WO2022246901A1 - 变电站巡检机器人的自动充电系统及方法 - Google Patents
变电站巡检机器人的自动充电系统及方法 Download PDFInfo
- Publication number
- WO2022246901A1 WO2022246901A1 PCT/CN2021/098377 CN2021098377W WO2022246901A1 WO 2022246901 A1 WO2022246901 A1 WO 2022246901A1 CN 2021098377 W CN2021098377 W CN 2021098377W WO 2022246901 A1 WO2022246901 A1 WO 2022246901A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- robot
- substation
- inspection robot
- charging stand
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000003032 molecular docking Methods 0.000 claims abstract description 46
- 238000004891 communication Methods 0.000 claims abstract description 19
- 238000012937 correction Methods 0.000 claims description 10
- 239000000284 extract Substances 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
- H02J7/0045—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to an automatic charging system and a charging method for a substation inspection robot, belonging to the technical field of robot automatic charging.
- the robot may encounter the problem of insufficient power during the inspection process, in order to ensure that the inspection robot has a better battery life, multiple charging stations are often set up in the substation to facilitate the robot to encounter the problem of insufficient power during the work process.
- the charging stand is a live device.
- the charging contacts of the robot are docked with the charging electrode plate of the charging stand, if there is no strict docking correction procedure, resulting in poor contact, or contact with the charged charging stand, this may lead to power failure or even Fire and other hazards will cause damage to the charging equipment and affect the service life of the equipment.
- the object of the present invention is to provide an automatic charging system and method for a substation inspection robot.
- an embodiment of the present invention provides an automatic charging system for a substation inspection robot, including a substation inspection robot and a charging stand;
- the substation inspection robot is equipped with a robot charging control module, a first wireless communication module, a charging docking module and a storage battery
- the charging docking module includes a limit device, a mounting frame, a telescopic conductive rod, a charging contact and a mounting base
- the charging base includes a charging base power supply control module, a second wireless communication module, and a charging electrode
- the charging electrode plate is located in the charging interface of the charging stand;
- the mounting frame is fixed on the front of the robot, the mounting seat is fixed inside the mounting frame, the mounting seat has a guide groove for accommodating the above-mentioned telescopic conductive rod, and the charging contact
- One end of the above-mentioned charging contact protrudes outwards with the linear movement of the telescopic conductive rod, and contacts with the charging electrode plate of the charging stand for charging.
- the limit device is fixed in the guide groove to prevent the charging contact from being inserted too deep or too shallow.
- a high-definition omnidirectional camera and a laser sensor are also provided on the substation inspection robot; a positioning beacon is also provided on the charging stand; the positioning beacon is set on the charging stand, which includes a colored square block and an isosceles triangular plate, the isosceles triangular plate is placed horizontally on the top of the charging stand, and a vertical line is drawn along the apex of the triangle to the front of the charging stand, and its orthocenter is located on the center line of the charging interface of the charging stand.
- the laser sensor according to The position of the apex of the triangle determines the position of the charging interface to achieve precise docking; the colored square block is located on the top of the isosceles triangular plate, which is used to calibrate the position of the charging stand, so as to determine whether the robot enters the docking range of the charging stand.
- the present invention also provides a path planning method for the substation inspection robot to go to the charging stand, including the following steps:
- Step 1 Draw a map of the substation: conduct a comprehensive inspection of the substation through the inspection robot.
- the laser sensor configured by the inspection robot is used to accurately scan the environmental information of the substation.
- a two-dimensional map of the substation is generated; and Based on the set size of the grid, the generated two-dimensional map of the substation is processed into a two-dimensional grid map and stored in the memory module of the robot;
- Step 2 Collect image features of substation equipment: During the inspection process, the high-definition omnidirectional camera scans and collects the image information of substation equipment, analyzes and processes it, extracts image features, and uses them as identification basis for equipment and roads, and stores them in the robot's in the storage module;
- Step 3 Draw a map of the surrounding environment: during the inspection process, use the laser sensor configured on the robot to scan the surrounding environmental information to generate a two-dimensional grid map of the surrounding environment, which is basically the same as drawing a substation map;
- Step 4 Match the substation map with the surrounding environment map: compare the collected surrounding environment map with the substation map stored in the memory module, so as to judge the current location of the inspection robot and perform low-precision positioning;
- Step 5 Vision correction: During the inspection process, the camera configured on the robot scans and collects the image information of the surrounding equipment to obtain the image features of the corresponding equipment, and compares it with the image features of the equipment stored in the robot memory module. Compare, judge your own position again, correct the error generated by the positive map matching, and perform high-precision positioning;
- Step 6 Positioning inspection: If the positions displayed in step 4 and step 5 are the same, the positioning is accurate; if they are different, the positioning fails, and return to step 3 to start execution;
- Step 7 Path planning step: According to the image characteristics and positioning position of the charging stand in the robot storage module, use the Dijkstra algorithm to plan the optimal inspection path, and the inspection robot will go to the charging stand according to the set route.
- the method for precise docking includes the following steps:
- S2 First judge whether the front of the inspection robot is parallel to the front of the charging stand. If it is parallel, no adjustment is required. If not, adjust the front of the robot to be parallel to the front of the charging stand;
- S3 Determine whether the inspection robot is located in the middle of the charging stand, that is, whether the axis where the center point of the robot is located is facing the center line of the charging interface of the charging stand. If so, no adjustment is required. If not, the robot may be located on the left or right side of the charging stand side, according to the distance from the laser emission point of the robot to point P and angle To determine the position of the robot, move the robot to the middle of the charging stand by making movement adjustments;
- the movement in S3 is adjusted to move in the vertical direction first, and stop when the distance between the vertex of the robot and the vertex P of the triangular plate is the set safety distance L SAFE , and the inspection robot rotates clockwise by angle ⁇ until the robot faces the triangular plate In the direction of the axis where point P is located, move forward for a distance L MOVE , and rotate the angle ⁇ counterclockwise to make the robot return to the original direction.
- the vertex P of the triangular plate is already on the axis of the robot;
- S4 The inspection robot gradually moves forward, so that the charging docking module of the robot is docked with the charging interface of the charging stand. After docking, the charging contact protrudes from the guide groove and contacts the electrode plate of the charging stand;
- step S5 after moving to the charging range, if the charging signal sent by the robot charging control module can be received, the charging is successful; if not, it is judged whether it is at the limit position of the charging range, and if it is not at the limit position, the robot continues to move forward Enter step S3; when at the limit position, the robot retreats 0.5m and repeats step S3, and re-adjusts the robot posture and docks.
- the image-based navigation and positioning system has higher positioning accuracy than traditional navigation methods such as magnetic navigation, and can quickly reach the target point from the current position through path planning;
- the inspection robot can continuously adjust its posture and docking correction with the charging stand, so as to achieve a stable charging connection;
- Fig. 1 is the flow chart of automatic charging system of substation inspection robot of the present invention
- Fig. 2 is the inspection robot of the substation inspection robot automatic charging system of the present invention
- Fig. 3 is the charging base of the substation inspection robot automatic charging system of the present invention.
- Fig. 4 is the internal structural diagram of the charging docking module of the substation inspection robot automatic charging system of the present invention.
- Fig. 5 is the structural block diagram of the substation inspection robot automatic charging system of the present invention.
- Fig. 6 is the flow chart of positioning and path planning of the substation inspection robot of the present invention.
- FIG. 7 is a schematic diagram of charging and docking of the automatic charging system of the substation inspection robot of the present invention.
- Fig. 8 is a charging docking flow chart of the substation inspection robot automatic charging system of the present invention.
- 1 charging stand 1 charging stand, 2 robot body, 3 charging stand power supply control module, 4 colored square block, 5 isosceles triangle plate, 6 second wireless communication module, 7 charging electrode plate, 8 charging docking module, 9 charging control module, 10th 1 wireless communication module, 11 memory module, 12 omni-directional camera, 13 laser sensor, 14 battery, 15 mounting frame, 16 mounting seat, 17 telescopic conductive rod, 18 charging contact, 19 limit device.
- the present invention proposes an automatic charging system and method for a substation inspection robot.
- the present invention designs an automatic charging system applied to a substation inspection robot, which includes the substation inspection robot searching for a charging base through path planning, and Accurately dock with the charging stand to start the specific process of charging.
- the present embodiment discloses a substation inspection robot, including a robot body 2, a charging control module 9 (including a relay B) and a first wireless communication module 10 are installed on one side of the robot body 2; A high-definition omnidirectional camera 12 and a laser sensor 13 are installed on the top of the robot body 2; a memory module 11 and a battery 14 are installed on the other side of the robot body 2; a robot charging docking module 8 is installed on the front of the robot body 2;
- the charging stand 1 includes a charging stand power supply control module 3 (including a relay A), a positioning beacon (a colored square block 4 and an isosceles triangular plate 5), a second wireless communication module 6, and a charging electrode plate 7;
- a charging stand power supply control module 3 including a relay A
- a positioning beacon a colored square block 4 and an isosceles triangular plate 5
- a second wireless communication module 6 and a charging electrode plate 7;
- the charging docking module includes: a mounting frame 15, a mounting base 16, a telescopic conductive rod 17, a charging contact 18, and a limit device 19.
- the mounting frame 15 is fixed on the front of the robot, and the mounting base 16 is fixed on the mounting frame 15.
- the installation seat 16 has a guide groove for accommodating the above-mentioned telescopic conductive rod 17, and the charging contact 18 is installed on the conductive rod. The movement stretches out, contacts with the charging electrode plate 7 of the charging stand, and charges.
- the charging stand 1 is connected to the charging stand power supply control module 3 through wires, whether the charging stand is powered on is controlled by the charging stand power supply control module 3, and the relay A is used to control the charging stand 1 on and off, and whether the relay A coil is Electricity is controlled by the charging enabling signal transmitted by the second wireless communication module 6; the charging stand power supply control module 3 forms a point-to-point wireless connection through the second wireless communication module 6 and the robot charging control module 10, and the robot charging docking module 8 is charged by the wire and the robot
- the control module 9 is connected, and the charging enable signal transmitted by the first wireless communication module 10 is used to control the power on and off of the relay B in the robot charging control module 9, and then control the charging contact 18 in the robot charging docking module 8. On and off.
- the charging contact 18 of the robot contacts the charging electrode plate 7 of the charging base through the charging docking calibration, and the action signal of the charging contact 18 of the robot is transmitted to the charging control module 9 of the robot.
- the charging enabling signal is sent to the charging stand power supply control module 3 through the second wireless communication module 6, and the relay A coil is energized, and the contacts are closed to supply power to the charging stand 1; after the charging stand 1 is powered on, the first wireless The communication module transmits the charging enabling signal to the robot charging control module 9, the relay B coil is energized, and the contacts are closed, thereby completing the charging of the battery 14 of the substation inspection robot.
- the present invention designs a path planning method for the substation inspection robot to go to the charging stand, including the following steps:
- Step 1 Draw a map of the substation: conduct a comprehensive inspection of the substation through the inspection robot.
- the laser sensor configured by the inspection robot is used to accurately scan the environmental information of the substation.
- a two-dimensional map of the substation is generated; and Based on the set size of the grid, the generated two-dimensional map of the substation is processed into a two-dimensional grid map and stored in the memory module of the robot.
- the specific operation method for obtaining the two-dimensional grid map of the substation is as follows:
- Step 1.1 Place the laser sensor on the rotating gimbal, and make the gimbal rotate at a fixed angular velocity ⁇ 1 ,
- Step 1.2 The laser sensor emits a laser beam, returns and receives it after encountering the substation equipment, and records the emission time and reception time, thereby calculating the distance between the inspection robot and the equipment in the substation, and recording the rotation of the laser beam at the time of emission angle ⁇ ;
- the inspection robot After the inspection robot circles the substation for a week, it merges the same parts of each local map based on the initial time, so as to assemble it into a substation map;
- Step 1.3 Transform the substation map into a two-dimensional grid map, select a square with side length a as a bearing block, if the bearing block is marked as white, it means that there are no obstacles in the bearing block, and you can pass smoothly: If If the bearing block is marked as black, it means that if there is an obstacle in the bearing block, it is impossible to pass;
- Step 2 Collect image features of substation equipment: During the inspection process, the camera configured by the robot scans and collects the image information of the equipment in the substation, analyzes and processes it, extracts image features, and uses them as identification basis for equipment and roads, and stores them in the robot’s in the storage module;
- Step 3 Draw a map of the surrounding environment: during the inspection process, use the laser sensor configured on the robot to scan the surrounding environmental information to generate a two-dimensional grid map of the surrounding environment, which is basically the same as drawing a substation map;
- Step 4 Match the substation map with the surrounding environment map: compare the collected surrounding environment map with the substation map stored in the memory module, so as to judge the current location of the inspection robot and perform low-precision positioning with a maximum error of 20cm ;
- the two-dimensional grid map is represented by an array
- the surrounding environment map is represented by an array a
- the substation map is represented by an array b
- the dimensions of the array a and the array b are the same, two n-dimensional arrays a(x 11 ,x 12 ,...,x 1n ) and b(x i1 ,x i2 ,...,x in ) Euclidean distance:
- Step 5 Vision correction: During the inspection process, the camera configured on the robot scans and collects the image information of the surrounding equipment, thereby obtaining the image features of the corresponding equipment, and compares it with the image features of the equipment stored in the robot memory module. Compare, judge your own position again, correct the error generated by the positive map matching, and perform high-precision positioning;
- Step 6 Position check: If the positions displayed in step 4 and step 5 are the same, the position is accurate; if they are different, the position fails, and then return to step 3 to start execution.
- Step 7 Path planning step: According to the image characteristics of the charging stand in the robot storage module and the positioning position, use the Dijkstra algorithm to plan the optimal inspection path, and the inspection robot will go to the charging stand according to the set route.
- the Dijkstra algorithm is a typical The single-source shortest path algorithm is used to calculate the shortest path from one node to all other nodes. The main feature is that the starting point is the center and expands outward layer by layer until it reaches the end point;
