349417B2 (ja) * | 2020-08-13 | 2023-09-22 | 株式会社日立製作所 | 双方向dc-dcコンバータ |
US12068711B2 (en) * | 2021-02-03 | 2024-08-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | High frequency AC power distribution network for electric vehicles |
CN113489128B (zh) * | 2021-05-27 | 2024-04-12 | 华为数字能源技术有限公司 | 一种空调设备的供电系统、空调设备及数据中心 |
US11777338B2 (en) | 2021-06-15 | 2023-10-03 | Schneider Electric It Corporation | AC switch PFC with integrated charger and DC-DC for online UPS systems |
US11621579B2 (en) | 2021-06-15 | 2023-04-04 | Schneider Electric It Corporation | Line-interactive uninterruptible power supply with integrated charger |
TWI823250B (zh) * | 2022-02-09 | 2023-11-21 | 戴佑坤 | 具有隔離之雙向直流/直流能量轉換裝置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978236A (en) | 1997-01-31 | 1999-11-02 | Silverline Power Conversion Llc | Uninterruptible power supply with direction of DC electrical energy depending on predetermined ratio |
US6330170B1 (en) | 1999-08-27 | 2001-12-11 | Virginia Tech Intellectual Properties, Inc. | Soft-switched quasi-single-stage (QSS) bi-directional inverter/charger |
JP2004007950A (ja) | 2002-04-15 | 2004-01-08 | Fuji Electric Holdings Co Ltd | スイッチング電源装置 |
US6914418B2 (en) | 2003-04-21 | 2005-07-05 | Phoenixtec Power Co., Ltd. | Multi-mode renewable power converter system |
TWI324428B (en) * | 2007-03-28 | 2010-05-01 | Hybrid green uninterruptible power system and bi-directional converter module and power conversion method thereof | |
CN201063530Y (zh) * | 2007-04-27 | 2008-05-21 | 北京合康亿盛科技有限公司 | 高压变频器控制电源多路供电装置 |
KR101066093B1 (ko) | 2009-09-16 | 2011-09-20 | 전남대학교산학협력단 | 양방향 전력수수가 가능한 무정전 전원장치 |
KR101097261B1 (ko) | 2009-12-17 | 2011-12-22 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어 방법 |
KR101156535B1 (ko) * | 2010-01-18 | 2012-06-21 | 삼성에스디아이 주식회사 | 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템 |
KR101097265B1 (ko) | 2010-02-25 | 2011-12-22 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어방법 |
KR101097267B1 (ko) * | 2010-03-02 | 2011-12-22 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어방법 |
US8363427B2 (en) * | 2010-06-25 | 2013-01-29 | Greecon Technologies Ltd. | Bi-directional power converter with regulated output and soft switching |
US8698354B2 (en) * | 2010-11-05 | 2014-04-15 | Schneider Electric It Corporation | System and method for bidirectional DC-AC power conversion |
KR101350323B1 (ko) * | 2011-10-28 | 2014-02-13 | 전주대학교 산학협력단 | 양방향 직류-직류 컨버터 |
US9634512B1 (en) * | 2013-12-03 | 2017-04-25 | Google Inc. | Battery backup with bi-directional converter |
-
2014
- 2014-03-27 US US15/128,232 patent/US10574084B2/en active Active
- 2014-03-27 WO PCT/US2014/031994 patent/WO2015147828A1/en active Application Filing
- 2014-03-27 EP EP14887384.7A patent/EP3123592B1/en active Active
- 2014-03-27 DK DK14887384.7T patent/DK3123592T3/da active
- 2014-03-27 CN CN201480077484.8A patent/CN106134034B/zh active Active
-
2016
- 2016-09-21 PH PH12016501855A patent/PH12016501855A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2015147828A1 (en) | 2015-10-01 |
US10574084B2 (en) | 2020-02-25 |
CN106134034A (zh) | 2016-11-16 |
US20170104365A1 (en) | 2017-04-13 |
EP3123592A4 (en) | 2017-11-01 |
EP3123592A1 (en) | 2017-02-01 |
PH12016501855A1 (en) | 2016-12-19 |
CN106134034B (zh) | 2019-07-02 |
EP3123592B1 (en) | 2019-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK3123592T3 (da) | Bidirektionel DC-DC-konverter | |
DK3094728T3 (da) | Kiralt design | |
DE112015004658A5 (de) | DC/DC-Wandlereinrichtung | |
DK3174483T3 (da) | Hyporørkonstruktion | |
DE112016003991T8 (de) | DC-DC-Wandler | |
DK3460891T3 (da) | Termoelektrokemisk omformer | |
FI20145590A (fi) | Muuntaja | |
GB2522646B (en) | Converter | |
DK3183340T3 (da) | Termolabile exonukleaser | |
DK3119443T3 (da) | Sårforbinding | |
DK3191466T3 (da) | Azetidinyloxyphenylpyrrolidinforbindelser | |
GB2553822B (en) | DC-DC Converter device | |
DK3177244T3 (da) | Sårforbinding | |
FR3027469B1 (fr) | Convertisseur dc/dc isole | |
DK3102818T3 (da) | Bølgeenergiomformer | |
DOS2014000245S (es) | Dispositivo para verter | |
GB2524065B (en) | Converter | |
TWI562518B (en) | Bidirectional dc-dc converter | |
DK3412700T3 (da) | Forbindelser | |
BR112016027901A2 (pt) | Compostos | |
EP3063862A4 (en) | VOLTAGE CONVERTER | |
FR3029032B1 (fr) | Convertisseur alternatif-continu | |
FR3029033B1 (fr) | Convertisseur alternatif-continu | |
DE112015002680A5 (de) | Elektromechanischer Wandler | |
TH1501004098A (th) | อุปกรณ์ตัวแปลงเอซี-เอซี |