WO2022247051A1 - 一种电机转速冗余检测方法、电路和电机控制器 - Google Patents

一种电机转速冗余检测方法、电路和电机控制器 Download PDF

Info

Publication number
WO2022247051A1
WO2022247051A1 PCT/CN2021/116860 CN2021116860W WO2022247051A1 WO 2022247051 A1 WO2022247051 A1 WO 2022247051A1 CN 2021116860 W CN2021116860 W CN 2021116860W WO 2022247051 A1 WO2022247051 A1 WO 2022247051A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
motor
rotational speed
comparator
capacitor
Prior art date
Application number
PCT/CN2021/116860
Other languages
English (en)
French (fr)
Inventor
石乐乐
董双来
加列戈斯·洛佩兹·加布里埃尔
张�浩
Original Assignee
精进电动科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精进电动科技股份有限公司 filed Critical 精进电动科技股份有限公司
Publication of WO2022247051A1 publication Critical patent/WO2022247051A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/4802Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage by using electronic circuits in general
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • the invention belongs to the technical field of motor processors, and in particular relates to a motor speed redundancy detection method, a circuit and a motor controller.
  • the current detection scheme is based on the speed detection and overspeed protection of the motor position sensor.
  • the speed signal When the position sensor fails or is abnormal, the speed signal will output an error signal, and there will be false reports of overspeed or failure to report overspeed faults in time.
  • the present invention discloses a motor speed redundant detection method, a circuit and a motor controller to realize the functions of motor speed redundant detection and overspeed protection, so as to overcome the above problems or at least partially solve the above problems.
  • One aspect of the present invention provides a redundant detection method for motor speed, the detection method comprising:
  • the actual rotational speed of the motor is determined according to the first rotational speed and the second rotational speed.
  • the detection method also includes:
  • the actual rotational speed of the motor is determined according to the first rotational speed, the second rotational speed and the third rotational speed.
  • the determining the actual speed of the motor includes:
  • the average value of the rotation speeds is calculated, and the average value is determined as the actual rotation speed.
  • determining the first rotational speed or the second rotational speed of the motor includes:
  • Another aspect of the present invention also provides a motor speed redundancy detection circuit, the detection circuit includes a first filter circuit, a first zero-crossing comparison circuit, a second filter circuit, a second zero-crossing comparison circuit and a processor; wherein ,
  • the first filtering circuit, the first zero-crossing comparison circuit and an interface of the processor are connected in series, and are used for filtering and zero-crossing comparison processing on the phase current signal of the motor, and determine the motor the first speed of
  • the second filtering circuit, the second zero-crossing comparison circuit and another interface of the processor are connected in series, and are used for filtering and zero-crossing comparison processing of the line voltage signal of the motor, and are determined after calculation by the processor The second speed of the motor.
  • the processor is further configured to determine the actual rotational speed of the motor according to the first rotational speed, the second rotational speed, and the third rotational speed detected by the motor position sensor.
  • the processor is also used to judge whether the rotation speed of the motor is consistent with the expected logic, and output a fault signal if not.
  • the first filter circuit or the second filter circuit includes a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a first comparator, a first capacitor, a second capacitor, a Three capacitors;
  • One end of the first resistor receives the phase current signal or the line voltage signal, the other end is connected in series with the second resistor to the positive input end of the first comparator, one end of the fourth resistor is grounded, and the other end connected to the negative input terminal of the first comparator, a fifth resistor is connected in series on the output terminal of the first comparator, and one end of the third resistor is connected between the fourth resistor and the first comparator between the negative input ends of the first comparator, and the other end is connected between the output end of the first comparator and the fifth resistor;
  • One end of the first capacitor is grounded, and the other end is connected between the second resistor and the positive input end of the first comparator; one end of the second capacitor is connected between the first resistor and the second resistor between, and the other end is connected between the output end of the first comparator and the fifth resistor; one end of the third capacitor is grounded, and the other end is connected to the output end of the fifth resistor.
  • the first zero-crossing comparison circuit and the second zero-crossing comparison circuit include a sixth resistor, a seventh resistor, an eighth resistor, a ninth resistor, a tenth resistor, a second comparator, and a fourth capacitor , the fifth capacitor and the sixth capacitor;
  • One end of the sixth resistor receives an input signal, the other end is connected to the positive input end of the second comparator, one end of the fourth capacitor is grounded, and the other end is connected between the sixth resistor and the second comparator. before the positive input of the
  • the eighth resistor and the fifth capacitor are connected in parallel to form a parallel circuit, one end of the parallel circuit is grounded, the other end is connected to the negative input terminal of the second comparator, and one end of the seventh resistor is connected to the positive input terminal. voltage, the other end of which is connected to the other end of the parallel line;
  • the output end of the second comparator is connected to the tenth resistor and then input to the processor, and one end of the ninth resistor is connected to a positive voltage, and the other end is connected to the output end of the second comparator and the Between the tenth resistor; one end of the sixth capacitor is grounded, and the other end is connected between the tenth resistor and the processor.
  • Another aspect of the present invention also provides a motor controller, which includes the detection circuit described in any one of the above, and executes the detection method described in any one of the above.
  • the above technical solution adds redundant detection of the rotational speed based on the motor current and voltage signals, which can make up for the deficiency of only relying on the motor position sensor to detect the rotational speed, provide higher functional safety, and better prevent the motor from overspeeding.
  • Fig. 1 is a schematic flow chart of a motor speed redundancy detection method in an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a motor speed redundancy detection circuit in an embodiment of the present invention
  • Fig. 3 is a structural schematic diagram of a filter circuit in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a zero-crossing comparison circuit in an embodiment of the present invention.
  • the present invention proposes a redundant detection method for motor speed, the method is based on motor phase current and line voltage detection, the frequency of motor phase current and line voltage is proportional to the motor speed, through the filter circuit, The zero comparison circuit converts the analog signal into a frequency signal, and the frequency signal is detected by the single-chip microcomputer, and the current speed of the motor can be deduced in reverse.
  • the method is a redundant method for detecting the rotational speed of the motor position sensor, and improves the functional safety level of the system.
  • the embodiment discloses a redundant detection method for motor speed, and the detection method includes:
  • phase current signal may come from the current signal of any phase of the three-phase power of the motor inverter.
  • this embodiment can make up for the deficiency of only relying on the motor position sensor to detect the speed by adding redundant detection of the speed based on the motor current and voltage signals, provide higher functional safety, and better prevent the motor from overspeeding.
  • the detection method further includes: detecting the third rotation speed of the motor based on the motor position sensor, and determining the actual rotation speed of the motor according to the first rotation speed, the second rotation speed and the third rotation speed .
  • the determining the actual speed of the motor includes:
  • the average value of the rotational speeds is calculated, and the average value is determined as the actual rotational speed.
  • determining the first rotational speed or the second rotational speed of the motor in S1 or S2 specifically includes:
  • the derivation process of the first rotational speed or the second rotational speed can be realized by an algorithm in the processor.
  • Embodiment 2 of the present invention discloses a motor speed redundant detection circuit, the detection circuit includes a first filter circuit, a first zero-crossing comparison circuit, a second filter circuit, and a second zero-crossing comparison circuit and processors; where,
  • the first filtering circuit, the first zero-crossing comparison circuit and an interface of the processor are connected in series, and are used for filtering and zero-crossing comparison processing on the phase current signal of the motor, and determine the motor the first speed of
  • the second filtering circuit, the second zero-crossing comparison circuit and another interface of the processor are connected in series, and are used for filtering and zero-crossing comparison processing of the line voltage signal of the motor, and are determined after calculation by the processor The second speed of the motor.
  • the scheme of obtaining the motor speed through the phase current signal or the line voltage signal can be realized, so as to realize the redundant detection of the motor speed and strengthen the safety control of the motor.
  • the processor is further configured to determine the actual rotational speed of the motor according to the first rotational speed, the second rotational speed, and the third rotational speed detected by the motor position sensor.
  • the processor is also used to further judge whether the rotation speed of the motor is consistent with the expected logic. For example, if the driver steps on the accelerator to accelerate, if the detected actual rotation speed of the motor does not increase, or even decreases. , it means that there is a fault. At this time, a fault signal needs to be output, and the MCU and the driver need to be reminded to take further measures.
  • the first filter circuit or the second filter circuit includes a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5, The first comparator, the first capacitor C1, the second capacitor C2, and the third capacitor C3.
  • one end of the first resistor R1 receives the phase current signal or the line voltage signal, and the other end is connected in series with the second resistor R2 to the positive input end of the first comparator.
