WO2022244891A1 - SARS-CoV-2由来のT細胞エピトープペプチド - Google Patents

SARS-CoV-2由来のT細胞エピトープペプチド Download PDF

Info

Publication number
WO2022244891A1
WO2022244891A1 PCT/JP2022/021153 JP2022021153W WO2022244891A1 WO 2022244891 A1 WO2022244891 A1 WO 2022244891A1 JP 2022021153 W JP2022021153 W JP 2022021153W WO 2022244891 A1 WO2022244891 A1 WO 2022244891A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
cells
hla
cov
sars
Prior art date
Application number
PCT/JP2022/021153
Other languages
English (en)
French (fr)
Inventor
俊彦 鳥越
良彦 廣橋
博也 小林
敬幸 大栗
優己 矢島
華菜 古市
棟梁 李
Original Assignee
北海道公立大学法人札幌医科大学
国立大学法人旭川医科大学
株式会社医学生物学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北海道公立大学法人札幌医科大学, 国立大学法人旭川医科大学, 株式会社医学生物学研究所 filed Critical 北海道公立大学法人札幌医科大学
Publication of WO2022244891A1 publication Critical patent/WO2022244891A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/165Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Definitions

  • the present invention relates to a SARS-CoV-2-derived T cell epitope peptide, more specifically, an antigen derived from the SARS-CoV-2 spike protein and having the activity of inducing cytotoxic T cells and/or helper T cells related to sexual peptides.
  • the present invention also relates to nucleic acids encoding said peptides and expression vectors containing said nucleic acids.
  • the present invention relates to a vaccine for treating or preventing SARS-CoV-2 infectious disease, which contains the above-mentioned peptide etc. as an active ingredient.
  • the present invention also relates to a method for producing a passive immunotherapeutic agent for treating or preventing SARS-CoV-2 infectious disease using the above peptides, and a passive immunotherapeutic agent produced thereby. Furthermore, it also relates to a method for inducing T cells using the above-mentioned peptides and the like, and a kit used therefor.
  • the present invention also relates to complexes of said peptides and HLA molecules or multimers of said complexes. Furthermore, it relates to a method for detecting T cells targeting SARS-CoV-2 using said peptide, or said complex or multimer thereof.
  • COVID-19 Infectious disease 2019 caused by a new type of coronavirus (SARS-CoV-2) that occurred in December 2019 spread around the world in just a few months after that, and continued to update frightening records in each country. As a result, the spread of infection is unstoppable. Amid concerns about a wave of further pandemics that are said to cause even greater damage, there is a strong demand for the development of an effective and safe vaccine against COVID-19.
  • SARS-CoV-2 coronavirus
  • SARS-CoV-2 infects via the spike (S) protein
  • S protein spike
  • antibodies are powerless against intracellularly infected viruses
  • cell-mediated immunity capable of killing virus-infected cells, ie, cytotoxic T cells
  • helper T cells play an important role in the induction of antibodies and cytotoxic T cells.
  • cell-mediated immunity against viral infection includes T cells expressing the cell surface protein CD8 (CD8+ T cells) and the cell surface protein CD4. and T cells (CD4+ T cells) expressing CD8+ T cells are T cells (cytotoxic T cells, CTLs) that, when activated, lyse cells presenting antigens from viruses that bind to HLA class 1 molecules.
  • CD4 + T cells are helper (Th) cells that secrete cytokines, are activated by macrophages, dendritic cells, etc. that present virus-derived antigens by HLA class 2 molecules, and have a helper function for the induction and maintenance of CD8 + T cells. demonstrate.
  • Th cells are known to be classified into Th1 cells (cells that produce IFN- ⁇ , etc.) and Th2 cells (cells that produce interleukin-4, etc.), etc., depending on the types of cytokines secreted. The role of cells is also being elucidated.
  • Non-Patent Document 1 it has been reported that severe COVID-19 patients have high antibody titers against SARS-CoV-2 (Non-Patent Document 1). Furthermore, it has also been reported that peripheral blood T cells are reduced in critically ill patients (Non-Patent Document 2). Conversely, asymptomatic SARS-CoV-2 infected or mild COVID-19 patients have been reported to have higher cell-mediated immune responses to SARS-CoV-2 compared to severe COVID-19 patients. (Non-Patent Document 3).
  • the present invention has been made in view of the problems of the prior art, and aims to provide an antigen peptide capable of inducing cell-mediated immunity against SARS-CoV-2.
  • the present inventors first targeted the S protein of SARS-CoV-2 and can induce (specific) cytotoxic T cells (CTL) that target the virus.
  • CTL cytotoxic T cells
  • a peptide consisting of 9 amino acids at positions 448-456 of the S protein (NYN 9mer peptide, amino acid sequence: NYNYLYRLF, SEQ ID NO: 7) was complexed with HLA class 1 molecules (HLA-A*24 and ⁇ 2-microglobulin). found to be able to form bodies. It was also clarified that the epitope peptide can induce the peptide-specific CTL from peripheral blood mononuclear cells and amplify the CTL.
  • a peptide (NYN 30-mer peptide, amino acid sequence: NYNYLYRLFRKSSNLKPFERDISTEIYQAGS, amino acid sequence: NYNYLYRLFRKSSNLKPFERDISTEIYQAGS, SEQ ID NO: 19) has also been shown to have the activity of inducing helper T (Th) cells.
  • Th helper T
  • HLA-DR53-restricted Th cells are induced by a peptide (LKPFERDIST, SEQ ID NO: 46) consisting of 10 amino acids at positions 461-470 of the S protein, while HLA-DP2-restricted Th cells are induced by S protein.
  • a peptide (N501Y 25mer peptide, amino acid sequence: YFPLQSYGFQPTYGVGYQPYRVVVL, SEQ ID NO: 51) consisting of 25 amino acids at positions 489 to 513 of the S protein of the SARS-CoV-2 mutant strain (N501Y) is HLA -DR15-restricted Th cells and HLA-DR9-restricted Th cells were also induced.
  • a peptide consisting of 66 amino acids at positions 448-513 of the S protein of SARS-CoV-2, including the NYN 30mer peptide and the N501Y 25mer peptide, can be obtained from T cells of different origins and types (at least HLA-A*24-restricted CTL, HLA-DR53-restricted Th cells, HLA-DP2-restricted Th cells, HLA-DR15-restricted Th cells, HLA-DR8-restricted Th cells, HLA-DR9-restricted Th cells) We have found that it can stimulate and induce an immune response against SARS-CoV-2, and have completed the present invention.
  • the present invention relates to antigenic peptides derived from the SARS-CoV-2 S protein and having cytotoxic T cell and/or helper T cell inducing activity, and more specifically to the following.
  • the epitope peptide of ⁇ 1> which is a peptide comprising the amino acid sequence of SEQ ID NO:31 or 7.
  • the epitope peptide according to ⁇ 1> comprising at least one peptide selected from the following peptide group: (1) a peptide comprising the amino acid sequence set forth in any one of SEQ ID NOS: 29-37, 96 and 97 and having activity to induce HLA-DR8-restricted helper T cells (2) SEQ ID NO: set forth in 94 Peptide (3) comprising an amino acid sequence and having an activity to induce HLA-A24-restricted cytotoxic T cells (3) SEQ ID NOS: 38-43 and 46, comprising the amino acid sequence of any one of HLA-DR53-restricted Peptide (4) having helper T cell-inducing activity Peptide (5) comprising the amino acid sequence set forth in any one of SEQ ID NOS: 29-33 and 95 and having HLA-DP2-restricted helper T-cell inducing activity Peptide (6) containing the amino acid sequence set forth in SEQ ID NO: 53 and having an inducing activity for HLA
  • ⁇ 4> The epitope peptide of ⁇ 1> or ⁇ 2>, which is a peptide comprising the amino acid sequence of any one of SEQ ID NOS:88, 98-100, 54 and 55.
  • ⁇ 5> A nucleic acid encoding the epitope peptide according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> An expression vector containing a nucleic acid encoding the epitope peptide according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 7> A vaccine for treating or preventing SARS-CoV-2 infection, comprising the epitope peptide according to any one of ⁇ 1> to ⁇ 4> as an active ingredient.
  • a vaccine for treating or preventing SARS-CoV-2 infection comprising as an active ingredient a nucleic acid encoding the epitope peptide of any one of ⁇ 1> to ⁇ 4>.
  • SARS-CoV-2 infection comprising, as an active ingredient, an antigen-presenting cell presenting a complex of the epitope peptide and HLA molecule according to any one of ⁇ 1> to ⁇ 4> on its surface Vaccines for treating or preventing disease.
  • ⁇ 11> Stimulating mononuclear cells with antigen-presenting cells presenting on the surface the epitope peptide according to any one of ⁇ 1> to ⁇ 4> or a complex of the peptide and an HLA molecule A passive immunotherapeutic agent for treating or preventing SARS-CoV-2 infection comprising the resulting T cells.
  • ⁇ 12> The complex according to ⁇ 10> or the multimer of the complex is reacted with mononuclear cells to form a conjugate in which T cells are bound to the complex or the multimer, and the conjugate A passive immunotherapeutic agent for treating or preventing SARS-CoV-2 infection comprising T cells obtained by isolation from .
  • ⁇ 13> Stimulating mononuclear cells with antigen-presenting cells presenting on the surface the epitope peptide according to any one of ⁇ 1> to ⁇ 4> or a complex of the peptide and an HLA molecule
  • a method for producing a passive immunotherapeutic agent for treating or preventing SARS-CoV-2 infection comprising obtaining T cells.
  • the complex according to ⁇ 10> or the multimer of the complex is reacted with mononuclear cells to form a conjugate in which T cells are bound to the complex or the multimer, and the conjugate 1.
  • a method for producing a passive immunotherapeutic agent for treating SARS-CoV-2 infection comprising isolating T cells from .
  • the epitope peptide and mononuclear cells according to any one of ⁇ 1> to ⁇ 4> are contacted in a medium to induce T cells, characterized by inducing SARS-CoV-2
  • a method for inducing T cells that target ⁇ 16> A kit for inducing T cells targeting SARS-CoV-2, comprising the epitope peptide according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 17> A method for detecting T cells targeting SARS-CoV-2 in the sample, comprising the step of reacting the complex according to ⁇ 10> or multimers of the complex with a test sample. .
  • the epitope peptide according to any one of ⁇ 1> to ⁇ 4> is brought into contact with the test sample, and T cells targeting SARS-CoV-2 induced by the contact are produced.
  • a method of detecting T cells targeting SARS-CoV-2 in said sample comprising detecting at least one molecule selected from cytokines, chemokines and cell surface molecules.
  • At least the epitope peptide according to any one of ⁇ 1> to ⁇ 4> and a substance for detecting at least one molecule selected from cytokines, chemokines and cell surface molecules a kit for detecting T cells by the method described in ⁇ 18>.
  • SARS-CoV-2-targeted cytotoxic T cells and/or helper T cells can be induced to treat or prevent infection with the virus. It will also be possible to detect T cells that target SARS-CoV-2.
  • FIG. 2 shows a typical gel filtration column analysis when HLA-monomer formation is observed.
  • FIG. 10 is a graph showing folding test results of SARS-CoV-2 antigen-derived candidate peptides.
  • FIG. 3 shows the results of flow cytometer analysis of peptide exchange reaction in HLA-tetramer preparation.
  • FIG. 4 is a graph showing the peptide exchange rate of SARS-CoV-2 antigen-derived candidate peptides.
  • FIG. FIG. 2 shows the results of ELISPOT analysis of the IFN- ⁇ production ability of CTLs induced by co-cultivation with peptides from samples collected from donors. In the figure, "Y" and "H” indicate samples taken from different donors.
  • FIG. 10 is a graph showing folding test results of SARS-CoV-2 antigen-derived candidate peptides.
  • FIG. 3 shows the results of flow cytometer analysis of peptide exchange reaction in HLA-tetramer preparation.
  • FIG. 4 is a graph showing the peptid
  • FIG. 10 is a diagram showing the results of flow cytometer analysis of the reaction between CTLs induced by co-culture with the NYN 9mer peptide and the HLA-tetramer reagent.
  • Reaction between CTL induced when co-cultured with QYI 9mer peptide (peptide consisting of 9 amino acids at positions 1208-1216 of S protein of SARS-CoV-2, amino acid sequence: QYIKWPWYI, SEQ ID NO: 15) and HLA-tetramer reagent is a diagram showing the results of analysis by a flow cytometer.
  • FIG. 10 shows the results of ELISPOT analysis of IFN- ⁇ productivity after CTLs induced by co-culture with the NYN 9mer peptide were monocloned and amplified.
  • FIG. 10 shows the results of ELISPOT analysis of the IFN- ⁇ -producing ability of CTL clones in 293T cells or 293T/HLA-A*24+ cells expressing minigene.
  • FIG. 2 shows the results of flow cytometer analysis of the IFN- ⁇ and Granzyme B productivity of Th cell lines induced with NYN 30mer peptides from samples collected from donors.
  • FIG. 2 shows the results of ELISA analysis of the IFN- ⁇ and GM-CSF productivity of Th cell lines induced with NYN 30mer peptide in the presence of anti-HLA-DR antibody.
  • FIG. 10 is a diagram showing the results of the experiment.
  • the left side shows the culture results (control) in the absence of the NYN 30mer peptide
  • the right side shows the culture results (+peptide) in the presence of the NYN 30mer peptide.
  • FIG. 2 shows the results of flow cytometer analysis of the IFN- ⁇ and Granzyme B productivity of Th cell lines induced with NYN 30mer peptides from samples collected from donors.
  • FIG. 10 is a diagram showing the results of the experiment.
  • FIG. 10 shows the results of ELISA analysis of IFN- ⁇ production ability of DR53-HK36 induced by the NYN 30mer peptide, which was stimulated with the overlapping peptide derived from the peptide and cultured.
  • FIG. 2 is a diagram showing the results of analysis of the ability by ELISA.
  • DP2-HK13 induced by the NYN 30mer peptide was cultured stimulated with overlapping peptides derived from the peptide, and the IFN- ⁇ production ability was analyzed by ELISA.
  • FIG. FIG. 1 A Th cell line (HLA-DPB1*02:01-restricted Th cell (DP2-HK13)) induced by the NYN 30mer peptide was stimulated with a fragmented peptide derived from the peptide, and IFN- ⁇ and GM-CSF were produced.
  • FIG. 2 is a diagram showing the results of analysis of the ability by ELISA.
  • DP2-HK13 induced by the NYN 30mer peptide was cultured stimulated with overlapping peptides derived from the peptide, and the IFN- ⁇ production ability was analyzed by ELISA.
  • FIG. 10 shows the results of flow cytometer analysis of the IFN- ⁇ and Granzyme B productivity of Th cell lines induced with N501Y 25mer peptides from samples collected from donors.
  • FIG. 10 shows the results of ELISA analysis of the IFN- ⁇ production ability of Th cell lines induced with N501Y 25mer peptide in the presence of anti-HLA-DR antibody.
  • FIG. 10 shows the results of an ELISA kit analysis of the IFN- ⁇ production ability of Th cell lines induced with the N501Y 25mer peptide against mouse-derived fibroblast lines introduced with HLA-DR4, 15, and 53 genes.
  • Fig. 3 is a graph showing the results of ELISA analysis of the IFN- ⁇ production ability of Th cell lines (DR8-TO14 and DR8-TO20) induced with the NYN 30-mer peptide (S448 peptide). Graph showing the results of ELISA analysis of IFN- ⁇ production ability of Th cell lines (DR8-TO14 and DR8-TO20) in the presence of anti-HLA-DR antibody (aDR) or anti-HLA-class I antibody (aclass I). is.
  • Th cell lines DR8-TO14 and DR8-TO20
  • mouse-derived fibroblast cell lines L-DR8 or L-DR15
  • HLA-DR-8 and 15 genes were respectively introduced.
  • FIG. 1 shows the results of analysis using an ELISA kit.
  • the left side shows the culture results (-) in the absence of the NYN 30mer peptide
  • the right side shows the culture results (+) in the presence of the NYN 30mer peptide.
  • FIG. 2 shows the results of ELISA analysis of IFN- ⁇ -producing ability of a Th cell line (DR8-TO14) induced with the NYN 30mer peptide, which was stimulated with the overlapping peptide derived from the peptide and cultured.
  • FIG. 10 is a diagram showing the results of ELISA analysis of IFN- ⁇ -producing ability of a Th cell line (DR8-TO20) induced with the NYN 30mer peptide, which was stimulated with the overlapping peptide derived from the peptide and cultured.
  • FIG. 4 is a diagram showing; In the figure, (-) indicates the results of culture in the absence of the peptide, and (+) indicates the results of culture in the presence of the NYN 30mer peptide.
  • FIG. 4 is a diagram showing; In the figure, (-) indicates the results of culture in the absence of the peptide, and (+) indicates the results of culture in the presence of the NYN 30mer peptide.
  • FIG. 10 is a graph showing the results of ELISA analysis of the IFN- ⁇ production ability of Th cell lines (DR15-TO4 and DR15-TO6) induced with the N501Y peptide.
  • IFN- ⁇ of Th cell lines in the presence of N501Y peptide and anti-HLA-DR antibody (aDR) or anti-HLA-class I antibody (aclassI), or in the presence of N501N peptide is a graph showing the results of analysis of the productivity of the by ELISA.
  • Fig. 10 is a graph showing the results of ELISA analysis of the IFN- ⁇ production ability of Th cell lines (DR9-HK7 and DR9-HK13) induced with the N501Y peptide.
  • IFN- ⁇ of Th cell lines in the presence of N501Y peptide and anti-HLA-DR antibody (aDR) or anti-HLA-class I antibody (aclassI), or in the presence of N501N peptide is a graph showing the results of analysis of the productivity of the by ELISA.
  • Th cell lines DR9-HK7 and DR9-HK13
  • mouse-derived fibroblast lines L-DR4, L-DR9 or L-DR53
  • (-) indicates the results of culture in the absence of peptides in each test group
  • “S” indicates the results of examining T cell responses by adding each peptide to the culture medium of each cell
  • "P” indicates the results of examining the T cell response by pulsing each peptide with each cell.
  • the Th cell line (DR53-YY4) induced by the NYN 30mer peptide was stimulated by culture with S448-T19 or its alanine mutants (S448-T19-1A to 10A), and the IFN- ⁇ production ability was analyzed by ELISA.
  • FIG. 4 is a diagram showing; In the figure, (-) indicates the results of culture in the absence of the peptide, and "S448” indicates the results of culture in the presence of the NYN 30mer peptide.
  • the Th cell line (DR53-HK36) induced with the NYN 30mer peptide was stimulated by culture with S448-T19 or its alanine mutants (S448-T19-1A to 10A), and the IFN- ⁇ production ability was analyzed by ELISA.
  • FIG. 4 is a diagram showing; In the figure, (-) indicates the results of culture in the absence of the peptide, and "S448” indicates the results of culture in the presence of the NYN 30mer peptide.
  • PBMCs collected from subjects (YY or TO) before, after 1st and 2nd vaccinations of the new corona vaccine were cultured in the presence of NYN 30mer peptide (S448 peptide) or N501N 25mer peptide (N501N peptide). , further cultured in the presence of the NYN 30mer peptide, or the N501N 25mer peptide or the N501Y 25mer peptide, and analyzed by IFN- ⁇ ELISpot.
  • “Before”, “1st” and “2nd” are the results of PBMC-derived cells collected before, after 1st and 2nd times of vaccination with the new coronavirus, respectively, cryopreserved and analyzed. indicates FIG.
  • FIG. 2 shows the results of ELISA analysis of IFN- ⁇ -producing ability of a Th cell line (DP2-HK13) induced by the NYN 30mer peptide, which was stimulated with the peptide ("Original” in the figure) or a mutant thereof. .
  • (-) indicates the results of culture in the absence of peptide.
  • FIG. 2 shows the results of ELISA analysis of IFN- ⁇ -producing ability of a Th cell line (DR53-HK36) induced by the NYN 30mer peptide, stimulated with the peptide (“Original” in the figure) or a mutant thereof.
  • (-) indicates the results of culture in the absence of peptide.
  • FIG. 10 shows the results of ELISA analysis of IFN- ⁇ -producing ability of a Th cell line (DR53-YY4) induced by the NYN 30mer peptide, stimulated with the peptide ("Original” in the figure) or a mutant thereof. .
  • (-) indicates the results of culture in the absence of peptide.
  • FIG. 2 shows the results of ELISA analysis of IFN- ⁇ -producing ability of a Th cell line (DR8-TO14) induced by the NYN 30mer peptide, stimulated with the peptide (“Original” in the figure) or a variant thereof.
  • (-) indicates the results of culture in the absence of peptide.
  • FIG. 3 shows the results of ELISA analysis of IFN- ⁇ -producing ability of a Th cell line (DR8-TO20) induced by the NYN 30mer peptide, stimulated with the peptide (“Original” in the figure) or a variant thereof. .
  • (-) indicates the results of culture in the absence of peptide.
  • CD4-positive T cells proliferated by repeated stimulation with the N501Y 25mer peptide (derived from subjects before COVID-19 vaccination: DR9-HK7, DR15-YY17, derived from subjects after COVID-19 vaccination: DR15-TO4) were treated with the N501N 25mer peptide.
  • FIG. 4 shows the results of stimulating culture with or mutants thereof (F490S 25mer peptide or N501Y 25mer peptide) and analyzing IFN- ⁇ -producing ability by ELISA.
  • (-) indicates the results of culture in the absence of peptide.
  • PBMCs collected from subjects (HK, YY or TO) after two doses of COVID-19 vaccination were cultured in the presence of the NYN 30mer peptide (S448-477) and then incubated with the S448-477-related peptide (S448-477 or its
  • FIG. 10 is a dot plot diagram showing the results of further culturing in the presence of the mutant) and analysis by IFN- ⁇ ELISpot.
  • FIG. 10 is a dot plot diagram showing the results of culturing and analysis by IFN- ⁇ ELISpot.
  • Peripheral blood was collected from subjects who retained HLA A24 and were vaccinated against the novel coronavirus, then CTLs were induced with wild-type A24-restricted peptides, and the peptides (WT) and their mutants (L452R, Y453F, D- Fig. 10 is a photograph showing the results of evaluation of reactivity to Mt (L452R & Y453F)).
  • the SARS-CoV-2 spike (S) protein peptide consisting of 66 amino acids at positions 448 to 513 ( NYN 66mer peptide, amino acid sequence: NYNYX 452
  • X 453 452 represents L (leucine), R (arginine) or Q (glutamine)
  • X 453 represents Y (tyrosine) or F (phenylalanine)
  • X 477 represents S (serine) or N (asparagine)
  • X 490 represents F (phenylalanine) or S (serine)
  • X 501 represents N (asparagine) or Y (tyrosine)
  • SEQ ID NO: 52) stimulates T cells of different origins and types, SARS-CoV -2 to induce an immune response.
  • the present invention provides a peptide comprising at least 5 consecutive amino acids in the amino acid sequence set forth in SEQ ID NO: 52 and having cytotoxic T cell and/or helper T cell inducing activity.
  • cytotoxic T cells are cells also referred to as “CTL” or “killer T cells”, and are T cells expressing the cell surface protein CD8 (CD8 positive T cells, CD8+ T cells). which, when activated by recognizing antigens presented via HLA class 1 molecules, can damage cells bearing the same antigens.
  • the cytotoxic T cells of the present invention also include cells that can exhibit such cytotoxic activity under conditions in which the immune checkpoint mechanism is suppressed (released).
  • HLA class 1 molecule means a human-derived major histocompatibility complex (MHC) class I molecule, which is usually a complex of ⁇ chain and ⁇ 2 microglobulin. When used for MHC-monomers, etc., which will be described later, the ⁇ -chain may be only the extracellular domain. Further, ⁇ -chains of HLA class 1 molecules include, for example, ⁇ -chains encoded by HLA-A locus, HLA-B locus or HLA-C locus.
  • MHC major histocompatibility complex
  • HLA-A is, for example, HLA-A24 (HLA-A*24:02, HLA-A*24:04, HLA-A*24:08, HLA-A*24:20, etc.), HLA-A2 (HLA-A*02:03, HLA-A*02:06, HLA-A*02:07, HLA-A*02:10, HLA-A*02:18, etc.), HLA-A11 (HLA-A *11:01, HLA-A*11:02, etc.), HLA-A26 (HLA-A*26:01, HLA-A*26:02, HLA-A*26:03, HLA-A*26:04 , HLA-A*26:05, HLA-A*26:06, etc.).
  • HLA-B is, for example, HLA-B13 (HLA-B*13:01, HLA-B*13:02, etc.), HLA-B15 (HLA-B*15:01, HLA-B*15:02 , HLA-B*15:07, HLA-B*15:11, HLA-B*15:18, HLA-B*15:27, etc.), HLA-B39 (HLA-B*39:01, HLA-B *39:02, HLA-B*39:04, etc.), HLA-B40 (HLA-B*40:02, HLA-B*40:03, HLA-B*40:06, etc.).
  • HLA-C is, for example, HLA-C01 (HLA-Cw*01:02, HLA-Cw*02:02, etc.), HLA-C03 (HLA-Cw*03:02, HLA-Cw*03:03 , HLA-Cw*03:07 etc.), HLA-C04 (HLA-Cw*04:01 etc.), HLA-C05 (HLA-Cw*05:01 etc.), HLA-C08 (HLA-Cw*08:01 ) and other allyls.
  • Helper T cells are cells that are also called “Th cells” and are T cells that express the cell surface protein CD4 (CD4 positive T cells, CD4+ T cells), and are mediated by HLA class 2 molecules.
  • HLA class 2 molecule means a human-derived MHC class 2 molecule, which is usually a complex of ⁇ and ⁇ chains. When used for MHC-monomers, etc., which will be described later, the ⁇ -chain and/or ⁇ -chain may be only their extracellular regions. Further, ⁇ -chains of HLA class 2 molecules include, for example, ⁇ -chains encoded by HLA-DPA locus, HLA-DQA locus or HLA-DRA locus. ⁇ chains of HLA class 2 molecules include, for example, ⁇ chains encoded by the HLA-DPB locus, HLA-DQB locus or HLA-DRB locus.
  • HLA-DR is, for example, HLA-DR1, HLA-DR2, HLA-DR3, HLA-DR4, HLA-DR5, HLA-DR6, HLA-DR7, HLA-DR8, HLA-DR9, HLA-DR10, HLA -DR11, HLA-DR12, HLA-DR13, HLA-DR14, HLA-DR15, HLA-DR52, HLA-DR53.
  • HLA-DRA such as HLA-DRA1 as the ⁇ chain
  • HLA-DRB such as HLA-DRB1, HLA-DRB3, HLA-DRB4 or HLA-DRB5 as the ⁇ chain.
  • the ⁇ chain is an allyl such as HLA-DRA1*01, and the ⁇ chain is HLA-DRB1*01, HLA-DRB1*03, HLA-DRB1*04, HLA-DRB1*07, HLA-DRB1.
  • HLA-DP includes, for example, HLA-DP1, HLA-DP2, HLA-DP3, HLA-DP4, and HLA-DP5.
  • examples thereof include molecules containing HLA-DPA such as HLA-DPA1 as the ⁇ chain and HLA-DPB such as HLA-DPB1 as the ⁇ chain.
  • ⁇ chains include HLA-DPA1*01, HLA-DPA1*02, HLA-DPA1*03, HLA-DPA1*04, etc.
  • ⁇ chains include HLA-DPB1*02 and HLA-DPB1*04.
  • HLA-DQ includes, for example, HLA-DQ1, HLA-DQ2, HLA-DQ3, HLA-DQ4, HLA-DQ5, HLA-DQ6, HLA-DQ7, and HLA-DQ8.
  • examples thereof include molecules containing HLA-DQA such as HLA-DQA1 as the ⁇ chain and HLA-DQB such as HLA-DQB1 as the ⁇ chain.
  • HLA-DQA1*01, HLA-DQA1*02, HLA-DQA1*03, HLA-DQA1*04, HLA-DQA1*05, HLA-DQA1*06 examples include allyls such as HLA-DQB1*02, HLA-DQB1*03, HLA-DQB1*04, HLA-DQB1*05, HLA-DQB1*06.
  • Peptide means a molecular chain linked to each other by peptide bonds between the ⁇ -amino groups and carboxyl groups of adjacent amino acid residues. Peptides are not meant to be of a particular length and can be of varying lengths. That is, so-called polypeptides, oligopeptides and proteins are also included. In addition, it may be in the form of uncharged or salt. Further, the "amino acid” that constitutes the peptide may be a natural type or a non-natural type, and analogs (N-acylated amino acids , O-acylated products, esterified products, acid amidated products, alkylated products, etc.).
  • amino acid side chain may be chemically modified (sugar chain addition, lipid addition, acetylation, phosphorylation, ubiquitination, etc.).
  • a formyl group, an acetyl group, a t-butoxycarbonyl (t-Boc) group or the like may be bound to the amino terminal or free amino group of the polypeptide, and the carbonyl terminal or free amino group of the peptide of the present invention may be bound.
  • a methyl group, an ethyl group, a t-butyl group, a benzyl group, or the like may be bonded to the carboxyl group.
  • Epitope peptide means an antigenic peptide that has the activity of inducing the proliferation, differentiation and/or activation of cytotoxic T cells and/or helper T cells.
  • Said activity also includes properties that can be presented to HLA (MHC) class I or class II molecules.
  • presentation may be carried out via macrophages, B cells, or dendritic cells (DC), and can be performed using QuickSwitch TM custom tetramer kit (Medical and Biological Laboratory Co., Ltd.). It also includes presentation by exchange reaction with an exiting peptide in vitro, such as (manufactured).
  • the epitope peptide is not particularly limited as long as it contains at least 5 consecutive amino acids selected from the amino acid sequence set forth in SEQ ID NO: 52 and has the activity described above, but is Peptides (killer epitopes) having the activity to kill are generally 5 to 30 amino acids, preferably 6 to 25 amino acids, more preferably 8 to 20 amino acids, and particularly preferably 9 amino acids.
  • a peptide (helper epitope) having an activity to induce helper T cells is usually 5 to 30 amino acids, preferably 7 to 25 amino acids, more preferably 7 to 20 amino acids, particularly preferably 7 to 11 amino acids. is an amino acid.
  • the amino acid sequence of epitope peptides that may have such activity can be inferred by analysis using a computer program.
  • the amino acid sequences of killer epitopes are NetMHCcons (http://www.cbs.dtu.dk/services/NetMHCcons), BIMAS (http://bimas.dcrt.nih.gov/molbio/hla_bind/), SVMHC (http: //www.sbc.su.se/svmhc/), PREDEP (http://bioinfo.md.huji.ac.il/marg/Teppred/mhc-bind/), NetMHC (http://www.cbs.
  • helper epitopes are MHC-THREAD (http://www.csd.abdn.ac.uk/ ⁇ gjlk/MHC-Thread/), EpiPredict (http://www.epipredict.de/index.html) , HLA-DR4 binding (http://www-dcs.nci.nih.gov/branches/surgery/sbprog.html), ProPred (http://www.imtech.res.in/raghava/propred/), etc. It can be inferred by a computer program.
  • the epitope peptide in the amino acid sequence (SEQ ID NO: 103) consisting of 66 amino acids at positions 448-513 of the spike (S) protein of SARS-CoV-2 can be inferred.
  • the sequence of the S protein is the amino acid sequence specified by GENBANK:QHD43416.1, and no isoform has been reported.
  • viral proteins can vary naturally in the DNA sequences that encode them. Therefore, it should be understood that, in addition to those having the typical amino acid sequence (original amino acid sequence), naturally occurring amino acid mutations may also exist. Specifically, it may contain the variants shown in the table below.
  • epitope peptide (candidate peptide) estimated as described above can exhibit the activity can be determined, for example, by the following analyzes (1) to (4), etc., as shown in Examples below. can be evaluated by performing
  • PBMC Peripheral blood mononuclear cells isolated from humans (e.g., healthy subjects) are suspended in an appropriate medium, and the candidate peptide is added alone to the suspension. Alternatively, several types of candidate peptides are mixed and added, and CTLs are induced while repeatedly stimulating with the peptides and IL-2.
  • Dendritic cells (adherent cells) are prepared from PBMCs isolated from humans (eg, healthy subjects) by removing floating cells. Separately, CD4-positive T cells are prepared from the same human by Ficoll-Paque density gradient centrifugation, a magnetic cell separation system, or the like. Next, after adding the candidate peptide to the dendritic cells and culturing them, the dendritic cells and the CD4-positive T cells are co-cultured. Thereafter, CD4-positive T cells are collected and repeatedly stimulated in the same manner with candidate peptides and cultured dendritic cells to induce Th cells.
  • the candidate peptide used can be identified as an epitope peptide having activity to induce CTL or Th cells.
  • Activation (induction) of CTL or Th cells by the candidate peptide in response to stimulation is analyzed by measuring proliferation activity of CTL or Th cells and cytokine production activity by CTL or Th cells. be able to.
  • TAP transporter associated with antigen processing
  • TAP gene-deficient cell lines can be used in experiments to verify the binding properties of HLA molecules and externally supplied peptides. Specifically, after mixed culture of the TAP gene-deficient cell line and the modified peptide, staining with an anti-HLA antibody and calculation of the change in the expression intensity of the HLA molecule by flow cytometry, the target HLA molecule and the candidate peptide You can consider connectivity with When the candidate peptide added to the HLA molecule expressed by the TAP gene-deficient cell line binds, the complex of the HLA molecule and the candidate peptide is stabilized on the cell membrane surface, and when stained with an anti-HLA antibody, the expression of the HLA molecule is enhanced.
  • Killer epitopes thus identified in the present invention include peptides containing the amino acid sequence set forth in SEQ ID NO: 7 or 94 and having HLA-A24-restricted killer T cell-inducing activity.
  • HLA-DR53-restricted helper T cells containing the amino acid sequence set forth in any one of SEQ ID NOS: 38-43 and 46 (preferably the amino acid sequence set forth in SEQ ID NO: 46) HLA-DP2 restricted, comprising an amino acid sequence set forth in any one of SEQ ID NOS: 29-33, 47 and 95 (preferably the amino acid sequence set forth in SEQ ID NO: 47 or 95) a peptide having HLA-DR15-restricted helper T cell-inducing activity, the sequence comprising the amino acid sequence set forth in any one of SEQ ID NOs: 53, 101, 102 and 51; Number: Peptide having an activity to induce HLA-DR9-restricted helper T cells, comprising the amino
  • the epitope peptides of the present invention include SEQ ID NO: : 88, 98-100, 54 and 55 are suitable examples. Specific examples of these epitope peptides include the amino acid sequence set forth in any one of SEQ ID NO: 19 and 89-93 for the amino acid sequence set forth in SEQ ID NO: 88, and SEQ ID NO:
  • the amino acid sequences described in 98-100 include the amino acid sequences described in SEQ ID NOS: 48-50, respectively. For each X in Table 2, refer to the amino acid sequence described in each SEQ ID NO.