- a method for charging and docking between a substation inspection robot and a charging stand designed by the present invention in the docking area between the robot and the charging stand, there are mainly five positional relationships between the robot and the charging stand, which are: (1) For the vertical charging stand, there are three types: vertical, left and right; (2) For the non-vertical charging stand, there are two types for the left and right.
- a colored square block and an isosceles triangle plate are placed directly above the charging stand to assist the positioning and docking of the laser sensor.
- the apex of the triangular object is on the center line of the charging interface. When docking, you only need to determine the apex of the triangle to determine the charging interface.
- S2 First judge whether the front of the inspection robot is parallel to the front of the charging stand. If it is parallel, no adjustment is required. If not, adjust the front of the robot to be parallel to the front of the charging stand;
- S3 Determine whether the inspection robot is located in the middle of the charging stand, that is, whether the axis where the center point of the robot is located is facing the center line of the charging interface of the charging stand. If so, no adjustment is required. If not, the robot may be located on the left or right side of the charging stand side, according to the distance from the laser emission point of the robot to point P and angle To determine the position of the robot, move the robot to the middle of the charging stand by making movement adjustments;
- Figure 7 is a schematic diagram of the robot on the left side, OR is the center point of the robot; P is the vertex of the triangular object; OL is the laser beam emission point; L robot is the length of the robot; is the distance from OL to the vertex P, ⁇ L is the distance from OL to the front end of the robot, S is the vertical distance from OL to the wall, is the angle between the center beam of the laser and the laser beam emitted to point P; L SAFE is the distance between the apex of the robot and the apex of the charging stand.
- the mobile strategy of the robot is as follows:
- S4 The inspection robot gradually moves forward, so that the charging docking module of the robot is docked with the charging interface of the charging stand. After docking, the charging contact protrudes from the guide groove to contact the electrode plate of the charging stand;
- S51 Similarly, use the laser beam to measure the distance from the inspection robot to the vertex P of the triangle to obtain a distance y, and judge it. If y belongs to the charging range L min to L max (in this embodiment, y is equal to L min is the limit charging distance, greater than L max is the non-charging distance), then go to S2, if not, the robot continues to move forward.
- step S52 After entering the charging range, if the charging signal sent by the robot charging control module can be received, the charging is successful. If not, judge whether it is at the limit position of the charging range. If it is not at the limit position, the robot continues to move forward and enter step S31; when it is at the limit position, the robot retreats 0.5m and repeats step S3 to re-adjust the robot posture and dock.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Power Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Manipulator (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了一种变电站巡检机器人的自动充电系统及方法,包括变电站巡检机器人和充电座;变电站巡检机器人上设有充电对接模块、充电控制模块、第一无线通讯模块和蓄电池,充电座包括供电控制模块、第二无线通讯模块、充电电极板;在变电站巡检机器人上还设有高清全方位摄像头、激光传感器;在充电座上还设有定位信标,其包括有色正方形块和等腰三角形板,等腰三角形板水平放置在充电座顶部,沿三角形顶点向充电座正面作垂线,其垂心位于充电座充电接口的中心线上,所述的激光传感器根据三角形顶点的位置确定充电电极位置,实现精准对接;有色正方形块位于等腰三角形板的顶部,其用于标定充电座位置,从而判断机器人是否进入充电座对接范围。
Description
本发明涉及一种用于变电站巡检机器人的自动充电系统及充电方法,属于机器人自动充电技术领域。
这里的陈述仅提供与本发明相关的背景技术,而不必然地构成现有技术。
由于变电站工作环境具有风险高且监测过程复杂的特点,对它进行人工巡检不仅工作效率低下,而且也极为不安全。而随着自动化以及机器人技术的快速发展,我们可以利用智能巡检机器人对变电站进行监修,较好地解决了人工巡检存在的弊端。
由于机器人在巡检过程中可能会遇到电量不足这一问题,为了保证巡检机器人具备较好的续航工作能力,经常在变电站设置多个充电座,便于机器人在工作过程中遇到电量不足这一问题时,能够通过对自身定位以及路径规划,及时找到最近的充电座进行充电,从而实现机器人的循环续航工作。然而充电座属于带电设备,机器人充电触头和充电座充电电极板进行对接时,若没有严格的对接校正程序而导致接触不良,或者与已通电的充电座进行接触,这可能会导致断电甚至打火等危害,从而造成充电设备的损害,影响设备的使用寿命。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种变电站巡检机器人的自动充电系统及方法。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明的实施例提供了一种变电站巡检机器人的自动充电系统,包括变电站巡检机器人和充电座;所述的变电站巡检机器人上设有机器人充电控制模块、第一无线通讯模块、充电对接模块和蓄电池,充电对接模块包括限位装置、安装架、伸缩导电杆、充电触头和安装座;所述的充电座包括充电座供电控制模块、第二无线通讯模块、充电电极板,充电电极板位于充电座充电接口内;所述安装架固定在机器人正面,安装座固定在安装架内部,安装座具有用于容纳上述伸缩导电杆的导向槽,充电触头安装在导电杆上,上述充电触头的一头随着伸缩导电杆的直线运动向外伸出,与充电座充电电极板对接接触,进行充电,限位装置固定在导向槽内,防止充电触头插入过深或者过浅。进一步的,在变电站巡检机器人上还设有高清全方位摄像头、激光传感器;在所述的充电座上还设有定位信标;所述的定位信标设置在充电座上,其包括有色正方形块和等腰三角形板,所述的等腰三角形板水平放置在充电座顶部,沿三角形顶点向充电座正面作垂线,其垂心位于充电座充电接口的中心线上,所述的激光传感器根据三角形顶点的位置确定充电接口位置,实现精准对接;所述的有色正方形块位于等腰三角形板的顶部,其用于标定充电座位置,从而判断机器人是否进入充电座对接范围。
第二方面,本发明还提供了一种变电站巡检机器人前往充电座的路径规划方法,包括以下步骤:
步骤1:绘制变电站地图:通过巡检机器人对变电站进行全面巡检,巡检过程中利用巡检机器人配置的激光传感器对变电站的环境信息进行精确扫描,巡检结束后生成变电站二维地图;并通过基于设定大小的方格,将生成的变电站 二维地图处理成二维栅格地图,存储到机器人的存储器模块中;
步骤2:采集变电站设备图像特征:在巡检过程中,高清全方位摄像头通过对变电站的设备图像信息进行扫描采集,分析处理,提取图像特征,作为设备以及道路的识别依据,并存储到机器人的存储模块中;
步骤3:绘制周围环境地图:巡检过程中利用机器人上配置的激光传感器对周围的环境信息进行扫描,生成周边环境二维栅格地图,与绘制变电站地图步骤基本相同;
步骤4:变电站地图与周围环境地图进行匹配:将采集到的周边环境地图与已存储到存储器模块的变电站地图进行对比,从而判断巡检机器人当前所处位置,进行低精度定位;
步骤5:视觉矫正:在巡检过程中,机器人上配置的摄像头对周围设备图像信息进行扫描采集,从而得到相应的设备的图像特征,并将其与已存储到机器人存储器模块中设备图像特征进行比较,再次判断自身的位置,对正地图匹配的产生误差进行矫正,进行高精度定位;
步骤6:定位检验:若步骤4与步骤5显示的定位相同,则定位准确;若不同,则定位失败,重新回到步骤3开始执行;
步骤7:路径规划步骤:根据机器人存储模块中的充电座图像特征和所处定位位置,利用Dijkstra算法规划最优巡检路径,巡检机器人按照设定的路线前往充电座。
进一步的,当巡检机器人进入充电座对接范围时,进行精准对接的方法,包括以下步骤:
S1:当巡检机器人进入充电座对接范围时,从而启动激光对接程序;
S2:首先判断巡检机器人正面是否平行于充电座正面,若平行则不需调整,若不平行,则应调整机器人正面与充电座正面平行;
S3:判断巡检机器人是否位于充电座正中间位置,即机器人中心点所在轴线是否正对于充电座充电接口的中线,若是则不需要调整,若不是,则机器人可能位于充电座的左侧或者右侧,根据机器人激光发射点到P点的距离
和角度
来确定机器人位置,通过进行移动调整来使机器人移动至充电座正中间位置;
S3中的移动调整为首先进行垂直方向上的移动,移动至机器人顶点距三角形板顶点P的距离为设定的安全距离L
SAFE时停止,巡检机器人顺时针旋转角度α至机器人面朝三角形板P点所在轴线方向,向前移动一段距离L
MOVE,逆时针旋转角度α,使机器人返回至最初的方向,此时三角形板顶点P已在机器人轴线上;
S4:巡检机器人逐渐前移,令机器人充电对接模块与充电座充电接口进行对接,对接后充电触头由导向槽伸出与充电座电极板进行接触;
S5:对接校正。检测机器人与三角形顶点的距离,若位于设定的正常充电范围内,则不需校正,若不在范围内,则进行相应的姿态调整;
S5中,移至充电范围内后,若能够收到机器人充电控制模块输送的充电信号,则成功充电;若不能则判断是否在充电范围的极限位置,未在极限位置时,机器人继续向前移动进入S3步骤;在极限位置时,机器人后退0.5m重复S3步骤,重新进行机器人姿态调整和对接。
上述本发明的实施例的有益效果如下:
1.基于图像的导航定位系统,定位精度相对磁导航等传统导航方式较高, 通过路径规划可快速由当前位置到达目标点;
2.巡检机器人能够不断调整自身位姿与充电座进行对接校正,从而实现稳定的充电连接;
3.当机器人充电触头和充电座接触良好时,通过使继电器闭合给充电座上电,进而给机器人充电,此充电方式能有效防止触头充电打火的发生,提高充电的安全性。
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明的变电站巡检机器人自动充电系统流程图;
图2为本发明的变电站巡检机器人自动充电系统的巡检机器人;
图3为本发明的变电站巡检机器人自动充电系统的充电座;
图4为本发明的变电站巡检机器人自动充电系统的充电对接模块的内部结构图;
图5为本发明的变电站巡检机器人自动充电系统的结构框图;
图6为本发明的变电站巡检机器人的定位和路径规划流程图;
图7为本发明的变电站巡检机器人自动充电系统的充电对接示意图;
图8为本发明的变电站巡检机器人自动充电系统的充电对接流程图;
图中:为显示各部位位置而夸大了互相间间距或尺寸,示意图仅作示意使用。
1充电座,2机器人本体,3充电座供电控制模块,4有色正方形块,5等腰三角形板,6第二无线通讯模块,7充电电极板,8充电对接模块,9充电控制 模块,10第一无线通讯模块,11存储器模块,12全方位摄像头,13激光传感器,14蓄电池,15安装架,16安装座,17伸缩导电杆,18充电触头,19限位装置。
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非本发明另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
正如背景技术所介绍的,现有技术中存在不足,为了解决如上的技术问题,本发明提出了一种变电站巡检机器人的自动充电系统及方法。
本发明的一种典型的实施方式中,如图1所示,本发明设计了一种应用于变电站巡检机器人的自动充电系统,该系统包含了变电站巡检机器人通过路径规划寻找充电座,并与充电座进行精准对接,从而开始充电的具体流程。
参照图2所示,本实施例公开了一种变电站巡检机器人,包括机器人本体2,在机器人本体2的一个侧面安装有充电控制模块9(含继电器B)、第一无线通讯模块10;在机器人本体2的顶部安装有高清全方位摄像头12、激光传感器13;在机器人本体2的另一侧面安装有存储器模块11以及蓄电池14;在机器人2本体的正面安装有机器人充电对接模块8;
参照图3所示,本实施例还公开了一种与变电站巡检机器人相配合的充电座1,充电座1包含充电座供电控制模块3(含继电器A)、定位信标含(有色正方形块4以及等腰三角形板5)、第二无线通讯模块6、充电电极板7;
参照图4所示,充电对接模块包括:安装架15、安装座16、伸缩导电杆17、充电触头18、限位装置19,安装架15固定在机器人正面,安装座16固定在安装架15内部,安装座16具有用于容纳上述伸缩导电杆17的导向槽,充电触头18安装在导电杆上,机器人与充电座对接完成后,充电触头18的一头随着伸缩导电杆17的直线运动向外伸出,与充电座充电电极板7接触,进行充电,限位装置19固定在导向槽内,防止充电触头18插入过深或者过浅,造成充电座的损坏。
充电座1通过导线和充电座供电控制模块3连接,对充电座是否上电受充电座供电控制模块3控制,利用其中的继电器A来控制充电座1的通断电,而继电器A线圈是否得电受第二无线通讯模块6传递的充电使能信号控制;充电座供电控制模块3通过第二无线通讯模块6和机器人充电控制模块10形成点对点无线连接,机器人充电对接模块8通过导线和机器人充电控制模块9连接,利用第一无线通讯模块10传递的充电使能信号来控制机器人充电控制模块9中的继电器B的通断电,进而控制所述机器人充电对接模块8中的充电触头18的通断电。
当巡检机器人移动到充电座1之后,利用充电对接校准使机器人充电充电触头18动作和充电座的充电电极板7接触,同时机器人充电触头18动作信号传递给机器人充电控制模块9。将充电使能信号通过第二无线通讯模块6发送给充电座供电控制模块3,利用使继电器A线圈得电,触点闭合,给充电座1供电; 充电座1上电后,由第一无线通讯模块传递充电使能信号至机器人充电控制模块9,继电器B线圈得电,触点闭合,进而完成对变电站巡检机器人的蓄电池14的充电。
参照图6,本发明设计了一种用于变电站巡检机器人前往充电座的路径规划方法,包括以下步骤:
步骤1:绘制变电站地图:通过巡检机器人对变电站进行全面巡检,巡检过程中利用巡检机器人配置的激光传感器对变电站的环境信息进行精确扫描,巡检结束后生成变电站二维地图;并通过基于设定大小的方格,将生成的变电站二维地图处理成二维栅格地图,存储到机器人的存储器模块中,获取变电站二维格栅化地图的具体操作方法如下:
步骤1.1:将激光传感器放置于旋转云台上,并令云台以固定的角速度ω
1旋转,
步骤1.2:激光传感器发射激光束,遇到变电站设备后返回并接收,并对发射时刻以及接收时刻进行记录,从而计算出巡检机器人到变电站各设备的距离,并记录下激光束发射时刻的旋转角度θ;
巡检机器人绕变电站一周后,以初始时刻为基准,对各局部地图的相同部分进行合并,从而将其拼装为变电站地图;
步骤1.3:将变电站地图转化为二维栅格地图,选取边长为a的正方形作为一个方位块,若将方位块记为白色,则表示该方位块内无障碍物,可以顺利通行:若将方位块记为黑色,则表示若方位块内有障碍物,无法通行;
步骤2:采集变电站设备图像特征:在巡检过程中,机器人配置的摄像头通过对变电站的设备图像信息进行扫描采集,分析处理,提取图像特征,作为设备以及道路的识别依据,并存储到机器人的存储模块中;
步骤3:绘制周围环境地图:巡检过程中利用机器人上配置的激光传感器对周围的环境信息进行扫描,生成周边环境二维栅格地图,与绘制变电站地图步骤基本相同;
步骤4:变电站地图与周围环境地图进行匹配:将采集到的周边环境地图与已存储到存储器模块的变电站地图进行对比,从而判断巡检机器人当前所处位置,进行低精度定位,最大误差为20cm;
将二维栅格地图用数组进行表示,周围的环境地图用数组a表示,变电站地图用数组b表示,且数组a与数组b的维数相同,两个n维数组a(x
11,x
12,…,x
1n)与b(x
i1,x
i2,…,x
in)间的欧氏距离:
则当d
i取最小值时,表明此时为巡检机器人当前的位置,从而实现巡检机器人的粗定位;
步骤5:视觉矫正:在巡检过程中,机器人上配置的摄像头对周围设备图像信息进行扫描采集,从而得到相应的设备的图像特征,并将其与已存储到机器人存储器模块中设备图像特征进行比较,再次判断自身的位置,对正地图匹配的产生误差进行矫正,进行高精度定位;
步骤6:定位检验:若步骤4与步骤5显示的定位相同,则定位准确;若不同,则定位失败,重新回到步骤3开始执行。
步骤7:路径规划步骤:根据机器人存储模块中的充电座图像特征和所处定位位置,利用Dijkstra算法规划最优巡检路径,巡检机器人按照设定的路线前往充电座,Dijkstra算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止;
参照图7,图8,本发明设计的一种用于变电站巡检机器人与充电座充电对接方法,在机器人与充电座的对接区域内,机器人与充电座主要有5种位置关系,分别是:(1)垂直充电座时,有垂直、左侧和右侧3种;(2)非垂直充电座时,有位于左侧和右侧两种。
在充电座正上方安置了有色正方形块和等腰三角形板,用以辅助激光传感器进行定位和对接。三角形物体顶点处于充电接口的中线上,对接时,只需确定三角形顶点即可确定充电接口。
激光自主充电对接步骤如下:
S1:当巡检机器人进入充电座对接范围时,从而启动激光对接程序;
S11:巡检机器人的摄像头扫描到充电座的有色正方形块后,对其图像信息进行分析采集,从而得到正方形块的图像特征,并将其与已存储到机器人存储器模块中正方形块的图像特征进行比较,若基本重合,表明此时机器人已进入充电座的对接范围以内,从而启动激光对接程序。
S2:首先判断巡检机器人正面是否平行于充电座正面,若平行则不需调整,若不平行,则应调整机器人正面与充电座正面平行;
S3:判断巡检机器人是否位于充电座正中间位置,即机器人中心点所在轴线是否正对于充电座充电接口的中线,若是则不需要调整,若不是,则机器人 可能位于充电座的左侧或者右侧,根据机器人激光发射点到P点的距离
和角度
来确定机器人位置,通过进行移动调整来使机器人移动至充电座正中间位置;
图7是机器人位于左侧的示意图,O
R为机器人的中心点;P为三角形物体顶点;O
L为激光束发射点;L
robot为机器人长度;
为O
L至顶点P的距离,ΔL为O
L至机器人最前端的距离,S为O
L到墙壁的垂直距离,
为激光中心束与发射至P点的激光束之间的夹角;L
SAFE为机器人顶点与充电座顶点的距离。
参照图7,机器人的移动策略如下:
S31:巡检机器人在开始移动时,O
R与三角形板顶点P的垂直距离为
而O
R与充电座顶点P的垂直安全距离L
1_SAFE为L
1_SFAE=L
SAFE+L
robot/2;作为结果,机器人应该前行的垂直安全距离为:L
1_MOVE=L
1-L
1_SAFE;
S34:巡检机器人逆时针旋转角度α,使机器人返回至最初的方向,此时三角形板顶点P已在机器人轴线上;
S4:巡检机器人逐渐前移,令机器人充电对接模块与充电座充电接口进行对接,对接后充电触头由导向槽内伸出与充电座电极板进行接触;
S5:对接校正:检测机器人与三角形顶点的距离,若位于设定的正常充电范围内,则不需校正,若不在范围内,则进行相应的姿态调整;
S51:同样的,利用激光束对巡检机器人到三角形顶点P的距离进行测量,得到一距离y,并对其进行判断,若y属于充电范围L
min~L
max内(本实施例中y等于L
min是极限充电距离,大于L
max为非充电距离),则进行S2,若不属于,则机器人继续向前移动。
S52:进入充电范围后,若能够收到机器人充电控制模块输送的充电信号,则成功充电。若不能,则判断是否在充电范围的极限位置,未在极限位置时,机器人继续向前移动进入S31步骤;在极限位置时,机器人后退0.5m重复S3步骤,重新进行机器人姿态调整和对接。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (10)
- 一种变电站巡检机器人的自动充电系统,包括变电站巡检机器人和充电座;其特征在于,在变电站巡检机器人上还设有全方位摄像头、激光传感器;在所述的充电座上还设有定位信标;所述的定位信标包括有色正方形块和等腰三角形板,所述的等腰三角形板水平放置在充电座顶部,沿三角形顶点向充电座正面作垂线,其垂心位于充电座充电接口的中心线上,所述的激光传感器根据三角形顶点的位置确定充电接口位置,实现精准对接;所述的有色正方形块位于等腰三角形板的顶部,其用于标定充电座位置,并判断机器人是否进入充电座对接范围。
- 如权利要求1所述的变电站巡检机器人的自动充电系统,其特征在于,所述的变电站巡检机器人上设有充电对接模块、充电控制模块、第一无线通讯模块和蓄电池,所述的充电对接模块与充电控制模块相连,所述第一无线通讯模块发送充电信号至充电控制模块,控制充电对接模块中的充电触头得电,进而为蓄电池充电。
- 如权利要求2所述的变电站巡检机器人的自动充电系统,其特征在于,所述的充电对接模块包括限位装置、安装架、伸缩导电杆、充电触头和安装座;安装架固定在机器人正面,安装座固定在安装架内部,安装座具有用于容纳上述伸缩导电杆的导向槽,充电触头安装在伸缩导电杆上,限位装置固定在导向槽内。
- 如权利要求2所述的变电站巡检机器人的自动充电系统,其特征在于,所述的充电座包括供电控制模块和与供电控制模块相连的第二无线通讯模块、充电电极板;充电电极板位于充电座充电接口内;所述充电座供电控制模块通过所述第二无线通讯模块和机器人充电控制模块形成点对点无线连接。
- 如权利要求1所述的变电站巡检机器人的自动充电系统,其特征在于,所述的供电控制模块内设有继电器A,所述的供电控制模块接收到由第一无线通讯模块传递的充电使能信号时,继电器A得电,触点闭合,对所述的充电座供电。
- 如权利要求1所述的变电站巡检机器人的自动充电系统,其特征在于,充电控制模块内设有继电器B,充电座上电后,由充电控制模块接收到由第二无线通讯模块传递的充电使能信号时,继电器B线圈得电,触点闭合,进而完成对变电站巡检机器人的蓄电池的充电。
- 如权利要I-6任一所述的变电站巡检机器人前往充电座的路径规划方法,其特征在于,包括以下步骤:步骤1:事先利用激光传感器获取变电站环境的二维地图,并通过基于设定大小的方格,将生成的变电站周围环境二维地图处理成二维栅格地图并存储;步骤2:事先利用全方位摄像头获取变电站设备图像信息,提取图像特征并存储;步骤3:巡检时,激光传感器实时采集变电站环境的二维地图,并通过基于设定大小的方格,将生成的变电站周围环境二维地图处理成二维栅格地图,然后与步骤1中实现存储的二维栅格地图进行对比,判断巡检机器人当前所处位置,进行低精度定位;步骤4,巡检时,全方位摄像头实时采集变电站设备图像信息,提取图像特征,并将其与步骤2中事先存储的变电站设备图像特征进行比较,再次判断自身的位置,对地图匹配的产生误差进行矫正,进行高精度定位;步骤5:若步骤3与步骤4显示的定位相同,则定位准确;若不同,则定位 失败,重新回到步骤3开始执行;步骤6:根据机器人存储模块中的充电座图像特征和步骤5中巡检机器人所处定位位置,利用算法规划最优巡检路径,巡检机器人按照设定的路线前往充电座。
- 如权利要7所述的变电站巡检机器人前往充电座的路径规划方法,其特征在于,当巡检机器人进入充电座对接范围时,进行精准对接的方法,包括以下步骤:S1:判断巡检机器人正面是否平行于充电座正面,若平行则不需调整,若不平行,则调整机器人正面与充电座正面平行;S2:判断巡检机器人是否位于充电座正中间位置,即机器人中心点所在轴线是否正对于充电座充电接口的中线,若是则不需要调整,若不是,则根据机器人激光发射点到三角形板顶点P的距离 和角度 来确定机器人位置,通过进行移动调整来使机器人移动至充电座正中间位置;S3:巡检机器人逐渐前移,令机器人充电对接模块与充电座充电接口进行对接,对接后充电触头由导向槽伸出与充电座电极板进行接触;S4:检测机器人与三角形板顶点的距离,若位于设定的正常充电范围内,则不需校正,若不在范围内,则进行相应的姿态调整;S5中,移至充电范围内后,若能够收到机器人充电控制模块输送的充电信号,则成功充电;若不能则判断是否在充电范围的极限位置,未在极限位置时,机器人继续向前移动进入S3步骤;在极限位置时,机器人后退设定的距离,重复S3步骤,重新进行机器人姿态调整和对接。
- 如权利要8所述的变电站巡检机器人前往充电座的路径规划方法,其特征在于,步骤S3中的移动策略为首先进行垂直方向上的移动,移动至机器人顶点距三角形板顶点P的距离为设定的安全距离L SAFE时停止,巡检机器人顺时针旋转角度α至机器人面朝三角形板P点所在轴线方向,向前移动一段距离L MOVE,逆时针旋转角度α,使机器人返回至最初的方向,此时三角形板顶点P已在机器人轴线上。
- 如权利要7所述的变电站巡检机器人前往充电座的路径规划方法,其特征在于,步骤1的具体过程如下:步骤1.1:将激光传感器放置于巡检机器人的旋转云台上,并令云台以固定的角速度ω 1旋转,步骤1.2:激光传感器发射激光束,遇到变电站设备后返回并接收,并对发射时刻以及接收时刻进行记录,从而计算出巡检机器人到变电站各设备的距离,并记录下激光束发射时刻的旋转角度θ;巡检机器人绕变电站一周后,以初始时刻为基准,对各局部地图的相同部分进行合并,从而将其拼装为变电站地图;步骤1.3:将变电站地图转化为二维栅格地图,选取边长为a的正方形作为一个方位块,若将方位块记为白色,则表示该方位块内无障碍物,可顺利通行:若将方位块记为黑色,则表示若方位块内有障碍物,无法通行。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110582958.6A CN113270921A (zh) | 2021-05-27 | 2021-05-27 | 变电站巡检机器人的自动充电系统及方法 |
CN202110582958.6 | 2021-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022246901A1 true WO2022246901A1 (zh) | 2022-12-01 |
Family
ID=77233117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/098377 WO2022246901A1 (zh) | 2021-05-27 | 2021-06-04 | 变电站巡检机器人的自动充电系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113270921A (zh) |
WO (1) | WO2022246901A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115764701A (zh) * | 2022-12-07 | 2023-03-07 | 湖北工业大学 | 一种变电站用移动式故障实时巡检定位装置 |
CN116404729A (zh) * | 2023-06-08 | 2023-07-07 | 太原理工大学 | 轨道式巡检机器人不停机充电系统及使用方法 |
CN116436168A (zh) * | 2023-06-13 | 2023-07-14 | 深圳市华宝新能源股份有限公司 | 储能系统 |
CN116526681A (zh) * | 2023-07-03 | 2023-08-01 | 佛山电力设计院有限公司 | 变电站运维管理系统及方法 |
CN116614696A (zh) * | 2023-07-20 | 2023-08-18 | 合肥优尔电子科技有限公司 | 一种多排架电力管廊巡检机器人 |
CN117031551A (zh) * | 2023-08-10 | 2023-11-10 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种堤坝工程智能无人车遍历车站巡测方法与系统 |
CN117232515A (zh) * | 2023-08-28 | 2023-12-15 | 中国铁建电气化局集团有限公司 | 一种基于无人机的易飘物巡航检测方法 |
CN119358118A (zh) * | 2024-12-27 | 2025-01-24 | 山东大学 | 一种大型钢结构全生命周期智能运维系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113890132B (zh) * | 2021-09-09 | 2024-08-27 | 国网安徽省电力有限公司电力科学研究院 | 变电站电缆沟巡检机器人充电站和充电方法 |
CN113922460A (zh) * | 2021-10-26 | 2022-01-11 | 合肥瓦力觉启机器人科技有限公司 | 一种机器人充电方法及系统 |
CN115328149A (zh) * | 2022-08-31 | 2022-11-11 | 苏州大学 | 充电机器人控制方法 |
CN116581850B (zh) * | 2023-07-10 | 2024-01-26 | 深圳市森树强电子科技有限公司 | 一种智能识别类型的移动充电器及其充电方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001125641A (ja) * | 1999-10-29 | 2001-05-11 | Sony Corp | 移動ロボットのための充電システム、充電ステーションを探索する方法、移動ロボット、コネクタ、及び、電気的接続構造 |
CN106525025A (zh) * | 2016-10-28 | 2017-03-22 | 武汉大学 | 一种变电站巡检机器人路线规划导航方法 |
CN108255177A (zh) * | 2018-01-17 | 2018-07-06 | 航天科工智能机器人有限责任公司 | 机器人自主充电系统 |
CN207718228U (zh) * | 2018-02-02 | 2018-08-10 | 福建(泉州)哈工大工程技术研究院 | 一种可靠的室内全向移动机器人自主充电系统 |
CN108646729A (zh) * | 2018-04-12 | 2018-10-12 | 深圳先进技术研究院 | 一种机器人及其路径规划方法、机器人系统 |
CN112247988A (zh) * | 2020-09-29 | 2021-01-22 | 南京理工大学 | 基于激光雷达对移动机器人自主充电的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110112800B (zh) * | 2019-04-26 | 2023-11-21 | 上海爻火微电子有限公司 | 对接式充电电路与电子设备 |
CN112636410A (zh) * | 2020-12-10 | 2021-04-09 | 广州高新兴机器人有限公司 | 一种充电方法、移动机器人和充电桩 |
-
2021
- 2021-05-27 CN CN202110582958.6A patent/CN113270921A/zh active Pending
- 2021-06-04 WO PCT/CN2021/098377 patent/WO2022246901A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001125641A (ja) * | 1999-10-29 | 2001-05-11 | Sony Corp | 移動ロボットのための充電システム、充電ステーションを探索する方法、移動ロボット、コネクタ、及び、電気的接続構造 |
CN106525025A (zh) * | 2016-10-28 | 2017-03-22 | 武汉大学 | 一种变电站巡检机器人路线规划导航方法 |
CN108255177A (zh) * | 2018-01-17 | 2018-07-06 | 航天科工智能机器人有限责任公司 | 机器人自主充电系统 |
CN207718228U (zh) * | 2018-02-02 | 2018-08-10 | 福建(泉州)哈工大工程技术研究院 | 一种可靠的室内全向移动机器人自主充电系统 |
CN108646729A (zh) * | 2018-04-12 | 2018-10-12 | 深圳先进技术研究院 | 一种机器人及其路径规划方法、机器人系统 |
CN112247988A (zh) * | 2020-09-29 | 2021-01-22 | 南京理工大学 | 基于激光雷达对移动机器人自主充电的方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115764701A (zh) * | 2022-12-07 | 2023-03-07 | 湖北工业大学 | 一种变电站用移动式故障实时巡检定位装置 |
CN116404729A (zh) * | 2023-06-08 | 2023-07-07 | 太原理工大学 | 轨道式巡检机器人不停机充电系统及使用方法 |
CN116404729B (zh) * | 2023-06-08 | 2023-08-11 | 太原理工大学 | 轨道式巡检机器人不停机充电系统及使用方法 |
CN116436168B (zh) * | 2023-06-13 | 2023-09-15 | 深圳市华宝新能源股份有限公司 | 储能系统 |
CN116436168A (zh) * | 2023-06-13 | 2023-07-14 | 深圳市华宝新能源股份有限公司 | 储能系统 |
CN116526681A (zh) * | 2023-07-03 | 2023-08-01 | 佛山电力设计院有限公司 | 变电站运维管理系统及方法 |
CN116526681B (zh) * | 2023-07-03 | 2023-12-22 | 佛山电力设计院有限公司 | 变电站运维管理系统及方法 |
CN116614696A (zh) * | 2023-07-20 | 2023-08-18 | 合肥优尔电子科技有限公司 | 一种多排架电力管廊巡检机器人 |
CN116614696B (zh) * | 2023-07-20 | 2023-10-10 | 合肥优尔电子科技有限公司 | 一种多排架电力管廊巡检机器人 |
CN117031551A (zh) * | 2023-08-10 | 2023-11-10 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种堤坝工程智能无人车遍历车站巡测方法与系统 |
CN117031551B (zh) * | 2023-08-10 | 2024-01-30 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种堤坝工程智能无人车遍历车站巡测方法与系统 |
CN117232515A (zh) * | 2023-08-28 | 2023-12-15 | 中国铁建电气化局集团有限公司 | 一种基于无人机的易飘物巡航检测方法 |
CN119358118A (zh) * | 2024-12-27 | 2025-01-24 | 山东大学 | 一种大型钢结构全生命周期智能运维系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113270921A (zh) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022246901A1 (zh) | 变电站巡检机器人的自动充电系统及方法 | |
CN109917420B (zh) | 一种自动行走装置和机器人 | |
CN102116625B (zh) | 巡线机器人gis-gps导航方法 | |
CN105387860B (zh) | 结合单目视觉与激光测距的无人机自主着陆导引方法 | |
CN108575095B (zh) | 自移动设备及其定位系统、定位方法和控制方法 | |
CN109508014A (zh) | 一种移动机器人的激光引导回充方法及芯片 | |
US20210276441A1 (en) | A computerized system for guiding a mobile robot to a docking station and a method of using same | |
CN105700522B (zh) | 一种机器人充电方法及其充电系统 | |
CN109324610B (zh) | 一种适应充电屋门变化的巡检机器人定位方法 | |
CN106444777A (zh) | 机器人自动回位充电方法和系统 | |
CN105629971A (zh) | 一种机器人自动充电系统及其控制方法 | |
CN112247988A (zh) | 基于激光雷达对移动机器人自主充电的方法 | |
EP3836084B1 (en) | Charging device identification method, mobile robot and charging device identification system | |
CN108767933A (zh) | 一种用于充电的控制方法及其装置、存储介质和充电设备 | |
CN111090284B (zh) | 自行走设备返回基站的方法及自行走设备 | |
CN110026978A (zh) | 一种电力巡检机器人的控制系统及工作方法 | |
CN112819943A (zh) | 一种基于全景相机的主动视觉slam系统 | |
CN114654457B (zh) | 具有远近视距引导的机械臂多工位精确对准方法 | |
WO2023103326A1 (zh) | 控制方法、机器人、机器人充电座及计算机可读存储介质 | |
CN112821489A (zh) | 一种机器人自主充电装置及其自主充电的方法 | |
CN112045682B (zh) | 一种固态面阵激光安装的标定方法 | |
KR100948947B1 (ko) | 이동체의 위치 추정 장치 및 그 방법 | |
Romanov et al. | An automatic docking system for wheeled mobile robots | |
CN111572377A (zh) | 一种移动式机器人充电站自动对准的视觉引导方法 | |
CN117944914B (zh) | 遂行无人机空中充电设备及其充电方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21942471 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21942471 Country of ref document: EP Kind code of ref document: A1 |