  • One end of the fourth resistor R4 is grounded, the other end is connected to the negative input end of the first comparator, the fifth resistor R5 is connected in series on the output end of the first comparator, and one end of the third resistor R3 is connected to Between the fourth resistor R4 and the negative input terminal of the first comparator, the other terminal is connected between the output terminal of the first comparator and the fifth resistor R5.
  • One end of the first capacitor C1 is grounded, and the other end is connected between the second resistor R2 and the positive input end of the first comparator; one end of the second capacitor C2 is connected between the first resistor R1 and the positive input end of the first comparator. Between the second resistor R2, the other end is connected between the output terminal of the first comparator and the fifth resistor R5; one end of the third capacitor C3 is grounded, and the other end is connected to the fifth resistor R5 on the output terminal.
  • the first zero-crossing comparison circuit and the second zero-crossing comparison circuit include a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, The tenth resistor R10, the second comparator, the fourth capacitor C4, the fifth capacitor C5 and the sixth capacitor C6.
  • one end of the sixth resistor R6 receives the input signal, and the other end is connected to the positive input end of the second comparator.
  • One end of the fourth capacitor C4 is grounded, and the other end is connected to the first Six resistors R6 before the non-inverting input of the second comparator.
  • the eighth resistor R8 and the fifth capacitor C5 are connected in parallel to form a parallel circuit, one end of the parallel circuit is grounded, the other end is connected to the negative input terminal of the second comparator, and one end of the seventh resistor R7 A positive voltage is connected, and the other end is connected to the other end of the parallel line;
  • the output end of the second comparator is connected to the tenth resistor R10 and then input to the processor, and one end of the ninth resistor R9 is connected to a positive voltage, and the other end is connected to the output end of the second comparator and between the tenth resistor R10; one end of the sixth capacitor C6 is grounded, and the other end is connected between the tenth resistor R10 and the processor.
  • the above-mentioned processor can be a single-chip microcomputer in the motor controller, and the parameter setting of each resistor or capacitor is different according to the difference in voltage and current calculation.
  • Embodiment 3 of the present invention discloses a motor controller, which includes the detection circuit described in any one of the above, and executes the detection method described in any one of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种电机转速冗余检测方法,包括:获取电机的相电流信号,对相电流信号进行滤波和过零比较处理,确定电机的第一转速(S1);获取电机的线电压信号,对线电压信号进行滤波和过零比较处理,确定电机的第二转速(S2);根据第一转速和第二转速,确定电机的实际转速(S3)。增加基于电机相电流和线电压信号实现转速的冗余检测,可以弥补仅靠电机位置传感器检测转速的不足,提供更高的功能安全,更好地防止电机超速。同时,还提出了一种电机转速冗余检测电路和电机控制器。

Description

一种电机转速冗余检测方法、电路和电机控制器 技术领域
本发明属于电机处理器技术领域,特别涉及一种电机转速冗余检测方法、电路和电机控制器。
发明背景
面对严峻的能源和环境问题,新能源汽车正成为当前各国研究的重点。在我国,新能源汽车得到了政府和工业界的高度重视,并将其定为战略性新兴产业之一。作为节能减排的新能源汽车,纯电动汽车在行驶过程中具有无尾气排放、能量效率高、噪声低、可回收利用等优点,因此大力发展新能源汽车大势所趋。其中电机和电控作为新能源汽车的核心部件,其安全、可靠是纯电动汽车正常运行的基本前提。
对新能源汽车而言,车速超出正常范围后会增加车辆失控的风险,对于永磁同步电机的纯电动汽车,当电机转速严重超出正常范围后,电机会进入深度弱磁区,对造成转矩的非预期输出,另外当电机超速严重时同样会引起润滑问题,进而造成电机烧毁等不可逆的损伤。
目前的检测方案是基于对电机位置传感器进行转速检测和超速保护,当位置传感器出现故障或异常时,转速信号会输出错误信号,会出现误报超速或者不能及时报超速故障的情况。
发明内容
针对上述问题,本发明公开了一种电机转速冗余检测方法、电路和电机控制器,实现电机转速冗余检测和超速保护功能,以克服上述问题或者至少部分地解决上述问题。
为了实现上述目的,本发明采用以下技术方案:
本发明一方面提供了一种电机转速冗余检测方法,所述检测方法包括:
获取电机的相电流信号,对所述相电流信号进行滤波和过零比较处理,确定所述电机的第一转速;
获取电机的线电压信号,对所述线电压信号进行滤波和过零比较处理,确定所述电机的第二转速;
根据所述第一转速和所述第二转速,确定所述电机的实际转速。
可选的,所述检测方法还包括:
基于电机位置传感器检测所述电机的第三转速,根据所述第一转速、第二转速和第三转速,确定所述电机的实际转速。
可选的,所述确定所述电机的实际转速包括:
判断各转速之间的差值是否大于预设阈值,若大于或等于所述预设阈值,则输出故障警报信号;
若各转速之间的差值小于所述预设阈值,则计算各转速的平均值,将所述平均值确定为实际转速。
可选的,确定所述电机的第一转速或第二转速,包括:
通过滤波、过零比较处理后将所述相电流信号或所述线电压信号转换成频率信号,根据所述相电流信号或线电压信号的频率与电机转速成正比例的关系,推导出所述第一转速或所述第二转速。
本发明另一方面还提供了一种电机转速冗余检测电路,所述检测电路包括第一滤波电路、第一过零比较电路、第二滤波电路、第二过零比较电路和处理器;其中,
所述第一滤波电路、所述第一过零比较电路和所述处理器一个接口串联,用于对电机的相电流信号进行滤波和过零比较处理,并经所述处理器运算后确定电机的第一转速;
所述第二滤波电路、所述第二过零比较电路和所述处理器另一个接口串联,用于对电机的线电压信号进行滤波和过零比较处理,并经所述处理器运算后确定电机的第二转速。
可选的,所述处理器还用于根据所述第一转速、第二转速以及根据电机位置传感器检测获得的第三转速确定所述电机的实际转速。
可选的,所述处理器还用于判断所述电机的转速与预期的逻辑是否相符,若不相符则输出故障信号。
可选的,所述第一滤波电路或第二滤波电路包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一比较器、第一电容、第二电容、第三电容;其中,
所述第一电阻的一端接收所述相电流信号或线电压信号,另一端和第二电阻串联后接入所述第一比较器的正向输入端,所述第四电阻一端接地,另一端接入所述第一比较器的负向输入端,所述第一比较器的输出端上串联有第五电阻,所述第三 电阻一端连接在所述第四电阻和所述第一比较器的负向输入端之间,另一端连接在所述第一比较器的输出端与所述第五电阻之间;