  • At least one amino acid selected from positions 463, 464, 466 and 468-470 may be any amino acid (for example, the amino acid at position 454 is arginine, but other amino acids different from arginine (for example, alanine)).
  • two or more such epitope peptides can be in the form of a fusion peptide, which is directly or appropriately linked via a spacer. Even such fusion peptides can be processed in antigen-presenting cells, and the resulting epitope peptides can be presented to the cells to induce various T cells, as shown in Examples below.
  • the spacer is not particularly limited as long as it does not affect processing in antigen-presenting cells, but it is usually a linker that is linked to each epitope peptide by a peptide bond.
  • Examples include peptide linkers and linkers having amino groups and carboxyl groups at both ends.
  • Specific examples include glycine linkers and PEG (polyethylene glycol) linkers.
  • Glycine linkers include polyglycine (eg, a peptide consisting of 6 glycines; CancerSci, vol. 103, p150-153) and the like.
  • PEG linkers include linkers derived from compounds having amino and carboxy groups at both ends of PEG (eg, H 2 N—(CH 2 ) 2 —(OCH 2 CH 2 ) 3 —COOH; Angew. Chem. Int. Ed. 2008, 47, 7551-7556).
  • a plurality of identical epitope peptides may be linked, or a plurality of different epitope peptides may be linked.
  • two or more epitope peptides are selected, one or two or more of the selected epitope peptides may be linked.
  • an epitope other than the epitope peptide of the present invention (that is, an epitope peptide containing at least 5 consecutive amino acids in the amino acid sequence set forth in SEQ ID NO: 52 and having T cell inducing activity) It may contain a peptide.
  • Such epitope peptides are not particularly limited, and may target SARS-CoV-2 or may target different viruses.
  • epitope peptides other than the epitope peptide of the present invention include, for example, the QYI 9mer peptide (SARS-CoV-2 S protein, a peptide consisting of 9 amino acids at positions 1208 to 1216, amino acid sequence: QYIKWPWYI, SEQ ID NO: 15). Also, for epitope peptides other than the epitope peptide of the present invention, multiple types and/or multiple epitope peptides may be similarly linked.
  • the number of epitope peptides linked in the fusion peptide of the present invention is not particularly limited, but is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more. (11, 12, 13, 14, 15, etc.).
  • the length is at least 10 amino acids, at least 15 amino acids, at least 20 amino acids, at least 25 amino acids, at least 30 amino acids, at least 40 amino acids, at least 50 amino acids, and within 500 amino acids, within 450 amino acids, and 400 amino acids. within, within 350 amino acids, within 300 amino acids, within 250 amino acids, within 200 amino acids, within 150 amino acids, and within 100 amino acids.
  • amino acids have been substituted, deleted, added and/or inserted in the amino acid sequence according to any of 55.
  • Amino acid sequence substitution, deletion, insertion or addition is preferably within 10 amino acids (eg, within 9 amino acids, within 8 amino acids, within 7 amino acids, within 6 amino acids), more preferably within 5 amino acids (eg, within 4 amino acids). , 3 amino acids or less, 2 amino acids or less), more preferably 1 amino acid.
  • Sites into which modifications such as such substitutions can be introduced can be determined by those skilled in the art, for example, in light of the experimental results using the alanine-substituted compounds shown in the Examples, as described above.
  • a person skilled in the art can determine whether an epitope peptide whose amino acid sequence has been modified in this way retains various activities by folding test, detection of epitope peptide-specific T cells, culture It can be evaluated by a study using a cell line or the like.
  • epitope peptide of the present invention can be used in the form of complexes to which saccharides, polyethylene glycol, lipids, etc. are added, derivatives with radioactive isotopes, etc., or polymers.
  • the N-terminus and free amino group of the epitope peptide of the present invention have A formyl group, an acetyl group, a t-Boc group, etc. may be bound, and a methyl group, an ethyl group, a t-butyl group, a benzyl group, etc. are bound to the C-terminus or free carboxyl group of the antigen peptide.
  • the epitope peptide of the present invention may be subjected to various modifications that can facilitate introduction into the body.
  • PT Protein Transduction
  • the HIV PT domain is a peptide composed of amino acids 49-57 of the Tat protein (RKKRRQRRR, SEQ ID NO: 62). It has been reported that by adding this PT domain to both or either of the N-terminus and C-terminus of a target protein or peptide, it can be easily introduced into cells (Ryu J et al, Mol Cells. 2003). 16:385-391, Kim DT et al, J Immunol. 1997; 159:1666-1668).
  • HLA human immunoglobulin-like molecule
  • TAP transporter in antigen processing
  • TAP-associated HLA molecules in the rough endoplasmic reticulum. It binds and is transported to the cell surface by exocytosis via the Golgi apparatus. Therefore, it is possible to efficiently present an antigen by fusing a peptide or protein of interest with HSP (heat shock protein) 70, HSP90, or gp96, which are chaperones that act in a series of these antigen presentation pathways.
  • HSP heat shock protein
  • the epitope peptide of the present invention is further added with a purification tag (His tag, etc.) useful for protein separation and purification, or a functional protein such as a marker protein (GFP, etc.) useful for protein detection.
  • a labeling compound such as biotin may be added.
  • the epitope peptide of the present invention can be prepared by a person skilled in the art using a known production method as appropriate.
  • Such known production methods include, for example, chemical synthesis, degradation of antigen protein (SARS-CoV-2-derived S protein), and synthesis using recombinant DNA technology.
  • the epitope peptide can be synthesized by known organic chemistry using protecting groups such as benzyloxycarbonyl group (Cbz), tert-butoxycarbonyl group (Boc), fluorenylmethoxycarbonyl group (Fmoc) and the like. It can be produced by a synthetic method (solid-phase peptide synthesis method, etc.).
  • an epitope peptide can be produced, for example, by degrading the protein with a known proteolytic enzyme such as protease or peptidase.
  • the conditions for degrading the protein can be appropriately set according to, for example, the type of the protein, the substrate specificity of the protease, and the like.
  • an epitope peptide is produced, for example, by creating an expression vector containing nucleic acid encoding the epitope peptide.
  • the epitope peptide can be synthesized by the expression system of the epitope peptide using this expression vector and recovered (isolated, purified, etc.).
  • the expression system can be prepared, for example, by introducing the expression vector into a host.
  • the host include known hosts such as animal cells, plant cells, insect cells, and bacteria.
  • an epitope peptide may be produced, for example using the nucleic acid which codes an epitope peptide, and a well-known cell-free translation system. Then, it can be produced by recovering the epitope peptide translated from the nucleic acid by the cell-free translation system.
  • HLA molecules HLA class 1 molecule and HLA class 2 molecule
  • HLA molecules HLA class 1 molecule and HLA class 2 molecule
  • MHC-monomers and multimers thereof containing the epitope peptide of the present invention can be prepared, for example, by known methods (US Patent Number 5,635,363, French Application Number FR9911133). More specifically, MHC-monomers, which are complexes of HLA molecules purified from transgenic hosts for protein expression and epitope peptides of the present invention, are formed in a folding solution. Here, a biotin-binding site is previously added to the C-terminus of the HLA molecule, and biotin is added to this site after MHC-monomer formation. MHC-multimers can be prepared by mixing commercially available dye-labeled streptavidin and biotinylated MHC-monomers at the desired molar ratio (eg, 1:4 for tetramer formation). .
  • the number of MHC-monomers forming an MHC-multimer is not particularly limited, but is usually 2 to 10, preferably 4 to 8, more preferably 4 (MHC tetramer reagent). or 5 (MHC pentamer reagent), particularly preferably 4.
  • MHC-monomers and multimers thereof of the present invention include HLA-DR8-restricted epitope peptides (peptides consisting of the amino acid sequence set forth in SEQ ID NO: 84 and/or amino acid sequences set forth in SEQ ID NO: 85 MHC-monomers and their tetramers, HLA-A24-restricted epitope peptides (peptides consisting of the amino acid sequence set forth in SEQ ID NO: 86 and/or SEQ ID NO: from the amino acid sequence set forth in 87 MHC-monomers and their tetramers, including peptides consisting of
  • the differentiation stage of CTL can be examined (Seder RA et al, Nat Immunol. 2003). 4:835-842).
  • a combination of MHC-multimers and antibodies against cell surface proteins for example, antibodies against CD62L, CCR7, CD45RA, etc.
  • the differentiation stage of CTL can be examined (Seder RA et al, Nat Immunol. 2003). 4:835-842).
  • an intracellular cytokine staining method it can also be used for functional evaluation of CTL.
  • the present invention provides a method for detecting SARS-COV-2-specific T cells in a test sample, comprising the step of reacting the MHC-monomer or MHC-multimer of the present invention with a test sample. also provide.
  • the "test sample” is not particularly limited, but for example, infected persons, persons suspected of being infected with SARS-COV-2, healthy persons (SARS-COV-2 non-infected persons, SARS-COV-2 Those who have recovered from infectious diseases, etc.), SARS-COV-2 (new corona) vaccines, etc., isolated from peripheral blood, blood (whole blood), PBMC, T cells, TIL (tumor-infiltrating lymphocytes: tumor tissue infiltration sexual lymphocytes).
  • a test sample may be stimulated by contacting it with the epitope peptide of the present invention before reacting with the MHC-monomer or MHC-multimer of the present invention.
  • T cells CTL, Th cells, TCR transgenic cells
  • TCL T cells
  • TCR TCR transgenic cells
  • MHC-monomer or MHC-multimer of the present invention By using the MHC-monomers or MHC-multimers of the present invention, it can be performed using a flow cytometer, a microscope or the like.
  • the present invention can also provide a method of detecting T cells using the epitope peptide of the present invention. More specifically, the epitope peptide of the present invention is brought into contact with a test sample, and cytokines, chemokines and cell surface molecules produced by T cells targeting SARS-CoV-2 induced by the contact are selected.
  • the present invention also provides a method of detecting T cells targeting SARS-CoV-2 in said sample, comprising detecting at least one molecule that is targeted to the target of SARS-CoV-2.
  • test sample is not particularly limited, and is exemplified by, for example, the above-mentioned items.
  • contact with it is not particularly limited, and can be carried out, for example, as described in "CTL preparation method 4" below.
  • the "cytokine, chemokine, cell surface molecule" detected by the above method is not particularly limited, but examples include IFN- ⁇ , CD4, CD8, CD3, TNF ⁇ , IL-2, Granzyme B, and CD107a. , 4-1BB (CD137), CD28, OX40 (CD134), CTLA-4 (CD152), PD-1 (CD279), GITR, ICOS, CD45RO, CD45RA, CCR1, CCR2, CCR5, CCR7.
  • Methods for detecting these molecules are not particularly limited, and examples thereof include immunological methods such as ELISPOT assay, ELISA method, and intracellular staining method, as shown in Examples below.
  • the data (quantitative data, etc.) of the T cells specific to SARS-COV-2 detected in the test sample obtained in this way are obtained from the subject, etc. from whom the sample is derived. It shows the ability of T cells to respond to SARS-COV-2. Therefore, such a detection method can be used to compare the ability of T cells to respond to the SARS-COV-2 original strain (wild strain) and its mutant strain.
  • the test sample is derived from a vaccinated person
  • the T cell response ability (cell-mediated immunity) against SARS-COV-2 after the inoculation should be evaluated over time, depending on the number of inoculations, the period after inoculation, etc. It is also possible to monitor the transition.
  • the vaccine to be administered is under development, etc., it is possible to evaluate its performance through such time-lapse monitoring of the T cell response ability.
  • T cells that are induced by the epitope peptide of the present invention and produce the cytokines and the like can be detected.
  • the present invention provides a SARS-CoV-2 targeting T comprising at least the epitope peptide of the present invention and a substance for detecting at least one molecule selected from cytokines, chemokines and cell surface molecules. Kits for detecting cells are also provided.
  • the "substance" for detecting at least one molecule selected from cytokines, chemokines and cell surface molecules is not particularly limited, but immunological methods can be used for the detection as described above. , antibodies are suitable examples thereof.
  • the antibody is usually bound with a labeling substance.
  • labeling substance is not particularly limited as long as it can be detected by binding it to an antibody.
  • enzymes fluorescent dyes such as fluorescein isothiocyanate (FITC) and rhodamine isothiocyanate (RITC), fluorescent proteins such as allophycocyanin (APC) and phycoerythrin (R-PE), radioactive isotopes such as 125 I, latex particles , colloidal gold particles, avidin, biotin, and the like.
  • a chromogenic substrate for example, 3,3',5,5'-tetramethylbenzidine (3,3',5,5'-tetramethylbenzidine ( TMB)
  • chemiluminescent substrates e.g., AMPPD (3-(2′-spiroadamantane)-4-methoxy-4-(3′-phosphoryloxy)phenyl-1,2-dioxetane
  • AMPPD tripeptide
  • the antibody is not bound with a labeling substance, but is indirectly detected using a secondary antibody bound with a labeling substance, etc. method can also be used.
  • secondary antibody refers to an antibody that exhibits reactivity with an antibody that directly binds to an antigen (primary antibody).
  • protein G, protein A, or the like bound with a labeling substance may be used instead of the secondary antibody.
  • the biotin-avidin system can also be used to bind the antibody and labeling substance.
  • an antibody is biotinylated, an avidinized labeling substance is allowed to act on it, and the interaction between biotin and avidin is used to bind the labeling substance to the antibody.
  • sandwich methods such as ELISPOT assay and ELISA method are suitable.
  • the substance for detecting the molecule takes the form of a capture antibody and a detection antibody. That is, in the sandwich method, a target substance to be detected is captured by an immobilized capture antibody, recognized by a detection antibody bound to a labeling substance, and after B/F separation (washing), depending on the type of labeling substance, detect accordingly.
  • the target substance is recognized by the detection antibody to which the labeling substance is bound, and while B/F separation is performed, the target substance is captured by the immobilized capture antibody, and detection according to the type of labeling substance is performed. You can do it.
  • the solid phase may be, for example, a film material such as a polyvinylidene fluoride (PVDF) film, a plate such as a plastic plate, particles such as magnetic particles or latex particles, or a combination thereof (for example, a PVDF film attached to the surface). plate) can be used.
  • PVDF polyvinylidene fluoride
  • the capture antibody may be directly immobilized on the solid phase, or indirectly.
  • the capture antibody can be indirectly immobilized on the solid phase by immobilizing a substance that binds to the capture antibody on the solid phase and allowing the capture antibody to bind to the substance.
  • Substances that bind to the capturing antibody include, but are not limited to, the above secondary antibody, protein G, protein A, and the like.
  • an avidinated solid phase can be used.
  • the sandwich method such as the ELISPOT assay may contain the following substances as its components.
  • the present invention also includes nucleic acids encoding the epitope peptides of the present invention, or expression vectors containing such nucleic acids.
  • a nucleic acid encoding the epitope peptide of the present invention is important for producing the epitope peptide in a host using gene recombination technology.
  • usage frequency of amino acid codons codon usage
  • nucleic acid encoding the epitope peptide of the present invention is also important as a genetic vaccine, as described later, and can be transferred as a naked nucleic acid or using an appropriate viral or bacterial vector (Berzofsky JA et al, J Clin Invest. 2004; 114: 450-462, Berzofsky JA et al, J Clin Invest. 2004; 113: 1515-1525).
  • Suitable bacterial vectors include, for example, those derived from bacteria of the genus Salmonella.
  • Suitable viral vectors are, for example, retroviral vectors, EBV vectors, vaccinia vectors, Sendai virus vectors, lentiviral vectors.
  • a suitable vaccinia vector is a modified vaccinia ankara vector.
  • a preferred embodiment of the vector of the present invention is a vector capable of expressing the epitope peptide of the present invention.
  • Said vector is usually a vector carrying a DNA construct having a structure in which the nucleic acid of the present invention is operatively linked downstream of a promoter.
  • promoters they may also have regulatory sequences such as terminators, enhancers, polyadenylation signal sequences, origin of replication sequences (ori), and the like.
  • the arrangement of these regulatory sequences is not particularly limited, but those skilled in the art can appropriately adjust and arrange them.
  • the "vaccine” is not particularly limited as long as it can suppress any of infection, onset, aggravation, etc. of SARS-CoV-2. Vaccines using cells and genetic vaccines can be adopted.
  • the epitope peptides of the present invention can be used as peptide vaccines in active immunotherapy. That is, a vaccine comprising the epitope peptide of the present invention is administered to a patient, and T cells that recognize the complex of the peptide and HLA molecule are proliferated in the body to treat and prevent SARS-CoV-2 infection. can help.
  • the epitope peptide to be used may be of only one type, or may be of two or more types (e.g., 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, depending on the intended use of the vaccine). , 9 or more, 10 or more) epitope peptides can be mixed and used. Also, as described above, epitope peptides can be linked and used in the form of fusion peptides.
  • Antigen-presenting cells presented with the epitope peptide of the present invention can be used as vaccines in active immunotherapy.
  • the term "antigen-presenting cells” means, for example, dendritic cells, B cells, macrophages, certain types of T cells, etc., and is a cell that expresses on its cell surface an HLA molecule to which the peptide can bind. , means those having the activity of inducing T cells.
  • Antigen-presenting cells in which epitope peptides are presented are 1.
  • Epitope peptide-pulsed antigen-presenting cells prepared by mixing antigen-presenting cells and epitope peptides in an appropriate culture medium, for example, for 30 minutes to 1 hour.
  • “Artificially prepared artificial antigen-presenting cells with antigen-presenting ability” means, for example, immobilizing complexes of HLA molecules and epitope peptides on beads such as lipid bilayer membranes, plastics, or latex to stimulate T cells. It is prepared by immobilizing a co-stimulatory molecule such as CD80, CD83, or CD86, or by immobilizing an antibody or the like that acts agonistically on CD28 or the like, which is a ligand on the T cell side that binds to the co-stimulatory molecule. (Oelke M et al., Nat Med. 2003; 9:619-624; Walter S et al., J Immunol. 2003; 171:4974-4978; Oosten LE et al., Blood 2004; 104:224-226).
  • Nucleic acids encoding epitope peptides of the present invention can be used for DNA vaccines, recombinant virus vector vaccines, and the like in active immunotherapy.
  • it is desirable to change the nucleic acid sequence of the epitope peptide to a codon usage suitable for the recombinant vaccine or the host for producing the recombinant virus vaccine (Casimiro, DR et al. J. Virol., 2003). 77:6305-6313, Berzofsky JA et al, J Clin Invest. 2004; 114:450-462).
  • nucleic acids encoding epitope peptides of the present invention can be used as RNA vaccines.
  • RNA forms a complex with a cationic peptide such as protamine, and can be protected from RNase.
  • lipid nanoparticles pegylated lipid nanoparticles, etc.
  • liposomes etc. are used for encapsulation
  • RNA viruses retroviruses, lentiviruses, alphaviruses, rhabdoviruses, etc.
  • viral vectors can also be taken.
  • Substitutions with modified nucleic acids can be introduced from the viewpoint of reactivity with Toll-like receptors (TLR) and production of antigenic peptides.
  • TLR Toll-like receptors
  • the addition of a CAP structure to RNA using the Anti-Reverse Cap Analogues (ARCA) method, and the replacement of Cap0 to Cap1 structure by 2'-O methyltransferase treatment can also be appropriately used in the nucleic acid (RNA) of the present invention. .
  • the epitope peptides of the present invention can be used for preparation of passive immunotherapeutic agents. That is, using the epitope peptide of the present invention, T cells targeting SARS-CoV-2 are prepared as described below, and if necessary, purified to increase purity, and the cells are further treated with human albumin. By suspending it in PBS or the like, it can be used as a passive immunotherapeutic agent against SARS-CoV-2.
  • T cells targeting SARS-CoV-2 are, for example, (1) A step of stimulating mononuclear cells with an epitope peptide of the present invention, a complex of the peptide and HLA molecules, a multimer of the complex, or an antigen-presenting cell that presents the complex on its surface. or (2) a conjugate obtained by reacting a complex of an epitope peptide of the present invention and an HLA molecule or a multimer of the complex with mononuclear cells and binding the T cell to the complex or the multimer. and isolating T cells from the conjugate.
  • lymphocytes mean lymphocytes and monocytes, and examples thereof include peripheral blood mononuclear cells (PBMC) and cord blood mononuclear cells.
  • PBMC peripheral blood mononuclear cells
  • cord blood mononuclear cells PBMC
  • “Stimulation" of mononuclear cells by the epitope peptide etc. of the present invention can be carried out, for example, by adding the epitope peptide etc. of the present invention to the medium in which the mononuclear cells are being cultured.
  • mononuclear cells may be cultured on a plate on which the epitope peptide of the present invention is immobilized.
  • antigen-presenting cells that can be used may be any cells that express HLA on their surface to which the epitope peptide of the present invention can bind, and examples thereof include dendritic cells, B cells, and macrophages.
  • antigen-presenting cells according to the present invention may be those whose proliferative ability has been lost by X-ray irradiation, mitomycin treatment, or the like before stimulating mononuclear cells.
  • the conditions for stimulating mononuclear cells may be any conditions suitable for maintaining mononuclear cells. , 37° C., 5% CO 2 for 1 to 7 days.
  • the medium contains IL-2, IL-7, IL-15, PHA, anti-CD3 antibody, IFN- ⁇ , IL-12, anti-IL-4 from the viewpoint of stimulating T cells.
  • Antibodies or combinations thereof may be added to the medium.
  • Toll-like receptor (TLR) agonists such as picibanil (OK-432) and CpG DNA may be added to the medium.
  • this incubation of antigen-presenting cells and mononuclear cells may be repeated multiple times to ensure the number of T cells required for passive immunotherapy.
  • the conditions for the reaction between the complex or multimers of the complex and mononuclear cells may be suitable for maintaining mononuclear cells, etc., as in the case of the stimulation.
  • the isolation of T cells from the conjugate formed by such reaction is not particularly limited. It can be performed by detecting it using a cell sorter, a microscope, or the like. Alternatively, T cells can be isolated by immobilizing the complex or multimers of the complex on a carrier (plate or the like) and washing the carrier after the reaction.
  • the T cells thus produced include CD4 + T cells that produce cytokines specifically to the epitope peptide of the present invention (antigen-specific CD4 + T cells) and/or the epitope of the present invention.
  • CD8+ T cells that produce peptide-specific cytokines are included.
  • the epitope peptide of the present invention can be isolated using a carrier on which the epitope peptide of the present invention is immobilized.
  • T cells can also be purified using secreted cytokines as indicators.
  • antigen-specific CD4+ T cells produce cytokines such as IFN- ⁇ , IL-2, and IL-4, they should be purified by flow cytometry, affinity chromatography, and magnetic bead purification using antibodies against these. can be done.
  • antigen-specific CD8+ T cells produce cytokines such as IFN- ⁇ and TNF- ⁇ , they can be purified by flow cytometry, affinity chromatography, and magnetic bead purification using antibodies against these.
  • T cells can be purified by flow cytometry, affinity chromatography, or magnetic bead purification using antibodies against proteins expressed on the cell surface of each T cell.
  • Proteins expressed on the cell surface of antigen-specific CD4+ T cells include CD29, CD45RA, CD45RO, etc.
  • Proteins expressed on the cell surface of antigen-specific CD8+ T cells include CD107a, CD107b, CD63, CD69 etc. are mentioned.
  • CTL preparation method 1 PBMCs are reacted with an appropriate concentration of the MHC-multimers of the present invention. Since SARS-CoV-2-specific CTL bound to MHC-multimers are stained with a labeling dye, only stained CTL are isolated using a cell sorter, microscope, or the like. SARS-CoV-2-specific CTLs isolated in this way are anti-CD3 antibodies, PHA, IL-2 and other T cell stimulating agents, X-ray irradiation, mitomycin treatment, etc. Antigens whose proliferation ability has been lost Stimulated proliferation with presenting cells to ensure the number of cells required for passive immunotherapy.
  • CTL preparation method 2 The MHC-monomer and/or MHC-multimer of the present invention are immobilized on a sterile plate or the like, and PBMC are cultured on the immobilized plate. In order to isolate the CTL bound to the MHC-monomer and/or MHC-multimer immobilized on the plate, after washing away other cells floating without binding, the CTL remained on the plate Only CTLs are suspended in fresh medium. The CTLs isolated in this manner are stimulated and proliferated with anti-CD3 antibodies, T cell stimulating agents such as PHA and IL-2, antigen-presenting cells whose proliferative capacity has been lost by X-ray irradiation, mitomycin treatment, etc. Ensure the number of cells required for passive immunotherapy.
  • CTL preparation method 3 The MHC-monomer and/or MHC-multimer of the present invention and co-stimulatory molecules such as CD80, CD83, and CD86, or acting agonistically on CD28, which is a T-cell ligand that binds to co-stimulatory molecules.
  • An antibody or the like is immobilized on a sterile plate or the like, and PBMC are cultured on the immobilized plate. Then, for example, two days later, IL-2 is added to the medium and cultured at 37° C. for 7 to 14 days in a 5% CO 2 constant temperature bath. Collect the cultured cells and continue culturing on a new solid-phase plate. By repeating this operation, the number of CTL required for passive immunotherapy is secured.
  • CTL preparation method 4 PBMCs or T cells are directly stimulated with the epitope peptide of the present invention, or stimulated with antigen-presenting cells pulsed with the peptide, gene-introduced antigen-presenting cells, or artificially prepared artificial antigen-presenting cells having antigen-presenting ability. . Then, for example, CTLs induced by stimulation are cultured at 37° C. in a 5% CO 2 constant temperature bath for 7-14 days. Stimulation with an epitope peptide and IL-2 or antigen-presenting cells and IL-2 is repeated once a week to secure the number of CTLs required for passive immunotherapy.
  • the peptide and PBMC are preferably brought into contact in a medium, more preferably in a medium containing plasma.
  • the medium for preparing CTL is not particularly limited, and a known medium (eg, RPMI1640 medium) can be used as appropriate.
  • the plasma concentration in the medium is preferably 1 to 10%, more preferably 3 to 10%, even more preferably 5 to 10%, sufficient plasma in long-term culture 5% is particularly preferable from the viewpoint that the amount is easily ensured.
  • CTL purification method In the CTL preparation method, when the ratio of CTLs targeting SARS-CoV-2 is low, the CTLs can be recovered with high purity by using the following method at any time.
  • SARS-CoV-2-targeting CTLs can be purified using released cytokines and the like.
  • cytokines released from CTLs are captured on the cell surface with a specific antibody, stained with an anti-cytokine labeling antibody, and then magnetically labeled with a labeling substance-specific It is also possible to purify using a magnetic labeling cell separation device after reacting with an antibody.
  • CTLs targeting SARS-CoV-2 isolated in this way are stimulated and proliferated with anti-CD3 antibodies, PHA, IL-2 and other T-cell stimulating agents to ensure the number of cells required for passive immunotherapy. do.
  • Cell surface proteins e.g., CD137, CD107a, CD107b, CD63, CD69, etc.
  • a cell surface protein-specific antibody Betts MR et al., J Immunol Methods.2003;281:65-78, Trimble LA et al., J Virol.2000;74:7320-7330.
  • CTLs can also be similarly purified by magnetically labeling anti-IgG antibodies against such antibodies.
  • CTLs can be purified by coating these antibodies on a plastic plate for culture, culturing stimulated PBMC using this plate, and washing away the cell population that does not bind to the plate.
  • CTLs targeting SARS-CoV-2 isolated in this way are stimulated and proliferated with anti-CD3 antibodies, PHA, IL-2 and other T-cell stimulating agents to ensure the number of cells required for passive immunotherapy. (see WO2008/023786).
  • the cytotoxic activity of the CTL cells prepared in this manner can be evaluated, for example, by IMMUNOCYTO Cytotoxicity Detection Kit (MBL) that labels target cells with a fluorescent dye CFSE (Dojindo), or LDH released from target cells.
  • CFSE fluorescent dye
  • LDH released from target cells can be measured using Cytotoxicity Detection Kit (Roche) or the like.
  • CFSE fluorescent dye
  • kits for inducing SARS-CoV-2-targeted cytotoxic T cells comprising the epitope peptides of the present invention, useful in the various methods described above.
  • the epitope peptide of the present invention may be contained in the form of MHC-monomers, MHC-multimers, and antigen-presenting cells that present the peptide.
  • the kit of the present invention may contain mononuclear cells (PBMC, etc.) to be reacted with the peptide, reagents (dyes, secondary antibodies) for detecting the peptide, Furthermore, media for culturing mononuclear cells or induced T cells, T cell stimulating agents for expanding T cells, and the like may be included.
  • PBMC mononuclear cells
  • reagents dye, secondary antibodies
  • media for culturing mononuclear cells or induced T cells, T cell stimulating agents for expanding T cells, and the like may be included.
  • the present invention also provides a pharmaceutical composition (drug) containing the epitope peptide of the present invention.
  • SARS-CoV-2 infection to be treated or prevented by the pharmaceutical composition of the present invention is also referred to as novel coronavirus infection (COVID-19), and SARS-related coronavirus (SARSr-CoV).
  • SARS-CoV-2 SARS coronavirus 2, severe respiratory syndrome corona virus 2 is the etiology.
  • treatment includes not only complete recovery from an infectious disease, but also alleviation or improvement of its symptoms and suppression of its progress.
  • prevention includes control or delay of infection or control or delay of onset.
  • the cells (antigen-presenting cells, T cells) contained in the pharmaceutical composition of the present invention may be independently derived from the subject to whom the composition is administered (autologous), or It may also be an allogeneic relationship in which the subject and HLA type match.
  • the pharmaceutical composition of the present invention contains the epitope peptide of the present invention, various excipients and other pharmaceutically active ingredients that are commonly used for pharmaceutical formulations, as long as they do not inhibit their action on the epitope peptide of the present invention. etc., and can be formulated using methods known in the art.
  • such pharmaceutical compositions include injections or solid formulations containing the epitope peptide of the present invention as an active ingredient.
  • Epitope peptides can be formulated in neutral or salt form.
  • pharmaceutically acceptable salts include inorganic salts such as hydrochloric acid and phosphoric acid, and organic acids such as acetic acid and tartaric acid.
  • the antigen-presenting cells or T cells of the present invention can be prepared using excipients that are pharmaceutically acceptable and compatible with the activity of the peptide or the cells, such as water, saline, dextrose, ethanol, glycerol, and liquid medium. , DMSO (dimethylsulfoxide), and other adjuvants (e.g., aluminum hydroxide, KLH, MPL, QS21, complete Freund's adjuvant, incomplete Freund's adjuvant, aluminum phosphate, BCG, alum, TLR agonists such as CpG DNA ), etc., or a combination thereof.
  • adjuvants e.g., aluminum hydroxide, KLH, MPL, QS21, complete Freund's adjuvant, incomplete Freund's adjuvant, aluminum phosphate, BCG, alum, TLR agonists such as CpG DNA ), etc., or a combination thereof.
  • auxiliary agents such as albumin, wetting agents, and e
  • cytokines eg, IL-12, IL-18, GM-CSF, IFN ⁇ , IFN ⁇ , IFN ⁇ , IFN ⁇ , Flt3 ligand
  • cytokines eg, IL-12, IL-18, GM-CSF, IFN ⁇ , IFN ⁇ , IFN ⁇ , IFN ⁇ , Flt3 ligand
  • the pharmaceutical composition of the present invention can be administered parenterally and orally, but parenteral administration is generally preferred.
  • parenteral administration include nasal administration, subcutaneous injection, intradermal injection, intramuscular injection, intravenous injection, injections such as local injections to affected areas, and suppositories.
  • parenteral administration it can be prepared as a mixture with excipients such as starch, mannitol, lactose, magnesium stearate and cellulose.
  • the pharmaceutical composition of the present invention may be used in combination with known drugs used for treating or preventing SARS-CoV-2 infection.
  • known agents include, from a therapeutic point of view, anti-IL6 antibodies, corticosteroids, and antiviral agents (RNA polymerase inhibitors, etc.).
  • antiviral agents RNA polymerase inhibitors, etc.
  • SARS-CoV-2 virus vaccines other SARS-CoV-2 RNA vaccines, other SARS-CoV-2 DNA vaccines, SARS-CoV-2 protein vaccines, SARS-CoV-2 Attenuated vaccines are included.
  • IFN interferon
  • the pharmaceutical composition of the present invention is usually used for humans, but can also be used for other animals (various livestock, poultry, pets, experimental animals, etc.).
  • the subject to be administered the pharmaceutical composition of the present invention is not particularly limited, and not only those suffering from SARS-CoV-2 infection but also those not suffering from it (uninfected). or have already recovered from SARS-CoV-2 infection.
  • the pharmaceutical composition of the present invention shows symptoms of SARS-CoV-2 infection (fever, cough, dysgeusia, dysosmia, etc.), close contact with a SARS-CoV-2 infected person is confirmed. can be administered at the time given.
  • compositions of the invention are administered in therapeutically effective amounts.
  • the amount to be administered will depend on the subject being treated, the immune system, and the required dosage will be determined by the judgment of the clinician.
  • an appropriate dosage is 1 to 100 mg of epitope peptide per patient, and 10 6 to 10 9 of antigen-presenting cells or T cells targeting SARS-CoV-2 presented with the peptide.
  • the administration interval can be set according to the subject and purpose.
  • immune checkpoint inhibitors such as anti-PD-1 antibodies, anti-PD-L1 antibodies, and anti-CTLA4 antibodies in combination. can also be done according to
  • the present invention thus also provides a method for treating or preventing SARS-CoV-2 infection in a subject, comprising administering the pharmaceutical composition of the present invention to the subject.
  • the product of the pharmaceutical composition of the present invention or its instructions may be labeled as being used for treating or preventing SARS-CoV-2 infection.
  • labeled on the product or instruction manual means that the label is attached to the main body, container, packaging, etc. of the product, or instruction manuals, attached documents, advertising materials, and other printed materials that disclose product information It means that the display is attached to etc.
  • the epitope polypeptide of the present invention, antigen-presenting cells presented with the peptide, or T cells induced by the antigen-presenting cells or the like suppression of SARS-CoV-2 infection, lysis of the virus and cells infected with it, etc. are induced.
  • the present invention will be described in more detail below based on examples, but the present invention is not limited to the following examples.
  • the experimental method used is a method commonly used in the relevant technical field, such as the method described in "Immunology Experiment Procedure", edited by Shunsuke Migita, Susumu Konda, Tasuku Honjo, Toshiyuki Hamaoka. board.
  • SARS-CoV-2-specific T cell epitope candidate peptides were selected for the amino acid sequence of the spike (S) protein (GENBANK: QHD43416.1).
  • S protein is a protein composed of 1273 amino acids in total length, and no isoform has been reported.
  • T cell epitope candidate peptides consisting of 8 to 10 amino acids that have a binding motif for the HLA-A24 molecule.
  • Table 3 a total of 15 epitope candidate peptides consisting of 9 amino acids having a binding motif for HLA-A24 molecules were selected from the amino acid sequence of SARS-CoV-2, and these peptides were routinely used. It was chemically synthesized according to the method.
  • an EBV LMP2 antigen-derived HLA-A24-restricted epitope peptide (PYLFWLAAI, SEQ ID NO: 16) was synthesized as a positive control peptide.
  • an EBV LMP2 antigen-derived HLA-A11-restricted epitope peptide (SSCSSSCPLSK, SEQ ID NO: 17) was synthesized.
  • the present inventors conducted a folding test using 17 types of peptides listed in Tables 3 and 4. Specifically, HLA-A*24:02 and ⁇ 2-microglobulin expressed and purified using an E. coli expression system and the various synthetic peptides described above are added to a folding solution and mixed, and then the solution is added to the folding solution. Samples were collected over time and analyzed using a gel filtration column. The composition of the folding solution is 100 mM Tris, 400 mM arginine, 2 mM EDTA, 5 mM GSH, 0.5 mM GSSG (see Dongliang Li et al., Cancer Sci., April 2019; 110(4): 1156-1168). .
  • the HLA-monomer has a higher molecular weight than the starting material. Its large size results in faster elution times in gel filtration column analysis. Also, the HLA-monomer formation amount can be calculated from the peak area obtained by the absorption wavelength of 280 nm. On the other hand, almost no HLA-monomer formation is detected with synthetic peptides that do not have binding properties with HLA molecules.
  • FIG. 2 shows peak areas indicating HLA-monomer formation as a result of gel filtration column analysis performed on various synthetic peptides after 7 days of folding.
  • the insoluble fraction When expressing and purifying HLA molecules and ⁇ 2-microglobulin using an E. coli expression system, the insoluble fraction is purified as inclusion bodies, and then solubilized in 8M urea.
  • the results of the gel filtration column analysis as shown in FIG. 1, detect aggregates at 7-8 minutes that do not lead to HLA-monomer formation. The HLA-monomer peak is then detected around 10 minutes and ⁇ 2-microglobulin around 14 minutes. After 15 minutes, components of the folding solution and peptides will be detected.
  • the SARS-CoV-2-derived candidate peptides showed sufficient HLA-monomer formation compared to the negative control, i.e. It was found to have binding properties with HLA molecules.
  • HLA-tetramer reagents were prepared by subjecting the above 15 candidate peptides to peptide exchange reaction using Quickswitch Quant Tetramer Synthesis Kit (MBL).
  • the HLA-tetramer molecule included in the kit is bound to a low-affinity exiting peptide to maintain its structure.
  • the target peptide was added thereto to carry out an exchange reaction with the Exiting peptide. After 4 hours, the HLA-tetramer reagent was recovered.
  • the kit also contains an antibody (FITC-labeled) that detects the exiting peptide bound on HLA.
  • FITC-labeled an antibody that detects the exiting peptide bound on HLA.
  • MFI FITC fluorescence intensity
  • FIG. 3 shows, as representative measurement results, the FITC fluorescence intensity of the tetramer molecule after peptide exchange, that before peptide exchange, and the FITC fluorescence intensity of only the dedicated particles when the target peptide is the NYN peptide. The results of analysis with a cytometer are shown.
  • the abundance ratio of the exiting peptide is 0%, so the peptide exchange rate at this time is 100%.
  • the peptide exchange rate at that time is 0%.
  • the HLA-tetramer reagent prepared in this manner is abbreviated as, for example, A24-NYN-tetramer, which indicates that it is an HLA-tetramer reagent prepared using the NYN 9mer peptide.
  • CTL Cytotoxic T cell
  • CTL induction medium 2-mercaptoethanol (final concentration 55 ⁇ M), L-glutamine (final concentration 2 mM), antibiotics streptomycin (final concentration 100 ⁇ g/mL) and penicillin G were added to Hepes modified RPMI1640 medium (Sigma). (final concentration 100 U/mL), and a medium containing 5% plasma components (in addition to this, insulin, transferrin, selenite, pyruvic acid, human serum albumin, non-essential amino acid solution, etc. were added). can also be used).
  • a group of peptides each consisting of the amino acid sequences set forth in SEQ ID NOs: 1 to 5 (group 1), a group of peptides each consisting of the amino acid sequences set forth in SEQ ID NOs: 6 to 10 (Group 2) and a group of peptides (group 3) consisting of the amino acid sequences of SEQ ID NOS: 11 to 15 were added as mixed peptides at a concentration of 1 to 20 ⁇ g/mL, respectively, and cultured.
  • IL-2 was added to a final concentration of 20-100 U/mL and cultured for another week.
  • the above grouped mixed peptides were further added to this to a concentration of 1 to 20 ⁇ g/mL, and cultured for 1 week.
  • a round-bottomed culture dish capable of exchanging carbon dioxide gas.
  • a culture microtest plate (BD) was used.
  • IFN- ⁇ ELISPOT assay SARS-CoV-2 antigen-specific CTL were detected by IFN- ⁇ ELISPOT assay using ELISPOT Set (BD) kit. Specifically, about two weeks after the addition of the mixed peptide, a portion of the cell population was collected and adjusted to 5 ⁇ 10 5 cells/mL. These samples were spread at 100 ⁇ L/well on an ELISPOST assay plate on which an anti-IFN- ⁇ antibody was immobilized, and allowed to stand in a CO 2 incubator at 37° C. for 30 minutes.
  • BD ELISPOT Set
  • IFN ⁇ spots are clear when stimulated with the NYN 9mer peptide or the QYI 9mer peptide, compared to when no peptide pulse is applied ("(-)" in the figure). detected in large numbers. That is, it was clarified that CTLs specific to each of these peptides and producing IFN- ⁇ were induced in PBMC cultured with the addition of NYN peptide or QYI peptide.
  • the numbers in the dot plot development diagram are (Q1 + Q3) when the areas obtained by dividing the development diagram into four are denoted as Q1 (upper left), Q2 (upper right), Q3 (lower left), and Q4 (lower right). It shows the percentage of Q1 in minutes.
  • an HLA-tetramer reagent for negative control an HLA-tetramer synthesized using an HIV envelope antigen-derived peptide (RYLRDQQLL, SEQ ID NO: 18) (denoted as "A24-HIV-tetramer” in the figure) was used.
  • CTL cells that reacted with the HLA-tetramer reagent and anti-CD8 antibody were seeded one by one in a 96-well plate (Corning) using a flow cytometer.
  • human AB serum (Lonza Japan) at a final concentration of 10%, penicillin/streptomycin at a final concentration of 1% (Life Technologies), GlutaMAX at a final concentration of 1% (Life Technologies) was added to the AIM-V culture medium.
  • Co.) IL-2 (Shionogi Co.) at a final concentration of 100 U/mL
  • PHA Wi- Co.
  • Mini gene 1 DNA encoding the NYN peptide ATGAATTATAATTACCTGTATAGATTGTTTTAA (SEQ ID NO: 56)
  • Mini gene 2 DNA encoding signal sequence and NYN peptide ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCATTCCACTGGTGACAATTATAATTACCTGTATAGATTGTTTTAA (SEQ ID NO: 58)
  • Mini gene 3 DNA encoding NYN peptide and 10 amino acids before and after it ATGTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGATAA (SEQ ID NO: 60).
  • each Minigene plasmid prepared was amplified and purified using the EndoFree Plasmid Giga kit (Qiagen). Also, the concentrations of these plasmid DNAs were obtained by measuring the absorbance (260 nm).
  • HEK293T (293T) cells and HLA-A24 transfected HEK293T cells (293T/HLA-A*24+) were each cultured to a density of 70%.
  • Various Mini gene plasmids were then introduced into these cells using FuGENE HD (Roche). After culturing at 37° C. for 48 hours, cells were harvested.
  • IFN- ⁇ ELISPOT Assay The CTL single clone (1-C1) established above was plated on an ELISPOST assay plate on which an anti-IFN- ⁇ antibody was immobilized so that 2 ⁇ 10 4 cells/well, 37 30 minutes in a CO2 incubator at °C. Minigene-expressing 293T cells or 293T/HLA-A*24 cells were added to the plate at 1 ⁇ 10 4 cells/well and allowed to stand overnight in a CO 2 incubator at 37°C. did. After washing, a biotin-labeled anti-IFN- ⁇ antibody was added and allowed to react at room temperature for 2 hours. The reaction solution was washed, and HRP-labeled streptavidin was added to react. After washing, 100 ⁇ L/well of a coloring agent was added and reacted for 15 to 30 minutes to detect IFN- ⁇ secreted by CTL as spots. The results obtained are shown in FIG.
  • NYN 9mer peptide is an endogenous epitope peptide that is produced through intracellular processing and presented via HLA.
  • SARS-CoV-2-derived NYN 9mer peptide and QYI 9mer peptide have the function of proliferating SARS-CoV-2-specific CTL in peripheral blood.
  • These peptides were also HLA-A*24:02-restricted SARS-CoV-2 antigen-specific, as these cell populations were capable of producing IFN- ⁇ and were detectable with HLA-tetramers. It was found to be a targeted CTL epitope peptide.
  • the NYN 9mer peptide was also demonstrated to be an endogenously presented CTL epitope peptide.
  • NYN 30mer peptide NYNYLYRLFRKSNLKPFERDISTEIYQAGS consisting of NYN 9mer followed by 21 amino acids (SEQ ID NO: 19) Positions in the S protein from SARS-CoV-2: 448-477.
  • peripheral blood was collected from a donor, and PBMCs were collected by density gradient separation using lymphoprep (Alere Technologies AS 1114547). Furthermore, CD14-positive cells were separated from PBMC using a magnetic cell separation system (Miltenyi 130-050-201). Next, CD14-positive cells were treated with 50 ng/mL GM-CSF (peprotech AF-300-03) and 50 ng/mL IL-4 (peprotech AF-200-04) in the presence of 3 mL of human cell medium, They were differentiated into dendritic cells (DCs) by culturing for 7 days in a 6-well culture plate (Falcon 353046).
  • DCs dendritic cells
  • the human cell medium used was AIM-V medium (ThermoFisher SCIENTIFIC 0870112DK) to which 3% human AB type serum (Innovative RESEARCH IPLA-SERAB) inactivated at 56°C for 30 minutes was added.
  • CD4-positive T cells were also separated from PBMC using a magnetic cell separation system (Miltenyi 130-045-101). Then, 1 ⁇ 10 5 CD4-positive T cells were cultured together with 5 ⁇ 10 4 DCs in the presence of NYN 30mer peptide 3 ⁇ g/mL in a 96-well flat-bottom culture plate (Falcon 353072) using 200 ⁇ L of human cell medium. Cultivation was started.
  • the peptide and inactivated PBMC (1 x 10 6 cells) were used to stimulate the CD4-positive T cells (1 x 10 6 cells) every other week. It was subjected to various experiments described in .
  • 5 ⁇ 10 4 Th cells and 1 ⁇ 10 5 PBMCs were added to 96 wells using 200 ⁇ L of human cell culture medium in the presence of 3 ⁇ g/mL of NYN 30mer peptide. They were co-cultured in a flat-bottomed culture plate.
  • an anti-HLA-DR antibody BioLegend 307612
  • an anti-HLA-class I antibody BioLegend 311412
  • the NYN 30mer peptide-specific Th cells showed a peptide-specific reaction only to L-DR53 cells. It turned out to be stimulating.
  • B cells immortalized by EV virus infection with DPB1*02:01 or DPB1*05:01 were treated with 3 ⁇ g/mL of the NYN 30mer peptide. After culturing for 2 hours in the presence of the peptide, the peptide remaining in the medium was completely washed to remove it, and then, using 200 ⁇ L of human cell medium, in a 96-well flat-bottom culture plate, NYN 30mer peptide-specific Th cells and After 24 to 48 hours of co-cultivation, the IFN- ⁇ concentration and GM-CSF concentration in the culture supernatant were measured in the same manner as described above. The results obtained are shown in FIG.
  • CK05 and kit shown in FIG. 15 indicate that the immortalized B cell lines having DPB1*02:01 are derived from different subjects (subjects from whom the B cells were isolated). Similarly, “Okr” and “Full” indicate different origins of these immortalized B cell lines with DPB1*05:01.
  • the NYN 30mer peptide-specific Th cells showed a peptide-specific reaction only to DPB1*02:01-positive LCLs, suggesting that the peptide reacts with HLA-DPB1*02:01. It was found to bind and stimulate Th cells.
  • the NYN 30mer peptide is a type 1 Th cell that produces IFN- ⁇ and Granzyme B. and was found to be an HLA-DR53-restricted and HLA-DPB1*02:01-restricted T cell epitope. Therefore, the peptide can function as a useful T-cell vaccine capable of stimulating and activating various T-cell clones by being presented to multiple HLAs.
  • FIG. 16A production of IFN- ⁇ and GM-CSF was observed in HLA-DR53-restricted Th cells (DR53-HK36) only in the presence of the NYN 30mer peptide and the RKS 21mer peptide.
  • FIG. 16B IFN- ⁇ production was observed in the presence of the S448-T17 to S448-T22 peptides, revealing that the minimal recognition sequence of DR53-HK36 is LKPFERDIST.
  • N501Y 25mer peptide-specific Th cells [Induction of N501Y 25mer peptide-specific Th cells] Next, the N501Y 25mer peptide was chemically synthesized and evaluated for Th cell inducing activity.
  • N501Y is a variant of SARS-CoV-2.
  • N501Y 25mer YFPLQSYGFQPTYGVGYQPYRVVVL (SEQ ID NO: 51) Positions in the S protein from SARS-CoV-2: 489-513.
  • the N501Y 25mer peptide-specific Th cells showed a peptide-specific reaction only to L-DR15 cells, indicating that the peptide binds to HLA-DR15 and activates Th cells. It turned out to be stimulating.
  • PBMCs were collected from the peripheral blood of one healthy subject (TO) with HLA-DR8 by density gradient separation using lymphoprep (Alere Technologies AS 1114547).
  • CD14-positive cells were isolated from PBMCs using a magnetic cell separation system (Miltenyi 130-050-201) and added with 50 ng/mL GM-CSF (peprotech AF-300-03) and 50 ng/mL IL-4 (peprotech AF -200-04) was used to differentiate into dendritic cells (DCs) by culturing in 6-well culture plates (Falcon 353046) with 3 mL of human cell medium for 7 days.
  • DCs dendritic cells
  • the human cell culture medium used was AIM-V medium (ThermoFisher SCIENTIFIC 0870112DK) supplemented with 3% human AB type serum (Innovative RESEARCH IPLA-SERAB) inactivated at 56° C. for 30 minutes.
  • CD4-positive T cells (Miltenyi 130-045-101) were isolated from PBMC in the same manner, and 1 ⁇ 10 5 CD4-positive T cells were separated from 5 ⁇ 10 4 DCs and 96 DCs in the presence of NYN 30mer peptide (3 ⁇ g/mL). Co-cultures were initiated at 200 ⁇ L in well flat-bottomed culture plates (Falcon 353072).
  • the peptide and inactivated PBMCs (1 ⁇ 10 6 ) were used to stimulate the CD4-positive T cells (1 ⁇ 10 6 ) every other week.
  • 5 x 10 4 Th cells and 1 x 10 5 PBMC were placed in 96 wells using 200 ⁇ L of human cell culture medium in the presence of NYN 30mer peptide (3 ⁇ g/mL). They were co-cultured in a flat-bottomed culture plate.
  • Anti-DR antibody BioLegend 307612
  • anti-HLA-class I antibody BioLegend 311412
  • Th cell lines (DR8-TO14 and DR8-TO20) obtained as described above produced IFN- ⁇ only in the presence of the NYN 30mer peptide, as shown in FIG. It was confirmed that targeted Th cells were established.
  • the peptide-specific IFN- ⁇ production of these Th cells was suppressed when an anti-HLA-DR antibody (aDR) was used. It was confirmed to stimulate Th cells.
  • the NYN 30mer peptide-specific Th cells showed a peptide-specific reaction only to L-DR8 cells, indicating that the peptide binds to HLA-DR8 and stimulates Th cells. was confirmed.
  • T cells obtained in this example will be indicated by the notation of "HLA allele-donor (subject) identifier-number" in the following description as well as the above DR8-TO14 and DR8-TO20. Numbers represent well numbers in 96-well flat-bottom culture plates assigned during initial screening.
  • DR8-TO14 cells were IFN-1 in the presence of the NYN 30-mer peptide and S448-T8-T16 peptide
  • DR8-TO20 cells were IFN-1 in the presence of the NYN 30-mer peptide and S448-T8-T15 peptide.
  • LFRKSNL SEQ ID NO: 97
  • RLFRKSNL SEQ ID NO: 96
  • DR8-TO14T cells did not respond to T10-5A, T10-7A and T10-10A, whereas DR8-TO20T cells responded to T10-4A and T10-5A. , T10-7A and T10-10A.
  • Peripheral blood was collected from one healthy subject (TO) with HLA-DR8 after Pfizer Corona vaccination, and PBMCs were collected from it by density gradient separation using Lymphoprep (Alere Technologies AS 1114547).
  • CD14-positive cells were isolated from PBMCs using a magnetic cell separation system (Miltenyi 130-050-201) and added with 50 ng/mL GM-CSF (peprotech AF-300-03) and 50 ng/mL IL-4 (peprotech AF -200-04), the cells were differentiated into dendritic cells (DCs) by culturing for 7 days in a 6-well culture plate (Falcon 353046) using 3 mL of human cell culture medium.
  • the human cell culture medium used was AIM-V medium (ThermoFisher SCIENTIFIC 0870112DK) supplemented with 3% human AB type serum (Innovative RESEARCH IPLA-SERAB) inactivated at 56° C. for 30 minutes.
  • CD4-positive T cells (Miltenyi 130-045-101) were isolated from PBMC in the same manner, and 1 ⁇ 10 5 CD4-positive T cells were treated with 5 ⁇ 10 4 DCs and 96 wells in the presence of N501Y peptide (3 ⁇ g/mL). Co-cultures were initiated at 200 ⁇ L in flat bottom culture plates (Falcon 353072). After 7 days, for peptide stimulation of CD4-positive T cells, 100 ⁇ L of culture supernatant was removed, and N501Y 25mer peptide (3 ⁇ g/mL) and gamma-irradiated (40 Gy) inactivated PBMC (2 ⁇ 10 5 ) were added to 100 ⁇ L. was added to the culture plate.
  • N501N 25mer peptide was added to 200 ⁇ L of human cells in the presence of 3 ⁇ g/mL each of the N501Y 25mer peptide or its original (N501N 25mer peptide).
  • the culture medium was used for co-cultivation in a 96-well flat-bottom culture plate.
  • the sequence of the N501N 25mer peptide is as follows. N501N 25mer: YFPLQSYGFQPTNGVGYQPYRVVVL (SEQ ID NO: 101).
  • anti-DR antibody BioLegend 307612
  • anti-HLA-class I antibody BioLegend 311412
  • a control group was added to some culture systems to a final concentration of 5 ⁇ g/mL. After 24 to 48 hours, 100 ⁇ L of the culture supernatant was collected, and the IFN- ⁇ concentration contained therein was measured using an ELISA kit (BD Biosciences 555142) according to the attached instruction manual. The results obtained are shown in FIG. 24B.
  • Th cell lines (DR15-TO4 and DR15-TO6) obtained as described above produced IFN- ⁇ only in the presence of the N501Y 25mer peptide, as shown in FIG. It was confirmed that Th cells were established.
  • the anti-HLA-DR antibody aDR
  • the N501Y 25mer peptide-specific IFN- ⁇ production was suppressed in these Th cells, suggesting that the peptide stimulates Th cells in an HLA-DR-restricted manner.
  • the N501Y 25mer peptide-specific Th cells showed a peptide-specific reaction only to L-DR15 cells, confirming that the peptide binds to HLA-DR15 and stimulates Th cells. It was also confirmed that these Th cells reacted not only to the N501Y 25mer peptide but also to its original (N501N 25mer peptide).
  • the N501Y peptide can stimulate type 1 Th cells that produce IFN- ⁇ .
  • both of the obtained T cell lines also reacted with the N501N peptide, indicating that DR15-restricted Th cells were not only the original SARS-CoV-2 strain, but also its alpha, beta, and Omicron strains. It is suggested that it can react.
  • Peripheral blood was collected from one healthy subject (HK) with HLA-DR9 prior to vaccination with the Pfizer Corona vaccine, and PBMCs were then collected by density gradient separation using Lymphoprep (Alere Technologies AS 1114547).
  • CD14-positive cells were isolated from PBMCs using a magnetic cell separation system (Miltenyi 130-050-201) and added with 50 ng/mL GM-CSF (peprotech AF-300-03) and 50 ng/mL IL-4 (peprotech AF -200-04) was used to differentiate into dendritic cells (DCs) by culturing in 6-well culture plates (Falcon 353046) with 3 mL of human cell medium for 7 days.
  • the human cell culture medium used was AIM-V medium (ThermoFisher SCIENTIFIC 0870112DK) supplemented with 3% human AB type serum (Innovative RESEARCH IPLA-SERAB) inactivated at 56° C. for 30 minutes.
  • CD4-positive T cells (Miltenyi 130-045-101) were isolated from PBMC in the same manner, and 1 ⁇ 10 5 CD4-positive T cells were treated with 5 ⁇ 10 4 DCs and 96 wells in the presence of N501Y peptide (3 ⁇ g/mL). Co-cultures were initiated at 200 ⁇ L in flat bottom culture plates (Falcon 353072). After 7 days, in order to stimulate CD4-positive T cells with peptide, 100 ⁇ L of culture supernatant was removed, and 100 ⁇ L of the peptide (3 ⁇ g/mL) and gamma-irradiated (40 Gy) inactivated PBMC (2 ⁇ 10 5 cells) were added. added to the culture plate.
  • the cell surface was labeled with antibodies against CD3 (Biolegend 300306) or CD4 (Biolegend 300512), CD8 (Biolegend 301016), fixed with BD Cytofix/Cytoperm (BD Biosciences 554722), then IFN- ⁇ (Biolegend7 ) or with an antibody against Granzyme B (Biolegend 502312). Fluorescence intensity was evaluated with CytoFLEX (BECKMAN COULTER B53013).
  • 5 x 10 4 Th cells and 1 x 10 5 PBMC were added to 200 ⁇ L of human cell medium in the presence of N501Y 25mer peptide or N501N 25mer peptide (3 ⁇ g/mL each). was co-cultured in a 96-well flat-bottom culture plate.
  • Anti-DR antibody BioLegend 307612
  • anti-HLA-class I antibody BioLegend 311412
  • the Th cell lines (DR9-HK7 and DR9-HK13) obtained as described above were found to produce IFN- ⁇ only in the presence of the N501Y 25mer peptide, indicating that peptide-specific Th cells were established. It was confirmed that When anti-HLA-DR antibody (aDR) was used, peptide-specific IFN- ⁇ production was suppressed in these Th cells, suggesting that the N501Y 25mer peptide stimulates Th cells in an HLA-DR-restricted manner. was confirmed. Furthermore, the peptide-specific Th cells showed a peptide-specific reaction only to L-DR9 cells, confirming that the N501Y 25mer peptide binds to HLA-DR9 and stimulates Th cells. On the other hand, this DR9-restricted N501Y 25mer peptide-specific T cell line did not respond to N501N.
  • aDR anti-HLA-DR antibody
  • HLA-DR9-restricted Th cells did not respond to N501N of SARS-CoV-2 original and delta strains, but did respond to N501Y of alpha, beta, and Omicron strains. Therefore, it is considered that the N501Y peptide can induce an immune response against these SARS-CoV-2 mutants in HLA-DR9 carriers.
  • amino acid mutations in the S protein and SARS-CoV-2 mutant strains see Table 1 above.
  • DR53-YY4 did not respond to T19-2A, T19-5A and T19-7A, whereas DR53-HK36 responded to T19-1A, T19-2A, T19-5A and There was no response to T19-7A.
  • PBMCs were collected from the peripheral blood of healthy subjects before vaccination with Pfizer's novel coronavirus vaccine, two weeks after the first vaccination, and two weeks after the second vaccination, and frozen and stored in a ⁇ 80° C. freezer. Thawed PBMCs (1.5-3 ⁇ 10 6 cells) were placed in a 48-well flat-bottomed culture plate using human cell culture medium (1000 ⁇ L/well), peptide (final concentration: 1 ⁇ g/mL), IL-2 (final concentration: 20 U).
  • peptide-specific T cell responses were analyzed using an ELISPOT assay kit (Human IFN- ⁇ ELISpot BASIC kit (ALP), MABTECH).
  • PBMCs 4-5 ⁇ 10 4 washed with PBS were plated with human cell culture medium (150 ⁇ L/well) on ELISPOT plates (MerckMillipore, MAHAS4510) for peptides (NYN 30mer peptide, N501N 25mer peptide or N501Y 25mer peptide).
  • Final concentration Cultured in the presence of 1 ⁇ g/mL. After 24 hours, the plate was washed with a washing solution (PBS containing 0.05% Tween-20 (Nacalai Tesque, Inc.
  • BCIP/NBT plus MABTECH
  • ELISpot plate reader Autoimmune Diagnostica
  • dedicated software Autoimmune Diagnostica, AID ELISpot plate reader software
  • subject YY was confirmed to have a specific T cell response to the NYN 30mer peptide (S448 peptide in the figure) in the sample after two vaccinations, but no response to the N501N and N501Y peptides. was not accepted.
  • Subject TO had specific T cell responses to the NYN 30mer peptide confirmed in the 1st and 2nd vaccination samples.
  • specific T cell responses to the N501N 25mer peptide and the N501Y 25mer peptide were confirmed in samples after two vaccinations.
  • the NYN 30mer peptide, N501N 25mer peptide, and N501Y 25mer peptide can be used for monitoring the novel coronavirus vaccine.
  • the difference in reactivity between subjects as in this case is within the range of assumption.
  • DP2-HK13 did not react with L452R, D-Mt and L452Q, but reacted with the S477N peptide.
  • DR53-HK36, DR53-YY4, DR8-TO14 and DR8-TO20 reacted to all mutant peptides.
  • HLA-DP2-restricted T cells may have weakened resistance to SARS-CoV-2 mutant strains, but HLA-DR53-restricted T cells and HLA-DR8-restricted T cells It was suggested that T cells also show resistance to these mutant strains.
  • N501N 25mer peptide or a variant thereof (N501Y 25mer peptide or F490S 25mer peptide (SEQ ID NO: 102, YSPLQSYGFQPTNGVGYQPYRVVVL) (3 ⁇ g/mL each)
  • 5 ⁇ 10 4 Th cells and 1 ⁇ 10 5 PBMCs were co-cultured in a 96-well flat-bottom culture plate with 200 ⁇ L of human cell culture medium. After 24 hours, 100 ⁇ L of the culture supernatant was collected, and the IFN- ⁇ concentration contained therein was measured using an ELISA kit (BD Biosciences 555142) according to the attached instruction manual.
  • DR9-HK7 and DR15-YY17 reacted only with the N501Y 25mer peptide used in establishing the T cell line, and did not react with the N501Y 25mer peptide and the F490S 25mer peptide.
  • DR15-TO4 reacted with the N501N 25mer peptide and the N501Y 25mer peptide, but did not react with the F490S 25mer peptide.
  • peptide-specific T cell responses were analyzed using an ELISPOT assay kit (MABTECH, Human IFN- ⁇ ELISpot BASIC kit (ALP)).
  • PBMCs (4 to 5 ⁇ 10 4 ) washed with PBS were plated with ELISPOT plate (MerckMillipore, MAHAS4510) supplemented with human cell culture medium (150 ⁇ L/well), and NYN 9mer peptide (Fig.
  • the final concentration in the medium was 1 ⁇ g/mL for the N501N 25mer peptide, the N501Y 25mer peptide and the F490S 25mer peptide, and considering that the constituent amino acids are different for peptides other than these (NYN 30mer peptide and its variants). and 0.3 ⁇ M (1 ⁇ g/mL of NYN 30mer peptide corresponds to 0.27 ⁇ M).
  • the plate was washed with a washing solution (PBS containing 0.05% Tween-20 (Nacalai Tesque, Inc. 23926-35)) and then measured according to the attached instruction manual.
  • BCIP/NBT plus MABTECH
  • BCIP/NBT plus MABTECH
  • HLA-DR8-restricted NYN 30mer peptide-specific Th cells [Tetramer analysis of HLA-DR8-restricted NYN 30mer peptide-specific Th cells] To evaluate the utility of HLA-DR8/WT peptide (SEQ ID NO: 84, YNYLYRLFRKSNLKP) tetramers and HLA-DR8/MT peptide (SEQ ID NO: 85, YNYRFRLFRKSNLKP) tetramers, they have been expanded by repeated stimulation of the NYN 30mer peptide. Investigations were made using HLA-DR8-restricted CD4-positive T cells (DR8-TO14 and DR8-TO20).
  • the TCRVbeta kit (BECKMAN COULTER Beta Mark TCR Vbeta Repertoire Kit; IM3497) was used to examine the clonality of each T cell line. After staining 1 x 10 6 T cell lines with APC-CD4 antibody (BioLegend), they were divided into 8 (1 x 10 5 cells each) and mixed with 8 types (A to H) of antibodies according to the instructions of the TCRVbeta kit. each dyed.
  • T cell lines were stained with FITC-CD3, APC-Cy7-CD8, and PE-Cy7-CD4 antibodies (all from BioLegend), followed by 3 (1 ⁇ 10 5 each) and stained with PE-control tetramer (DR15-WT), PE-HLA-DR8/WT peptide tetramer and PE-HLA-DR8/MT peptide tetramer.
  • the stained cells were analyzed using CytoFLEX (Beckman Coulter).
  • DR8-TO14 was mixed with 12 types of clones ranging from 0.09% to 10.76%.
  • the tetramer positive rate was 5.79% for HLA-DR8/WT peptide tetramer and 2.3% for HLA-DR8/MT peptide tetramer.
  • R8-TO20 is a T cell population in which 6 types of clones from 0.35 to 54.48% are mixed.
  • the tetramer positive rate was 17.11% for HLA-DR8/WT peptide tetramer and 25.66% for HLA-DR8/MT peptide tetramer.
  • HLA-DR8/WT peptide tetramer and HLA-DR8/MT peptide tetramer are useful in monitoring T cells, etc. Since both DR8-TO14 and DR8-TO20 were heterogeneous populations, T cells stained with HLA-DR8/WT peptide tetramer and T cells stained with HLA-DR8/MT peptide tetramer were the same clone or different clones I don't know at present.
  • cytotoxic T cells and/or helper T cells targeting SARS-CoV-2 can be induced to treat or prevent infection with the virus. Therefore, the present invention is useful as a vaccine, passive immunotherapeutic agent, etc. against SARS-CoV-2 infection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Oncology (AREA)
  • Plant Pathology (AREA)
  • Pulmonology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

配列番号:52に記載のアミノ酸配列における連続した少なくとも5アミノ酸を含み、かつ細胞傷害性T細胞及び/又はヘルパーT細胞の誘導活性を有し、SARS-CoV-2に対する細胞性免疫の誘導を可能とする、抗原ペプチド。

Description

SARS-CoV-2由来のT細胞エピトープペプチド
 本発明は、SARS-CoV-2由来のT細胞エピトープペプチドに関し、より詳しくは、SARS-CoV-2 スパイクタンパクに由来し、細胞傷害性T細胞及び/又はヘルパーT細胞の誘導活性を有する、抗原性のペプチドに関する。本発明はまた、前記ペプチドをコードする核酸及び当該核酸を含有する発現ベクターに関する。さらに、本発明は、前記ペプチド等を有効成分として含む、SARS-CoV-2感染症を治療又は予防するためのワクチンに関する。また、本発明は、前記ペプチド等を用いたSARS-CoV-2感染症を治療又は予防するための受動免疫療法剤の製造方法、及びそれによって製造された受動免疫療法剤に関する。さらにまた、前記ペプチド等を用いたT細胞の誘導方法、及びそれに用いるキットに関する。また、本発明は、前記ペプチドとHLA分子との複合体又は該複合体の多量体に関する。さらに、前記ペプチド、又は前記複合体若しくはその多量体を用いた、SARS-CoV-2を標的とするT細胞を検出する方法に関する。
 2019年12月に発生した新型コロナウイルス(SARS-CoV-2)による感染症(COVID-19)は、その後わずか数ヶ月程度の間に世界中に伝播し、各国にて恐ろしい記録の更新が続いており、感染拡大に歯止めがかからない状況である。より大きな被害を及ぼすとされる更なるパンデミックの波も懸念される中、COVID-19に対する有効かつ安全なワクチンの開発が強く求められている。
 2021年時点、世界で開発進行中のCOVID-19ワクチンの殆どが、ウイルスに対する中和抗体、すなわち液性免疫の誘導を標的とするものである。しかし、ウイルス感染に対する獲得(特異的)免疫反応は、液性免疫だけではなく細胞性免疫も極めて重要であり、それぞれ役割が異なる。
 SARS-CoV-2は、スパイク(S)タンパクを介して感染するため、Sタンパクに対する中和抗体は感染防御に働くと考えられる。しかしながら、細胞内に感染したウイルスに対して抗体は無力であり、ウイルス感染細胞を殺傷できる細胞性免疫、すなわち細胞傷害性T細胞がその役割を担う。さらに、抗体及び細胞傷害性T細胞の誘導には、ヘルパーT細胞が重要な働きを果たす。
 ウイルス感染に対する細胞性免疫について、より具体的に説明すると、その免疫に関与する重要な細胞に、細胞表面タンパク質であるCD8を発現しているT細胞(CD8+T細胞)と、細胞表面タンパク質であるCD4を発現しているT細胞(CD4+T細胞)とがある。CD8+T細胞は、活性化された場合、HLAクラス1分子に結合するウイルス由来の抗原を提示している細胞を溶解するT細胞(細胞傷害性T細胞、CTL)である。CD4+T細胞はサイトカインを分泌するヘルパー(Th)細胞であって、HLAクラス2分子によりウイルス由来の抗原を提示するマクロファージ、樹状細胞等により活性化され、CD8+T細胞の誘導及び維持のためのヘルパー機能を発揮する。また、Th細胞は分泌するサイトカインの種類によってTh1細胞(IFN-γ等を産生する細胞)及びTh2細胞(インターロイキン-4等を産生する細胞)等に分類されることが知られており、各細胞の役割も解明されつつある。
 こと、COVID-19病勢制御においても、かかる細胞性免疫の重要性が明らかになりつつある。例えば、COVID-19重症患者では、SARS-CoV-2に対する抗体価が高いことが報告されている(非特許文献1)。さらに、重症患者では末梢血T細胞の減少がみられることも報告されている(非特許文献2)。逆に、無症候SARS-CoV-2感染者又は軽症COVID-19患者では、COVID-19重症患者と比較して、SARS-CoV-2に対する高い細胞性免疫応答がみられることが報告されている(非特許文献3)。
 これらの結果から、COVID-19病勢制御に、液性免疫より細胞性免疫が重要である可能性が示唆され、細胞性免疫を誘導可能なワクチン等の開発が、SARS-CoV-2防御において重要な戦略となる。
 さらに、2022年時点では、SARS-CoV-2に対するワクチンが普及し、重症化や死亡率が抑えられ、多くの命が救われている。特にRNA型ワクチンによる抗体誘導は非常に強く、従来の不活性化ワクチンをはるかに凌駕する効果が示されている。一方で、ワクチン接種によって誘導された抗体が半年でほぼ元のレベルにまで減弱することが判明し、また中和抗体から逃避する変異株に対し、初期流行株型に対するワクチンでは有効な中和抗体が望めないとされる。しかし、抗体価が半年で減弱する一方、Sタンパク抗原特異的なT細胞はメモリー細胞として長期に維持され、変異株感染においても同様に確認されている。すなわち、これら現行のワクチンの評価、更なる新規のワクチンの設計等において、誘導される中和抗体価の検査のみならず、誘発されるT細胞反応の解析も重要である。
Nisreen M A Okbaら、Emerg Infect Dis.、2020年7月、26巻、7号、1478~1488ページ Cong-Ying Songら、「COVID-19 early warning score:a multi-parameter screening tool to identify highly suspected patients.」、Preprint from medRxiv、2020年3月8日 Takuya Sekineら、Cell、2020年10月1日、183巻、1号、158‐164.e14
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、SARS-CoV-2に対する細胞性免疫の誘導を可能とする抗原ペプチドを提供することを目的とする。
 本発明者らは、前記目的を達成すべく、先ず、SARS-CoV-2のSタンパクを対象とし、当該ウイルスを標的とする(特異的な)細胞傷害性T細胞(CTL)を誘導し得る抗原ペプチドの同定を試みた。その結果、Sタンパク 448~456位の9アミノ酸からなるペプチド(NYN 9merペプチド、アミノ酸配列:NYNYLYRLF、配列番号:7)は、HLAクラス1分子(HLA-A*24及びβ2-ミクログロブリン)と複合体を形成し得ることが明らかになった。また、当該エピトープペプチドは、末梢血単核球より当該ペプチド特異的CTLを誘導し、また当該CTLを増幅し得ることも明らかにした。
 さらに、本発明者らは、鋭意研究を進めた結果、前記9アミノ酸からなるCTL誘導性エピトープペプチドを含む、Sタンパク 448~477位の30アミノ酸からなるペプチド(NYN 30merペプチド、アミノ酸配列:NYNYLYRLFRKSNLKPFERDISTEIYQAGS、配列番号:19)は、ヘルパーT(Th)細胞を誘導する活性も有していることを明らかにした。また、HLA-DR53拘束性のTh細胞は、Sタンパク 461~470位の10アミノ酸からなるペプチド(LKPFERDIST、配列番号:46)によって誘導される一方で、HLA-DP2拘束性のTh細胞は、Sタンパク 451~461位の11アミノ酸からなるペプチド(YLYRLFRKSNL、配列番号:47)によって誘導されることも明らかにした。また、本発明者らは、Sタンパク 454又は455~461位の7又は8アミノ酸からなるペプチド(RLFRKSNL(配列番号:96)又はLFRKSNL(配列番号:97))が、HLA-DR8拘束性のTh細胞を誘導する活性も有していることも明らかにした。
 さらに、本発明者らは、SARS-CoV-2の変異株(N501Y)のSタンパク 489~513位の25アミノ酸からなるペプチド(N501Y 25merペプチド、アミノ酸配列:YFPLQSYGFQPTYGVGYQPYRVVVL、配列番号:51)が、HLA-DR15拘束性のTh細胞及びHLA-DR9拘束性のTh細胞を誘導する活性も有していることを明らかにした。
 このように、NYN 30merペプチド及びN501Y 25merペプチドを含む、SARS-CoV-2のSタンパク 448~513位の66アミノ酸からなるペプチド(配列番号:52)は、由来及び種類の異なるT細胞(少なくとも、HLA-A*24拘束性CTL、HLA-DR53拘束性Th細胞、HLA-DP2拘束性Th細胞、HLA-DR15拘束性Th細胞、HLA-DR8拘束性Th細胞、HLA-DR9拘束性Th細胞)を刺激し、SARS-CoV-2に対する免疫応答を誘導し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、SARS-CoV-2 Sタンパクに由来し、細胞傷害性T細胞及び/又はヘルパーT細胞の誘導活性を有する、抗原性のペプチドに関し、より具体的には以下に関する。
<1> SARS-CoV-2由来のエピトープペプチドであって、
 配列番号:52に記載のアミノ酸配列における連続した少なくとも5アミノ酸を含み、かつ細胞傷害性T細胞及び/又はヘルパーT細胞の誘導活性を有する、ペプチド。
<2> 配列番号:31又は7に記載のアミノ酸配列を含むペプチドである、<1>に記載のエピトープペプチド。
<3> 下記ペプチド群から選択される少なくとも1のペプチドを含む、<1>に記載のエピトープペプチド:
(1)配列番号:29~37、96及び97のうちのいずれかに記載のアミノ酸配列を含み、HLA-DR8拘束性ヘルパーT細胞の誘導活性を有するペプチド
(2)配列番号:94に記載のアミノ酸配列を含み、HLA-A24拘束性細胞傷害性T細胞の誘導活性を有するペプチド
(3)配列番号:38~43及び46のうちのいずれかに記載のアミノ酸配列を含み、HLA-DR53拘束性ヘルパーT細胞の誘導活性を有するペプチド
(4)配列番号:29~33及び95のうちのいずれかに記載のアミノ酸配列を含み、HLA-DP2拘束性ヘルパーT細胞の誘導活性を有するペプチド
(5)配列番号:53に記載のアミノ酸配列を含み、HLA-DR15拘束性ヘルパーT細胞の誘導活性を有するペプチド
(6)配列番号:53に記載のアミノ酸配列を含み、HLA-DR9拘束性ヘルパーT細胞の誘導活性を有するペプチド。
<4> 配列番号:88、98~100、54及び55のうちのいずれかに記載のアミノ酸配列を含むペプチドである、<1>又は<2>に記載のエピトープペプチド。
<5> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドをコードする核酸。
<6> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドをコードする核酸を含有する発現ベクター。
<7> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドを有効成分として含む、SARS-CoV-2感染症を治療又は予防するためのワクチン。
<8> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドをコードする核酸を有効成分として含む、SARS-CoV-2感染症を治療又は予防するためのワクチン。
<9> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドとHLA分子との複合体を表面上に提示する抗原提示細胞を有効成分として含む、SARS-CoV-2感染症を治療又は予防するためのワクチン。
<10> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドとHLA分子との複合体又は該複合体の多量体。
<11> <1>~<4>のうちのいずれか一項に記載のエピトープペプチド又は該ペプチドとHLA分子との複合体を表面上に提示する抗原提示細胞により、単核球を刺激して得られるT細胞を含む、SARS-CoV-2感染症を治療又は予防するための受動免疫療法剤。
<12> <10>に記載の複合体又は該複合体の多量体と、単核球とを反応させ、前記複合体又は前記多量体にT細胞が結合した結合体を形成させ、該結合体から単離して得られるT細胞を含む、SARS-CoV-2感染症を治療又は予防するための受動免疫療法剤。
<13> <1>~<4>のうちのいずれか一項に記載のエピトープペプチド又は該ペプチドとHLA分子との複合体を表面上に提示する抗原提示細胞により、単核球を刺激してT細胞を取得する工程を含む、SARS-CoV-2感染症を治療又は予防するための受動免疫療法剤の製造方法。
<14> <10>に記載の複合体又は該複合体の多量体と、単核球とを反応させ、前記複合体又は前記多量体にT細胞が結合した結合体を形成させ、該結合体からT細胞を単離する工程を含む、SARS-CoV-2感染症を治療するための受動免疫療法剤の製造方法。
<15> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドと単核球とを培地中で接触させ、T細胞を誘導することを特徴とする、SARS-CoV-2を標的とするT細胞を誘導する方法。
<16> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドを含む、SARS-CoV-2を標的とするT細胞の誘導するためのキット。
<17> <10>に記載の複合体又は該複合体の多量体と、被検試料とを反応させる工程を含む、当該試料中のSARS-CoV-2を標的とするT細胞を検出する方法。
<18> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドと被検試料とを接触させ、当該接触により誘導されたSARS-CoV-2を標的とするT細胞が産生する、サイトカイン、ケモカイン及び細胞表面分子から選択される少なくとも1の分子を検出する工程を含む、当該試料中のSARS-CoV-2を標的とするT細胞を検出する方法。
<19> <1>~<4>のうちのいずれか一項に記載のエピトープペプチドと、サイトカイン、ケモカイン及び細胞表面分子から選択される少なくとも1の分子を検出するための物質とを、少なくとも含む、<18>に記載の方法によりT細胞を検出するためのキット。
 本発明によれば、SARS-CoV-2を標的とする細胞傷害性T細胞及び/又はヘルパーT細胞を誘導し、当該ウイルスの感染症の治療又は予防を可能とする。また、SARS-CoV-2を標的とするT細胞を検出することも可能となる。
HLA-モノマー形成が認められる場合の代表的なゲル濾過カラム分析例を示す図である。 SARS-CoV-2抗原由来候補ペプチドのフォールディングテスト結果を示すグラフである。 HLA-テトラマー調製におけるペプチド交換反応をフローサイトメーターで解析した結果を示す図である。 SARS-CoV-2抗原由来候補ペプチドのペプチド交換率を示すグラフである。 ドナーから採取したサンプルからペプチドと共培養して誘導したCTLのIFN-γの産生能を、ELISPOTで解析した結果を示す図である。図中、「Y」及び「H」は、各々異なるドナー由来から採取したサンプルであることを示す。 NYN 9merペプチドと共培養した際に誘導したCTLとHLA-テトラマー試薬との反応を、フローサイトメーターで解析した結果を示す図である。 QYI 9merペプチド(SARS-CoV-2のSタンパク 1208~1216位の9アミノ酸からなるペプチド、アミノ酸配列:QYIKWPWYI、配列番号:15)と共培養した際に誘導したCTLとHLA-テトラマー試薬との反応を、フローサイトメーターで解析した結果を示す図である。 NYN 9merペプチドと共培養した際に誘導したCTLを、単クローン化して増幅した後に、IFN-γの産生能をELISPOTで解析した結果を示す図である。 Mini geneを発現させた293T細胞又は293T/HLA-A*24+細胞に対する、CTLクローンのIFN-γ産生能を、ELISPOTで解析した結果を示す図である。 ドナーから採取したサンプルからNYN 30merペプチドで誘導したTh細胞株の、IFN-γ及びGranzyme Bの産生能を、フローサイトメーターで解析した結果を示す図である。 抗HLA-DR抗体存在下、NYN 30merペプチドで誘導したTh細胞株のIFN-γ及びGM-CSFの産生能を、ELISAで解析した結果を示す図である。 HLA-DR-4、9、及び53の遺伝子が各々導入されたマウス由来線維芽細胞株に対する、NYN 30merペプチドで誘導したTh細胞株のIFN-γ及びGM-CSF産生能を、ELISAキットで解析した結果を示す図である。図中、各試験群において、左側がNYN 30merペプチド非存在下での培養結果(control)を示し、右側がNYN 30merペプチド存在下での培養結果(+peptide)を示す。 ドナーから採取したサンプルからNYN 30merペプチドで誘導したTh細胞株のIFN-γ及びGranzyme Bの産生能を、フローサイトメーターで解析した結果を示す図である。 抗HLA-class I抗体、抗HLA-DP抗体、抗HLA-DQ抗体、又は抗HLA-DR抗体の存在下、NYN 30merペプチドで誘導したTh細胞株のIFN-γ及びGM-CSFの産生能を、ELISAキットで解析した結果を示す図である。 NYN 30merペプチドで誘導したTh細胞株とHLA-DPB1*02:01又はHLA-DPB1*05:01を保持するLCL細胞との共培養における、IFN-γ及びGM-CSFの産生能を、ELISAキットで解析した結果を示す図である。 NYN 30merペプチドで誘導したTh細胞株(HLA-DR53拘束性Th細胞(DR53-HK36))を当該ペプチド由来の断片化ペプチドで刺激培養し、IFN-γ及びGM-CSFの産生能をELISAで解析した結果を示す図である。 NYN 30merペプチドで誘導したDR53-HK36を当該ペプチド由来のオーバーラップペプチドで刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。 NYN 30merペプチドで誘導したTh細胞株(HLA-DPB1*02:01拘束性のTh細胞(DP2-HK13))を当該ペプチド由来の断片化ペプチドで刺激培養し、IFN-γ及びGM-CSFの産生能をELISAで解析した結果を示す図である。 NYN 30merペプチドで誘導したDP2-HK13を当該ペプチド由来のオーバーラップペプチドで刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。 ドナーから採取したサンプルからN501Y 25merペプチドで誘導したTh細胞株の、IFN-γ及びGranzyme Bの産生能を、フローサイトメーターで解析した結果を示す図である。 抗HLA-DR抗体存在下、N501Y 25merペプチドで誘導したTh細胞株のIFN-γの産生能を、ELISAで解析した結果を示す図である。 HLA-DR4、15、及び53の遺伝子が導入されたマウス由来線維芽細胞株に対する、N501Y 25merペプチドで誘導したTh細胞株のIFN-γ産生能をELISAキットで解析した結果を示す図である。図中、各試験群において、左側がN501Y 25merペプチド非存在下での培養結果(control)を示し、右側がN501Y 25merペプチド存在下での培養結果(+peptide)を示す。 NYN 30merペプチド(S448ペプチド)で誘導したTh細胞株(DR8-TO14及びDR8-TO20)のIFN-γの産生能を、ELISAで解析した結果を示すグラフである。 抗HLA-DR抗体(aDR)又は抗HLA-class I抗体(aclassI)存在下、Th細胞株(DR8-TO14及びDR8-TO20)のIFN-γの産生能を、ELISAで解析した結果を示すグラフである。 HLA-DR-8及び15の遺伝子が各々導入されたマウス由来線維芽細胞株(L-DR8又はL-DR15)に対する、Th細胞株(DR8-TO14及びDR8-TO20)のIFN-γ産生能を、ELISAキットで解析した結果を示す図である。図中、各試験群において、左側がNYN 30merペプチド非存在下での培養結果(-)を示し、右側がNYN 30merペプチド存在下での培養結果(+)を示す。 NYN 30merペプチドで誘導したTh細胞株(DR8-TO14)を当該ペプチド由来のオーバーラップペプチドで刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。 NYN 30merペプチドで誘導したTh細胞株(DR8-TO20)を当該ペプチド由来のオーバーラップペプチドで刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。 NYN 30merペプチドで誘導したTh細胞株(DR8-TO14)を、S448-T10又はそのアラニン変異体(S448-T10-1A~11A)で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示し、(+)はNYN 30merペプチド存在下での培養結果を示す。 NYN 30merペプチドで誘導したTh細胞株(DR8-TO20)を、S448-T10又はそのアラニン変異体(S448-T10-1A~11A)で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示し、(+)はNYN 30merペプチド存在下での培養結果を示す。 N501Yペプチドで誘導したTh細胞株(DR15-TO4及びDR15-TO6)のIFN-γの産生能を、ELISAで解析した結果を示すグラフである。 N501Yペプチドと抗HLA-DR抗体(aDR)若しくは抗HLA-class I抗体(aclassI)との存在下、又は、N501Nペプチドの存在下、Th細胞株(DR15-TO4及びDR15-TO6)のIFN-γの産生能を、ELISAで解析した結果を示すグラフである。 HLA-DR-8及び15の遺伝子が各々導入されたマウス由来線維芽細胞株(L-DR8又はL-DR15)に対する、Th細胞株(DR15-TO4及びDR15-TO6)のIFN-γ産生能を、ELISAキットで解析した結果を示す図である。図中、各試験群において、左側がN501Yペプチド非存在下での培養結果(-)を示し、右側がN501Yペプチド存在下での培養結果(+)を示す。 N501Yペプチドで誘導したTh細胞株(DR9-HK7及びDR9-HK13)のIFN-γの産生能を、ELISAで解析した結果を示すグラフである。 N501Yペプチドと抗HLA-DR抗体(aDR)若しくは抗HLA-class I抗体(aclassI)との存在下、又は、N501Nペプチドの存在下、Th細胞株(DR9-HK7及びDR9-HK13)のIFN-γの産生能を、ELISAで解析した結果を示すグラフである。 HLA-DR-4、9及び53の遺伝子が各々導入されたマウス由来線維芽細胞株(L-DR4、L-DR9又はL-DR53)に対する、Th細胞株(DR9-HK7及びDR9-HK13)のIFN-γ産生能を、ELISAキットで解析した結果を示す図である。図中、各試験群において、(-)にペプチド非存在下での培養結果を示し、「S」(Soluble)は、各細胞の培養培地に各ペプチドを添加し、T細胞応答を調べた結果を示し、「P」(Pulse)は、各細胞に各ペプチドをパルスしてT細胞応答を調べた結果を示す。 NYN 30merペプチドで誘導したTh細胞株(DR53-YY4)を、S448-T19又はそのアラニン変異体(S448-T19-1A~10A)で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示し、「S448」はNYN 30merペプチド存在下での培養結果を示す。 NYN 30merペプチドで誘導したTh細胞株(DR53-HK36)を、S448-T19又はそのアラニン変異体(S448-T19-1A~10A)で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示し、「S448」はNYN 30merペプチド存在下での培養結果を示す。 新型コロナワクチン接種前、接種1回後及び接種2回後に、被験者(YY又はTO)から採取したPBMCを、NYN 30merペプチド(S448ペプチド)又はN501N 25merペプチド(N501Nペプチド)の存在下で培養した上で、NYN 30merペプチド、又は、N501N 25merペプチド若しくはN501Y 25merペプチドの存在下、更に培養し、IFN-γ ELISpotに解析した結果を示す、グラフである。図中、「Before」、「1st」及び「2nd」は、各々新型コロナワクチン接種前、接種1回後及び接種2回後の時点で採取し、凍結保存して解析したPBMC由来の細胞の結果を示す。 NYN 30merペプチドで誘導したTh細胞株(DP2-HK13)を、当該ペプチド(図中「Original」)又はその変異体で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示す。 NYN 30merペプチドで誘導したTh細胞株(DR53-HK36)を、当該ペプチド(図中「Original」)又はその変異体で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示す。 NYN 30merペプチドで誘導したTh細胞株(DR53-YY4)を、当該ペプチド(図中「Original」)又はその変異体で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示す。 NYN 30merペプチドで誘導したTh細胞株(DR8-TO14)を、当該ペプチド(図中「Original」)又はその変異体で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示す。 NYN 30merペプチドで誘導したTh細胞株(DR8-TO20)を、当該ペプチド(図中「Original」)又はその変異体で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示す。 N501Y 25merペプチドの繰り返し刺激により増殖してきたCD4陽性T細胞(新型コロナワクチン接種前の被験者由来:DR9-HK7、DR15-YY17、新型コロナワクチン接種後の被験者由来:DR15-TO4)を、N501N 25merペプチド又はその変異体(F490S 25merペプチド若しくはN501Y 25merペプチド)で刺激培養し、IFN-γ産生能をELISAで解析した結果を示す図である。図中、(-)はペプチド非存在下での培養結果を示す。 新型コロナワクチン接種2回後に、被験者(HK、YY又はTO)から採取したPBMCを、NYN 30merペプチド(S448-477)の存在下で培養した上で、S448-477関連ペプチド(S448-477又はその変異体)の存在下、更に培養し、IFN-γ ELISpotに解析した結果を示す、ドットプロット図である。 新型コロナワクチン接種2回後に、被験者(HK又はYY)から採取したPBMCを、N501N 25merペプチド(N501N)の存在下で培養した上で、N501N関連ペプチド(N501N又はその変異体)の存在下、更に培養し、IFN-γ ELISpotに解析した結果を示す、ドットプロット図である。 HLA A24を保持し、新型コロナワクチン接種後の被験者より末梢血を採取し、それから野生型A24拘束性ペプチドにてCTLを誘導し、当該ペプチド(WT)及びその変異体(L452R、Y453F、D-Mt(L452R & Y453F))に対する反応性を評価した結果を示す、写真である。
 〔エピトープペプチド〕
 後述の実施例において示すとおり、SARS-CoV-2のスパイク(S)タンパク 448~513位の66アミノ酸からなるペプチド(NYN 66merペプチド、アミノ酸配列:NYNYX452453RLFRKSNLKPFERDISTEIYQAGX477TPCNGVEGFNCYX490PLQSYGFQPTX501GVGYQPYRVVVL、X452はL(ロイシン)、R(アルギニン)又はQ(グルタミン)を表し、X453はY(チロシン)又はF(フェニルアラニン)を表し、X477はS(セリン)又はN(アスパラギン)を表し、X490はF(フェニルアラニン)又はS(セリン)を表し、X501はN(アスパラギン)又はY(チロシン)を表す。配列番号:52)は、由来及び種類の異なるT細胞を刺激し、SARS-CoV-2に対する免疫応答を誘導し得る。
 したがって、本発明は、配列番号:52に記載のアミノ酸配列における連続した少なくとも5アミノ酸を含み、かつ細胞傷害性T細胞及び/又はヘルパーT細胞の誘導活性を有する、ペプチドを提供する。
 本発明において「細胞傷害性T細胞」とは、「CTL」又は「キラーT細胞」とも称する細胞であり、細胞表面蛋白質であるCD8を発現しているT細胞(CD8陽性T細胞、CD8+T細胞)であって、HLAクラス1分子を介して提示された抗原を認識して活性化した場合、同抗原を有する細胞に傷害を与え得る細胞である。なお、かかる細胞傷害性活性は、免疫チェックポイント機構が抑制(解除)された状況下にて発揮し得る細胞も、本発明にかかる細胞傷害性T細胞に含まれる。
 「HLAクラス1分子」とは、ヒト由来の主要組織適合遺伝子複合体(MHC)クラスI分子を意味し、通常、α鎖及びβ2ミクログロブリンの複合体である。なお、後述のMHC-モノマー等に用いられる場合には、α鎖はその細胞外領域のみであってもよい。また、HLAクラス1分子のα鎖は、例えば、HLA-A遺伝子座、HLA-B遺伝子座又はHLA-C遺伝子座にコードされているα鎖が挙げられる。
 「HLA-A」は、例えば、HLA-A24(HLA-A*24:02、HLA-A*24:04、HLA-A*24:08、HLA-A*24:20等)、HLA-A2(HLA-A*02:03、HLA-A*02:06、HLA-A*02:07、HLA-A*02:10、HLA-A*02:18等)、HLA-A11(HLA-A*11:01、HLA-A*11:02等)、HLA-A26(HLA-A*26:01、HLA-A*26:02、HLA-A*26:03、HLA-A*26:04、HLA-A*26:05、HLA-A*26:06等)のアリルが挙げられる。
 「HLA-B」は、例えば、HLA-B13(HLA-B*13:01、HLA-B*13:02等)、HLA-B15(HLA-B*15:01、HLA-B*15:02、HLA-B*15:07、HLA-B*15:11、HLA-B*15:18、HLA-B*15:27等)、HLA-B39(HLA-B*39:01、HLA-B*39:02、HLA-B*39:04等)、HLA-B40(HLA-B*40:02、HLA-B*40:03、HLA-B*40:06等)のアリルが挙げられる。
 「HLA-C」は、例えば、HLA-C01(HLA-Cw*01:02、HLA-Cw*02:02等)、HLA-C03(HLA-Cw*03:02、HLA-Cw*03:03、HLA-Cw*03:07等)、HLA-C04(HLA-Cw*04:01等)、HLA-C05(HLA-Cw*05:01等)、HLA-C08(HLA-Cw*08:01)等のアリルが挙げられる。
 「ヘルパーT細胞」とは、「Th細胞」とも称する細胞であり、細胞表面蛋白質であるCD4を発現しているT細胞(CD4陽性T細胞、CD4+T細胞)であって、HLAクラス2分子を介して提示された抗原を認識して活性化した場合、細胞性免疫に関する他の免疫細胞(例えば、CTL、マクロファージ)の活性化及び/又は刺激を助けるために様々なサイトカイン(IFN-γ等)等を分泌し、他の細胞の活性化、機能の行使等を助ける細胞であり、より具体的には、Th1細胞、Th2細胞、Th17細胞、Th0細胞が挙げられる。
 「HLAクラス2分子」とは、ヒト由来のMHCクラス2分子を意味し、通常、α鎖及びβ鎖の複合体である。なお、後述のMHC-モノマー等に用いられる場合には、α鎖及び/又はβ鎖はそれらの細胞外領域のみであってもよい。また、HLAクラス2分子のα鎖は、例えば、HLA-DPA遺伝子座、HLA-DQA遺伝子座又はHLA-DRA遺伝子座にコードされているα鎖が挙げられる。HLAクラス2分子のβ鎖は、例えば、HLA-DPB遺伝子座、HLA-DQB遺伝子座又はHLA-DRB遺伝子座にコードされているβ鎖が挙げられる。
 「HLA-DR」は、例えば、HLA-DR1、HLA-DR2、HLA-DR3、HLA-DR4、HLA-DR5、HLA-DR6、HLA-DR7、HLA-DR8、HLA-DR9、HLA-DR10、HLA-DR11、HLA-DR12、HLA-DR13、HLA-DR14、HLA-DR15、HLA-DR52、HLA-DR53が挙げられる。例えば、α鎖としてHLA-DRA1等のHLA-DRAと、β鎖としてHLA-DRB1、HLA-DRB3、HLA-DRB4又はHLA-DRB5等のHLA-DRBとを含む分子が挙げられる。より具体的には、α鎖として、HLA-DRA1*01等のアリル、β鎖として、HLA-DRB1*01、HLA-DRB1*03、HLA-DRB1*04、HLA-DRB1*07、HLA-DRB1*08、HLA-DRB1*09、HLA-DRB1*10、HLA-DRB1*11、HLA-DRB1*12、HLA-DRB1*13、HLA-DRB1*14、HLA-DRB1*15、HLA-DRB1*16、HLA-DRB3*01、HLA-DRB4*01、HLA-DRB5*01等のアリルが挙げられる。
 「HLA-DP」は、例えば、HLA-DP1、HLA-DP2、HLA-DP3、HLA-DP4、HLA-DP5が挙げられる。例えば、α鎖としてHLA-DPA1等のHLA-DPAと、β鎖としてHLA-DPB1等のHLA-DPBとを含む分子が挙げられる。より具体的には、α鎖として、HLA-DPA1*01、HLA-DPA1*02、HLA-DPA1*03、HLA-DPA1*04等、β鎖として、HLA-DPB1*02、HLA-DPB1*04、HLA-DPB1*05、HLA-DPB1*09等のアリルが挙げられる。
 「HLA-DQ」は、例えば、HLA-DQ1、HLA-DQ2、HLA-DQ3、HLA-DQ4、HLA-DQ5、HLA-DQ6、HLA-DQ7、HLA-DQ8が挙げられる。例えば、α鎖としてHLA-DQA1等のHLA-DQAと、β鎖としてHLA-DQB1等のHLA-DQBとを含む分子が挙げられる。より具体的には、α鎖として、HLA-DQA1*01、HLA-DQA1*02、HLA-DQA1*03、HLA-DQA1*04、HLA-DQA1*05、HLA-DQA1*06、β鎖として、例えば、HLA-DQB1*02、HLA-DQB1*03、HLA-DQB1*04、HLA-DQB1*05、HLA-DQB1*06等のアリルが挙げられる。
 「ペプチド」は、隣接するアミノ酸残基のα-アミノ基とカルボキシル基間のペプチド結合により相互に結合した分子鎖を意味する。ペプチドは特定長のものを意味するものではなく、種々の長さであり得る。すなわち、所謂ポリペプチド、オリゴペプチド、タンパク質も含まれる。また、無電荷又は塩の形態であってもよく、さらに、ペプチドを構成する「アミノ酸」は、天然型であってもよく、非天然型であってもよく、アナログ(アミノ酸のN-アシル化物、O-アシル化物、エステル化物、酸アミド化物、アルキル化物等)であってもよい。また、アミノ酸の側鎖は、化学的に修飾(糖鎖付加、脂質付加、アセチル化、リン酸化、ユビキチン化等)が施されているものであってもよい。さらに、ポリペプチドのアミノ末端や遊離のアミノ基には、ホルミル基、アセチル基、t-ブトキシカルボニル(t-Boc)基等が結合していてもよく、本発明のペプチドのカルボニル末端や遊離のカルボキシル基には、メチル基、エチル基、t-ブチル基、ベンジル基等が結合していてもよい。
 「エピトープペプチド」とは、細胞傷害性T細胞及び/又はヘルパーT細胞の増殖、分化及び/又は活性化を誘導する活性を有する抗原ペプチドを意味する。
 また、前記活性には、HLA(MHC)クラスI又はクラスII分子へ提示され得る性質も含まれる。このような提示(抗原提示)は、マクロファージ、B細胞、あるいは樹状細胞(Dendritic Cell:DC)を介して行われてもよく、また、QuickSwitchTMカスタム テトラマーキット(株式会社医学生物学研究所社製)のように、invitroでExiting peptideとの交換反応による提示も含まれる。
 なお、ペプチドがかかる活性を有するか否かは、後述のとおり、「(1)フォールディングテスト」、「(2)エピトープペプチド特異的CTLの検出」、「(3)エピトープペプチド特異的Th細胞の検出」に記載の方法等を用い、当業者であれば適宜判断することができる。
 本発明において、エピトープペプチドは、配列番号:52に記載のアミノ酸配列から選択される、連続した少なくとも5アミノ酸を含み、かつ前記活性を有する限り、特に制限はないが、細胞傷害性T細胞を誘導する活性を有するペプチド(キラーエピトープ)としては、通常5~30アミノ酸であり、好ましくは6~25アミノ酸であり、より好ましくは8~20アミノ酸であり、特に好ましくは9アミノ酸である。ヘルパーT細胞を誘導する活性を有するペプチド(ヘルパーエピトープ)としては、通常5~30アミノ酸であり、好ましくは7~25アミノ酸であり、より好ましくは7~20アミノ酸であり、特に好ましくは7~11アミノ酸である。
 このような活性を有し得るエピトープペプチドのアミノ酸配列は、コンピュータープログラムを利用した分析によって推測することができる。キラーエピトープのアミノ酸配列は、NetMHCcons(http://www.cbs.dtu.dk/services/NetMHCcons)、BIMAS(http://bimas.dcrt.nih.gov/molbio/hla_bind/)、SVMHC(http://www.sbc.su.se/svmhc/)、PREDEP(http://bioinfo.md.huji.ac.il/marg/Teppred/mhc-bind/)、NetMHC(http://www.cbs.dtu.dk/services/NetMHC/)、PREDICT(http://sdmc.krdl.org.sg:8080/predict/)、LpPep(http://reiner.bu.edu/zhiping/lppep.html)等のコンピュータープログラムによって推測することができる。ヘルパーエピトープのアミノ酸配列は、MHC-THREAD(http://www.csd.abdn.ac.uk/~gjlk/MHC-Thread/)、EpiPredict(http://www.epipredict.de/index.html)、HLA-DR4 binding(http://www-dcs.nci.nih.gov/branches/surgery/sbprog.html)、ProPred(http://www.imtech.res.in/raghava/propred/)等のコンピュータープログラムによって推測することができる。また、SYFPEITHI(http://syfpeithi.bmi-heidelberg.com/Scripts/MHCServer.dll/EpiPredict.htm)、RankPep(http://www.mifoundation.org/Tools/rankpep.html)等のコンピュータープログラムによって、キラーエピトープ及びヘルパーエピトープのアミノ酸配列を推測することもできる。
 よって、本発明においては、SARS-CoV-2のスパイク(S)タンパク 448~513位の66アミノ酸からなるアミノ酸配列(配列番号:103)におけるエピトープペプチドを推測し得る。前記Sタンパクの配列は、GENBANK:QHD43416.1によって特定されるアミノ酸配列であり、アイソフォームの報告はない。しかしながら、ウイルス由来のタンパク質は、それをコードするDNA配列は天然において変異し得る。したがって、前記典型的なアミノ酸配列(オリジナルのアミノ酸配列)を有するもの以外に、天然においてアミノ酸が変異したものも存在しうることを理解されたい。具体的には、下記表に示す変異体を含み得る。
Figure JPOXMLDOC01-appb-T000001
 また、以上のようにして推測されるエピトープペプチド(候補ペプチド)が、前記活性を奏せるか否かは、例えば、後述の実施例に示すように、以下の分析(1)~(4)等を行うことにより評価することができる。
 (1)フォールディングテスト
 HLA分子(HLAクラス1分子又はHLAクラス2分子)と、候補ペプチドとを試験管内の適切な溶液(フォールディング溶液)中で混合すると、HLA分子と前記ペプチドとの結合力が高ければ、当該溶液中では、これら分子の会合反応はスムーズに進行し、複合体(以下、MHC-モノマーとも称する)が形成される。そして、このMHC-モノマーは、ゲル濾過カラム等で分析することによって検出することができる。一方、HLA分子と候補ペプチドとの結合力が無い場合は、MHC-モノマーは殆ど検出されない。したがって、フォールディング溶液を経時的に分析することで、又は熱処理等を行うことで、HLA分子と候補ペプチドの結合性と安定性とを検証することが可能である。
 (2)エピトープペプチド特異的CTLの検出
 ヒト(例えば、健常人)から分離した末梢血単核球(peripheral blood mononuclear cells;PBMC)を適切な培地に浮遊させ、これに候補ペプチドを単独にて、または数種類の候補ペプチドを混合して加え、当該ペプチドとIL-2による刺激を繰り返し与えながらCTLを誘導する。
 (3)エピトープペプチド特異的Th細胞の検出
 ヒト(例えば、健常人)から分離したPBMCから、浮遊細胞を除去することにより樹状細胞(付着細胞)を調製する。また別途、同一のヒトからFicoll-Paqueの密度勾配遠心法又は磁気細胞分離システム等によりCD4陽性T細胞を調製する。次に、前記樹状細胞に候補ペプチドを添加して培養した後、この樹状細胞と前記CD4陽性T細胞とを混合培養する。その後、CD4陽性T細胞を回収し、候補ペプチドと培養した樹状細胞で同様に繰り返し刺激し、Th細胞を誘導する。
 そして、このようにして誘導したCTL又はTh細胞が、候補ペプチドに対して特異性があるかどうかの検討は、例えば、後述のMHC-多量体法等を用いて判定することができ、後述のMHC-多量体で染色可能なCTL又はTh細胞が検出された場合、使用した候補ペプチドは、CTL又はTh細胞を誘導する活性を有するエピトープペプチドであると同定する事が可能である。
 また、候補ペプチドが、刺激に反応してCTL又はTh細胞が活性化(誘導)されたことは、CTL又はTh細胞の増殖活性や、CTL又はTh細胞によるサイトカイン産生活性測定することによって分析することができる。
 (4)培養細胞株を用いた検討
 プロテアソームによるタンパク質分解で生じたペプチド断片はTAP(transporter associated with antigen processing)分子により小胞体内腔へと導かれ、HLA分子に結合し、細胞膜表面へ輸送される。このTAP分子を欠損した、TAP遺伝子欠損細胞株は、内在性タンパク質の分解産物であるペプチド断片を細胞膜表面に発現できない。また、代表的なTAP遺伝子欠損細胞株であるヒトリンパ芽球様細胞株T2、あるいはT2にHLA分子を遺伝子導入した細胞株(T2-A11)のHLA分子は、細胞膜表面上での発現が非常に不安定である。しかし、外部から供給したペプチドと結合した場合、HLA分子は細胞膜表面上で安定化する。この性質を利用して、TAP遺伝子欠損細胞株は、HLA分子と外部から供給したペプチドの結合性を検証する実験に使用することが可能である。具体的には、TAP遺伝子欠損細胞株と改変ペプチドを混合培養後、抗HLA抗体で染色し、フローサイトメトリーでHLA分子の発現強度の変化を算出することで、目的とするHLA分子と候補ペプチドとの結合性を検討できる。TAP遺伝子欠損細胞株が発現するHLA分子に添加した候補ペプチドが結合した場合、HLA分子と候補ペプチドの複合体は細胞膜表面上で安定化し、抗HLA抗体で染色した場合、HLA分子の発現増強が観察される。一方、添加した候補ペプチドがHLA分子と結合性を示さない場合は、細胞膜表面上のHLA分子は不安定であり、抗HLA抗体で染色してもHLA分子の発現増強は確認されない。この様な方法を用いて、候補ペプチドのHLA分子への結合性を検証することが可能である。
 そして、本発明においてこのようにして同定された、キラーエピトープとしては、配列番号:7又は94に記載のアミノ酸配列を含む、HLA-A24拘束性キラーT細胞の誘導活性を有するペプチドが挙げられる。また、ヘルパーエピトープとしては、配列番号:38~43及び46のうちのいずれかに記載のアミノ酸配列(好ましくは、配列番号:46に記載のアミノ酸配列)を含む、HLA-DR53拘束性ヘルパーT細胞の誘導活性を有するペプチド、配列番号:29~33、47及び95のうちのいずれかに記載のアミノ酸配列(好ましくは、配列番号:47又は95に記載のアミノ酸配列)を含む、HLA-DP2拘束性ヘルパーT細胞の誘導活性を有するペプチド、配列番号:53、101、102及び51のうちのいずれかに記載のアミノ酸配列を含む、HLA-DR15拘束性ヘルパーT細胞の誘導活性を有するペプチド、配列番号:53、101、102及び51のうちのいずれかに記載のアミノ酸配列を含む、HLA-DR9拘束性ヘルパーT細胞の誘導活性を有するペプチド、配列番号:29~37、96、97及び89~93のうちのいずれかに記載のアミノ酸配列を含む、HLA-DR9拘束性ヘルパーT細胞の誘導活性を有するペプチドが挙げられる。
 また、下記表2に示すとおり、これら4種の中から複数種のエピトープペプチドを含むことにより、由来及び/又は種類の異なるT細胞を誘導できるという観点から、本発明のエピトープペプチドとして、配列番号:88、98~100、54及び55のうちのいずれかに記載のアミノ酸配列を含むペプチドが好適な例として挙げられる。また、これらエピトープペプチドの具体的な例としては、配列番号:88に記載のアミノ酸配列に関しては、配列番号:19及び89~93のうちのいずれかに記載のアミノ酸配列が挙げられ、配列番号:98~100に記載のアミノ酸配列に関しては、各々配列番号:48~50に記載のアミノ酸配列が挙げられる。なお、表2中、各Xについては、各配列番号に記載のアミノ酸配列を参照のほど。
Figure JPOXMLDOC01-appb-T000002
 また、後述の実施例に示すアラニン置換体を用いた実験結果を鑑みるに、表2に示すエピトープペプチドの各配列において、SARS-CoV-2のSタンパクの454、456、458、459、461、463、464、466及び468~470位から選択される少なくとも1の部位のアミノ酸は、任意のアミノ酸であってよい(例えば、454位のアミノ酸はアルギニンであるが、アルギニンとは異なる他のアミノ酸(例えば、アラニン)であっても良い)。
 また、本発明においては、このようなエピトープペプチドが2種以上、直接又は適宜スペーサーを介して連結してなる融合ペプチドの形態をとり得る。このような融合ペプチドであっても、後述の実施例に示すとおり、抗原提示細胞内にてプロセシングを受け、生じたエピトープペプチドが当該細胞に提示され、各種T細胞を誘導し得る。
 スペーサーとしては、抗原提示細胞内におけるプロセシングに影響を及ぼさないものであれば特に限定されないが、通常、各々のエピトープペプチドとペプチド結合で連結されるリンカーであり、例えば、いくつかのアミノ酸が連結したペプチドリンカーや、両端にアミノ基及びカルボキシル基を有するリンカーが挙げられる。具体的には、グリシンリンカー、PEG(ポリエチレングリコール)リンカーが挙げられる。グリシンリンカーとしては、ポリグリシン(例えば、グリシン6個からなるペプチド;CancerSci,vol.103,p150-153)等が挙げられる。PEGリンカーとしては、PEGの両端にアミノ基及びカルボキシ基を有する化合物由来のリンカーが挙げられる(例えば、HN-(CH-(OCHCH-COOH;Angew.Chem.Int.Ed.2008,47,7551-7556)。
 本発明の融合ペプチドにおいては、同一のエピトープペプチドが複数個連結されていてもよいし、複数の異なるエピトープペプチドが連結されたものであってもよい。当然ながら、2種以上のエピトープペプチドが選択される場合であっても、選択されたエピトープペプチドのうちの1種又は2種以上が複数個連結されてもよい。
 また、本発明の融合ペプチドにおいては、本発明のエピトープペプチド(すなわち、配列番号:52に記載のアミノ酸配列における連続した少なくとも5アミノ酸を含み、T細胞の誘導活性を有する、エピトープペプチド)以外のエピトープペプチドを含んでいてもよい。かかるエピトープペプチドとしては、特に制限はなく、SARS-CoV-2を対象とするものであってもよく、また異なるウイルスを対象とするものであってもよい。かかる本発明のエピトープペプチド以外のエピトープペプチドとしては、例えば、後述の実施例に示す、QYI 9merペプチド(SARS-CoV-2のSタンパク 1208~1216位の9アミノ酸からなるペプチド、アミノ酸配列:QYIKWPWYI、配列番号:15)が挙げられる。また、本発明のエピトープペプチド以外のエピトープペプチドについても、同様に複数種及び/又はは複数個のエピトープペプチドが連結されてよい。
 本発明の融合ペプチドにおいて連結するエピトープペプチドの数としては、特に制限はないが、例えば、2個、3個、4個、5個、6個、7個、8個、9個、10個以上(11個、12個、13個、14個、15個等)が挙げられる。また、その長さとしては、少なくとも10アミノ酸、少なくとも15アミノ酸、少なくとも20アミノ酸、少なくとも25アミノ酸、少なくとも30アミノ酸、少なくとも40アミノ酸、少なくとも50アミノ酸であって、また500アミノ酸以内、450アミノ酸以内、400アミノ酸以内、350アミノ酸以内、300アミノ酸以内、250アミノ酸以内、200アミノ酸以内、150アミノ酸以内、100アミノ酸以内である。
 また、本発明のエピトープペプチドは、上述の活性を保持している限り、例えば、配列番号:52、7、38~43、46、29~33、47、53、19、48~50、54及び55のうちのいずれかに記載のアミノ酸配列において、1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されている、ペプチドも本発明に含まれる。アミノ酸配列の置換、欠失、挿入又は付加は、好ましくは10アミノ酸以内(例えば、9アミノ酸以内、8アミノ酸以内、7アミノ酸以内、6アミノ酸以内)、より好ましくは5アミノ酸以内(例えば、4アミノ酸以内、3アミノ酸以内、2アミノ酸以内)、さらに好ましくは1アミノ酸である。なお、このような置換等の改変を導入し得る部位は、例えば、上述のとおり、実施例に示すアラニン置換体を用いた実験結果を鑑み、当業者であれば判断することができる。
 さらにまた、このようなアミノ酸の改変目的としては、例えば、
 1.HLAとの親和性を高める為の変更(Rosenberg SA et al,Nat Med.1998;4:321-327、Berzofsky JA et al,Nat Rev Immunol.2001;1:209-219)、
 2.TCRの認識性を向上させる為の変更(Fong L et al,Proc Natl Acad Sci USA.2001;98:8809-8814、Rivoltini L et al,Cancer Res. 1999;59:301-306)、
 3.血清中のペプチド分解酵素等による代謝を回避する為の変更(Berzofsky JA et al,Nat Rev Immunol.2001;1:209-219、Parmiani G et al,J Natl Cancer Inst.2002;94:805-818、Brinckerhoff LH et al,Int J Cancer.1999;83:326-334)等が挙げられる。
 なお、このようにしてアミノ酸配列を改変したエピトープペプチドが、各種活性を保持しているかは、当業者であれば、上述の候補ペプチド同様に、フォールディングテスト、エピトープペプチド特異的T細胞の検出、培養細胞株を用いた検討等によって評価することができる。
 また、上述の目的の為にペプチドのN末端又はC末端に付加的アミノ酸配列が介在するものも含まれる。さらに、本発明のエピトープペプチドは、糖類、ポリエチレングリコール、脂質等が付加された複合体、放射性同位元素等による誘導体、あるいは重合体等の形態として用いることができる。
 また、HLA分子とエピトープペプチドとの複合体を細胞表面に提示する細胞を、T細胞が特異的に認識できる範囲内であれば、本発明のエピトープペプチドのN末端や遊離のアミノ基には、ホルミル基、アセチル基、t-Boc基等が結合していてもよく、抗原ペプチドのC末端や遊離のカルボキシル基には、メチル基、エチル基、t-ブチル基、ベンジル基等が結合していてもよい。
 また、本発明のエピトープペプチドは、生体内への導入を容易にしうる各種修飾を施されたものであってもよい。生体内への導入を容易にしうる各種修飾の例としては、PT(Protein Transduction)ドメインが有名である。HIVのPTドメインは、Tatタンパク質の49~57番目のアミノ酸(RKKRRQRRR、配列番号:62)で構成されたペプチドである。このPTドメインを目的とするタンパク質あるいはペプチドのN末端とC末端の両方、またはいずれかに付加することで、容易に細胞内に導入できることが報告されている(Ryu J et al,Mol Cells.2003;16:385-391、Kim DT et al,J Immunol.1997;159:1666-1668)。
 HLA分子を介して提示される殆どの抗原は、細胞質内のプロテアソームにより分解された後、TAP(transporter in antigen processing)へと移送され、粗面小胞体内においてTAPに会合しているHLA分子と結合し、ゴルジ装置を経てエクソサイトーシスにより細胞表面へと運搬される。したがって、これら一連の抗原提示経路にて作用するシャペロンであるHSP(heat shock prtein)70やHSP90、またはgp96と目的とするペプチドやタンパク質を融合させることで、効率的に抗原提示させることが可能である(Basu S et al,Immunity.2001;14:303-313)。
 また、本発明のエピトープペプチドには、タンパク質の分離精製に有用な精製用タグ(Hisタグ等)や、タンパク質の検出に有用なマーカータンパク質(GFP等)の様な機能性タンパク質がさらに付加されていたり、またビオチン等の標識化合物が付加されていてもよい。
 本発明のエピトープペプチドは、当業者であれば、公知の製造方法を適宜用いて調製することができる。かかる公知の製造方法としては、例えば、化学的合成、抗原となるタンパク質(SARS-CoV-2由来Sタンパク)の分解、組換えDNA技術を用いた合成が挙げられる。化学的合成方法の場合、エピトープペプチドは、例えば、ベンジルオキシカルボニル基(Cbz)、tert-ブトキシカルボニル基(Boc)、フルオレニルメトキシカルボニル基(Fmoc)等の保護基を用いた公知の有機化学的合成法(固相ペプチド合成法等)により製造できる。また、市販の化学合成装置(例えば、アプライドバイオシステムズ社のペプチド合成装置)による合成によっても調製することができる。抗原となるタンパク質の分解による場合、エピトープペプチドは、例えば、当該タンパク質を、プロテアーゼ、ペプチダーゼ等の公知のタンパク質分解酵素で分解することにより製造できる。前記タンパク質の分解条件は、例えば、そのタンパク質の種類、前記タンパク質分解酵素の基質特異性等に応じて適宜設定できる。組換えDNA技術を用いる場合、エピトープペプチドは、例えば、当該エピトープペプチドをコードする核酸を含む発現ベクターを作製する。そして、この発現ベクターを用いた前記エピトープペプチドの発現系により当該エピトープペプチドを合成し、それを回収(単離、精製等)することにより調製できる。前記発現系は、例えば、前記発現ベクターを宿主に導入することで調製することができる。前記宿主は、例えば、動物細胞、植物細胞、昆虫細胞、細菌等の公知の宿主が挙げられる。また、前記組換えDNA技術を用いる場合、エピトープペプチドは、例えば、エピトープペプチドをコードする核酸と、公知の無細胞翻訳系とを用いて作製してもよい。そして、前記無細胞翻訳系により、前記核酸から翻訳されたエピトープペプチドを回収することにより製造できる。
 〔MHC-モノマー及びその多量体〕
 後述の実施例に示すとおり、SARS-CoV-2を標的とするT細胞の誘導、及びT細胞を定量化する上で、本発明のエピトープぺプチドとHLA分子とからなる複合体、及び当該複合体の多量体は、有用である。また、エピトープペプチドのHLA分子への結合性を評価する上でも、有用である。よって、本発明は、本発明のエピトープぺプチドとHLA分子とからなる複合体、及びその多量体(MHC-モノマー、及びその多量体)も提供する。なお、HLA分子(HLAクラス1分子及びHLAクラス2分子)については、上述のとおりである。
 本発明のエピトープペプチドを含む、MHC-モノマー及びその多量体は、例えば、公知の方法(US Patent Number 5,635,363、French Application Number FR9911133)により調製することができる。より具体的には、タンパク質発現用の遺伝子組換え宿主から精製したHLA分子と、本発明のエピトープペプチドとの複合体であるMHC-モノマーをフォールディング溶液内で形成させる。ここで、HLA分子のC末端には予めビオチン結合部位を付加しておき、MHC-モノマー形成後この部位にビオチンを付加する。市販の色素標識されたストレプトアビジンとビオチン化MHC-モノマーを所望のモル比(例えば、四量体を形成する場合は、1:4)で混合することによってMHC-多量体を製造することができる。
 なお、本発明において、MHC-多量体を形成するMHC-モノマーの数としては特に制限はないが、通常2~10であり、好ましくは4~8であり、より好ましくは4(MHCテトラマー試薬)又は5(MHCペンタマー試薬)であり、特に好ましくは4である。
 本発明のMHC-モノマー及びその多量体の具体的な例として、HLA-DR8拘束性のエピトープペプチド(配列番号:84に記載のアミノ酸配列からなるペプチド及び/又は配列番号:85に記載のアミノ酸配列からなるペプチド)を含む、MHC-モノマー及びその4量体、HLA-A24拘束性のエピトープペプチド(配列番号:86に記載のアミノ酸配列からなるペプチド及び/又は配列番号:87に記載のアミノ酸配列からなるペプチド)を含む、MHC-モノマー及びその4量体が、挙げられる。
 また、MHC-多量体と細胞表面タンパク質に対する抗体(例えば、CD62L、CCR7やCD45RA等に対する抗体)と組み合わせて用いることで、CTLの分化段階を調べることができる(Seder RA et al,Nat Immunol.2003;4:835-842)。あるいは細胞内サイトカイン染色法と組み合わせることで、CTLの機能性評価に用いることも可能である。
 〔T細胞の検出方法〕
 このように特異的なT細胞が認識し得るエピトープペプチドを同定し、MHC-多量体を製造すれば、特異的なT細胞の定量と定性が可能になり、診断情報を得る上で多大な貢献が可能になる。すなわち、本発明は、本発明のMHC-モノマー又はMHC-多量体と、被検試料とを反応させる工程を含む、当該試料中のSARS-COV-2に特異的なT細胞を検出する方法をも提供する。
 本発明において「被検試料」とは、特に制限はないが、例えば、感染者、SARS-COV-2感染が疑われる者、健常者(SARS-COV-2非感染者、SARS-COV-2感染症から回復した者等)、SARS-COV-2(新型コロナ)ワクチン接種者等から分離した、末梢血、Blood(全血)、PBMC、T細胞、TIL(Tumor-infiltrating lymphocytes:腫瘍組織浸潤性リンパ球)が挙げられる。また、かかる被検試料は、本発明のMHC-モノマー又はMHC-多量体と反応させる前に、本発明のエピトープペプチドと接触等させることによって、刺激誘導を施してもよい。
 また「検出」は、本発明のMHC-モノマー又はMHC-多量体と結合したT細胞(CTL、Th細胞、TCR遺伝子導入細胞)を、標識色素によって染色することにより、または標識色素が付加された本発明のMHC-モノマー又はMHC-多量体を用いることにより、フローサイトメーター、顕微鏡等を用いて行なうことができる。
 本発明においてはまた、上記本発明のMHC-モノマー又はMHC-多量体を用いる方法の他、本発明のエピトープペプチドを用いたT細胞の検出方法も提供し得る。より具体的には、本発明のエピトープペプチドと被検試料とを接触させ、当該接触により誘導されたSARS-CoV-2を標的とするT細胞が産生する、サイトカイン、ケモカイン及び細胞表面分子から選択される少なくとも1の分子を検出する工程を含む、当該試料中のSARS-CoV-2を標的とするT細胞を検出する方法をも、本発明は提供する。
 当該方法においても、「被検試料」としては特に制限されることなく、例えば、上述の物が例示される。さらに、それとの「接触」としても特に制限はなく、例えば、後述の「CTL調製方法4」に記載のようにして行うことが出来る。
 前記方法にて検出される「サイトカイン、ケモカイン、細胞表面分子」としては、特に制限されるものではないが、例えば、IFN-γ、CD4、CD8、CD3、TNFα、IL-2、Granzyme B、CD107a、4-1BB(CD137)、CD28、OX40(CD134)、CTLA-4(CD152)、PD-1(CD279)、GITR、ICOS、CD45RO、CD45RA、CCR1、CCR2、CCR5、CCR7が挙げられる。また、これら分子の検出方法としては、特に制限はないが、例えば、後述の実施例に示すような、ELISPOTアッセイ、ELISA法、細胞内染色方法等の免疫学的方法が挙げられる。
 そして、このようにして得られる、前記被検試料において検出されるSARS-COV-2に特異的なT細胞のデータ(定量的なデータ等)は、当該試料の由来である被検者等のSARS-COV-2に対するT細胞応答能を示すものである。よって、かかる検出方法によって、SARS-COV-2オリジナル株(野生株)に対するT細胞応答能と、その変異株に対するそれとの比較に用いることも可能となる。また、被検試料がワクチン接種者に由来するものである場合、当該接種後のSARS-COV-2に対するT細胞応答能(細胞性免疫)を、接種回数、接種後期間等において、経時的にその推移をモニタリングすることも可能となる。また、接種されるワクチンが開発中のもの等であれば、かかるT細胞応答能の経時的モニタリング等を通して、その性能を評価することも可能となる。
 〔T細胞を検出するためのキット〕
 前述のとおり、本発明においては、サイトカイン等を検出することによって、本発明のエピトープペプチドにより誘導され前記サイトカイン等を産生するT細胞を、検出することが出来る。
 よって、本発明は、本発明のエピトープペプチドと、サイトカイン、ケモカイン及び細胞表面分子から選択される少なくとも1の分子を検出するための物質とを、少なくとも含む、SARS-CoV-2を標的とするT細胞を検出するためのキットも提供する。
 サイトカイン、ケモカイン及び細胞表面分子から選択される少なくとも1の分子を検出するための「物質」としては、特に制限はないが、当該検出においては、前述のとおり、免疫学的方法が用いられ得るため、抗体がその好適な例として挙げられる。
 また、その免疫学的検出において、抗体には通常標識物質が結合される。「標識物質」としては、抗体に結合させて検出できるものであれば特に制限はないが、例えば、西洋ワサビペルオキシダーゼ(HRP)、アルカリホスファターゼ(ALP)、βガラクトシダーゼ(β-gal)、ホタルルシフェラーゼ等の酵素、フルオレセインイソチオシアネート(FITC)やローダミンイソチオシアネート(RITC)等の蛍光色素、アロフィコシアニン(APC)やフィコエリスリン(R-PE)等の蛍光蛋白質、125I等の放射性同位元素、ラテックス粒子、金コロイド粒子、アビジン、ビオチン等が挙げられる。標識物質として「酵素」を用いた場合には、基質として、発色基質(例えば、過酸化水素の存在下、HRPによる酸化触媒反応により発色する3,3’,5,5’-テトラメチルベンジジン(TMB))、化学発光基質(例えば、ALPによる加水分解により発光するAMPPD(3-(2’-スピロアダマンタン)-4-メトキシ-4-(3’-ホスホリルオキシ)フェニル-1,2-ジオキセタン・2ナトリウム塩))、蛍光基質等を添加することにより、基質に応じて種々の検出を行うことができる。
 標識物質を結合させた抗体を用いてサイトカイン等を直接的に検出する方法以外に、抗体には標識物質を結合せず、標識物質が結合した二次抗体等を利用して間接的に検出する方法を利用することもできる。ここで「二次抗体」とは、抗原に直接結合する抗体(一次抗体)に対して反応性を示す抗体である。また、二次抗体に代えて、標識物質を結合させたプロテインGやプロテインA等を用いることも可能である。
 抗体と標識物質との結合には、ビオチン-アビジン系を利用することもできる。この方法においては、例えば、抗体をビオチン化し、これに、アビジン化した標識物質を作用させ、ビオチンとアビジンの相互作用を利用して、抗体に標識物質を結合させる。
 本発明の方法において、上記のとおり、ELISPOTアッセイ、ELISA法等のサンドイッチ法が好適である。サンドイッチ法において、前記分子を検出するための物質は、捕捉用抗体と、検出用抗体との態様をとる。すなわち、サンドイッチ法においては、固相化した捕捉用抗体で検出対象物質を捕捉し、それを標識物質が結合した検出用抗体に認識させ、B/F分離(洗浄)後、標識物質の種類に応じた検出を行う。また、標識物質が結合した検出用抗体で検出対象物質を認識させ、B/F分離を行いつつ、固相化した捕捉用抗体で検出対象物質を捕捉し、標識物質の種類に応じた検出を行うようにしてもよい。固相としては、例えば、ポリフッ化ビニリデン(PVDF)膜等の膜状物質、プラスチックプレート等のプレート、磁性粒子やラテックス粒子等の粒子、又はこれらの組み合わせ(例えば、PVDF膜が表面に付されたプレート)を用いることができる。
 捕捉用抗体は固相に直接固定してもよいが、間接的に固定してもよい。例えば、捕捉用抗体に結合する物質を固相に固定し、当該物質に捕捉用抗体を結合させることにより、補足用抗体を固相に間接的に固定することができる。捕捉用抗体に結合する物質としては、例えば、上記の二次抗体、プロテインG、プロテインA等が挙げられるが、これらに制限されない。また、捕捉用抗体がビオチン化されている場合には、アビジン化した固相を利用することができる。
 以上、本発明のT細胞を検出するためのキットについて説明したが、ELISPOTアッセイ等のサンドイッチ法を例にすると、より具体的には、以下の物質をその構成品として含み得る。
(1)本発明のエピトープペプチド、
(2)サイトカイン、ケモカイン及び細胞表面分子から選択される少なくとも1の分子に対する捕捉用抗体、及び、当該捕捉用抗体を直接若しくは間接的に固定化するための固相、又は、前記捕捉用抗体抗体が直接若しくは間接的に固定化されている固相、
(3)酵素標識が直接又は間接的に結合している、前記分子に対する検出用抗体、
(4)前記酵素標識の基質、並びに、
(5)洗浄液。
 〔エピトープペプチドをコードする核酸等〕
 本発明には、本発明のエピトープペプチドをコードする核酸、又は当該核酸を含有する発現ベクターも含まれる。
 本発明のエピトープペプチドをコードする核酸は、遺伝子組換え技術を用いて、当該エピトープペプチドを宿主内で産生させる為に重要である。この場合、宿主間でアミノ酸コドンの使用頻度(codon usage)が異なる為、産生させる宿主のcodon usageに適合するようアミノ酸コドンを変更することが望ましい。
 また、本発明のエピトープペプチドをコードする核酸は、後述のとおり、遺伝子ワクチンとしても重要で、むき出しの核酸として移送することも、適切なウイルス又は細菌ベクターを用いて移送することもできる(Berzofsky JA et al,J Clin Invest.2004;114:450-462、Berzofsky JA et al,J Clin Invest. 2004;113:1515-1525)。適切な細菌ベクターとしては、例えばサルモネラ属亜種の細菌由来のベクターが挙げられる。適切なウイルスベクターとしては、例えば、レトロウイルスベクター、EBVベクター、ワクシニアベクター、センダイウイルスベクター、レンチウイルスベクターである。適切なワクシニアベクターの1例は、改変ワクシニア・アンカラベクターである。
 また、本発明のベクターの好ましい態様としては、本発明のエピトープペプチドを発現し得るベクターを例示することができる。該ベクターは、通常、プロモーターの下流に本発明の核酸が機能的に連結された構造のDNA構築物を担持するベクターである。また、プロモーターの他に、ターミネーター、エンハンサー、ポリアデニル化シグナル配列、複製起点配列(ori)等の調節配列も有していてもよい。本発明の発現ベクターにおいて、これら調節配列の配置は特に制限されないが、当業者であれば適切に調整し、配置することができる。
 〔能動免疫ワクチン〕
 本発明において「ワクチン」とは、SARS-CoV-2の感染、発症、重症化等のいずれかを抑制できるものであれば、特に制限はなく、例えば、以下に説明する、ペプチドワクチン、抗原提示細胞を利用したワクチン、遺伝子ワクチンの態様をとり得る。
 ペプチドワクチン
 本発明のエピトープペプチドは、能動免疫療法においてペプチドワクチンとして用いることができる。すなわち、本発明のエピトープペプチドを含んでなるワクチンを患者に投与し、当該ペプチドとHLA分子との複合体を認識するT細胞を体内で増殖させ、SARS-CoV-2感染症の治療及び予防に役立てることができる。
 使用するエピトープペプチドは1種のみの使用であっても、あるいはワクチンの使用目的に応じて2種以上(例えば、3種以上、4種以上、5種以上、6種以上、7種以上、8種以上、9種以上、10種以上)のエピトープペプチドを混合して用いることもできる。また上述のとおり、エピトープペプチドを連結して融合ペプチドの形態にて使用することもできる。
 抗原提示細胞を利用したワクチン
 本発明のエピトープペプチドが提示された抗原提示細胞は、能動免疫療法においてワクチンとして用いることができる。「抗原提示細胞」とは、例えば、樹状細胞、B細胞、マクロファージ、ある種のT細胞等を意味するが、該ペプチドが結合し得るHLA分子をその細胞表面上に発現する細胞であって、T細胞を誘導する活性を有するものを意味する。
 「エピトープペプチドが提示された抗原提示細胞」とは、
  1.適当な培養液中で、抗原提示細胞とエピトープペプチドを、例えば30分から1時間混合して調製したエピトープペプチドパルス抗原提示細胞
  2.エピトープペプチドをコードする核酸を用い、遺伝子導入等で抗原提示細胞にエピトープペプチドを提示させた細胞
  3.人工的に調製した抗原提示能を有する人工抗原提示細胞
を意味する。「人工的に調製した抗原提示能を有する人工抗原提示細胞」とは、例えば脂質二重膜やプラスティックあるいはラテックス等のビーズに、HLA分子とエピトープペプチドとの複合体を固定し、T細胞を刺激し得るCD80、CD83やCD86等の共刺激分子を固定するか、若しくは、共刺激分子と結合するT細胞側のリガンドであるCD28等に対してアゴニスティックに作用する抗体等を固定することで調製可能である(Oelke Mら,Nat Med.2003;9:619-624、Walter Sら,J Immunol.2003;171:4974-4978、Oosten LEら,Blood 2004;104:224-226)。
 遺伝子ワクチン
 本発明のエピトープペプチドをコードする核酸は、能動免疫療法においてDNAワクチンや組換えウイルスベクターワクチン等に用いることができる。この場合、エピトープペプチドの核酸配列は、組換えワクチンや、組換えウイルスワクチンを産生させる宿主に適合したcodon usageに変更することが望ましい(Casimiro,D.R.et al. J.Virol.,2003;77:6305-6313、Berzofsky JA et al,J Clin Invest.2004;114:450-462)。
 また、本発明のエピトープペプチドをコードする核酸は、RNAワクチンとして用いることができる。この場合、RNAはプロタミン等のカチオン性ペプチドと複合体を形成し、RNaseから保護される態様をとり得る。また、デリバリーの観点から、脂質ナノ粒子(PEG化脂質ナノ粒子等)、リポソーム等でカプセル化する態様や、RNAウイルス(レトロウイルス、レンチウイルス、アルファウイルス、ラブドウイルス等)をウイルスベクターとして用いる態様もとり得る。Toll様受容体(TLR)との反応性や抗原ペプチドの産生という観点から、修飾核酸(シュードウリジン、1メチルシュードウリジン等)への置換を導入しうる。また、Anti-Reverse Cap Analogues(ARCA)法を用いたRNAへのCAP構造の付加、2’-Oメチルトランスフェラーゼ処理によるCap0からCap1構造への置換も、本発明の核酸(RNA)において適宜用いうる。
 〔受動免疫療法剤〕
 本発明のエピトープペプチドは、受動免疫療法剤の調製に用いることができる。すなわち、本発明のエピトープペプチドを用い、下記のようにしてSARS-CoV-2を標的とするT細胞を調製し、また必要に応じて純度を高める為に精製し、さらに当該細胞をヒトアルブミン含有PBS等に懸濁させることによって、SARS-CoV-2に対する受動免疫療法剤とすることができる。
 SARS-CoV-2を標的とするT細胞は、例えば、
(1)本発明のエピトープペプチド、該ペプチドとHLA分子との複合体、該複合体の多量体、又は前記複合体を表面上に提示する抗原提示細胞により、単核球を刺激させる工程を含む方法、又は
(2)本発明のエピトープペプチドとHLA分子との複合体又は該複合体の多量体と、単核球とを反応させ、前記複合体又は前記多量体にT細胞が結合した結合体を形成させ、該結合体からT細胞を単離する工程を含む方法
によって、製造することができる。
 本発明において「単核球」とはリンパ球及び単球を意味し、例えば、末梢血単核球(PBMC)、臍帯血単核球の態様が挙げられる。
 本発明のエピトープペプチド等による単核球への「刺激」とは、例えば、単核球を培養している培地中に、本発明のエピトープペプチド等を添加することにより行うことができる。また、本発明のエピトープペプチドを固相化したプレートにて、単核球を培養することによって行ってもよい。また、利用し得る抗原提示細胞としては、本発明のエピトープペプチドが結合し得るHLAをその表面上に発現している細胞であればよく、例えば、樹状細胞、B細胞、マクロファージが挙げられる。また、本発明にかかる抗原提示細胞としては、単核球を刺激する前に、X線照射やマイトマイシン処理等により、増殖能を喪失させたものであってもよい。
 単核球を刺激する際の条件としては、単核球等の維持に好適であればよく、例えば、単核球等を維持するために利用される培地(例えば、AIM-V培地)にて、37℃、5%CO2、1~7日間にて培養することが挙げられる。また当該インキュベーションの際に、培地には、T細胞を刺激するという観点から、IL-2、IL-7、IL-15、PHA、抗CD3抗体、IFN-γ、IL-12、抗IL-4抗体又はこれらの組み合わせを培地に添加してもよい。さらに、種々のサイトカインを産生させることにより免疫応答を増強させるという観点から、ピシバニール(OK-432)、CpG DNA等のToll様受容体(TLR)のアゴニスト等を培地に添加してもよい。また、この抗原提示細胞と単核球とのインキュベーションは、受動免疫療法に必要なT細胞数を確保するため、複数回繰り返してもよい。
 また、前記複合体又は該複合体の多量体と単核球との反応の条件としては、前記刺激の際同様に、単核球等の維持に好適であればよい。また、そのように反応して形成させた結合体からのT細胞の単離については、特に制限はなく、前記複合体又は該複合体の多量体に標識物質(標識色素等)を付加し、それをセルソーター、顕微鏡等を用いて検出することにより行なうことができる。また、前記複合体又は該複合体の多量体を担体(プレート等)に固定することにより、前記反応の後、当該担体を洗浄することによって、T細胞を単離することもできる。
 さらに、後述の実施例に示すとおり、このようにして製造されたT細胞には、本発明のエピトープペプチド特異的にサイトカインを産生するCD4+T細胞(抗原特異的CD4+T細胞)及び/又は本発明のエピトープペプチド特異的にサイトカインを産生するCD8+T細胞(抗原特異的CD8+T細胞)が含まれている。かかるT細胞を精製する方法としては、例えば、本発明のエピトープペプチドを固相化した担体等を用いて分離することができる。さらに、かかるT細胞は、分泌されるサイトカインを指標として精製することもできる。すなわち、抗原特異的CD4+T細胞は、IFN-γ、IL-2、IL-4等のサイトカインを産生するので、これらに対する抗体を用いたフロサイトメトリー、アフィニティクロマトグラフィー、磁気ビーズ精製法により精製することができる。一方、抗原特異的CD8+T細胞は、IFN-γ、TNF-α等のサイトカインを産生するので、これらに対する抗体を用いたフロサイトメトリー、アフィニティクロマトグラフィー、磁気ビーズ精製法により精製することができる。
 また、かかるT細胞は、各T細胞の細胞表面に発現しているタンパク質に対する抗体を用いたフローサイトメトリー、アフィニティクロマトグラフィー、磁気ビーズ精製法により精製することができる。抗原特異的CD4+T細胞の細胞表面に発現しているタンパク質としては、CD29、CD45RA、CD45RO等が挙げられ、抗原特異的CD8+T細胞の細胞表面に発現しているタンパク質としては、CD107a、CD107b、CD63、CD69等が挙げられる。
 さらに、CTLに関しては、より具体的に、以下のような調製方法、精製方法を例示することができる。
 〔CTL調製方法〕
 CTL調製方法1
 PBMCと、適当な濃度の本発明のMHC-多量体を反応させる。MHC-多量体と結合したSARS-CoV-2特異的CTLは標識色素により染色されるので、セルソーター、顕微鏡等を用いて染色されたCTLのみを単離する。このようにして単離されたSARS-CoV-2特異的CTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤や、X線照射あるいはマイトマイシン処理等で増殖能を損失させた抗原提示細胞で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
 CTL調製方法2
 本発明のMHC-モノマー及び/又はMHC-多量体を無菌プレート等に固相化し、PBMCを当該固相化プレートで培養する。プレートに固相化されたMHC-モノマー及び/又はMHC-多量体に結合したCTLを単離するためには、結合せずに浮遊している他の細胞を洗い流した後に、プレート上に残ったCTLだけを新しい培地に懸濁する。このようにして単離されたCTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤や、X線照射あるいはマイトマイシン処理等で増殖能を損失させた抗原提示細胞で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
 CTL調製方法3
 本発明のMHC-モノマー及び/又はMHC-多量体と、CD80、CD83、CD86等の共刺激分子、若しくは、共刺激分子と結合するT細胞側のリガンドであるCD28に対してアゴニスティックに作用する抗体等を無菌プレート等に固相化し、PBMCを固相化プレートで培養する。そして、例えば、2日後にIL-2を培地に添加し5% CO恒温槽にて37℃で7~14日培養する。培養した細胞を回収し新たな固相化プレート上で培養を続ける。この操作を繰り返すことで受動免疫療法に必要な細胞数のCTLを確保する。
 CTL調製方法4
 PBMCあるいはT細胞を本発明のエピトープペプチドで直接刺激するか、該ペプチドをパルスした抗原提示細胞、遺伝子導入した抗原提示細胞、又は人工的に調製した抗原提示能を有する人工抗原提示細胞で刺激する。そして、例えば、刺激によって誘導されたCTLを5% CO恒温槽にて37℃で7~14日培養する。エピトープペプチドとIL-2、又は抗原提示細胞とIL-2による刺激を週に1度繰り返すことで受動免疫療法に必要な細胞数のCTLを確保する。
 なお、後述の実施例において示す通り、本発明のエピトープペプチドで直接刺激する場合において、当該ペプチドとPBMCとを、培地中で接触させることが好ましく、血漿を含む培地中で接触させることがより好ましい。CTLを調製する際の培地としては特に制限はなく、公知の培地(例えば、RPMI1640培地)を適宜用いることができる。また、培地中の血漿の濃度は、1~10%であることが好ましく、3~10%であることがより好ましく、5~10%であることがさらに好ましく、長期間の培養において十分な血漿量を確保し易いという観点から、5%であることが特に好ましい。
 [CTLの精製法]
 CTL調製方法において、SARS-CoV-2を標的とするCTLの割合が低い場合は、随時以下の方法を用いることで当該CTLを高純度で回収することが可能である。
 MHC-多量体による精製
 本発明のMHC-モノマー及び/又はMHC-多量体と、CTL調製方法にて誘導されたCTLを反応させ、MHC-モノマー及び/又はMHC-多量体を標識している標識色素に対する抗体等を磁気標識した2次抗体を用いて分離することが可能である。このような磁気標識した2次抗体と、磁気標識細胞分離装置は、例えばDynal社やMiltenyi Biotec GmbH社から入手可能である。このようにして単離されたSARS-CoV-2を標的とするCTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
 分泌されるサイトカインによる精製
 SARS-CoV-2を標的とするCTLが、放出するサイトカイン等を利用して、当該CTLを精製することができる。例えば、Miltenyi Biotec GmbH社から入手可能なキットを用いることで、CTLから放出されるサイトカインを細胞表面で特異抗体により捕捉し、抗サイトカイン標識抗体で染色し、続いて磁気標識した標識物質特異的な抗体で反応させた後、磁気標識細胞分離装置を用いて精製することも可能である。このようにして単離されたSARS-CoV-2を標的とするCTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する。
 細胞表面タンパク質特異的抗体を用いた精製
 CTLの細胞表面では、特異的刺激により発現が増強する細胞表面タンパク質(例えばCD137、CD107a、CD107b、CD63、CD69等)が報告されている(Betts MRら,J Immunol Methods.2003;281:65-78、Trimble LAら,J Virol.2000;74:7320-7330)。このような細胞表面タンパク質に対する特異抗体を磁気標識することで、磁気分離装置等を用いてCTLを精製することが可能である。また、このような抗体に対する抗IgG抗体等を磁気標識することでも同様にCTLの精製が可能である。あるいは、これら抗体を培養用のプラスティックプレートにコートし、このプレートを用いて刺激を加えたPBMCを培養し、プレートに結合しなかった細胞集団を洗い流すことでCTLを精製することも可能である。このようにして単離されたSARS-CoV-2を標的とするCTLは、抗CD3抗体、PHA、IL-2等のT細胞刺激薬剤で刺激増殖させ、受動免疫療法に必要な細胞数を確保する(WO2008/023786 参照のほど)。
 なお、このようにして調製したCTL細胞の細胞傷害性活性は、例えば、蛍光色素CFSE(同仁化学社)で標的細胞を標識するIMMUNOCYTO Cytotoxicity Detection Kit(MBL社)や、標的細胞から放出されるLDH(乳酸脱水素酵素)を測定するCytotoxicity Detection Kit(Roche社)等を利用して測定することも可能である。また、放射性同位元素である51Crで標的細胞を標識して利用するクロムリリースアッセイにより測定することが可能である。
 [T細胞誘導キット]
 本発明においては、上述の様々な方法において有用な、本発明のエピトープペプチドを含む、SARS-CoV-2を標的とする細胞傷害性T細胞の誘導するためのキットも提供される。
 かかるキットにおいては、本発明のエピトープペプチドは、MHC-モノマー、MHC-多量体、当該ペプチドが提示された抗原提示細胞の態様にて含まれていてもよい。また、本発明のエピトープペプチドの他、当該ペプチドと反応させる単核球(PBMC等)、当該ペプチドを検出するための試薬(色素、2次抗体)を、本発明のキットに含めてもよく、さらに、単核球又は誘導されたT細胞を培養するための培地、T細胞を増幅するためのT細胞刺激薬剤等を含んでいてもよい。
 [本発明のエピトープペプチド等を含む医薬組成物、及びその利用]
 上述の通り、本発明のエピトープペプチド、当該ペプチドをコードする核酸、及び当該ペプチドが提示された抗原提示細胞は、SARS-CoV-2感染症に対する能動免疫療法において有用である。また、前記抗原提示細胞等によって誘導されたT細胞は、SARS-CoV-2感染症に対する受動免疫療法において有用である。したがって、本発明は、本発明のエピトープペプチド等を含む医薬組成物(薬剤)も提供する。
 本発明の医薬組成物の治療又は予防の対象となる「SARS-CoV-2感染症」とは、新型コロナウイルス感染症(COVID-19)とも称され、SARS関連コロナウイルス(SARSr-CoV)に属するコロナウイルスであり、SARS-CoV-2(SARSコロナウイルス2、severe acute respiratory syndrome coronavirus 2)を病因とするものである。
 本発明において、「治療」には、感染症からの完全な回復のみならず、その症状を緩和又は改善し、その進行を抑制することが含まれる。「予防」には、感染の抑制若しくは遅延、又は発症の抑制若しくは遅延が含まれる。
 また、本発明の医薬組成物に含まれる細胞(抗原提示細胞、T細胞)は、各々独立して、当該組成物が投与される対象に由来するもの(自家)であってもよく、また前記対象とHLAの型が適合する同種異系の関係でもあってもよい。
 本発明の医薬組成物は、本発明のエピトープペプチド、細胞に、これらの作用を阻害しない範囲で、医薬の製剤化のために一般的に利用される種々の賦形剤や他の医薬活性成分等を含んでいてもよく、当分野において公知の方法を用いて製剤化することができる。例えば、かかる医薬組成物としては、本発明のエピトープペプチドを有効成分として含有する注射剤又は固形剤等がある。エピトープペプチドは、中性又は塩の形態で処方することができ、例えば、薬学上許容され得る塩としては、塩酸、リン酸等の無機塩、又は、酢酸、酒石酸等の有機酸が挙げられる。また、本発明の抗原提示細胞又はT細胞は、製薬上許容され、該ペプチド又は該細胞の活性と相容性を有する賦形剤、例えば、水、食塩水、デキストロース、エタノール、グリセロール、液体培地、DMSO(ジメチルスルフォキシド)、及びその他のアジュバント(例えば、水酸化アルミニウム、KLH、MPL、QS21、完全フロイントアジュバント、不完全フロイントアジュバント、リン酸アルミニウム、BCG、ミョウバン、CpG DNA等のTLRのアゴニスト)等、又はこれらの組み合わせと混合して用いることができる。さらに、必要に応じて、アルブミン、湿潤剤、乳化剤等の補助剤を添加してもよい。また、上記アジュバント以外にも、免疫増強剤として、各種サイトカイン(例えば、IL-12、IL-18、GM-CSF、IFNγ、IFNα、IFNβ、IFNω、Flt3リガンド)を添加してもよい。
 本発明の医薬組成物は、非経口投与及び経口投与により投与することができるが、一般的には非経口投与が好ましい。非経口投与としては経鼻投与や皮下注射、皮内注射、筋肉内注射、静脈内注射、患部局所注射等の注射剤、座薬等がある。また、経口投与としては、スターチ、マンニトール、ラクトース、ステアリン酸マグネシウム、セルロース等の賦形剤との混合物として調製することができる。
 本発明の医薬組成物は、SARS-CoV-2感染症の治療又は予防に用いられる公知の薬剤と併用してもよい。かかる公知の薬剤として、治療の観点からは、例えば、抗IL6抗体、副腎皮質ステロイド、抗ウイルス剤(RNAポリメラーゼ阻害剤等)が挙げられる。また予防の観点からは、例えば、他のSARS-CoV-2ウイルスワクチン、他のSARS-CoV-2RNAワクチン、他のSARS-CoV-2DNAワクチン、SARS-CoV-2タンパク質ワクチン、SARS-CoV-2弱毒ワクチンが挙げられる。さらに、インターフェロン(IFN)製剤との併用も挙げられる。
 本発明の医薬組成物は、通常ヒトを対象として使用するものだが、他の動物(種々の家畜、家禽、ペット、実験用動物等)も対象となり得る。また、本発明の医薬組成物を投与される対象としては特に制限されることなく、SARS-CoV-2感染症を罹患しているもののみならず、罹患していないもの(未感染)であってもよく、SARS-CoV-2感染症から既に回復しているものであってもよい。例えば、本発明の医薬組成物は、SARS-CoV-2感染症の症状(発熱、咳嗽、味覚異常、嗅覚異常等)が認められた時点、SARS-CoV-2感染者との濃厚接触が確認された時点において、投与され得る。
 本発明の医薬組成物は、治療上有効な量で投与する。投与される量は、治療対象、免疫系に依存し、必要とする投与量は臨床医の判断により決定される。通常、適当な投与量は、患者一人当たり、エピトープペプチドは1~100mg、当該ペプチドが提示された抗原提示細胞又はSARS-CoV-2を標的とするT細胞では10~10個の含有量とする。また、投与間隔は、対象、目的により設定することができる。
 また、免疫寛容機構によるCTLの免疫学的不応答性を解除するという観点から、抗PD-1抗体、抗PD-L1抗体、抗CTLA4抗体等の免疫チェックポイント阻害剤を併用することも、必要に応じて行うこともできる。
 本発明は、このように、本発明の医薬組成物を対象に投与させることを特徴とする、対象におけるSARS-CoV-2感染症の治療又は予防するための方法をも提供する。
 本発明の医薬組成物の製品又はその説明書は、SARS-CoV-2感染症の治療又は予防に用いられる旨の表示を付したものであり得る。ここで「製品又は説明書に表示を付した」とは、製品の本体、容器、包装等に表示を付したこと、あるいは製品の情報を開示する説明書、添付文書、宣伝物、その他の印刷物等に表示を付したことを意味する。SARS-CoV-2感染症の治療又は予防に用いられる旨の表示においては、本発明のエピトープポリペプチド、該ペプチドが提示された抗原提示細胞、又は前記抗原提示細胞等によって誘導されたT細胞によって、SARS-CoV-2感染の抑制、当該ウイルス及びそれに感染した細胞の溶解等が誘導される機序についての情報を含むことができる。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、特に断りがない限り、実験方法は、例えば「免疫実験操作法」、編集:右田俊介、紺田進、本庶佑、濱岡利之、に記載の方法等、当該技術分野において通常用いられる方法を用いた。
 〔SARS-CoV-2特異的T細胞エピトープ候補ペプチドの選択〕
 SARS-CoV-2特異的T細胞エピトープ候補ペプチドの選択は、スパイク(S)タンパク(GENBANK:QHD43416.1)のアミノ酸配列を対象として行なった。Sタンパクは全長1273個のアミノ酸で構成されるタンパク質であり、アイソフォームの報告はない。
 具体的には、HLA-A24分子に対して結合モチーフを有する8~10個のアミノ酸よりなるT細胞エピトープ候補ペプチドを検索し得る、インターネット上に公開されているソフトウェアに照合して実施した。その結果、下記表3に示すとおり、SARS-CoV-2のアミノ酸配列よりHLA-A24分子の結合モチーフを有する9個のアミノ酸よりなるエピトープ候補ペプチドを、合計15種類選択し、これらのペプチドを常法に従って化学合成した。
Figure JPOXMLDOC01-appb-T000003
 また、下記表4に示すとおり、陽性コントロール用のペプチドとして、EBV LMP2抗原由来のHLA-A24拘束性エピトープペプチド(PYLFWLAAI、配列番号:16)を合成した。陰性コントロール用のペプチドとして、EBV LMP2抗原由来のHLA-A11拘束性エピトープペプチド(SSCSSCPLSK、配列番号:17)を合成した。
Figure JPOXMLDOC01-appb-T000004
 そして、これらのエピトープペプチドを、後述の各種評価試験に供した。なお、表3及び表4において、「ペプチド名」は合成したペプチドのN末端側から3つのアミノ酸配列及び構成するアミノ酸数で示す。表3及び表4における「位置」は、SARS-CoV-2由来Sタンパク及びEBV LMP2タンパク質の各アミノ酸配列上における各々の位置を示す。表3及び表4における「スコア」は、解析に用いたNetMHCcons(http://www.cbs.dtu.dk/services/NetMHCcons)で算出されたスコアを示した。このスコアは、HLA-A*24:02とペプチドとの親和性を予測する数値で、スコアが高い程、HLAとペプチドが安定した複合体を形成する可能性があることを意味する。
 〔候補ペプチドのフォールディング試験〕
 本発明者らは、表3及び表4に記載した17種類のペプチドを用いてフォールディング試験を実施した。具体的には、大腸菌発現系を利用して発現精製したHLA-A*24:02及びβ2-ミクログロブリンと、前述の各種合成ペプチドとを、フォールディング溶液に添加して混合した後、当該溶液を経時的に分取してゲル濾過カラムにて分析を行った。なお、フォールディング溶液の組成は、100mM Tris、400mM アルギニン、2mM EDTA、5mM GSH、0.5mM GSSG(Dongliang Liら、Cancer Sci.、2019年4月;110(4):1156-1168 参照)である。
 ゲル濾過カラム分析では、HLA-A*24:02及びβ2-ミクログロブリンと、前記合成ペプチドとの3者複合体(HLA-モノマー)の形成が認められる場合、HLA-モノマーは原料よりも分子量が大きいため、ゲル濾過カラム分析での溶出時間が早くなる。また、HLA-モノマー形成量は、280nmの吸収波長によって得られるピーク面積から算出可能である。一方、HLA分子との結合性を有さない合成ペプチドではHLA-モノマー形成が殆ど検出されないことになる。HLA-モノマー形成が認められる場合の代表的なゲル濾過カラム分析例を図1に示す。また、各種合成ペプチドに対して実施したフォールディング経過7日後のゲル濾過カラムによる分析結果として、HLA-モノマー形成を示すピーク面積を図2に示す。
 なお、HLA分子及びβ2-ミクログロブリンは、大腸菌発現系を利用して発現精製する際に、封入体として不溶性分画を精製した後、8M尿素に可溶化させている。この点に関し、ゲル濾過カラム分析の結果では、図1に示すとおり、HLA-モノマー形成に至らないものが凝集体として7~8分に検出される。次に、HLA-モノマーのピークが10分前後に検出され、β2-ミクログロブリンは14分付近に検出される。15分以降にはフォールディング溶液の成分やペプチドが検出されることになる。
 そして、前記ゲル濾過カラム分析の結果、図2に示すとおり、SARS-CoV-2由来の候補ペプチド(配列番号:1~15)は、陰性コントロールと比較して、十分なHLA-モノマー形成、すなわちHLA分子との結合性を有することが明らかになった。
 〔HLA-テトラマー試薬の作製、及びペプチド交換率の測定〕
 上記15種類の候補ペプチドを対象に、Quickswitch Quantテトラマー合成キット(MBL社)を用いてペプチド交換反応を行い、HLA-テトラマー試薬を調製した。
 簡潔に説明すると、キットに含まれるHLA-テトラマー分子には構造を維持するために低親和性のExiting peptideが結合している。そこに、Peptide Exchange Factorの存在下、目的のペプチドを加え、Exiting peptideとの交換反応を行った。そして、その4時間後に、HLA-テトラマー試薬を回収した。
 また、前記キットには、HLA上に結合しているExiting peptideを検出する抗体(FITC標識)が含まれている。前記ペプチド交換反応終了後、テトラマー分子を専用粒子に吸着させ、さらに当該抗体を反応させることによって、フローサイトメトリーによるFITC蛍光強度(MFI)を計測し、そのMFI値からペプチド交換率を算出することができる。
 図3に、代表的な測定結果として、目的のペプチドがNYNペプチドである場合の、ペプチド交換後のテトラマー分子のFITC蛍光強度及びペプチド交換前のそれと、前記専用粒子のみのFITC蛍光強度とをフローサイトメーターで解析した結果を示す。
 なお、粒子のみのサンプルでは、Exiting peptideの存在比率が0%のため、この時のペプチド交換率は100%となる。一方、ペプチド交換前のテトラマー分子におけるExiting peptideの存在比率は100%となるため、その時のペプチド交換率は0%である。MFI値を用いて検量線を引くことにより、目的のペプチドとExiting peptideとの交換率を計算することができ、ペプチドとHLAとの親和性を示すことができる。
 そして、15種類の候補ペプチドについてペプチド交換率を測定した結果、図4に示すとおり、いずれの候補ペプチドも、Exiting peptideより親和性が高く、目的とするHLA-テトラマーを調製することができた。
 なお、このようにして作製したHLA-テトラマー試薬は、例えば、A24-NYN-tetramerと略号で示すが、これは、NYN 9merペプチドを用いて作製されたHLA-テトラマー試薬であることを示す。
 〔細胞傷害性T細胞(CTL)誘導〕
 HLA-A*24:02を保持しているドナー2名から末梢血を採取し、3,000rpmで5~10分間遠心処理して上清の血漿部分を除去した。血漿部分以外から、密度勾配遠心法にて末梢血単核球(PBMC)を分離した。そして、PBMC 1~3×10個を、CTL誘導用培地1~2.5mLに浮遊させた。
 なお、CTL誘導用培地として、Hepes改変RPMI1640培地(Sigma社)に2-メルカプトエタノール(最終濃度55μM)、L-グルタミン(最終濃度2mM)、抗生物質としてストレプトマイシン(最終濃度100μg/mL)及びペニシリンG(最終濃度100U/mL)、並びに5%の血漿成分を加えた培地を使用した(なお、これ以外にインスリン、トランスフェリン、亜セレン酸、ピルビン酸、ヒト血清アルブミン、非必須アミノ酸溶液等を加えてもよい)。
 前記PBMCを含むCTL誘導用培地に、配列番号:1~5に記載のアミノ酸配列から各々なるペプチドの群(グループ1)、配列番号:6~10に記載のアミノ酸配列から各々なるペプチドの群(グループ2)及び配列番号:11~15に記載のアミノ酸配列から各々なるペプチドの群(グループ3)を、混合ペプチドとして、1~20μg/mLの濃度になるよう、それぞれ加え、培養した。
 2日間培養した後、最終濃度が20~100U/mLになるようIL-2を添加し、さらに1週間培養した。これに1~20μg/mLの濃度になるよう、上記グループ分けした混合ペプチドをさらに追加し、1週間培養した。なお、PBMCとペプチドとの混合培養は、炭酸ガス交換可能な丸底の培養皿を用いることが望ましく、本実施例においては、ポリプロピレン製14mLの丸底チューブ(BD社)又は96穴U底細胞培養用マイクロテストプレート(BD社)を用いた。
 〔インターフェロン(IFN)-γ ELISPOTアッセイ〕
 SARS-CoV-2抗原特異的なCTLの検出は、ELISPOT Set(BD社)キットを用い、IFN-γ ELISPOTアッセイにて行った。具体的には、前記混合ペプチドを添加してから約2週間後に、細胞集団の一部を採取して、5×10個/mLになるよう調製した。これらサンプルを、抗IFN-γ抗体が固相されたELISPOSTアッセイ用プレートに100μL/ウェルで撒き、37℃のCOインキュベーターの中で、30分静置した。さらに、そのプレートに、各候補ペプチドにてパルスしたヒトリンパ芽球様細胞(T2-A24細胞)を1×10個/ウェルとなるように添加し、37℃のCOインキュベーターの中で、一晩静置した。そして、洗浄した後、ビオチン標識抗IFN-γ抗体を加え、室温にて2時間反応させた。反応液を洗い、HRP標識ストレプトアビジンを加え反応させ、洗浄した後、発色剤を100μL/ウェル加え、15~30分反応することにより、CTLが分泌したIFN-γをスポット化して測定した。得られた結果を図5に示す。
 図5に示した結果から明らかなように、ペプチドでパルスをしない場合(図中「(-)」)と比較して、NYN 9merペプチド又はQYI 9merペプチドで刺激した場合は、IFNγのスポットが明らかに多く検出された。すなわち、NYNペプチド又はQYIペプチドを加えて培養したPBMC中には、これらペプチド各々に特異的であり、IFN-γを産生するCTLが誘導されていることが明らかになった。
 〔CTLクローンのソーティング及び培養〕
 上記IFN-γ産生能が検出されたSARS-CoV-2特異的CTLについて、HLA-テトラマー試薬及び抗CD8抗体を用いて免疫学的に染色し、フローサイトメーターにより検出した。得られた結果を図6及び図7に示す。
 これら図面において、ドットプロット展開図中の数字は、展開図を四分割した領域を、Q1(左上)、Q2(右上)、Q3(左下)、Q4(右下)と表記した場合、(Q1+Q3)分のQ1の百分率を示す。陰性コントロール用のHLA-テトラマー試薬としては、HIV envelope抗原由来のペプチド(RYLRDQQLL、配列番号:18)を用いて合成したHLA-テトラマー(図中「A24-HIV-tetramer」として表記)を使用した。
 前記フローサイトメトリーによる分析の結果、図6に示すとおり、CD8陽性・A24-NYN-tetramer陽性の細胞集団が、3.17%の割合で検出された。また図7に示すとおり、CD8陽性・A24-QYI-tetramer陽性の細胞集団が、2.14%の割合で検出された。
 以上の結果から、NYNペプチド又はQYIペプチドを加えて培養したPBMC中には、IFN-γを産生する細胞が誘導されることが明らかになった。さらに、これらの細胞は、対応するHLA-テトラマー試薬にて染色されることから、NYNペプチド及びQYIペプチドは、CTLエピトープペプチドであり、当該ペプチドの刺激に特異的なCTLが誘導されることが明らかになった。
 次に、HLA-テトラマー試薬及び抗CD8抗体に反応した細胞(CTL)を、フローサイトメーターにより、96ウェルプレート(コーニング社)に1細胞ずつ播種した。この細胞培養には、AIM-V培養培地に、終濃度10%のヒトAB血清(ロンザジャパン社)、終濃度1%のペニシリン/ストレプトマイシン(ライフテクノロジーズ社)、終濃度1%のGlutaMAX(ライフテクノロジーズ社)、終濃度100U/mLのIL-2(シオノギ社)及び終濃度5μg/mLのPHA(Wako社)を添加したものを用いた。そして、各ウェルに、ドナーから採血し分取し、100Gyの放射線照射を施したPBMC(50000個)を添加した。また、前記CTLは、培地の色を観察して随時、半分量の培地交換を行った。さらに、細胞が増えた段階で、48ウェルプレートに移し替えた。そして、このように培養したCTLについて、前述と同様の方法を用いてIFN-γ ELISPOTアッセイを行い、それら細胞の増幅を検出した。得られた結果を図8に示す。
 その結果、NYN 9merペプチド特異的なCTLに関し、得られた24個のCTLシングルクローンのいずれにおいても、IFN-γのスポットが明らかに多く検出された。このことは、SARS-CoV-2抗原由来NYNペプチド特異的なCTLのシングルクローン化及び増幅に成功したことを示す。
 〔CTLペプチド内在性提示の確認〕
 a)Mini geneプラスミドの作製
 CTLペプチド配列を含むMini geneを発現するプラスミドを作製するために、pcDNA3.1(+)発現ベクター(Invitrogen社)の制限酵素認識部位に、下記3種類のDNA配列を各々挿入した。
Mini gene 1:NYNペプチドをコードするDNA
ATGAATTATAATTACCTGTATAGATTGTTTTAA(配列番号:56)、
Mini gene 2:シグナル配列及びNYNペプチドをコードするDNA
ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCATTCCACTGGTGACAATTATAATTACCTGTATAGATTGTTTTAA(配列番号:58)、
Mini gene 3:NYNペプチド及びその前後10アミノ酸をコードするDNA
ATGTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGATAA(配列番号:60)。
 そして、調製した各Mini geneプラスミドを、EndoFree Plasmid Giga kit(Qiagen社)で増幅、精製した。また、これらプラスミドDNAの濃度は、吸光度(260nm)を測定することにより求めた。
 b)Mini gene発現細胞の作製
 HEK293T(293T)細胞及びHLA-A24遺伝子導入済みHEK293T細胞(293T/HLA-A*24+)を、各々70%の密度になるまで培養した。そして、各種Mini geneプラスミドを、FuGENE HD(Roche社)を用い、これら細胞に遺伝子導入した。37℃で48時間培養した後、細胞を回収した。
 c)IFN-γ ELISPOTアッセイ
 上記にて樹立したCTLシングルクローン(1-C1)を、抗IFN-γ抗体が固相されたELISPOSTアッセイ用プレートに2×10個/ウェルになるよう撒き、37℃のCOインキュベーターの中で、30分静置した。そのプレートに、Mini geneを発現させた293T細胞又は293T/HLA-A*24細胞を1×10個/ウェルとなるように添加し、37℃のCOインキュベーターの中で、一晩静置した。洗浄後、ビオチン標識抗IFN-γ抗体を加え、室温にて2時間反応した。反応液を洗い、HRP標識ストレプトアビジンを加え反応させた。洗浄後、発色剤を100μL/ウェル加え、15~30分反応することにより、CTLが分泌したIFN-γをスポット化して検出した。得られた結果を図9に示す。
 IFN-γ ELISPOTアッセイの結果、HLA-A24を保持しない293T細胞において、スポットは検出されなかった。一方、Mini gene 1又はMini gene 3を発現させた293T/HLA-A*24細胞において、明らかなIFNγスポットが検出された。
 なお、Mini gene 2を発現させた293T/HLA-A*24細胞においては、配列番号:58及び59に示すとおり、フレームシフトが生じているため、NYNペプチドを含むポリペプチドが産生されず、HLA-A24を保持しない293T細胞同様に、スポットが検出されなかったものと推察される。
 これらのことから、NYN 9merペプチドは、細胞内でプロセシング処理を経て生成され、HLAを介して提示される、内在性のエピトープペプチドであることが明らかとなった。
 以上より、同定されたSARS-CoV-2由来のNYN 9merペプチド及びQYI 9merペプチドは、末梢血中のSARS-CoV-2特異的CTLを増殖させる機能を有することが明らかとなった。また、これらの細胞集団はIFN-γ産出能を有しかつHLA-テトラマーで検出可能であったことから、これらのペプチドは、HLA-A*24:02拘束性のSARS-CoV-2抗原特異的CTLエピトープペプチドであることが判明した。さらに、NYN 9merペプチドは、内在性に提示されるCTLエピトープペプチドであることも証明された。
 〔NYN 30merペプチド特異的ヘルパーT(Th)細胞の誘導〕
 次に、NYN 9merペプチドを含む下記SARS-CoV-2由来の30merペプチドを化学合成し、これについてTh細胞誘導活性を評価した。
NYN 30mer:NYN 9mer及びその後21アミノ酸からなるペプチド
NYNYLYRLFRKSNLKPFERDISTEIYQAGS(配列番号:19)
SARS-CoV-2由来Sタンパクにおける位置:448-477。
 具体的には先ず、ドナーから末梢血を採取し、リンホプレップ(Alere Technologies AS 1114547)を用いた密度勾配分離法によってPBMCを回収した。さらに、PBMCから磁気細胞分離システム(Miltenyi 130-050-201)を用い、CD14陽性細胞を分離した。次いで、CD14陽性細胞を、50ng/mLのGM-CSF(peprotech AF-300-03)及び50ng/mLのIL-4(peprotech AF-200-04)存在下、3mLのヒト細胞用培地を用い、6穴培養プレート(Falcon 353046)にて7日間培養することによって、樹状細胞(Dendritic Cells;DCs)に分化させた。
 なお、ヒト細胞用培地には、AIM-V培地(ThermoFisher SCIENTIFIC 0870112DK)に56℃、30分非働化したヒトAB型血清(Innovative RESEARCH IPLA-SERAB)を3%添加したものを用いた。
 また、PBMCから、磁気細胞分離システム(Miltenyi 130-045-101)を用い、CD4陽性T細胞を分離した。そして、1x10個のCD4陽性T細胞を、NYN 30merペプチド 3μg/mLの存在下、5x10個のDCsと共に、200μLのヒト細胞用培地を用い、96穴平底培養プレート(Falcon 353072)にて、培養を開始した。
 その共培養7日後に、CD4陽性T細胞にペプチド刺激を施すために、100μLの培養上清を取り除いた後、NYN 30merペプチド(3μg/mL)と、ガンマ線照射(40Gy)した不活化PBMC(2x10個)とを含む、新たな培地100μLを添加した。そして、その2日後に、50μLの培養上清を取り除き、50μLのIL-2(塩野義製薬 イムネース注35)を最終濃度が10U/mLになるように添加した。
 以後、活性化したCD4陽性T細胞を持続的に増殖させるために、前記ペプチド及び不活化PBMC(1x10個)を用い、1週間おきにCD4陽性T細胞(1x10個)を刺激し、以降に述べる各種実験に供した。
 〔NYN 30merペプチド特異的Th細胞株の特異性評価とHLA-DR拘束性の検討〕
 ドナーAから増殖してきたCD4陽性T細胞のNYN 30merペプチドに対する特異的反応性を調べるために、当該ペプチド(3μg/mL)存在下、96穴平底培養プレートにて、最終濃度が2μMのモネンシン(2 Biolegend 420701)を含む200μLのヒト細胞用培地を用い、培養した。
 その培養6時間後、細胞表面をCD3(Biolegend 300306)、CD4(Biolegend 300512)、CD8(Biolegend 301016)に対する抗体を用いて染色し、次いで、BD Cytofix/Cytoperm(BD Biosciences 554722)にて固定した後、IFN-γ(Biolegend 506507)、GranzymeB(Biolegend 502312)に対する抗体で染色した。そして、CytoFLEX(BECKMAN COULTER B53013)を用いたフローサイトメトリーに供した。得られた結果を図10に示す。
 その結果、図10で示すように、NYN 30merペプチドの存在下、IFN-γ及びGranzyme Bの産生が認められたことから、当該ペプチド特異的Th細胞が樹立されていることが明らかになった。
 次に、CD4陽性T細胞のHLA拘束性を調べるために、NYN 30merペプチド 3μg/mL存在下、5x10個のTh細胞及び1x10個のPBMCを、200μLのヒト細胞用培地を用い、96穴平底培養プレートにて共培養した。なお、一部の培養系には、抗HLA-DR抗体(BioLegend 307612)を、又は対照群として抗HLA-class I抗体(BioLegend 311412)を、各々終濃度5μg/mLになるように添加した。
 その共培養24~48時間後に、培養上清100μLを回収し、それに含まれるIFN-γ及びGM-CSFの濃度を、ELISAキット(BD Biosciences 555142(IFN-γ)、555126(GM-CSF))を用い、付属の取扱説明書に従って測定した。得られた結果を図11に示す。
 図11に示した結果から明らかなように、NYN 30merペプチド特異的なTh細胞は、抗HLA-DR抗体の存在下で培養した場合(図中「aDR」)、当該ペプチドに特異的なIFN-γ及びGM-CSFの産生が抑制されたことから、NYN 30merペプチドは、HLA-DR拘束的にTh細胞を刺激していることが明らかとなった。
 さらに、拘束されるHLA型を調べるために、NYN 30merペプチド(3μg/mL)存在下、5x10個のCD4陽性T細胞と、HLA-DR4、DR9又はDR53の遺伝子が導入された3x10個のマウス由来線維芽細胞株(各々「L-DR4細胞」、「L-DR9細胞」、「L-DR53細胞」と称する)とを、200μLのヒト細胞用培地を用い、96穴平底培養プレートにて共培養した。そして、上記と同様に24~48時間後に培養上清を回収し、IFN-γ濃度及びGM-CSF濃度を測定した。得られた結果を図12に示す。
 図12に示した結果から明らかなように、NYN 30merペプチド特異的Th細胞が、L-DR53細胞にのみペプチド特異的反応を示したことから、当該ペプチドはHLA-DR53に結合し、Th細胞を刺激していることが明らかとなった。
 〔NYN 30merペプチド特異的Th細胞株の特異性評価とHLA-DP拘束性の検討〕
 CD4陽性T細胞のHLA-DP拘束性を調べるために、ドナーから増殖してきたCD4陽性T細胞に対して、上記同様抗体染色を行い、CytoFLEXを用いたフローサイトメトリーに供した。その結果、図13に示すとおり、NYN 30merペプチド存在下にて、IFN-γ及びGranzyme Bの産生が認められたことから、当該ペプチド特異的Th細胞が樹立されていることが確認された。
 次に、3μg/mLのNYN 30merペプチド存在下、5x10個のTh細胞と1x10個のPBMCとを、200μLのヒト細胞用培地を用い、96穴平底培養プレートにて共培養した。一部の培養系には、抗HLA-DR抗体(BioLegend 307612)、抗HLA-DP抗体(BRAFB6:Santa Cluz sc-33719)、抗HLA-DQ抗体(SPV-L3:Abcam ab85614)を、各々終濃度5μg/mLになるように添加した。また、対照群として、抗HLA-class I抗体(BioLegend 311412)を、終濃度5μg/mLになるように添加した。そして、24~48時間後の培養上清を100μL回収し、それに含まれるIFN-γ及びGM-CSFの濃度をELISAキット(BD Biosciences 555142(IFN-γ)、555126(GM-CSF))を用い、付属の取扱説明書に従って測定した。得られた結果を図14に示す。
 その結果、NYN 30merペプチド特異的なTh細胞は、抗HLA-DP抗体を添加して培養した場合に、ペプチド特異的IFN-γ及びGM-CSF産生が抑制されたことから、当該ペプチドはHLA-DP拘束性にTh細胞を刺激し得ることも明らかになった。
 さらに、拘束されるHLA型を調べるために、DPB1*02:01又はDPB1*05:01を有するEVウイルス感染によって不死化したB細胞(lymphoblastoid cell lines:LCL)を、3μg/mLのNYN 30merペプチド存在下2時間培養し、培地中に残存する当該ペプチドを完全に洗浄して取り除いた後、200μLのヒト細胞用培地を用い、96穴平底培養プレートにて、NYN 30merペプチド特異的なTh細胞と共培養し、上記同様に24~48時間後の培養上清におけるIFN-γ濃度及びGM-CSF濃度を測定した。得られた結果を図15に示す。なお、図15に示す「CK05」及び「kit」は、これらDPB1*02:01を有する不死化B細胞株の由来(B細胞を単離した被験者)が異なることを示す。同様に、「Okr」及び「Full」は、これらDPB1*05:01を有する不死化B細胞株の由来が異なることを示す。
 図15に示した結果から明らかなように、NYN 30merペプチド特異的Th細胞がDPB1*02:01陽性LCLにのみペプチド特異的反応を示したことから、当該ペプチドはHLA-DPB1*02:01に結合し、Th細胞を刺激していることが明らかになった。
 以上のポリペプチド特異的ヘルパーT(Th)細胞株の特異性評価と、HLA-DR及びHLA-DP拘束性の検討から、NYN 30merペプチドはIFN-γやGranzyme Bを産生するタイプ1型Th細胞を刺激、誘導することができ、HLA-DR53拘束性かつHLA-DPB1*02:01拘束性のT細胞エピトープであることが明らかとなった。然るに、当該ペプチは複数のHLAに提示されることにより、様々なT細胞クローンを刺激・活性化できる有用なT細胞ワクチンとして機能し得る。
 〔SARS-CoV2ペプチド特異的ヘルパーT細胞株の、断片化ペプチドに対する反応性評価〕
 NYN 30merペプチドの繰り返し刺激により増殖してきたCD4陽性T細胞(DP2-HK13及びDR53-HK36)の反応領域を特定するために、下記表5に示す、NYN 18merペプチド、RKS 21merペプチド、PFE 15merペプチド、HLA-A24、DP2、DR53に結合するエピトープ配列が少しずつオーバーラップしているS448-T1~S448-T24、及びNYN 30merペプチド(各々3μg/mL)存在下、5x10個のTh細胞及び1x10個のPBMCを、200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。そして、24時間後の培養上清を100μL回収し、それに含まれるIFN-γ及びGM-CSFの濃度をELISAキット(BD Biosciences 555142(IFN-γ)、555126(GM-CSF))を用いて付属の取扱説明書に従って測定した。
Figure JPOXMLDOC01-appb-T000005
 その結果、図16Aに示すとおり、HLA-DR53拘束性Th細胞(DR53-HK36)において、NYN 30merペプチド及びRKS 21merペプチド存在下でのみ、IFN-γ及びGM-CSFの産生が認められた。さらに、図16Bに示すとおり、S448-T17~S448-T22ペプチド存在下でIFN-γ産生が認められたことから、DR53-HK36の最小認識配列はLKPFERDISTであることが明らかになった。
 一方、図17Aに示すとおり、DPB1*02:01拘束性のTh細胞(DP2-HK13)においては、NYN 30merペプチド及びNYN 18merペプチド存在下でのみ、IFN-γ及びGM-CSF産生が認められた。さらに、図17Bに示すとおり、S448-T8~S448-T12ペプチド存在下でIFN-γ産生が認められたことから、DP2-HK13の最小認識配列はYLYRLFRKSNLであることが明らかになった。
 〔N501Y 25merペプチド特異的Th細胞の誘導〕
 次に、N501Y 25merペプチドを化学合成し、これについてTh細胞誘導活性を評価した。なお、N501Yは、SARS-CoV-2の変異型である。
N501Y 25mer:YFPLQSYGFQPTYGVGYQPYRVVVL(配列番号:51)
SARS-CoV-2由来Sタンパクにおける位置:489-513。
 具体的には、上記〔NYN 30merペプチド特異的ヘルパーT(Th)細胞の誘導〕に記載の方法にて、NYN 30merペプチドの代わりに、N501Y 25merペプチドを用いた以外は同様にして、活性化CD4陽性T細胞を調製し、持続的に増殖させ、下記実験に供した。
 〔N501Y 25merペプチド特異的Th細胞株の特異性評価とHLA-DR拘束性の検討〕
 上記〔NYN 30merペプチド特異的Th細胞株の特異性評価とHLA-DR拘束性の検討〕に記載の方法にて、NYN 30merペプチドの代わりに、N501Y 25merペプチドを用いた以外は同様にして、増殖してきたCD4陽性T細胞のN501Y 25merペプチドに対する特異的反応性を調べた。また、当該CD4陽性T細胞のHLA拘束性を調べた。得られた結果を図18及び19に示す。
 その結果、図18に示すように、N501Y 25merペプチドの存在下、IFN-γ及びGranzyme Bの産生が認められたことから、当該ペプチド特異的Th細胞が樹立されていることが明らかになった。
 図19に示した結果から明らかなように、N501Y 25merペプチド特異的なTh細胞は、抗HLA-DR抗体の存在下で培養した場合(図中「aDR」)、当該ペプチドに特異的なIFN-γの産生が抑制されたことから、N501Y 25merペプチドは、HLA-DR拘束的にTh細胞を刺激していることが明らかとなった。
 さらに、拘束されるHLA型を調べるために、N501Y 25merペプチド(3μg/mL)存在下、5x10個のCD4陽性T細胞と、HLA-DR4、DR15又はDR53の遺伝子が導入された3x10個のマウス由来線維芽細胞株(各々「L-DR4細胞」、「L-DR15細胞」、「L-DR53細胞」と称する)とを、200μLのヒト細胞用培地を用い、96穴平底培養プレートにて共培養した。そして、24~48時間後に培養上清を回収し、IFN-γ濃度を測定した。得られた結果を図20に示す。
 図20に示した結果から明らかなように、N501Y 25merペプチド特異的Th細胞が、L-DR15細胞にのみペプチド特異的反応を示したことから、当該ペプチドはHLA-DR15に結合し、Th細胞を刺激していることが明らかとなった。
 [NYN 30merペプチド特異的Th細胞の誘導]
 HLA-DR8を有する健常人1名(TO)の末梢血からリンホプレップ(Alere Technologies AS 1114547)を用いた密度勾配分離法によってPBMCを回収した。PBMCから磁気細胞分離システム(Miltenyi 130-050-201)を用いてCD14陽性細胞を分離し、50ng/mLのGM-CSF(peprotech AF-300-03)及び50ng/mLのIL-4(peprotech AF-200-04)存在下で3mLのヒト細胞用培地を用いて6穴培養プレート(Falcon 353046)にて7日間培養することによって樹状細胞(Dendritic Cells;DCs)に分化させた。ヒト細胞用培地には、AIM-V培地(ThermoFisher SCIENTIFIC 0870112DK)に56℃、30分非働化したヒトAB型血清(Innovative RESEARCH IPLA-SERAB)を3%添加したものを用いた。また、PBMCから同様にしてCD4陽性T細胞(Miltenyi 130-045-101)を分離し、1x10個のCD4陽性T細胞をNYN 30merペプチド(3μg/mL)存在下で5x10個のDCsと96穴平底培養プレート(Falcon 353072)にて200μLにて共培養を始めた。7日後、CD4陽性T細胞をペプチド刺激するために、100μLの培養上清を取り除いた後、NYN 30merペプチド(3μg/mL)とガンマ線照射(40Gy)した不活化PBMC(2x10個)を100μLにて培養プレートに追加した。その2日後に50μLの培養上清を取り除き、50μLのIL-2(塩野義製薬 イムネース注35)を最終濃度が10U/mLになるように添加した。以後、活性化したCD4陽性T細胞を持続的に増殖させるために、1週間おきに当該ペプチドと不活化PBMC(1x10個)を用いてCD4陽性T細胞(1x10個)を刺激し、以降に述べる各種実験を行った。
 [NYN 30merペプチド特異的Th細胞株の特異性評価とHLA拘束性の検討]
 増殖してきたCD4陽性T細胞のNYN 30merペプチドに対する特異的反応性を調べるために、当該ペプチド(3μg/mL)存在下で1x10個のTh細胞を200μLのヒト細胞用培地を用いて96穴平底培養プレートにて最終濃度が2μMのモネンシン(2 Biolegend 420701)存在下で培養した。6時間後、細胞表面をCD3(Biolegend 300306)、CD4(Biolegend 300512)又はCD8(Biolegend 301016)に対する抗体を用いて標識した。次いで、BD Cytofix/Cytoperm(BD Biosciences 554722)で固定した後、IFN-γ(Biolegend 506507)又はGranzymeB(Biolegend 502312)に対する抗体で標識した。蛍光強度をCytoFLEX(BECKMAN COULTER B53013)で評価した。
 T細胞応答のアビディティを調べるために、NYN 30merペプチドの終濃度を0.0003~30μg/mL存在下で5x10個のCD4陽性T細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。24~48時間後の培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキットを用いて測定した。得られた結果を図21Aに示す。
 また、CD4陽性T細胞のHLA拘束性を調べるために、NYN 30merペプチド(3μg/mL)存在下で5x10個のTh細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。一部の培養系には抗DR抗体(BioLegend 307612)又は対照群として抗HLA-class I抗体(BioLegend 311412)を終濃度5μg/mLになるように添加した。24~48時間後の培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキット(BD Biosciences 555142)を用いて付属の取扱説明書に従って測定した。得られた結果を図21Bに示す。
 さらに、拘束されるHLA型を調べるために、NYN 30merペプチド(3μg/mL)存在下で5x10個のCD4陽性T細胞とHLA-DR8又はDR15の遺伝子が導入された3x10個のマウス由来線維芽細胞株(L-DR8又はL-DR15)を200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養し、上記と同様、24~48時間後に、培養上清のIFN-γ濃度を測定した。得られた結果を図21Cに示す。
 以上のとおりにして得られたTh細胞株(DR8-TO14及びDR8-TO20)は、図21Aに示すとおり、NYN 30merペプチドの存在下でのみIFN-γ産生が認められたことから、当該ペプチド特異的なTh細胞が樹立されていることが確認された。また、図21Bに示すとおり、このTh細胞は、抗HLA-DR抗体(aDR)を用いた場合にペプチド特異的IFN-γ産生が抑制されたことから、NYN 30merペプチドはHLA-DR拘束的にTh細胞を刺激していることが確認された。さらに、図21Cに示すとおり、NYN 30merペプチド特異的Th細胞がL-DR8細胞にのみペプチド特異的反応を示したことから、当該ペプチドはHLA-DR8に結合し、Th細胞を刺激していることが確認された。以上の結果から、NYN 30merペプチドはIFN-γを産生するタイプ1型Th細胞を刺激することができると考えられる。
 なお、本実施例で得られたT細胞に関し、以降の記載においても、上記DR8-TO14、DR8-TO20同様、「HLAアリル-ドナー(被験者)の識別子-番号」という表記にて示す。番号は、最初のスクリーニングの際に割り当てた96穴平底培養プレート中のウェル番号を表す。
 [NYN 30merペプチド特異的DR8拘束性ヘルパーT細胞株の断片化ペプチドに対する反応性評価]
 NYN 30merペプチドの繰り返し刺激により増殖してきたCD4陽性T細胞(DR8-TO14及びDR8-TO20)の最小認識配列を特定するために、図22A及び22Bに示すとおり、当該ペプチド(Original)又はその部分ペプチド(表5に示す、S448-T1~S448-T24)の存在下(3μg/mL)、5x10個のTh細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。24時間後に培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキット(BD Biosciences 555142)を用い、付属の取扱説明書に従って測定した。
 その結果、図22A及び22Bに示すとおり、DR8-TO14細胞はNYN 30merペプチド及びS448-T8~T16ペプチド存在下で、DR8-TO20細胞はNYN 30merペプチド及びS448-T8~T15ペプチド存在下でIFN-γ産生が認められた。これらのことから、それぞれの最小認識配列はLFRKSNL(配列番号:97)及びRLFRKSNL(配列番号:96)であることが確認された。
 [NYN 30merペプチド特異的DR8拘束性ヘルパーT細胞株の変異ペプチドに対する反応性評価]
 NYN 30merペプチドの繰り返し刺激により増殖してきたCD4陽性T細胞(DR8-TO14及びDR8-TO20)の変異ペプチドに対する反応性を評価するために、S448-T10のうちの1アミノ酸をアラニンに置換した変異体(配列番号:63~73、S448-T10-1A~11A)を、図23A及び23Bに示すとおり、調製した。そして、T10又はそのアラニン置換体の存在下(3μg/mL)、5x10個のTh細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。24時間後の培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキット(BD Biosciences 555142)を用いて付属の取扱説明書に従って測定した。
 その結果、図23A及び23Bに示すとおり、DR8-TO14T細胞はT10-5A、T10-7A及びT10-10Aに対して反応しなかったのに対し、DR8-TO20T細胞はT10-4A、T10-5A、T10-7A及びT10-10Aに対して反応しなかった。
 [N501Y 25merペプチド特異的Th細胞の誘導]
 HLA-DR8を有する健常人1名(TO)から、ファイザー社製コロナワクチン接種後に末梢血を採取し、それからリンホプレップ(Alere Technologies AS 1114547)を用いた密度勾配分離法によってPBMCを回収した。PBMCから磁気細胞分離システム(Miltenyi 130-050-201)を用いてCD14陽性細胞を分離し、50ng/mLのGM-CSF(peprotech AF-300-03)及び50ng/mLのIL-4(peprotech AF-200-04)存在下、3mLのヒト細胞用培地を用いて6穴培養プレート(Falcon 353046)にて7日間培養することによって樹状細胞(Dendritic Cells;DCs)に分化させた。ヒト細胞用培地には、AIM-V培地(ThermoFisher SCIENTIFIC 0870112DK)に56℃、30分非働化したヒトAB型血清(Innovative RESEARCH IPLA-SERAB)を3%添加したものを用いた。また、PBMCから同様にしてCD4陽性T細胞(Miltenyi 130-045-101)を分離し、1x10個のCD4陽性T細胞をN501Yペプチド(3μg/mL)存在下で5x10個のDCsと96穴平底培養プレート(Falcon 353072)にて200μLにて共培養を始めた。7日後、CD4陽性T細胞をペプチド刺激するために、100μLの培養上清を取り除いた後、N501Y 25merペプチド(3μg/mL)とガンマ線照射(40Gy)した不活化PBMC(2x10個)を100μLにて培養プレートに追加した。その2日後に50μLの培養上清を取り除き、50μLのIL-2(塩野義製薬 イムネース注35)を最終濃度が10U/mLになるように添加した。以後、活性化したCD4陽性T細胞を持続的に増殖させるために、1週間おきにN501Y 25merペプチドと不活化PBMC(1x10個)を用いてCD4陽性T細胞(1x10個)を刺激し、以降に述べる各種実験を行った。
 [YFP 25merペプチド特異的Th細胞株の特異性評価とHLA拘束性の検討]
 増殖してきたCD4陽性T細胞の当該ペプチドに対する特異的反応性を調べるために、N501Y 25merペプチド(3μg/mL)存在下で1x10個のTh細胞を200μLのヒト細胞用培地を用いて96穴平底培養プレートにて最終濃度が2μMのモネンシン(2 Biolegend 420701)存在下で培養した。6時間後、細胞表面をCD3(Biolegend 300306)、CD4(Biolegend 300512)又はCD8(Biolegend 301016)に対する抗体を用いて標識した。BD Cytofix/Cytoperm(BD Biosciences 554722)で固定後、IFN-γ(Biolegend 506507)又はGranzymeB(Biolegend 502312)に対する抗体で標識した。蛍光強度をCytoFLEX(BECKMAN COULTER B53013)で評価した。
 T細胞応答のアビディティを調べるために、N501Y 25merペプチドの終濃度0.0003~30μg/mL存在下で5x10個のCD4陽性T細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。24~48時間後に培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキットを用いて測定した。得られた結果を図24Aに示す。
 また、CD4陽性T細胞のHLA拘束性を調べるために、N501Y 25merペプチド又はそのオリジナル(N501N 25merペプチド)各3μg/mL存在下で5x10個のTh細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。なお、N501N 25merペプチドの配列は以下のとおりである。
N501N 25mer:YFPLQSYGFQPTNGVGYQPYRVVVL(配列番号:101)。
 さらに、一部の培養系には抗DR抗体(BioLegend 307612)又は対照群として抗HLA-class I抗体(BioLegend 311412)を終濃度5μg/mLになるように添加した。24~48時間後に培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキット(BD Biosciences 555142)を用いて付属の取扱説明書に従って測定した。得られた結果を図24Bに示す。
 さらに、拘束されるHLA型を調べるために、N501Y 25merペプチド(3μg/mL)存在下で5x10個のCD4陽性T細胞とHLA-DR8又はDR15の遺伝子が導入された3x10個のマウス由来線維芽細胞株(L-DR8又はL-DR15)を200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養し、上記と同様にして、24~48時間後に、培養上清のIFN-γ濃度を測定した。得られた結果を図24Cに示す。
 以上のとおりにして得られたTh細胞株(DR15-TO4及びDR15-TO6)は、図24Aに示すとおり、N501Y 25merペプチド存在下でのみIFN-γ産生が認められたことから、当該ペプチド特異的Th細胞が樹立されていることが確認された。このTh細胞は、抗HLA-DR抗体(aDR)を用いた場合にN501Y 25merペプチド特異的なIFN-γ産生が抑制されたことから、当該ペプチドはHLA-DR拘束的にTh細胞を刺激していることが確認された。さらに、N501Y 25merペプチド特異的Th細胞がL-DR15細胞にのみペプチド特異的反応を示したことから、当該ペプチドはHLA-DR15に結合し、Th細胞を刺激していることが確認された。また、このTh細胞は、N501Y 25merペプチドのみならず、そのオリジナル(N501N 25merペプチド)にも反応することも確認された。
 以上の結果から、N501YペプチドはIFN-γを産生するタイプ1型Th細胞を刺激することができると考えられる。また、得られた両T細胞株がN501Nペプチドにも反応したことから、DR15拘束性Th細胞はオリジナルのSARS-CoV-2株だけではなく、そのアルファ株、ベータ株及びオミクロン株等に対して反応できることが示唆される。
 [N501Y 25merペプチド特異的Th細胞の誘導]
 HLA-DR9を有する健常人1名(HK)から、ファイザー社製コロナワクチン接種前に末梢血を採取し、それからリンホプレップ(Alere Technologies AS 1114547)を用いた密度勾配分離法によってPBMCを回収した。PBMCから磁気細胞分離システム(Miltenyi 130-050-201)を用いてCD14陽性細胞を分離し、50ng/mLのGM-CSF(peprotech AF-300-03)及び50ng/mLのIL-4(peprotech AF-200-04)存在下で3mLのヒト細胞用培地を用いて6穴培養プレート(Falcon 353046)にて7日間培養することによって樹状細胞(Dendritic Cells;DCs)に分化させた。ヒト細胞用培地には、AIM-V培地(ThermoFisher SCIENTIFIC 0870112DK)に56℃、30分非働化したヒトAB型血清(Innovative RESEARCH IPLA-SERAB)を3%添加したものを用いた。また、PBMCから同様にしてCD4陽性T細胞(Miltenyi 130-045-101)を分離し、1x10個のCD4陽性T細胞をN501Yペプチド(3μg/mL)存在下で5x10個のDCsと96穴平底培養プレート(Falcon 353072)にて200μLにて共培養を始めた。7日後、CD4陽性T細胞をペプチド刺激するために、100μLの培養上清を取り除いた後、当該ペプチド(3μg/mL)とガンマ線照射(40Gy)した不活化PBMC(2x10個)を100μLにて培養プレートに追加した。その2日後に50μLの培養上清を取り除き、50μLのIL-2(塩野義製薬 イムネース注35)を最終濃度が10U/mLになるように添加した。以後、活性化したCD4陽性T細胞を持続的に増殖させるために、1週間おきに当該ペプチドと不活化PBMC(1x10個)を用いてCD4陽性T細胞(1x10個)を刺激し、以降に述べる各種実験を行った。
 [N501Y 25merペプチド特異的Th細胞株の特異性評価とHLA拘束性の検討]
 増殖してきたCD4陽性T細胞の当該ペプチドに対する特異的反応性を調べるために、N501Y 25merペプチド(3μg/mL)存在下で1x10個のTh細胞を200μLのヒト細胞用培地を用いて96穴平底培養プレートにて最終濃度が2μMのモネンシン(2 Biolegend 420701)存在下で培養した。6時間後、細胞表面をCD3(Biolegend 300306)又はCD4(Biolegend 300512)、CD8(Biolegend 301016)に対する抗体を用いて標識、BD Cytofix/Cytoperm(BD Biosciences 554722)で固定後、IFN-γ(Biolegend 506507)又はGranzymeB(Biolegend 502312)に対する抗体で標識した。蛍光強度をCytoFLEX(BECKMAN COULTER B53013)で評価した。
 T細胞応答のアビディティを調べるために、N501Y 25merペプチドの終濃度を0.0003~30μg/mL存在下で5x10個のCD4陽性T細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。24~48時間後の培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキットを用いて測定した。得られた結果を図25Aに示す。
 また、CD4陽性T細胞のHLA拘束性を調べるために、N501Y 25merペプチド又はN501N 25merペプチド(各3μg/mL)存在下で5x10個のTh細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。一部の培養系には抗DR抗体(BioLegend 307612)又は対照群として抗HLA-class I抗体(BioLegend 311412)を終濃度5μg/mLになるように添加した。24~48時間後の培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキット(BD Biosciences 555142)を用いて付属の取扱説明書に従って測定した。得られた結果を図25Bに示す。
 さらに、拘束されるHLA型を調べるために、当該ペプチド(3μg/mL)存在下で5x10個のCD4陽性T細胞とHLA-DR4、DR9又はDR53の遺伝子が導入された3x10個のマウス由来線維芽細胞株(L-DR4、L-DR9又はL-DR53)を200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養し、上記と同様にして、24~48時間後に、培養上清のIFN-γ濃度を測定した。得られた結果を図25Cに示す。
 以上のとおりにして得られたTh細胞株(DR9-HK7及びDR9-HK13)は、N501Y 25merペプチド存在下でのみIFN-γ産生が認められたことから、当該ペプチド特異的Th細胞が樹立されていることが確認された。このTh細胞は、抗HLA-DR抗体(aDR)を用いた場合にペプチド特異的IFN-γ産生が抑制されたことから、N501Y 25merペプチドはHLA-DR拘束的にTh細胞を刺激していることが確認された。さらに、当該ペプチド特異的Th細胞がL-DR9細胞にのみペプチド特異的反応を示したことから、N501Y 25merペプチドはHLA-DR9に結合し、Th細胞を刺激していることが確認された。一方、このDR9拘束性N501Y 25merペプチド特異的T細胞株はN501Nには反応しなかった。
 以上のとおり、HLA-DR9拘束性Th細胞は、SARS-CoV-2のオリジナル株やデルタ株がもつN501Nには反応を示さなかったものの、アルファ株、ベータ株及びオミクロン株等がもつN501Yに反応したことから、N501Yペプチドは、HLA-DR9の保有者に対し、これらSARS-CoV-2の変異株に対する免疫応答を誘導することができると考えられる。なお、Sタンパクにおけるアミノ酸変異とSARS-CoV-2の変異株との対応関係については、上記表1を参照のほど。
 [HLA-DR53拘束性NYN 30merペプチド特異的ヘルパーT(Th)細胞を用いた、アラニン置換実験]
 NYN 30merペプチドの繰り返し刺激により増殖してきたCD4陽性T細胞(DR53-YY4及びDR53-HK36)の変異ペプチドに対する反応性を評価するために、NYN 30merペプチドのうちの1アミノ酸をアラニンに置換した変異体(配列番号:74~84,S448-T19-1A~10A)を、図26A及び26Bに示すとおり、調製した。また、陰性コントロールとしてS448-T12も用意した。そして、これら各種ペプチド(3μg/mL)の存在下、5x10個のTh細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。24時間後に培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキット(BD Biosciences 555142)を用いて付属の取扱説明書に従って測定した。
 図26A及び26Bに示すとおり、DR53-YY4はT19-2A、T19-5A及びT19-7Aに対して反応しなかったのに対し、DR53-HK36はT19-1A、T19-2A、T19-5A及びT19-7Aに対して反応しなかった。
 [ワクチン接種後のT細胞応答モニタリング評価(ELISPOT法)]
 NYN 30merペプチド、N501N 25merペプチド及びN501Y 25merペプチドが、新型コロナワクチン接種者のT細胞応答モニタリングに有用かどうかを検討した。具体的には、ファイザー社製新型コロナワクチン接種前、1回接種2週間後、及び2回接種2週間後の健常人の末梢血からPBMCを回収し-80℃冷凍庫にて凍結保存した。融解したPBMC(1.5~3x10個)をヒト細胞用培地(1000μL/ウェル)を用いて48穴平底培養プレートにてペプチド(終濃度:1μg/mL)、IL―2(終濃度:20U/mL)存在下で培養した。7日後、ELISPOTアッセイキット(MABTECH社、Human IFN-γ ELISpotBASIC kit(ALP))を用いてペプチド特異的なT細胞応答を解析した。PBSにて洗浄したPBMC(4~5x10個)をヒト細胞用培地(150μL/ウェル)を用いてELISPOTプレート(MerckMillipore社、MAHAS4510)にてペプチド(NYN 30merペプチド、N501N 25merペプチド又はN501Y 25merペプチド)終濃度:1μg/mL存在下で培養した。24時間後、プレートを洗浄液(0.05% Tween-20(ナカライテスク社 23926-35)含有PBS)で洗浄し、以降、付属の取扱説明書に従って測定した。発色基質にはBCIP/NBT plus(MABTECH社)を用いた。プロットが検出された後、水道水で洗浄し乾燥させ、ELISpotプレートリーダー(Autoimmun Diagnostika)を用いてプレートを読み込み、専用のソフトウェア(Autoimmun Diagnostika社、AID ELISpot plate reader software)を用いて解析した。
 ぞの結果、図27に示すとおり、被験者YYはワクチン接種2回後のサンプルにおいてNYN 30merペプチド(図中、S448ペプチド)に対する特異的T細胞応答が確認されたが、N501Nペプチド及びN501Yペプチドに対する反応は認められなかった。被験者TOは、ワクチン接種1回及び2回後のサンプルにおいてNYN 30merペプチドに対する特異的T細胞応答が確認された。また、ワクチン2回接種後のサンプルにおいてN501N 25merペプチド及びN501Y 25merペプチドに対する特異的T細胞応答が確認された。
 以上のとおり、NYN 30merペプチド、N501N 25merペプチド及びN501Y 25merペプチドは、新型コロナワクチンのモニタリングに利用できることが確認された。なお、ワクチンによる特異的T細胞の活性化はHLA型の違いによる個人差があることが予測されるので、今回のような被験者による反応性の違いは想定の範囲内である。
 [Th細胞を用いた変異ペプチド実験]
 NYN 30merペプチドの繰り返し刺激により増殖してきたCD4陽性T細胞(DP2-HK13、DR53-HK36、DR53-YY4、DR8-TO14及びDR8-TO20)の変異ペプチドに対する反応性を評価するために、NYN 30merペプチド(オリジナル(配列番号:19)、NYNYLYRLFAKSNLKPFERDISTEIYQAGS)、並びにその変異体:L452R(配列番号:89、NYNYRYRLARKSNLKPFERDISTEIYQAGS)、Y453F(配列番号:91、NYNYLFRLFAKSNLKPFERDISTEIYQAGS)、D-Mt(配列番号:92、NYNYRFRLFAKSNLKPFERDISTEIYQAGS)、L452Q(配列番号:90、NYNYQYRLFAKSNLKPFERDISTEIYQAGS)及びS477N(配列番号:93、NYNYLYRLFAKSNLKPFERDISTEIYQAGN)を調製した。そして、各ペプチド(3μg/mL)の存在下、5x10個のTh細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。24時間後に培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキット(BD Biosciences 555142)を用いて付属の取扱説明書に従って測定した。
 その結果、図28A~28Eに示すとおり、DP2-HK13は、L452R、D-Mt及びL452Qに対して反応しなかったのに対し、S477Nペプチドには反応した。DR53-HK36、DR53-YY4、DR8-TO14及びDR8-TO20は、どの変異ペプチドに対しても反応した。
 よって、これらの結果から、HLA-DP2拘束性T細胞は、SARS-CoV-2の変異株に対して抵抗性が弱まる可能性があるが、HLA-DR53拘束性T細胞及びHLA-DR8拘束性T細胞は、これら変異株に対しても抵抗性を示すことが示唆された。
 [Th細胞を用いた変異ペプチド実験]
 N501Y 25merペプチドの繰り返し刺激により増殖してきたCD4陽性T細胞(DR9-HK7、DR15-YY17及びDR15-TO4)の変異ペプチド及び野生型ペプチドに対する反応性を評価することを試みた。具体的には先ず、N501N 25merペプチド、又はその変異体(N501Y 25merペプチド若しくはF490S 25merペプチド(配列番号:102,YSPLQSYGFQPTNGVGYQPYRVVVL))の存在下(各3μg/mL)、5x10個のTh細胞と1x10個のPBMCを200μLのヒト細胞用培地を用いて96穴平底培養プレートにて共培養した。24時間後に培養上清を100μL回収し、それに含まれるIFN-γ濃度をELISAキット(BD Biosciences 555142)を用いて付属の取扱説明書に従って測定した。
 その結果、図29に示すとおり、DR9-HK7及びDR15-YY17は、T細胞株の樹立の際に使用したN501Y 25merペプチドにしか反応せず、N501Y 25merペプチド及びF490S 25merペプチドには反応しなかった。DR15-TO4はN501N 25merペプチド及びN501Y 25merペプチドに反応したが、F490S 25merペプチドには反応しなかった。
 以上の結果から、F490S及びN501YはT細胞の認識に重要であることが示唆される。また、N501N 25merペプチドに対する反応性は、ファイザー社製新型コロナワクチンの接種前と接種後のサンプルで異なっていた。理由は定かでないが、前記ワクチン接種(N501Nペプチド刺激)で活性化したT細胞はN501Yペプチドを認識できるのに対し、最初にN501Yペプチドを認識し活性化したT細胞はN501Nペプチドを認識できないということかもしれない。
 [再刺激後の変異ペプチドに対するT細胞応答モニタリング評価]
 NYN 30merペプチド及びN501N 25merペプチドにより、新型コロナワクチン接種者のT細胞を活性化させた場合に、変異ペプチドに対するT細胞応答が認められるかを検討した。具体的には、ファイザー社製新型コロナワクチンを2回接種した後(2回目の接種からおよそ6ヶ月後)の健常人の末梢血からPBMC(1.5~3x10個)をヒト細胞用培地(1000μL/ウェル)を用いて24穴平底培養プレートにてNYN 30merペプチド又はN501N 25merペプチド(終濃度:1μg/mL)及びIL―2(終濃度:20U/mL)存在下で培養した。培養7日後、ELISPOTアッセイキット(MABTECH社、Human IFN-γ ELISpotBASIC kit(ALP))を用いてペプチド特異的なT細胞応答を解析した。
 具体的には、PBSにて洗浄したPBMC(4~5x10個)を、ヒト細胞用培地(150μL/ウェル)を添加したELISPOTプレート(MerckMillipore社、MAHAS4510)にて、NYN 9merペプチド(図30A中「S7」と表記、配列番号:7)、L452R(配列番号:89)、Y453F(配列番号:91)、D-Mt(図中「W-Mut」、配列番号:92)、L452Q(配列番号:90)、S477N(配列番号:93)、NYN 30merペプチド(図30A中「S448-477」と表記、配列番号:19)、N501N 25merペプチド(図30B中「N501N」と表記、配列番号:101)、N501Y 25merペプチド(図30B中「N501Y」と表記、配列番号:51)及びF490S 25merペプチド(図30B中「F490S」と表記、配列番号:102)存在下で培養した。なお、培地における終濃度は、N501N 25merペプチド、N501Y 25merペプチド及びF490S 25merペプチドに関しては1μg/mLとし、これら以外のペプチド(NYN 30merペプチド及びその変異体)に関しては、構成するアミノ酸が異なることを考慮し、0.3μMとした(NYN 30merペプチドの1μg/mLが0.27μMに相当)。
 そして、前記ペプチド存在下における培養24時間後、プレートを洗浄液(0.05% Tween-20(ナカライテスク社 23926-35)含有PBS)で洗浄し、以降、付属の取扱説明書に従って測定した。発色基質にはBCIP/NBT plus(MABTECH社)を用いた。プロットが検出された後、水道水で洗浄し乾燥させ、ELISpotプレートリーダー(Autoimmun Diagnostika)を用いてプレートを読み込み、専用のソフトウェア(Autoimmun Diagnostika社、AID ELISpot plate reader software)を用いて解析した。
 その結果、図30Aに示すとおり、NYN 30merペプチド及びその変異体に関し、被験者HKはS7ペプチドに対して反応しなかったがそれ以外のロングペプチドに対する反応性を示した。被験者YYはL452R及びD-Mtペプチドに反応しなかった。被験者TOはS7ペプチドに対しては若干弱かったが、いずれのペプチドにも反応した。
 また、図30Bに示すとおり、N501N 25merペプチド、N501Y 25merペプチド及びF490S 25merペプチドに関し、被験者HKはN501N 25mer及びF490S 25merペプチドに対して反応したが、N501Y 25merペプチドには反応しなかった。被験者YYはN501N 25merペプチド及びN501Y 25merペプチドに対して反応したが、F490S 25merペプチドには反応しなかった。
 以上の結果から、ファイザー社製新型コロナワクチン接種者のサンプルを、上記ペプチドで刺激しても一部の変異ペプチドに対する反応性が確認されたことから、当該ペプチドは変異型に対する新型コロナワクチンのモニタリングに利用できることが確認された。なお、ワクチンによる特異的T細胞の活性化はHLA型の違いによる個人差があることが予測されるので、今回のような被験者による反応性の違いは想定の範囲内である。
 [HLA-DR8拘束性NYN 30merペプチド特異的Th細胞のテトラマー解析]
 HLA-DR8/WTペプチド(配列番号:84,YNYLYRLFRKSNLKP)テトラマー及びHLA-DR8/MTペプチド(配列番号:85,YNYRFRLFRKSNLKP)テトラマーの有用性を評価するために、NYN 30merペプチドの繰り返し刺激により増殖してきたHLA-DR8拘束性CD4陽性T細胞(DR8-TO14及びDR8-TO20)を用いて検討した。先ず、各T細胞株のクローナリティを検討するために、TCRVbeta kit(BECKMAN COULTER Beta Mark TCR Vbeta Repertoire Kit;IM3497)を用いた。1x10個のT細胞株をAPC-CD4抗体(BioLegend)で染色した後、8つ(1x10個ずつ)に分注し、TCRVbeta kitの説明書に従って8種類(A~H)の抗体ミックスでそれぞれを染色した。次に、テトラマー染色するために、4x10個のT細胞株をFITC-CD3抗体、APC-Cy7-CD8抗体、及びPE-Cy7-CD4抗体(いずれもBioLegend)で染色した後、3つ(1x10個ずつ)に分注し、PE-コントロールテトラマー(DR15-WT)、PE-HLA-DR8/WTペプチドテトラマー及びPE-HLA-DR8/MTペプチドテトラマーを用いて染色した。染色後の細胞をCytoFLEX(Beckman Coulter)を用いて解析した。
 その結果、図には示さないが、DR8-TO14は、0.09~10.76%までの12種類のクローンが混在していることがわかった。テトラマー陽性率はHLA-DR8/WTペプチドテトラマーでは5.79%、HLA-DR8/MTペプチドテトラマーでは2.3%であった。
 また、図には示さないが、R8-TO20は、0.35~54.48%までの6種類のクローンが混在するT細胞集団であることがわかった。テトラマー陽性率はHLA-DR8/WTペプチドテトラマーでは17.11%、HLA-DR8/MTペプチドテトラマーでは25.66%であった。
 以上の結果から、HLA-DR8/WTペプチドテトラマー及びHLA-DR8/MTペプチドテトラマーは、T細胞のモニタリング等において有用であることが示唆された。DR8-TO14及びDR8-TO20共にヘテロな集団であったことから、HLA-DR8/WTペプチドテトラマーで染色されるT細胞とHLA-DR8/MTペプチドテトラマーで染色されるT細胞が同一クローンか別クローンかは現状ではわからない。
 [HLA-A24拘束性ペプチド特異的CTLを用いた変異ペプチド実験]
 上記〔細胞傷害性T細胞(CTL)誘導〕~〔インターフェロン(IFN)-γ ELISPOTアッセイ〕に記載の方法と同様にして、HLA A24を保持し、新型コロナワクチン接種後のドナーより末梢血を採取し、それから野生型A24拘束性ペプチドにてCTLを誘導し、当該ペプチド及びその変異体(L452R、Y453F、D-Mt(L452R & Y453F))に対する反応性を評価した。その結果、図31に示すとおり、野生型A24拘束性ペプチドで誘導したCTLは、L452Rペプチドに反応しなかったが、Y453Fペプチドに反応することが確認された。
 以上説明したように、本発明によれば、SARS-CoV-2を標的とする細胞傷害性T細胞及び/又はヘルパーT細胞を誘導し、当該ウイルスの感染症の治療又は予防が可能となる。したがって、本発明は、SARS-CoV-2感染症に対するワクチン及び受動免疫療法剤等として有用である。

Claims (19)

  1.  SARS-CoV-2由来のエピトープペプチドであって、
     配列番号:52に記載のアミノ酸配列における連続した少なくとも5アミノ酸を含み、かつ細胞傷害性T細胞及び/又はヘルパーT細胞の誘導活性を有する、ペプチド。
  2.  配列番号:31又は7に記載のアミノ酸配列を含むペプチドである、請求項1に記載のエピトープペプチド。
  3.  下記ペプチド群から選択される少なくとも1のペプチドを含む、SARS-CoV-2由来のエピトープペプチド:
    (1)配列番号:29~37、96及び97のうちのいずれかに記載のアミノ酸配列を含み、HLA-DR8拘束性ヘルパーT細胞の誘導活性を有するペプチド
    (2)配列番号:94に記載のアミノ酸配列を含み、HLA-A24拘束性細胞傷害性T細胞の誘導活性を有するペプチド
    (3)配列番号:38~43及び46のうちのいずれかに記載のアミノ酸配列を含み、HLA-DR53拘束性ヘルパーT細胞の誘導活性を有するペプチド
    (4)配列番号:29~33及び95のうちのいずれかに記載のアミノ酸配列を含み、HLA-DP2拘束性ヘルパーT細胞の誘導活性を有するペプチド
    (5)配列番号:53に記載のアミノ酸配列を含み、HLA-DR15拘束性ヘルパーT細胞の誘導活性を有するペプチド
    (6)配列番号:53に記載のアミノ酸配列を含み、HLA-DR9拘束性ヘルパーT細胞の誘導活性を有するペプチド。
  4.  配列番号:88、98~100、54及び55のうちのいずれかに記載のアミノ酸配列を含むペプチドである、請求項1に記載のエピトープペプチド。
  5.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドをコードする核酸。
  6.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドをコードする核酸を含有する発現ベクター。
  7.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドを有効成分として含む、SARS-CoV-2感染症を治療又は予防するためのワクチン。
  8.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドをコードする核酸を有効成分として含む、SARS-CoV-2感染症を治療又は予防するためのワクチン。
  9.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドとHLA分子との複合体を表面上に提示する抗原提示細胞を有効成分として含む、SARS-CoV-2感染症を治療又は予防するためのワクチン。
  10.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドとHLA分子との複合体又は該複合体の多量体。
  11.  請求項1~4のうちのいずれか一項に記載のエピトープペプチド又は該ペプチドとHLA分子との複合体を表面上に提示する抗原提示細胞により、単核球を刺激して得られるT細胞を含む、SARS-CoV-2感染症を治療又は予防するための受動免疫療法剤。
  12.  請求項10に記載の複合体又は該複合体の多量体と、単核球とを反応させ、前記複合体又は前記多量体にT細胞が結合した結合体を形成させ、該結合体から単離して得られるT細胞を含む、SARS-CoV-2感染症を治療又は予防するための受動免疫療法剤。
  13.  請求項1~4のうちのいずれか一項に記載のエピトープペプチド又は該ペプチドとHLA分子との複合体を表面上に提示する抗原提示細胞により、単核球を刺激してT細胞を取得する工程を含む、SARS-CoV-2感染症を治療又は予防するための受動免疫療法剤の製造方法。
  14.  請求項10に記載の複合体又は該複合体の多量体と、単核球とを反応させ、前記複合体又は前記多量体にT細胞が結合した結合体を形成させ、該結合体からT細胞を単離する工程を含む、SARS-CoV-2感染症を治療するための受動免疫療法剤の製造方法。
  15.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドと単核球とを培地中で接触させ、T細胞を誘導することを特徴とする、SARS-CoV-2を標的とするT細胞を誘導する方法。
  16.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドを含む、SARS-CoV-2を標的とするT細胞の誘導するためのキット。
  17.  請求項10に記載の複合体又は該複合体の多量体と、被検試料とを反応させる工程を含む、当該試料中のSARS-CoV-2を標的とするT細胞を検出する方法。
  18.  請求項1~4のうちのいずれか一項に記載のエピトープペプチドと被検試料とを接触させ、当該接触により誘導されたSARS-CoV-2を標的とするT細胞が産生する、サイトカイン、ケモカイン及び細胞表面分子から選択される少なくとも1の分子を検出する工程を含む、当該試料中のSARS-CoV-2を標的とするT細胞を検出する方法。
  19.  前記エピトープペプチドと、前記分子を検出するための物質とを、少なくとも含む、請求項18に記載の方法によりT細胞を検出するためのキット。
PCT/JP2022/021153 2021-05-21 2022-05-23 SARS-CoV-2由来のT細胞エピトープペプチド WO2022244891A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021086285A JP2024123281A (ja) 2021-05-21 2021-05-21 SARS-CoV-2由来のT細胞エピトープペプチド
JP2021-086285 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022244891A1 true WO2022244891A1 (ja) 2022-11-24

Family

ID=84141745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021153 WO2022244891A1 (ja) 2021-05-21 2022-05-23 SARS-CoV-2由来のT細胞エピトープペプチド

Country Status (2)

Country Link
JP (1) JP2024123281A (ja)
WO (1) WO2022244891A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028978A (zh) * 2020-09-07 2020-12-04 重庆医科大学 新冠病毒特异性cd8+t细胞表位肽及其应用
WO2020257317A1 (en) * 2019-06-18 2020-12-24 Citranvi Biosciences, Llc Rationally engineered carrier proteins for vaccines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020257317A1 (en) * 2019-06-18 2020-12-24 Citranvi Biosciences, Llc Rationally engineered carrier proteins for vaccines
CN112028978A (zh) * 2020-09-07 2020-12-04 重庆医科大学 新冠病毒特异性cd8+t细胞表位肽及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CASTRO ANDREA, OZTURK KIVILCIM, ZANETTI MAURIZIO, CARTER HANNAH: "In silico analysis suggests less effective MHC-II presentation of SARS-CoV-2 RBM peptides: Implication for neutralizing antibody responses", PLOS ONE, vol. 16, no. 2, pages e0246731, XP093008862, DOI: 10.1371/journal.pone.0246731 *
MAHAJAN SWAPNIL, KODE VASUMATHI, BHOJAK KESHAV, MAGDALENE CORAL M., LEE KAYLA, MANOHARAN MALINI, RAMESH ATHULYA, SUDHEENDRA HV, SR: "Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust preexisting T-cell immunity in unexposed individuals", BIORXIV, 5 November 2020 (2020-11-05), XP055823659, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.11.03.367375v1.full.pdf> [retrieved on 20210713], DOI: 10.1101/2020.11.03.367375 *
NORHEIM GUNNSTEIN, STUBSRUD ELISABETH, SKULLERUD LISE MADELENE, STANKOVIC BRANISLAVA, CHELLAPPA STALIN, BJERKAN LOUISE, KUCZKOWSKA: "Single dose immunization with a COVID-19 DNA vaccine encoding a chimeric homodimeric protein targeting receptor binding domain (RBD) to antigen-presenting cells induces rapid, strong and long-lasting neutralizing IgG, Th1 dominated CD4 + T cells and strong CD8 + T cell responses in mice", BIORXIV, 9 December 2020 (2020-12-09), pages 1 - 43, XP093008719, DOI: 10.1101/2020.12.08.416875 *
ONG EDISON, HUANG XIAOQIANG, PEARCE ROBIN, ZHANG YANG, HE YONGQUN: "Computational design of SARS-CoV-2 spike glycoproteins to increase immunogenicity by T cell epitope engineering", COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, vol. 19, pages 518 - 529, XP055855946, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S200103702030564X/pdfft?md5=58bb83e20ddd47d6eaa97aba7774ebde&pid=1-s2.0-S200103702030564X-main.pdf> [retrieved on 20211028] *
WOLDEMESKEL BEZAWIT A., GARLISS CAROLINE C., BLANKSON JOEL N.: "SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63", JOURNAL OF CLINICAL INVESTIGATION, vol. 131, no. 10, 17 May 2021 (2021-05-17), XP055899578, DOI: 10.1172/JCI149335 *
YE FENG, MIN QIU, LIANG LIU, SHENGMEI ZOU, YUN LI, KAI LUO, QIANPENG GUO, NING HAN, YINGQIANG SUN, KUI WANG, XINLEI ZHUANG, SHANSH: "Multi-epitope vaccine design using an immunoinformatics approach for 2019 novel coronavirus in China (SARS-CoV-2)", BIORXIV, 30 June 2020 (2020-06-30), XP055716959, DOI: 10.1101/2020.03.03.962332 *

Also Published As

Publication number Publication date
JP2024123281A (ja) 2024-09-11

Similar Documents

Publication Publication Date Title
KR20230004508A (ko) 코로나바이러스 백신 및 사용 방법
Levitsky et al. The life span of major histocompatibility complex-peptide complexes influences the efficiency of presentation and immunogenicity of two class I-restricted cytotoxic T lymphocyte epitopes in the Epstein-Barr virus nuclear antigen 4.
AU2015343239B2 (en) Methods of selecting T cell line and donor thereof for adoptive cellular therapy
JP3782100B2 (ja) Hla結合性ペプチド及びその用途
US8481051B2 (en) Cytotoxic T-cell epitope peptides that specifically attack epstein-barr virus-infected cells and uses thereof
AU2008332278B2 (en) Cancer vaccine composition
EP1861418B1 (fr) Epitopes t cd4+ des antigenes de latence de type i et ii du virus epstein-barr aptes a etre reconnus par la majorite des individus de la population caucasienne et leurs applications
WO2016203577A1 (ja) 細胞傷害性t細胞エピトープペプチド及びその用途
KR101479455B1 (ko) Ctl 유도제 조성물
EP1921089A1 (en) Cytotoxic t-cell epitope peptide and use thereof
JP2017518051A (ja) B型肝炎ウイルス感染に対する治療ワクチン接種のための合成長鎖ペプチド(slp)
Micheletti et al. Identification of cytotoxic T lymphocyte epitopes of human herpesvirus 8
Becerra‐Artiles et al. Naturally processed HLA‐DR3‐restricted HHV‐6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T‐cell responses
Herberts et al. Autoreactivity against induced or upregulated abundant self-peptides in HLA-A* 0201 following measles virus infection
Koelle Expression cloning for the discovery of viral antigens and epitopes recognized by T cells
JP2019110909A (ja) 細胞傷害性t細胞エピトープペプチド及びその用途
WO2022244891A1 (ja) SARS-CoV-2由来のT細胞エピトープペプチド
JP5999703B2 (ja) HLA−DR1拘束性Tax特異的CD4+T細胞エピトープ
Manuel et al. Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease
US20040141995A1 (en) MHC class I-restricted and MHC class II-restricted EBNA1 peptides
Provenzano et al. A HCMV pp65 polypeptide promotes the expansion of CD4+ and CD8+ T cells across a wide range of HLA specificities
JP2017132745A (ja) Hhv−6b特異抗原u54由来hla−a24拘束性ctlエピトープペプチド及びその使用
Coleman et al. SV40 large T antigen‐specific human T cell memory responses
EP1211260A1 (en) Peptides from Ag85 of mycobacterium and uses thereof
WO2024219974A1 (en) Timp3-derived teipp neoantigens and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP