WO2022247039A1 - 一种风烟多级调控的配风系统 - Google Patents

一种风烟多级调控的配风系统 Download PDF

Info

Publication number
WO2022247039A1
WO2022247039A1 PCT/CN2021/115647 CN2021115647W WO2022247039A1 WO 2022247039 A1 WO2022247039 A1 WO 2022247039A1 CN 2021115647 W CN2021115647 W CN 2021115647W WO 2022247039 A1 WO2022247039 A1 WO 2022247039A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
smoke
pressure air
pressure
low
Prior art date
Application number
PCT/CN2021/115647
Other languages
English (en)
French (fr)
Inventor
孙军
张喜来
姚伟
王桂芳
杨忠灿
王志超
郭洋洲
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2022247039A1 publication Critical patent/WO2022247039A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B90/00Combustion methods not related to a particular type of apparatus
    • F23B90/04Combustion methods not related to a particular type of apparatus including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the invention relates to an air distribution technology for adjusting and controlling flue gas components near a water wall of a coal-fired boiler, in particular to an air distribution system adopting multi-stage adjustment and control of hot primary air, low-temperature flue gas and hot secondary air.
  • the combustion optimization mainly uses means such as increasing the operating oxygen amount and supplementing the oxygen amount near the water wall to alleviate high-temperature corrosion, but the anti-corrosion effect is limited, and it also affects the emission reduction control of nitrogen oxides;
  • the anti-corrosion spraying mainly applies different spraying processes to the
  • the surface treatment of water-cooled wall pipes forms an anti-corrosion coating on the surface of the pipes, but the service life of the anti-corrosion coating is limited, and power generation companies need to regularly invest in maintenance costs; considering the long-term control of high-temperature corrosion, many research units have proposed different wall-mounted wind technologies The idea is to fundamentally solve the problem of high temperature corrosion of the water wall through the means of air distribution.
  • the current wall-mounted air technology mainly includes two methods: arranging wall-mounted air on the protected water-cooled wall and arranging wall-mounted air at the corner of the adjacent furnace
  • the method of arranging the wall-mounted air on the protected water-cooled wall is mainly to take the secondary air from the secondary air big wind box as the air source. Slagging and clogging are very easy to occur, making it difficult to protect the water wall for a long time;
  • the wall-mounted wind is arranged at the corner of the adjacent furnace wall. Most of the air is taken from the secondary air wind box as the air source. It is mainly used in the front and rear wall opposite combustion boilers.
  • the nozzles are arranged on both sides of the front and rear walls near the water-cooled wall of the side wall. location, but the secondary air pressure is low, it is difficult to effectively cover the most severely corroded side wall central area, and the resistance of the wall-attached air nozzle is much smaller than that of the burner, which will lead to insufficient secondary air volume of the burner and low-load combustion Instability, deterioration of combustion conditions, reduction of combustion efficiency and other issues.
  • the hot primary air can also be used as the air source in the corner of the adjacent furnace wall, and the hot primary air can be used as the air source to achieve the purpose of covering a larger area of the water-cooled wall by using its characteristics of high air pressure and sufficient rigidity. Good results have also been achieved in this method, but this method is mainly aimed at the front and rear wall opposed combustion boilers, and is less applied to four-corner tangential combustion boilers.
  • this type of wall-attached air uses more hot primary air volume, which generally accounts for the total operating volume. About 5% of the air volume is close to 30% of the output of the primary fan. Many boilers have the problem of insufficient output of the primary fan, so the implementation conditions for this kind of wall-mounted wind are limited.
  • the purpose of the present invention is to solve the above problems and provide an air distribution system with multi-level control of air and smoke, which forms a high-pressure air and smoke mixture by mixing a small amount of hot primary air and low-temperature flue gas with high oxygen content at the outlet of the air preheater , the flue gas composition in the area of the water-cooled wall near the nozzle jet is regulated, and the secondary air with a lower wind pressure is supplemented downstream of the high-pressure air-smoke mixture jet, and the flue gas composition near the downstream water-cooled wall is controlled under the action of the residual velocity of the jet. Control and control, and arrange multi-level wind and smoke filling measures with different parameters as a whole to realize the fundamental prevention and control of high-temperature corrosion of water-cooled walls.
  • the present invention adopts following technical scheme to realize:
  • An air distribution system with multi-level control of wind and smoke including two hot primary air pipes led by two hot primary air pipes at the outlet of the air side of the air preheater, and two flue ducts at the outlet of the flue gas side of the air preheater
  • the opening passes through the two-way flue gas pipe of the furnace smoke fan to merge to form two main high-pressure air-smoke pipes.
  • the main high-pressure air-smoke pipe is divided into two high-pressure air-smoke pipes, and each high-pressure air-smoke pipe extends to the corner of the boiler furnace.
  • the 2nd to 4th floors are sprayed into the boiler through the high-pressure air smoke nozzle; the hot secondary air pipes drawn from the hot secondary air pipes at the wind side outlets of the two air preheaters are connected at the rear wall of the boiler to form a low-pressure wind contact air pipe, which is Four-corner tangential combustion boiler, the low-pressure wind connecting air pipe forms a ring-shaped pipe around the boiler, and two low-pressure air nozzles protrude along the width direction on each side.
  • the low-pressure air connecting air pipe forms two paths on the left and right sides of the furnace.
  • the U-shaped pipe extends two low-pressure air nozzles along the width direction on the left and right sides, and the hot secondary air is sprayed into the boiler through the low-pressure air nozzles.
  • the further improvement of the present invention is that the total hot primary air volume from the hot primary air pipe accounts for 1.5% to 2% of the total operating air volume of the boiler, and the low-temperature flue gas volume from the flue gas pipe accounts for 1.5% to 2% of the total boiler operating air volume. %, the total hot secondary air volume from the hot secondary air pipe accounts for 3% to 5% of the total boiler operating air volume.
  • the further improvement of the present invention lies in that the high-pressure air oxygen concentration in the main high-pressure air flue pipe is controlled at 10%-15%.
  • the further improvement of the present invention is that, for the four-corner tangential combustion boiler, the high-pressure air smoke nozzle and the low-pressure air nozzle are arranged in the reduction zone between the uppermost burner and the overfired air burner along the height direction of the furnace; The air-smoke nozzle and the low-pressure air nozzle are arranged in the area between the bottom burner and the burner of the exhausted air along the height direction of the furnace.
  • a further improvement of the present invention is that the high-pressure air smoke nozzle adopts a rectangular or circular nozzle, and the wind speed of the nozzle is controlled at 80-100m/s.
  • a further improvement of the present invention is that the high-pressure air and smoke nozzles are arranged within a distance of 500 mm to 1000 mm from the adjacent furnace wall surface, the horizontal direction is parallel to the furnace wall surface, and the vertical direction is inclined downward by 5° to 10°.
  • the further improvement of the present invention is that the low-pressure air nozzle adopts a rectangular or circular nozzle, and the wind speed of the nozzle is controlled at 20-30m/s, perpendicular to the furnace wall surface.
  • the further improvement of the present invention is that for the four-corner tangential combustion boiler, the low-pressure air nozzles are arranged at the downstream 1/2 and 3/4 of the high-pressure air and smoke jet flow on the same side of the furnace wall, and for the opposing combustion boiler, the low-pressure air nozzles are arranged on the left and right side walls 1/3 and 2/3, and the low-pressure air nozzles are arranged on the streamline of the jet stream of the high-pressure air smoke nozzles on the same layer.
  • the further improvement of the present invention is that, for the four-corner tangentially fired boiler, the direction of rotation of the controlled airflow formed by the regulating air nozzle on the same layer is opposite to the direction of the rotating airflow of the main flue gas in the furnace; Create a counter-airflow.
  • the further improvement of the present invention is that a hot primary air regulating baffle and a hot primary air volume measuring device are installed on the hot primary air pipe, a flue gas volume regulating baffle and a flue gas volume measuring device are installed on the flue gas pipe, and the hot secondary air volume measuring device is installed on the hot primary air pipe.
  • a hot secondary air regulating baffle is installed on the air duct, a high-pressure air regulating baffle is installed on the high-pressure air flue pipe, and a low-pressure air regulating baffle is installed in front of the low-pressure air nozzle.
  • the present invention has at least the following beneficial technical effects:
  • the invention is novel in design and reasonable in arrangement, and can fundamentally regulate the components of the flue gas near the water cooling wall, so as to achieve the purpose of preventing and controlling high-temperature corrosion.
  • the present invention proposes for the first time a method of mixing hot primary air and low-temperature flue gas with high oxygen content to form a high-pressure air-smoke mixture and using hot secondary air to rationally arrange different positions in the furnace, which not only reduces hot primary air and hot secondary
  • the amount of wind also makes use of the air leakage of the air preheater in the low-temperature flue gas, which improves the utilization rate of the high-pressure primary air. Component flexibility regulation.
  • Accompanying drawing 1 is a schematic diagram of an air distribution system for a four-corner tangentially fired boiler with multi-level control of air and smoke according to the present invention.
  • Accompanying drawing 2 is a schematic diagram of an air distribution system for an opposed combustion boiler with multi-stage control of air and smoke according to the present invention.
  • the air distribution system provided by the present invention with multi-level control of wind and smoke is as follows:
  • An air distribution system with multi-level control of wind and smoke including two hot primary air pipes 10 drawn from the hot primary air pipe 4 at the wind side outlet of two air preheaters 1 and two air preheaters 1
  • the flue gas side exit flue 2 openings are merged by the two-way flue gas pipe 6 of the furnace smoke fan 5 to form two main high-pressure air-smoke pipes 12, and the main high-pressure air-smoke pipe 12 is divided into two high-pressure air-smoke pipes 16, each One way is divided into high-pressure air-smoke pipe 16 extending to the 2-4 layers of the corner part of the boiler furnace and sprayed into the boiler through high-pressure air-smoke nozzle 19;
  • the air pipe 14 is connected to form a low-pressure wind connecting air pipe 15 on the side of the boiler rear wall.
  • the low-pressure air connecting air pipe 15 forms an annular pipe around the boiler, and two low-pressure air nozzles protrude along the width direction on each side. 18.
  • the low-pressure wind connecting air pipe 15 forms two U-shaped pipes on the left and right sides of the furnace, and two low-pressure air nozzles 18 protrude along the width direction on the left and right sides, and the hot secondary air is sprayed through the low-pressure air nozzle 18. into the boiler.
  • the total hot primary air volume from the hot primary air pipe 10 accounts for 1.5% to 2% of the total operating air volume of the boiler, and the low-temperature flue gas volume from the flue gas pipe 6 accounts for 1.5% to 2% of the total boiler operating air volume,
  • the total hot secondary air volume from the hot secondary air pipe 14 accounts for 3% to 5% of the total boiler operating air volume.
  • the high-pressure air oxygen concentration in the main high-pressure air flue pipe 12 is controlled at 10% to 15%.
  • the high-pressure air and smoke nozzles 19 and low-pressure air nozzles 18 are arranged in the reduction zone between the uppermost burner and the overfired air burner along the height direction of the furnace.
  • the nozzles 19 and the low-pressure air nozzles 18 are arranged in the area between the lowermost burner and the area below the overfired air burner along the height direction of the furnace.
  • the high-pressure air-smoke nozzle 19 adopts a rectangular or circular nozzle, and the wind speed of the nozzle is controlled at 80-100m/s.
  • the high-pressure air-smoke nozzle 19 is arranged within the range of 500mm-1000mm from the adjacent furnace wall surface, and the horizontal direction is parallel to The surface of the furnace wall is inclined downward by 5°-10° in the vertical direction.
  • the low-pressure air nozzle 18 adopts a rectangular or circular nozzle, the nozzle wind speed is controlled at 20-30m/s, perpendicular to the furnace wall surface, and the four corners are tangential to the combustion boiler, and the low-pressure air nozzle 18 is arranged on the same side of the furnace wall as the high-pressure air smoke At 1/2 and 3/4 of the downstream of the jet flow, for the counter-combustion boiler, the low-pressure air nozzles 18 are arranged at 1/3 and 2/3 of the left and right side walls, and the low-pressure air nozzles 18 are arranged at the same layer of the high-pressure air and smoke nozzles 19. Streamline.
  • the rotation direction of the regulating air flow formed by the regulating air nozzle 19 on the same layer is opposite to the rotating direction of the main flue gas in the furnace 22; Hedge airflow.
  • a hot primary air regulating baffle 9 and a hot primary air volume measuring device 11 are installed on the hot primary air duct 10, and a flue gas volume regulating baffle 8 and a flue gas volume measuring device 7 are installed on the flue gas pipe 6.
  • the hot secondary air regulating baffle 13 is installed on the secondary air duct 14, the high-pressure air regulating baffle 21 and the high-pressure air volume measuring device 20 are installed on the high-pressure air duct 16, and the low-pressure air regulating baffle is installed in front of the low-pressure air nozzle 18 17.
  • the present invention is an air distribution system with multi-level control of wind and smoke, which arranges the primary and secondary air and low-temperature flue gas in the area near the water cooling wall in an organized manner through a reasonable distribution ratio and arrangement method, so as to realize the control of the components of the flue gas near the water cooling wall.
  • the effective control of the water cooling wall can reduce the concentration of reducing gas and corrosive gas near the water cooling wall, and fundamentally solve the problem of high temperature corrosion of the water cooling wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)

Abstract

一种风烟多级调控的配风系统,包括由两个空气预热器(1)风侧出口热一次风管道(4)引出的两路热一次风管(10),以及由两个空气预热器(1)烟气侧出口烟道(2)开孔经炉烟风机(5)的两路烟气管(6)汇合形成两路主高压风烟管(12),主高压风烟管(12)均分成两路分高压风烟管(16),每一路分高压风烟管(16)伸向锅炉炉膛角部分2~4层经高压风烟喷口(19)喷入锅炉内;由两个空气预热器(1)风侧出口热二次风管道(3)引出的热二次风管(14)在锅炉后墙侧联通形成低压风联络风管(15)。将一、二次风和低温烟气通过合理的分配比例和布置方式有组织地设置于水冷壁附近区域,实现对水冷壁附近烟气成分的有效调控,降低水冷壁附近还原性气体浓度和腐蚀性气体浓度,解决水冷壁高温腐蚀问题。

Description

一种风烟多级调控的配风系统 技术领域
本发明涉及燃煤锅炉水冷壁附近烟气成分调控的配风技术,尤其涉及一种采用热一次风、低温烟气和热二次风多级调控的配风系统。
背景技术
随着燃煤锅炉普遍采用低氮燃烧技术和大比例燃用高硫煤,锅炉运行过程中炉膛水冷壁均不同程度地发生了还原性气氛型和硫化氢型高温腐蚀,导致水冷壁管壁大面积快速腐蚀减薄,增加了锅炉运行的安全风险和机组检修的维护成本,严重影响机组运行的安全性和经济性。
电厂多数采用燃烧优化调整、防腐喷涂和贴壁风技术等手段对水冷壁高温腐蚀进行控制和防治。其中,燃烧优化主要采用提高运行氧量、补充水冷壁附近氧量等手段缓解高温腐蚀,但防腐蚀效果有限,同时也影响氮氧化物的减排控制;防腐喷涂主要是应用不同的喷涂工艺对水冷壁管材表面处理,在管材表面形成防腐涂层,但防腐涂层使用寿命有限,发电企业需要定期投入检修成本;从高温腐蚀的长效管控考虑,诸多研究单位分别提出了不同贴壁风技术思路,通过配风手段从根本上解决水冷壁高温腐蚀问题。目前的贴壁风技术主要包括在被保护水冷壁上布置贴壁风和相邻炉墙角部布置贴壁风两种方式,贴壁风的风源采用热一次风或热二次风,取得了一定效果但也存在诸多问题。
(1)在被保护水冷壁上布置贴壁风的方式主要从二次风大风箱取二次风作为风源,为增加覆盖面积,喷口设置小且布置数量多,安装方式相对简单,但喷口极易发生结渣堵塞,难以长期保护水冷壁;
(2)在相邻炉墙角部布置贴壁风方式多数从二次风大风箱取风作为风源,主要应用于前后墙对冲燃烧锅炉,喷口布置在前后墙两侧靠近侧墙水冷壁附近的位置,但二次风压力较低,难以对腐蚀最严重的侧墙中部区域形成有效覆盖,同时贴壁风喷口阻力较燃烧器阻力小得多,会导致燃烧器二次风量不足造成低负荷燃烧不稳定、燃烧工况恶化、燃烧效率降低等问题。
(3)在相邻炉墙角部布置贴壁风方式也可采用热一次风作为风源,利用其风压高、刚性足的特点达到对水冷壁更大面积覆盖的目的,在已有的应用中也取得了较好的效果,但此种方式也主要针对前后墙对冲燃烧锅炉,对四角切圆燃烧锅炉的应用较少,另外此种贴壁风所用热一次风量较多,一般占运行总风量的5%左右,接近于一次风机出力的30%,许多锅炉存在一次风机出力不足的问题,因此此种贴壁风实施条件有限。
发明内容
本发明的目的在于针对上述问题,提供一种风烟多级调控的配风系统,通过将少量的热一次风和空气预热器出口含氧量较高的低温烟气混合形成高压风烟混合物,对喷口射流附近水冷壁区域的烟气成分进行调控,在高压风烟混合物射流下游通过补入风压较低的二次风,在射流余速作用下对下游水冷壁附近的烟气成分进行调控,整体上布置不同参数的多级风烟补入措施,实现对水冷壁高温腐蚀的根本防治。
为达到上述目的,本发明采用如下的技术方案予以实现:
一种风烟多级调控的配风系统,包括由两个空气预热器风侧出口热一次风管道引出的两路热一次风管,以及由两个空气预热器烟气侧出口烟道开孔经炉烟风机的两路烟气管汇合形成两路主高压风烟管,主高压风烟管均分成两路分高压风 烟管,每一路分高压风烟管伸向锅炉炉膛角部分2~4层经高压风烟喷口喷入锅炉内;由两个空气预热器风侧出口热二次风管道引出的热二次风管在锅炉后墙侧联通形成低压风联络风管,对四角切圆燃烧锅炉,低压风联络风管在锅炉四周形成环形管道,每一侧沿宽度方向伸出两个低压风喷口,对对冲燃烧锅炉,低压风联络风管在炉膛左右两侧形成两路U型管道,在左右侧沿宽度方向伸出两个低压风喷口,热二次风经低压风喷口喷入锅炉内。
本发明进一步的改进在于,由热一次风管来的全部热一次风量占锅炉运行总风量的1.5%~2%,由烟气管来的低温烟气量占锅炉运行总风量的1.5%~2%,由热二次风管来的全部热二次风量占锅炉运行总风量的3%~5%。
本发明进一步的改进在于,主高压风烟管内的高压风氧浓度控制在10%~15%。
本发明进一步的改进在于,对四角切圆燃烧锅炉,高压风烟喷口和低压风喷口沿炉膛高度方向布置在最上层燃烧器与燃尽风燃烧器之间的还原区,对对冲燃烧锅炉,高压风烟喷口和低压风喷口沿炉膛高度方向布置在最下层燃烧器至燃尽风燃烧器以下之间的区域。
本发明进一步的改进在于,高压风烟喷口采用矩形或圆形喷口,喷口的风速控制在80~100m/s。
本发明进一步的改进在于,高压风烟喷口布置在距离相邻炉墙壁面间距500mm~1000mm范围内,水平方向平行于炉墙壁面、垂直方向下倾5°~10°。
本发明进一步的改进在于,低压风喷口采用矩形或圆形喷口,喷口风速控制在20~30m/s,垂直于炉墙壁面。
本发明进一步的改进在于,对四角切圆燃烧锅炉,低压风喷口布置在同侧炉 墙高压风烟射流下游1/2和3/4处,对对冲燃烧锅炉,低压风喷口布置在左右侧墙1/3和2/3处,且低压风喷口布置在同层高压风烟喷口射流的流线上。
本发明进一步的改进在于,对四角切圆燃烧锅炉,同层调控风喷口形成的调控风气流旋转方向与炉膛内主烟气旋转气流方向相反,对对冲燃烧锅炉,同层调控风喷口前后墙方向形成对冲气流。
本发明进一步的改进在于,热一次风管上安装有热一次风调节挡板和热一次风风量测量装置,烟气管上安装有烟气量调节挡板和烟气量测量装置,热二次风管上安装有热二次风调节挡板,高压风烟管上安装有高压风调节挡板和高压风风量测量装置低压风喷口前安装有低压风调节挡板。
相对于现有技术,本发明至少具有如下有益的技术效果:
本发明设计新颖,布置合理,可以从根本上对水冷壁附近烟气成分进行调控,以达到防治高温腐蚀的目的。本发明首次提出利用热一次风和含氧量较高的低温烟气进行混合形成高压风烟混合物并利用热二次风在炉膛不同位置合理布置的方法,既减少了热一次风和热二次风的用量,也利用了低温烟气中的空气预热器漏风,提高了高压一次风的利用率,同时可以保证各个吹扫射流对水冷壁的大面积覆盖,实现了对水冷壁附近烟气成分的灵活性调控。
附图说明
附图1为本发明一种风烟多级调控的四角切圆燃烧锅炉配风系统的示意图。
附图2为本发明一种风烟多级调控的对冲燃烧锅炉配风系统的示意图。
附图标记说明:
1为空气预热器;2为烟气侧出口烟道;3为风侧出口热二次风管道;4为风侧出口热一次风管道;5为炉烟风机;6为烟气管;7为烟气量测量装置;8为烟 气量调节挡板;9为热一次风调节挡板;10为热一次风管;11为热一次风风量测量装置;12为主高压风烟管;13为热二次风调节挡板;14为热二次风管;15为低压风联络风管;16为分高压风烟管;17为低压风调节挡板;18为低压风喷口;19为高压风烟喷口;20为高压风风量测量装置;21为高压风调节挡板;22为炉膛;23为燃烧器。
具体实施方式
以下结合附图对本发明作进一步的详细说明。
如图1、2所示,本发明提供的一种风烟多级调控的配风系统,具体如下:
(1)一种风烟多级调控的配风系统,包括由两个空气预热器1风侧出口热一次风管道4引出的两路热一次风管10和由两个空气预热器1烟气侧出口烟道2开孔经炉烟风机5的两路烟气管6汇合形成两路主高压风烟管12,主高压风烟管12均分成两路分高压风烟管16,每一路分高压风烟管16伸向锅炉炉膛角部分2~4层经高压风烟喷口19喷入锅炉内;由两个空气预热器1风侧出口热二次风管道3引出的热二次风管14在锅炉后墙侧联通形成低压风联络风管15,对四角切圆燃烧锅炉,低压风联络风管15在锅炉四周形成环形管道,每一侧沿宽度方向伸出两个低压风喷口18,对对冲燃烧锅炉,低压风联络风管15在炉膛左右两侧形成两路U型管道,在左右侧沿宽度方向伸出两个低压风喷口18,热二次风经低压风喷口18喷入锅炉内。
(2)由热一次风管10来的全部热一次风量占锅炉运行总风量的1.5%~2%,由烟气管6来的低温烟气量占锅炉运行总风量的1.5%~2%,由热二次风管14来的全部热二次风量占锅炉运行总风量的3%~5%。
(3)主高压风烟管12内的高压风氧浓度控制在10%~15%。
(4)对四角切圆燃烧锅炉,高压风烟喷口19和低压风喷口18沿炉膛高度方向布置在最上层燃烧器与燃尽风燃烧器之间的还原区,对对冲燃烧锅炉,高压风烟喷口19和低压风喷口18沿炉膛高度方向布置在最下层燃烧器至燃尽风燃烧器以下之间的区域。
(5)高压风烟喷口19采用矩形或圆形喷口,喷口的风速控制在80~100m/s,高压风烟喷口19布置在距离相邻炉墙壁面间距500mm~1000mm范围内,水平方向平行于炉墙壁面、垂直方向下倾5°~10°。
(6)低压风喷口18采用矩形或圆形喷口,喷口风速控制在20~30m/s,垂直于炉墙壁面,对四角切圆燃烧锅炉,低压风喷口18布置在同侧炉墙高压风烟射流下游1/2和3/4处,对对冲燃烧锅炉,低压风喷口18布置在左右侧墙1/3和2/3处,且低压风喷口18布置在同层高压风烟喷口19射流的流线上。
(7)对四角切圆燃烧锅炉,同层调控风喷口19形成的调控风气流旋转方向与炉膛22内主烟气旋转气流方向相反,对对冲燃烧锅炉,同层调控风喷口19前后墙方向形成对冲气流。
(8)热一次风管10上安装有热一次风调节挡板9和热一次风风量测量装置11,烟气管6上安装有烟气量调节挡板8和烟气量测量装置7,热二次风管14上安装有热二次风调节挡板13,高压风烟管16上安装有高压风调节挡板21和高压风风量测量装置20低压风喷口18前安装有低压风调节挡板17。
本发明一种风烟多级调控的配风系统,将一、二次风和低温烟气通过合理的分配比例和布置方式有组织地设置于水冷壁附近区域,实现对水冷壁附近烟气成分的有效调控,降低水冷壁附近还原性气体浓度和腐蚀性气体浓度,从根本上解决水冷壁高温腐蚀问题。
本技术领域的普通技术人员,在不脱离本发明范围的情况下,还可以作出各种变化和变型,因此所有等同的技术方案也应属于本发明的范畴,本发明的专利保护范围应由各权利要求限定。

Claims (10)

  1. 一种风烟多级调控的配风系统,其特征在于,包括由两个空气预热器(1)风侧出口热一次风管道(4)引出的两路热一次风管(10),以及由两个空气预热器(1)烟气侧出口烟道(2)开孔经炉烟风机(5)的两路烟气管(6)汇合形成两路主高压风烟管(12),主高压风烟管(12)均分成两路分高压风烟管(16),每一路分高压风烟管(16)伸向锅炉炉膛角部分2~4层经高压风烟喷口(19)喷入锅炉内;由两个空气预热器(1)风侧出口热二次风管道(3)引出的热二次风管(14)在锅炉后墙侧联通形成低压风联络风管(15),对四角切圆燃烧锅炉,低压风联络风管(15)在锅炉四周形成环形管道,每一侧沿宽度方向伸出两个低压风喷口(18),对对冲燃烧锅炉,低压风联络风管(15)在炉膛左右两侧形成两路U型管道,在左右侧沿宽度方向伸出两个低压风喷口(18),热二次风经低压风喷口(18)喷入锅炉内。
  2. 根据权利要求1所述的一种风烟多级调控的配风系统,其特征在于,由热一次风管(10)来的全部热一次风量占锅炉运行总风量的1.5%~2%,由烟气管(6)来的低温烟气量占锅炉运行总风量的1.5%~2%,由热二次风管(14)来的全部热二次风量占锅炉运行总风量的3%~5%。
  3. 根据权利要求1所述的一种风烟多级调控的配风系统,其特征在于,主高压风烟管(12)内的高压风氧浓度控制在10%~15%。
  4. 根据权利要求1所述的一种风烟多级调控的配风系统,其特征在于,对四角切圆燃烧锅炉,高压风烟喷口(19)和低压风喷口(18)沿炉膛高度方向布置在最上层燃烧器与燃尽风燃烧器之间的还原区,对对冲燃烧锅炉,高压风烟喷口(19)和低压风喷口(18)沿炉膛高度方向布置在最下层燃烧器至燃尽风燃烧器以下之间的区域。
  5. 根据权利要求1所述的一种风烟多级调控的配风系统,其特征在于,高压风烟喷口(19)采用矩形或圆形喷口,喷口的风速控制在80~100m/s。
  6. 根据权利要求5所述的一种风烟多级调控的配风系统,其特征在于,高压风烟喷口(19)布置在距离相邻炉墙壁面间距500mm~1000mm范围内,水平方向平行于炉墙壁面、垂直方向下倾5°~10°。
  7. 根据权利要求1所述的一种风烟多级调控的配风系统,其特征在于,低压风喷口(18)采用矩形或圆形喷口,喷口风速控制在20~30m/s,垂直于炉墙壁面。
  8. 根据权利要求7所述的一种风烟多级调控的配风系统,其特征在于,对四角切圆燃烧锅炉,低压风喷口(18)布置在同侧炉墙高压风烟射流下游1/2和3/4处,对对冲燃烧锅炉,低压风喷口(18)布置在左右侧墙1/3和2/3处,且低压风喷口(18)布置在同层高压风烟喷口(19)射流的流线上。
  9. 根据权利要求1所述的一种风烟多级调控的配风系统,其特征在于,对四角切圆燃烧锅炉,同层调控风喷口(19)形成的调控风气流旋转方向与炉膛(22)内主烟气旋转气流方向相反,对对冲燃烧锅炉,同层调控风喷口(19)前后墙方向形成对冲气流。
  10. 根据权利要求1所述的一种风烟多级调控的配风系统,其特征在于,热一次风管(10)上安装有热一次风调节挡板(9)和热一次风风量测量装置(11),烟气管(6)上安装有烟气量调节挡板(8)和烟气量测量装置(7),热二次风管(14)上安装有热二次风调节挡板(13),高压风烟管(16)上安装有高压风调节挡板(21)和高压风风量测量装置(20)低压风喷口(18)前安装有低压风调节挡板(17)。
PCT/CN2021/115647 2021-05-24 2021-08-31 一种风烟多级调控的配风系统 WO2022247039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110567924.X 2021-05-24
CN202110567924.XA CN113108273A (zh) 2021-05-24 2021-05-24 一种风烟多级调控的配风系统

Publications (1)

Publication Number Publication Date
WO2022247039A1 true WO2022247039A1 (zh) 2022-12-01

Family

ID=76723166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115647 WO2022247039A1 (zh) 2021-05-24 2021-08-31 一种风烟多级调控的配风系统

Country Status (2)

Country Link
CN (1) CN113108273A (zh)
WO (1) WO2022247039A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108273A (zh) * 2021-05-24 2021-07-13 西安热工研究院有限公司 一种风烟多级调控的配风系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501204A (en) * 1984-05-21 1985-02-26 Combustion Engineering, Inc. Overfire air admission with varying momentum air streams
CN205535763U (zh) * 2016-02-04 2016-08-31 大唐(北京)能源管理有限公司 一种角式切向燃烧煤粉锅炉的燃烧装置
CN105927969A (zh) * 2016-06-01 2016-09-07 河北省电力建设调整试验所 一种降低前后墙对冲燃烧锅炉氮氧化物的燃烧系统
CN106989411A (zh) * 2017-04-12 2017-07-28 西安热工研究院有限公司 一种锅炉水冷壁气膜保护装置
CN109058982A (zh) * 2018-06-20 2018-12-21 西安西热锅炉环保工程有限公司 一种防治四角切圆燃烧锅炉水冷壁高温腐蚀的贴壁风系统
CN110715288A (zh) * 2019-11-19 2020-01-21 哈尔滨龙高科环境科技有限公司 一种用于四角切圆燃煤锅炉的贴壁风系统
CN113108273A (zh) * 2021-05-24 2021-07-13 西安热工研究院有限公司 一种风烟多级调控的配风系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261002B (zh) * 2008-04-30 2011-02-09 华北电力大学 超或超超临界燃煤发电热力系统的改进方法
FI122452B (fi) * 2010-05-28 2012-01-31 Metso Power Oy Savukaasu-ilmaesilämmitin ja menetelmä asennuksessa, sekä savukaasu-ilmaesilämmittimen ilmaputkikomponentti
CN102705818B (zh) * 2012-06-22 2014-12-24 上海锅炉厂有限公司 一种锅炉燃烧器贴壁风布置方式
CN104633652B (zh) * 2014-12-15 2017-01-25 西安热工研究院有限公司 一种前后墙对冲燃烧锅炉的燃烧系统
CN105020700B (zh) * 2015-07-10 2017-11-10 哈尔滨工业大学 一种层燃锅炉组合脱硝装置与方法
CN204901743U (zh) * 2015-08-11 2015-12-23 中山市迦南节能环保科技有限公司 煤块层燃与生物质气化喷燃相结合的链条炉复合燃烧系统
CN106051749B (zh) * 2016-05-27 2018-05-15 青岛金田热电有限公司 一种基于循环流化床锅炉的低氮燃烧工艺
CN208546969U (zh) * 2018-05-03 2019-02-26 山东恒涛节能环保有限公司 一种增容改造的链条锅炉系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501204A (en) * 1984-05-21 1985-02-26 Combustion Engineering, Inc. Overfire air admission with varying momentum air streams
CN205535763U (zh) * 2016-02-04 2016-08-31 大唐(北京)能源管理有限公司 一种角式切向燃烧煤粉锅炉的燃烧装置
CN105927969A (zh) * 2016-06-01 2016-09-07 河北省电力建设调整试验所 一种降低前后墙对冲燃烧锅炉氮氧化物的燃烧系统
CN106989411A (zh) * 2017-04-12 2017-07-28 西安热工研究院有限公司 一种锅炉水冷壁气膜保护装置
CN109058982A (zh) * 2018-06-20 2018-12-21 西安西热锅炉环保工程有限公司 一种防治四角切圆燃烧锅炉水冷壁高温腐蚀的贴壁风系统
CN110715288A (zh) * 2019-11-19 2020-01-21 哈尔滨龙高科环境科技有限公司 一种用于四角切圆燃煤锅炉的贴壁风系统
CN113108273A (zh) * 2021-05-24 2021-07-13 西安热工研究院有限公司 一种风烟多级调控的配风系统

Also Published As

Publication number Publication date
CN113108273A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN208871606U (zh) 一种风量和垂直角度可调的锅炉高温腐蚀防治贴壁风喷口
CN105509086B (zh) 用于燃煤锅炉炉膛高温腐蚀防治的非对称高速贴壁风系统
CN109058982A (zh) 一种防治四角切圆燃烧锅炉水冷壁高温腐蚀的贴壁风系统
WO2022247039A1 (zh) 一种风烟多级调控的配风系统
CN111256111A (zh) 一种用于前后墙对冲燃烧锅炉防止水冷壁高温腐蚀的高效贴壁风系统及方法
CN102966959B (zh) 一种防止垃圾焚烧炉水冷壁高温腐蚀的贴壁风系统
CN205592937U (zh) 双风源贴壁风系统以及包括该双风源贴壁风系统的锅炉
CN106989411B (zh) 一种锅炉水冷壁气膜保护装置
CN108592015A (zh) 一种锅炉烟气再循环系统及其方法
CN207907273U (zh) 一种防止燃煤锅炉脱硝改造后尾部烟道积灰的装置
CN110715288A (zh) 一种用于四角切圆燃煤锅炉的贴壁风系统
CN110793039A (zh) 一种垃圾焚烧余热锅炉烟气回流系统
CN106196021A (zh) 一种锅炉水冷壁防腐保护装置
CN103836636B (zh) 一种降低热一次风冷风掺入率的装置
CN207035089U (zh) 一种带有可调导流叶片的侧墙燃尽风结构
CN207778024U (zh) 一种双膛石灰窑的天然气燃气输送管路
CN113108272B (zh) 一种引射烟气的锅炉调控风系统
CN206018598U (zh) 一种锅炉水冷壁防腐保护装置
CN212178851U (zh) 一种风笛管型自动吹扫的贴壁风风箱
CN212869746U (zh) 一种防止燃煤锅炉冷灰斗水冷壁腐蚀的贴壁风系统
CN213207829U (zh) 一种防止水冷壁高温腐蚀的高效贴壁风系统
CN208430086U (zh) 一种焦炉废气循环控制系统
CN211424432U (zh) 一种利用旁路烟气进行吹灰的装置
CN219713408U (zh) 一种利用引射流技术增强射流刚性的贴壁风喷口
CN108302525B (zh) 一种通流面积可调直流煤粉燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942606

Country of ref document: EP

Kind code of ref document: A1