所述第一电容一端接地,另一端连接在所述第二电阻和所述第一比较器正向输入端之间;所述第二电容一端连接在所述第一电阻和所述第二电阻之间,另一端连接在所述第一比较器的输出端与所述第五电阻之间;所述第三电容一端接地,另一端连接在所述第五电阻的输出端上。
可选的,所述第一过零比较电路和所述第二过零比较电路包括第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、第二比较器、第四电容、第五电容和第六电容;其中,
所述第六电阻一端接收输入信号,另一端接入所述第二比较器的正向输入端,所述第四电容一端接地,另一端连接在所述第六电阻与所述第二比较器的正向输入端之前;
所述第八电阻和所述第五电容并联形成并联线路,所述并联线路的一端接地,另一端接入所述第二比较器的负向输入端,且所述第七电阻一端接入正电压,另一端接入所述并联线路的另一端;
所述第二比较器的输出端连接所述第十电阻后输入所述处理器,且所述第九电阻一端接入正电压,另一端连接在所述第二比较器的输出端与所述第十电阻之间;所述第六电容一端接地,另一端接入所述第十电阻与所述处理器之间。
本发明再一方面还提供了一种电机控制器,所述电机控制器包括上述任一项所述的检测电路,并执行上述任一项所述的检测方法。
本发明的优点及有益效果是:
上述技术方案增加基于电机电流和电压信号实现转速的冗余检测,可以弥补仅靠电机位置传感器检测转速的不足,提供更高的功能安全,更好地防止电机超速。
附图简要说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明的一个实施例中电机转速冗余检测方法的流程示意图;
图2为本发明的一个实施例中电机转速冗余检测电路的结构示意图;
图3为本发明的一个实施例中滤波电路的结构示意图;
图4为本发明的一个实施例中过零比较电路的结构示意图。
实施本申请的方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整的描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,术语“包括/包含”、“由……组成”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的产品、设备、过程或方法不仅包括那些要素,而且需要时还可以包括没有明确列出的其他要素,或者是还包括为这种产品、设备、过程或方法所固有的要素。在没有更多限制的情况下,由语句“包括/包含……”、“由……组成”限定的要素,并不排除在包括所述要素的产品、设备、过程或方法中还存在另外的相同要素。
还需要理解,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置、部件或结构必须具有特定的方位、以特定的方位构造或操作,不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的技术构思是:本发明提出一种电机转速冗余检测方法,该方法基于电机相电流和线电压检测,电机相电流和线电压的频率与电机转速成正比例关系,通过滤波电路、过零比较电路将模拟信号转换成频率信号,通过单片机检测该频率信号,可反推出电机当前转速。该方法是电机位置传感器转速检测的冗余方法,提高系统的功能安全等级。
以下结合附图,详细说明本发明各实施例提供的技术方案。
实施例1
结合图1所示,实施例公开了一种电机转速冗余检测方法,所述检测方法包括:
S1,获取电机的相电流信号,对所述相电流信号进行滤波和过零比较处理,确定所述电机的第一转速。需要说明的是,上述的相电流信号可以来自于电机逆变器三相电的任一相的电流信号。
S2,获取电机的线电压信号,对所述线电压信号进行滤波和过零比较处理,过零比较确定所述电机的第二转速。上述的线电压信号来自于电机逆变器三相电任两相之间的电压。
S3,根据所述第一转速和所述第二转速,确定所述电机的实际转速。一般情况下,该第一转速和第二转速相等或大致相等,通过该种冗余检测,能够准确获得电机的转速。
根据电机电流或电压获得转速的原理也可参考CN108471268A具体实施方式部分的说明。
综上,该实施例通过增加基于电机电流和电压信号实现转速的冗余检测,可以弥补仅靠电机位置传感器检测转速的不足,提供更高的功能安全,更好地防止电机超速。
在一个具体的实施方式中,所述检测方法还包括:基于电机位置传感器检测所述电机的第三转速,根据所述第一转速、第二转速和第三转速,确定所述电机的实际转速。
具体的,所述确定所述电机的实际转速包括:
首先,判断各转速(包括第一转速、第二转速或第三转速)之间的差值是否大于预设阈值,若大于或等于所述预设阈值,则输出故障警报信号,说明转速检测或者电机转速存在故障。
若各转速之间的差值小于所述预设阈值,说明则计算各转速的平均值,将所述平均值确定为实际转速。
在一个实施方式中,S1或S2中的确定所述电机的第一转速或第二转速,具体包括:
通过滤波、过零比较处理后将所述相电流信号或所述线电压信号转换成频率信号,根据所述相电流信号或线电压信号的频率与电机转速成正比例的关系,推导出 所述第一转速或所述第二转速,其推导的过程可以在处理器内通过算法实现。
实施例2
参见图2所示,本发明实施例2公开了一种电机转速冗余检测电路,所述检测电路包括第一滤波电路、第一过零比较电路、第二滤波电路、第二过零比较电路和处理器;其中,
所述第一滤波电路、所述第一过零比较电路和所述处理器一个接口串联,用于对电机的相电流信号进行滤波和过零比较处理,并经所述处理器运算后确定电机的第一转速;
所述第二滤波电路、所述第二过零比较电路和所述处理器另一个接口串联,用于对电机的线电压信号进行滤波和过零比较处理,并经所述处理器运算后确定电机的第二转速。
通过上述检测电路,特别是处理器的运算处理,可以实现通过相电流信号或线电压信号分别得到电机的转速的方案,从而实现对电机转速的冗余检测,强化了电机的安全控制。
在一个具体实施方式中,所述处理器还用于根据所述第一转速、第二转速以及根据电机位置传感器检测获得的第三转速确定所述电机的实际转速。
进一步的,所述处理器还用于进一步判断所述电机的转速与预期的逻辑是否相符,比如,在驾驶人员踩油门欲加速的情况下,若检测到的电机实际转速不升,甚至还下降,则说明出现故障,此时需要输出故障信号,需提醒MCU和驾驶人员采取进一步的措施。
在一个具体实施方式中,参见图3所示,所述第一滤波电路或第二滤波电路包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第一比较器、第一电容C1、第二电容C2、第三电容C3。
具体的,结合图3可知,所述第一电阻R1的一端接收所述相电流信号或线电压信号,另一端和第二电阻R2串联后接入所述第一比较器的正向输入端,所述第四电阻R4一端接地,另一端接入所述第一比较器的负向输入端,所述第一比较器的输出端上串联有第五电阻R5,所述第三电阻R3一端连接在所述第四电阻R4和所述第一比较器的负向输入端之间,另一端连接在所述第一比较器的输出端与所述第五电阻R5之间。
所述第一电容C1一端接地,另一端连接在所述第二电阻R2和所述第一比较 器正向输入端之间;所述第二电容C2一端连接在所述第一电阻R1和所述第二电阻R2之间,另一端连接在所述第一比较器的输出端与所述第五电阻R5之间;所述第三电容C3一端接地,另一端连接在所述第五电阻R5的输出端上。
在一个具体实施方式中,参见图4可知,所述第一过零比较电路和所述第二过零比较电路包括第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第二比较器、第四电容C4、第五电容C5和第六电容C6。
具体的,结合图4,所述第六电阻R6一端接收输入信号,另一端接入所述第二比较器的正向输入端,所述第四电容C4一端接地,另一端连接在所述第六电阻R6与所述第二比较器的正向输入端之前。
所述第八电阻R8和所述第五电容C5并联形成并联线路,所述并联线路的一端接地,另一端接入所述第二比较器的负向输入端,且所述第七电阻R7一端接入正电压,另一端接入所述并联线路的另一端;
所述第二比较器的输出端连接所述第十电阻R10后输入所述处理器,且所述第九电阻R9一端接入正电压,另一端连接在所述第二比较器的输出端与所述第十电阻R10之间;所述第六电容C6一端接地,另一端接入所述第十电阻R10与所述处理器之间。
需要指出的,上述处理器可以是电机控制器中的单片机,根据电压和电流计算的区别,各电阻或电容等的参数设置不同。
实施例3
本发明的实施例3公开了一种电机控制器,所述电机控制器包括上述任一项所述的检测电路,并执行上述任一项所述的检测方法。
以上所述仅为本发明的实施方式,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进、扩展等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种电机转速冗余检测方法,其特征在于,所述检测方法包括:
    获取电机的相电流信号,对所述相电流信号进行滤波和过零比较处理,确定所述电机的第一转速;
    获取电机的线电压信号,对所述线电压信号进行滤波和过零比较处理,确定所述电机的第二转速;
    根据所述第一转速和所述第二转速,确定所述电机的实际转速。
  2. 根据权利要求1所述的检测方法,其特征在于,所述检测方法还包括:
    基于电机位置传感器检测所述电机的第三转速,根据所述第一转速、第二转速和第三转速,确定所述电机的实际转速。
  3. 根据权利要求1或2所述的检测方法,其特征在于,所述确定所述电机的实际转速包括:
    判断各转速之间的差值是否大于预设阈值,若大于或等于所述预设阈值,则输出故障警报信号;
    若各转速之间的差值小于所述预设阈值,则计算各转速的平均值,将所述平均值确定为实际转速。
  4. 根据权利要求1或2所述的检测方法,其特征在于,确定所述电机的第一转速或第二转速,包括:
    通过滤波、过零比较处理后将所述相电流信号或所述线电压信号转换成频率信号,根据所述相电流信号或线电压信号的频率与电机转速成正比例的关系,推导出所述第一转速或所述第二转速。
  5. 一种电机转速冗余检测电路,其特征在于,所述检测电路包括第一滤波电路、第一过零比较电路、第二滤波电路、第二过零比较电路和处理器;其中,
    所述第一滤波电路、所述第一过零比较电路和所述处理器一个接口串联,用于对电机的相电流信号进行滤波和过零比较处理,并经所述处理器运算后确定电机的第一转速;
    所述第二滤波电路、所述第二过零比较电路和所述处理器另一个接口串联,用于对电机的线电压信号进行滤波和过零比较处理,并经所述处理器运算后确定电机的第二转速。
  6. 根据权利要求5所述的检测电路,其特征在于,所述处理器还用于根据所 述第一转速、第二转速以及根据电机位置传感器检测获得的第三转速确定所述电机的实际转速。
  7. 根据权利要求5或6所述的检测电路,其特征在于,所述处理器还用于判断所述电机的转速与预期的逻辑是否相符,若不相符则输出故障信号。
  8. 根据权利要求5或6所述的检测电路,其特征在于,所述第一滤波电路或第二滤波电路包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一比较器、第一电容、第二电容、第三电容;其中,
    所述第一电阻的一端接收所述相电流信号或线电压信号,另一端和第二电阻串联后接入所述第一比较器的正向输入端,所述第四电阻一端接地,另一端接入所述第一比较器的负向输入端,所述第一比较器的输出端上串联有第五电阻,所述第三电阻一端连接在所述第四电阻和所述第一比较器的负向输入端之间,另一端连接在所述第一比较器的输出端与所述第五电阻之间;
    所述第一电容一端接地,另一端连接在所述第二电阻和所述第一比较器正向输入端之间;所述第二电容一端连接在所述第一电阻和所述第二电阻之间,另一端连接在所述第一比较器的输出端与所述第五电阻之间;所述第三电容一端接地,另一端连接在所述第五电阻的输出端上。
  9. 根据权利要求8所述的检测电路,其特征在于,所述第一过零比较电路和所述第二过零比较电路包括第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、第二比较器、第四电容、第五电容和第六电容;其中,
    所述第六电阻一端接收输入信号,另一端接入所述第二比较器的正向输入端,所述第四电容一端接地,另一端连接在所述第六电阻与所述第二比较器的正向输入端之前;
    所述第八电阻和所述第五电容并联形成并联线路,所述并联线路的一端接地,另一端接入所述第二比较器的负向输入端,且所述第七电阻一端接入正电压,另一端接入所述并联线路的另一端;
    所述第二比较器的输出端连接所述第十电阻后输入所述处理器,且所述第九电阻一端接入正电压,另一端连接在所述第二比较器的输出端与所述第十电阻之间;所述第六电容一端接地,另一端接入所述第十电阻与所述处理器之间。
  10. 一种电机控制器,其特征在于,所述电机控制器包括权利要求5-9任一项所述的检测电路,并执行如权利要求1-4任一项所述的检测方法。
PCT/CN2021/116860 2021-05-25 2021-09-07 一种电机转速冗余检测方法、电路和电机控制器 WO2022247051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110569953.X 2021-05-25
CN202110569953.XA CN113358896B (zh) 2021-05-25 2021-05-25 一种电机转速冗余检测方法、电路和电机控制器

Publications (1)

Publication Number Publication Date
WO2022247051A1 true WO2022247051A1 (zh) 2022-12-01

Family

ID=77527566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116860 WO2022247051A1 (zh) 2021-05-25 2021-09-07 一种电机转速冗余检测方法、电路和电机控制器

Country Status (2)

Country Link
CN (1) CN113358896B (zh)
WO (1) WO2022247051A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358896B (zh) * 2021-05-25 2023-07-07 精进电动科技股份有限公司 一种电机转速冗余检测方法、电路和电机控制器
CN114301335A (zh) * 2021-12-30 2022-04-08 苏州汇川控制技术有限公司 电机转速安全控制装置、系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070194737A1 (en) * 2006-02-17 2007-08-23 Lear Corporation Method of controlling movable member driven by electric motor
CN102647151A (zh) * 2012-04-24 2012-08-22 上海电力学院 硬件检测的电流过零点测速的串级调速装置
CN105141212A (zh) * 2015-10-12 2015-12-09 重庆凯瑞电动汽车系统有限公司 一种永磁同步电机位置信号冗余检测方法及系统
CN107144701A (zh) * 2017-06-29 2017-09-08 合肥巨动力系统有限公司 混合动力电机速度合理性的校验方法及其功能开发方法
CN109541252A (zh) * 2018-11-13 2019-03-29 上海锦科电气科技有限公司 一种电机的转速测试方法
CN111638453A (zh) * 2020-06-15 2020-09-08 哈尔滨理工大学 一种伺服同步电机磁场旋转位置和速度的检测方法
CN212845450U (zh) * 2020-07-08 2021-03-30 海信(山东)冰箱有限公司 电机转速检测装置
CN113358896A (zh) * 2021-05-25 2021-09-07 精进电动科技股份有限公司 一种电机转速冗余检测方法、电路和电机控制器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8566056B2 (en) * 2010-06-16 2013-10-22 Eaton Corporation System and method of speed detection in an AC induction machine
CN107942119A (zh) * 2016-10-13 2018-04-20 上海大郡动力控制技术有限公司 永磁同步电机驱动器母线电流的冗余检测方法
CN109412118B (zh) * 2017-08-17 2020-07-10 比亚迪股份有限公司 用于电机控制器的保护装置、电机控制器及电动汽车
CN211859995U (zh) * 2020-03-30 2020-11-03 上海大郡动力控制技术有限公司 用于电机控制器的电机转速阈值独立判断电路
CN112234881A (zh) * 2020-09-12 2021-01-15 深圳市力生美半导体股份有限公司 串激式电机的转速检测与控制装置及其转速检测计算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070194737A1 (en) * 2006-02-17 2007-08-23 Lear Corporation Method of controlling movable member driven by electric motor
CN102647151A (zh) * 2012-04-24 2012-08-22 上海电力学院 硬件检测的电流过零点测速的串级调速装置
CN105141212A (zh) * 2015-10-12 2015-12-09 重庆凯瑞电动汽车系统有限公司 一种永磁同步电机位置信号冗余检测方法及系统
CN107144701A (zh) * 2017-06-29 2017-09-08 合肥巨动力系统有限公司 混合动力电机速度合理性的校验方法及其功能开发方法
CN109541252A (zh) * 2018-11-13 2019-03-29 上海锦科电气科技有限公司 一种电机的转速测试方法
CN111638453A (zh) * 2020-06-15 2020-09-08 哈尔滨理工大学 一种伺服同步电机磁场旋转位置和速度的检测方法
CN212845450U (zh) * 2020-07-08 2021-03-30 海信(山东)冰箱有限公司 电机转速检测装置
CN113358896A (zh) * 2021-05-25 2021-09-07 精进电动科技股份有限公司 一种电机转速冗余检测方法、电路和电机控制器

Also Published As

Publication number Publication date
CN113358896A (zh) 2021-09-07
CN113358896B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2022247051A1 (zh) 一种电机转速冗余检测方法、电路和电机控制器
US8054084B2 (en) Methods and systems for diagnosing stator windings in an electric motor
CN108776306B (zh) 一种永磁电机故障的智能诊断装置及方法
US8354817B2 (en) Methods and systems for diagnosing stator windings in an electric motor
CN101551441B (zh) 一种开关磁阻电机功率变换器故障诊断方法
CN102598502B (zh) 检查电机转矩的似然性的方法及调节电机和执行该方法的机器调节器
EP2128975B1 (en) Control device and method for determining the motor rotor position
CN111830435B (zh) 一种六相永磁容错电机系统功率管开路故障诊断方法
CN109459618B (zh) 电动汽车电驱动系统直流母线电容的准在线容值检测方法
CN108512469B (zh) 一种具有容错能力的永磁起动发电系统及其控制方法
CN111679225B (zh) 基于模糊逻辑理论的电驱动系统开路故障诊断方法
JPH0833379A (ja) ロータ位置検出手段の異常検出装置及び異常検出方法並びにモータ制御装置
CN104242774A (zh) 一种电机相电流预测与诊断方法
CN111717031B (zh) 一种纯电动车扭矩功能安全监控方法、系统及车辆
CN104601079B (zh) 一种电动汽车驱动系统单相绕组断路容错控制系统及方法
CN110488135B (zh) 一种大功率永磁直驱机车变流器接地故障判断方法及定位策略
CN108445340B (zh) 五相永磁同步电机逆变器开路故障的检测方法
CN111123102A (zh) 一种永磁容错电机驱动系统的故障诊断方法
JP4534604B2 (ja) 燃料電池車用地絡検知装置
JP4930546B2 (ja) インバータ異常検出装置
CN113064074B (zh) 基于负序分量的永磁同步电机定子绕组故障诊断方法
CN207832931U (zh) 一种电机控制器旋变解码电路及电动汽车
JP2012124975A (ja) 電力変換装置及びその制御方法
JP2003302421A (ja) 回転数センサの診断装置
KR101499991B1 (ko) 모터 전력케이블 고장 감지방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE