WO2022244783A1 - 血中フェニルアラニン定量方法、及びそれに使用する測定キット - Google Patents

血中フェニルアラニン定量方法、及びそれに使用する測定キット Download PDF

Info

Publication number
WO2022244783A1
WO2022244783A1 PCT/JP2022/020562 JP2022020562W WO2022244783A1 WO 2022244783 A1 WO2022244783 A1 WO 2022244783A1 JP 2022020562 W JP2022020562 W JP 2022020562W WO 2022244783 A1 WO2022244783 A1 WO 2022244783A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
test
concentration
sheet
ammonia
Prior art date
Application number
PCT/JP2022/020562
Other languages
English (en)
French (fr)
Inventor
陽一 和田
繁夫 呉
Original Assignee
株式会社レナサイエンス
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レナサイエンス, 国立大学法人東北大学 filed Critical 株式会社レナサイエンス
Priority to US18/561,497 priority Critical patent/US20240248095A1/en
Priority to JP2023522681A priority patent/JPWO2022244783A1/ja
Priority to EP22804694.2A priority patent/EP4353829A1/en
Publication of WO2022244783A1 publication Critical patent/WO2022244783A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7759Dipstick; Test strip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/988Lyases (4.), e.g. aldolases, heparinase, enolases, fumarase

Definitions

  • the present invention relates to a method for quantifying the concentration of phenylalanine contained in blood.
  • the present invention also relates to a measurement kit for use in said method.
  • the present invention relates to a method for easily confirming and managing the blood phenylalanine concentration of a patient with phenylketonuria using the method or the kit at a bedside or in a place other than a medical institution.
  • Phenylketonuria is caused by a decrease in the activity of phenylalanine hydroxylase (hereinafter also referred to as "PAH") in the body, which prevents phenylalanine (hereinafter also referred to as “Phe”) from being metabolized into tyrosine and Phe in the body. It is one of the congenital amino acid metabolism disorders that accumulate. Sustained marked elevation of Phe levels in infancy causes severe mental retardation. By controlling the blood Phe concentration within a certain range, retardation of mental development can be prevented and normal intellectual development can be achieved. Therefore, it is necessary for patients with phenylketonuria to adjust the amount of Phe ingested by diet therapy, using the blood Phe concentration as a biomarker.
  • Phe phenylalanine hydroxylase
  • the blood Phe concentration is easily affected by the amount of Phe contained in the diet, and the Phe tolerance depends on the PAH activity of the individual. , it is necessary to finely adjust the amount of Phe ingested. For this purpose, it is required that the blood Phe concentration can be measured simply and quickly at the patient's bedside or in a place other than a medical institution in daily life.
  • the method for measuring blood Phe concentration that can be used in clinical practice is the HPLC method.
  • this method requires at least one week to obtain the results, it is not suitable as a measuring method in situations where immediate evaluation is required, such as adjustment of the amount of Phe ingested in dietary therapy.
  • mass spectrometry used in neonatal mass screening.
  • this method requires pretreatment of the specimen and requires a large-sized analytical instrument, so it cannot be used for testing outside medical institutions.
  • phenylketonuria As a method for diagnosing phenylketonuria, conventionally, Phe labeled with a carbon isotope is administered orally or by injection to a subject, and phenylketonuria is detected by changes in the amount of carbon isotope contained in exhaled breath.
  • Patent Document 1 A method for diagnosis (Patent Document 1), and using a dehydrogenase, a coenzyme, an electron mediator, and a tetrazolium salt specific to L-phenylalanine in a biological sample as reaction reagents, an enzymatic reaction between the biological sample and the reaction reagent, and A method has been proposed for quantifying L-phenylalanine in a biological sample by producing formazan through an oxidation-reduction reaction and detecting it optically and/or electrochemically (Patent Document 2).
  • the former method has the problem that a mass spectrometer is required for measuring the amount of carbon isotopes.
  • the latter is a method that can easily and quickly test for phenylketonuria, but it can simultaneously test for three congenital metabolic disorders: galactosemia, maple syrup urine disease, and phenylketonuria.
  • This method differs in principle from the measuring method of the present invention, which will be described later.
  • an object of the present invention is to provide a method for measuring the blood Phe concentration simply and quickly.
  • Another object of the present invention is to provide a measurement kit for use in the above method.
  • a further object of the present invention is to provide a method for managing the blood Phe concentration in patients with phenylketonuria.
  • PAL phenylalanine ammonia lyase
  • the collected capillary blood was once allowed to coexist with an alkaline buffer, and after gasifying and volatilizing the ammonium ions contained therein, PAL By reacting with, it was confirmed that the Phe concentration in venous blood can be measured accurately while using capillary blood as test blood. Moreover, even when venous blood is used as the test blood, the blood Phe concentration of the subject can be measured with higher accuracy by gasifying and removing the ammonium ions present therein in advance.
  • the present invention has been completed through the accumulation of such studies, and has the following embodiments.
  • Method for quantifying blood Phe concentration (I-1) A method for quantifying blood Phe concentration in a subject using a test piece comprising at least two sheet-shaped members, comprising: The test piece reacts with a first sheet-like member (hereinafter sometimes referred to as "first member") provided with a sample-holding layer containing an alkaline buffer and ammonia gas to change color.
  • first member a first sheet-like member
  • sample-holding layer containing an alkaline buffer and ammonia gas
  • a second sheet-like member having an indicator layer (hereinafter sometimes abbreviated as "second member") is laminated in a peeled or peelable state,
  • the quantification method is a method having the following steps (A) to (D), a method for quantification of blood Phe concentration:
  • the first member is laminated on the second member so that the sample holding layer and the indicator layer of the second member overlap in a non-contact state, and a PAL-containing liquid is dropped onto the sample holding layer, and the process of leaving time,
  • C the step of measuring the ammonia concentration in the test blood from the degree of color of the indicator layer of the second member
  • D the step of calculating the blood Phe concentration of the subject from the ammonia concentration.
  • the alkaline buffer in the sample holding layer of the first member is an alkaline buffer containing boric acid and sodium hydroxide;
  • the content of boric acid and sodium hydroxide in the sample holding layer of the first member is 0.40 to 0.45 mg and 0.15 to 0.20 mg per member, respectively;
  • the bromcresol green content in the indicator layer of the second member is 0.3 to 0.5 mg per member,
  • the amount of test blood dropped onto the sample holding layer in step (A) is at least 10 ⁇ l,
  • the amount of PAL in the PAL-containing liquid dropped onto the sample holding layer in the step (B) is at least 2 mU;
  • the blood Phe concentration that can be calculated in the step (D) is 0 to 1400 ⁇ M, preferably 0 to 437 ⁇ M.
  • (I-4) The method for quantifying blood phenylalanine according to (I-2) or (I-3), wherein the step (C) is a step of measuring the absorbance of the color of the indicator layer at a wavelength of 635 nm.
  • (I-5) The method for quantifying blood Phe according to any one of (I-1) to (I-4), wherein the blood (test blood) collected from the subject is capillary blood.
  • (I-6) The method for quantifying blood Phe according to any one of (I-1) to (I-5), wherein the subject is a patient with phenylketonuria.
  • kits containing (a) to (c) (a) a first member provided with a sample holding layer containing an alkaline buffer; A test piece in which two members are laminated in a peeled or peelable state, (b) PAL, and (c) solvent.
  • III-1 Method for managing blood Phe concentration in patients with phenylketonuria, comprising: The blood Phe level according to any one of (I-1) to (I-6) is periodically or irregularly measured at a place other than a medical institution, using capillary blood of a phenylketonuria patient as test blood. The management method, wherein a quantification method is implemented. (III-2) The management method according to (III-1), wherein the method for quantifying the blood Phe is carried out using the kit according to (II-1) above.
  • the blood Phe concentration of a subject can be measured simply and quickly at the site of blood collection. Moreover, according to the method of the present invention, even when a small amount of blood (capillary blood) from a fingertip is used as the test blood, the Phe concentration in the venous blood or plasma of the subject can be obtained with high accuracy. Therefore, the method of the present invention can be used for screening for early detection of phenylketonuria in newborns, bedside monitoring of blood Phe concentration in patients with phenylketonuria, and in daily life at places other than medical institutions. Therefore, it can be effectively used for monitoring and managing blood Phe concentration, especially in diet therapy.
  • FIG. 1 shows a reaction schematic diagram showing the measurement principle of the present invention.
  • FIG. 1 shows the results of measuring the ammonia concentration ( ⁇ M) in capillary blood (test blood) collected from a fingertip using an Amicheck and an ammonia meter in Reference Experimental Example 1.
  • FIG. 2 In Reference Experimental Example 2, after dropping capillary blood (test blood) collected from the fingertip on the sample holding layer of the spacer portion of Amicheck, the time (0 to 10 minutes) left (X axis) and the amount of blood in the test blood The relationship with the measured value of the ammonia concentration is shown (Y-axis [A.U.] is "measured value at each standing time/measured value at 0 minute standing time").
  • test blood collected from healthy subjects (3 persons: A to C) was added with Phe at a known concentration ( ⁇ M) (X axis) (test sample (A) to ( C)) shows the results of measuring the ammonia concentration ( ⁇ M) (Y-axis) in the test sample using Amicekk and an ammonia meter.
  • ⁇ M ammonia concentration
  • Y axis ammonia concentration
  • Experiment B2 Phe concentration in the test sample measured in Experimental Example 4 (2) is plotted on the X axis
  • Experiment C2 ammonia measurement value
  • Experimental Example 4 (3) the results of Experiment A (plasma Phe concentration of PKU patients) are plotted on the X axis, and the regression equations derived from Experimental Examples 4 (1) and (2) are plotted against the fingertip capillaries of the PKU patient.
  • Plasma Phe concentrations estimated by applying the ammonia measurement values measured in Experiment C1 using blood as test blood are plotted on the Y-axis, showing the correlation between the two.
  • This quantification method comprises a test strip (hereinafter referred to as “this test strip") consisting of at least two sheet-like members. ) is used to perform the steps (A) to (D) described later.
  • this test strip consisting of at least two sheet-like members.
  • the present test piece and the steps (A) to (D) will be described below.
  • This test piece consists of a first sheet-like member (first member) provided with a sample holding layer containing an alkaline buffer, and a first sheet-like member (first member) provided with an indicator layer that changes color upon reaction with ammonia gas. It consists of two sheet-like members (second members). As for these members, the first member is arranged (stacked) on the second member. Both members may be separated from each other, or may be temporarily adhered to each other so that they can be separated from each other.
  • FIG. 1 is a perspective view of the test piece 1.
  • FIG. FIG. 2 is a cross-sectional view of the test piece 1 shown in FIG. 1 as viewed in the AA direction.
  • FIG. 3 is a cross-sectional view of the test piece 1 shown in FIG. 1 as viewed in the BB direction.
  • the same parts are given the same reference numerals.
  • a sheet-like base material 11 (hereinafter also simply referred to as “first base material 11 ") of the first member 2 constituting the test piece 1 is formed with holes 12 , and the holes are formed.
  • a sample holding layer 13 is disposed thereon so as to cover it.
  • the substrate 14 hereinafter simply referred to as “second substrate 14 ”
  • An indicator layer 15 is arranged on the part, and adhesive layers 16a and 16b are arranged in front and behind it, respectively.
  • the hole 12 formed in the first substrate 11 is a vent hole for allowing ammonia gas generated in the sample holding layer 13 to reach the indicator layer 15 arranged on the second substrate 14 , as will be described later. be. For this reason, it is also called NH 3 vent.
  • FIG. 1 shows the test strip 1 with the first member 2 laminated on the second member 3 .
  • the hole 12 of the first substrate 11 is positioned above the indicator layer 15 of the second member 3 , and the opening of the hole 12 is covered with the indicator layer 15 . , placing the first member 2 on top of the second member 3 .
  • Adhesive layers 16a and 16b before and after the indicator layer 15 are portions for temporarily attaching the first member 2 and the second member 3 in a detachable state.
  • the first member 2 and the second member 3 do not necessarily have to be adhered as long as they can be temporarily attached, and the first member 2 and the second member 3 may be in a separated state.
  • the adhesion layers 16a and 16b may be formed so as to be repeatedly adhered two or more times. Also, the adhesive layer may be formed only in front of or behind the indicator layer 15 .
  • the size of the first base material 11 is not particularly limited, and in the case of a strip, for example, length 20 to 80 mm x width 3 to 10 mm x thickness 0.1 to 0.7 mm, preferably length 30 to 60 mm ⁇ 4-9 mm wide ⁇ 0.1-0.5 mm thick, more preferably 30-40 mm long ⁇ 5-8 mm wide ⁇ 0.1-0.4 mm thick.
  • the size of the second base material 14 is not limited, in the case of a rectangular shape, it preferably has the same width as the first base material 11 but a different length.
  • Materials for these members are not particularly limited, and examples include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), and polycarbonate (PC). be done. Among these, PET and PC are preferred, and PET is particularly preferred.
  • the holes 12 formed in the first base material 11 are shown as circular in FIG. 1, they are not limited to this, and may be of any shape such as rectangular.
  • the size of the hole is also not limited.
  • the diameter can be set in the range of 2 to 8 mm according to the size (especially the width) of the first base material 11 . It preferably ranges from 3 to 5.5 mm, more preferably from 3.5 to 4.5 mm.
  • the sample holding layer 13 arranged on the first substrate 11 is obtained by impregnating a porous member with an aqueous solution containing an alkaline buffer and drying it.
  • a porous member fibrous and non-fibrous materials can be used as long as they are inert to at least the test sample blood (whole blood) and alkaline buffer and do not affect the method of the present invention.
  • Any porous member can be used.
  • the fibrous porous member include filter paper, nonwoven fabric, and woven fabric.
  • Non-fibrous porous members include porous members made of 6-nylon, 6,6-nylon, cellulose acetate, cellulose nitrate, polyethylene, polypropylene and the like. Although not limited, it is preferably a non-fibrous porous member.
  • the size of the sample holding layer 13 is not limited as long as it can block the hole 12 formed in the first member 11 .
  • the planar shape of the sample holding layer 13 is rectangular, and the length of one side (horizontal) thereof is the same as the width of the first substrate 11 .
  • the alkali buffer to be retained in the sample retaining layer 13 may be any one that makes the test sample deposited on the sample retaining layer 13 alkaline and gasifies ammonium ions contained in the test sample to generate ammonia gas. It is not particularly limited as long as it is used.
  • borate buffer prepared from boric acid and sodium hydroxide
  • sodium borate buffer prepared from sodium borate and sodium hydroxide
  • carbonate-bicarbonate buffer prepared from sodium carbonate and sodium bicarbonate.
  • An alkaline buffer with a pH of 9 to 11 such as A borate buffer is preferred.
  • the sample holding layer 13 is impregnated with the alkaline buffer dissolved in ultrapure water to form an alkaline buffer, and dried (for example, natural drying, air drying, heat drying, reduced pressure drying, etc.) to form the sample holding layer. 13 can be kept dry.
  • the indicator layer 15 arranged on the second base material 14 holds an indicator, which will be described later.
  • the indicator layer 15 may be formed by coating an arbitrary member with an indicator, or may be formed by impregnating a porous member with an aqueous solution containing the indicator and drying it, as in the case of the sample holding layer 13 . There may be. These members should be inert to at least the indicator and ammonia gas and should not affect the method of the present invention.
  • the size of the indicator layer 15 is not limited as long as it is large enough to close the hole 12 formed in the first base material 11 . For example, as shown in FIG.
  • the planar shape of the indicator layer 15 is rectangular, and the length of one side (horizontal) thereof is equal to the width of the second base material 14 .
  • the width is 3 to 10 mm ⁇ length 3 to 10 mm ⁇ thickness 0.01 to 0.3 mm, preferably width 4 to 9 mm ⁇ length 4 to 9 mm ⁇ thickness 0.01 to 0.2 mm, more preferably width It is 5 to 8 mm x 4 to 9 mm long x 0.01 to 0.1 mm thick.
  • a pH indicator having a function of developing or discoloring in response to a pH change caused by ammonia gas can be used.
  • Bromocresol green can be mentioned preferably, but not limited to. Bromcresol green is a pH indicator that turns yellow around pH 3.8 and turns blue around pH 5.4.
  • the adhesive layers 16a and 16b arranged in front and behind the indicator layer 15 are portions for adhering the first member 2 and the second member 3 in a detachable state, as described above. is.
  • the members constituting the adhesive layer, the adhesive component, and the adhesive means are not particularly limited.
  • examples of the adhesive means include a method using an adhesive such as an acrylic adhesive or an elastomer adhesive, and a method using a double-sided tape, and a lamination method using heat fusion can also be used.
  • the adhesive layer 16 may be one that can be repeatedly adhered two or more times. In this case, an adhesive or a double-sided tape can be used as an adhesive means.
  • the sizes of the adhesive layers 16a and 16b are also not particularly limited.
  • the planar shape of the adhesive layers 16a and 16b is rectangular, and the length of one side (horizontal) is preferably the same as the width of the second member 14 .
  • it has a width of 3 to 10 mm, a length of 2 to 10 mm, and a thickness of 0.01 to 0.3 mm, preferably a width of 4 to 9 mm, a length of 2 to 9 mm, and a thickness of 0.01 to 0.2 mm, more preferably a width. It is 5 to 8 mm x 2 to 8 mm long x 0.01 to 0.1 mm thick.
  • the adhesive layer 16 may be adhered twice or multiple times.
  • the test piece 1 was prepared by placing the hole 12 of the first base material 11 on the indicator layer 15 of the second member 3 and covering the opening of the hole 12 with the indicator layer 15 . It can be manufactured by placing the first member 2 thereon and adhering it in a detachable state via adhesive layers 16a and 16b . However, as will be described later, when performing this quantitative method, the test piece 1 is first removed from the adhesion (temporary adhesion) between the first member 2 and the second member 3 (peeling), and the first member 2 is removed. , is used separately from the second member 3 (see FIG. 4). In addition, when using this test piece in a state where the first member 2 and the second member 3 are peeled from the beginning, the peeling operation is unnecessary.
  • FIGS. An example of a series of steps is shown in FIGS.
  • A Blood (test blood) collected from a subject is dropped as it is or after being diluted, onto the sample holding layer 13 of the first member 2 of the present test strip 1 , which is separated from the second member 3 , and the process of leaving time
  • B The first member 2 is laminated on the second member 3 so that the sample holding layer 13 and the indicator layer 15 of the second member 3 overlap in a non-contact state, and the sample holding layer 13 is coated with a step of dropping a PAL-containing liquid and leaving it for a certain period of time;
  • C a step of measuring the ammonia concentration in the test blood from the degree of color of the indicator layer 15 of the second member 3 ; and
  • D a step of calculating the blood Phe concentration of the subject from the ammonia concentration.
  • the step (A) is a step of dripping and spotting the test blood onto the sample holding layer of the test piece.
  • the test blood is blood collected from a subject to be measured. Subjects are neonates with suspected phenylketonuria (newborns requiring testing) or patients with phenylketonuria.
  • the blood is whole blood and may be capillary blood drawn from a capillary or venous blood drawn from a vein. Capillary blood is preferred. Capillary blood collected from fingertips is more preferable because blood collection is easy.
  • the blood may be spotted on the sample holding layer as a test sample as it is, but when the Phe concentration in the blood is high or the amount of blood to be collected is small, the blood may be diluted with a solvent that does not affect the present invention as necessary. It can also be spotted on the sample holding layer.
  • capillary blood 40 collected from a fingertip may be diluted by adding an arbitrary amount of 50 mM Tris-HCl buffer 43 (diluted sample 44 ) to be used as a test sample (see FIG. 5).
  • the dilution ratio in this case is not limited, it can be appropriately set so that the ammonia measurement value obtained in the step (C) described later falls within the detection range of the blood ammonia measuring device used for the measurement.
  • This test blood 40 or a diluted sample 44 containing it (also collectively referred to as a "test sample” without distinguishing between them) is applied to the sample holding layer 13 of the first member 2 , which is in a state separated from the second member 3 in advance. Add dropwise and allow to stand at room temperature (1 to 30° C., hereinafter the same) for 5 minutes or longer. By this operation, ammonia contained in the test sample can be removed. Specifically, when the test sample is dropped onto the sample holding layer 13 , the alkaline buffer in the sample holding layer dissolves, the test sample becomes alkaline, and the ammonium ions contained in the test sample are gasified. The gasified ammonia gas is volatilized and removed by leaving it for a certain period of time.
  • the standing time may be any time that can remove and reduce the ammonia gas, for example, 5 minutes or longer under room temperature conditions. Although not limited, it is preferably 8 minutes or more, more preferably 10 minutes or more. If rapid results are required, it is preferable to keep the standing time within 15 minutes. More preferably, it is about 8 to 10 minutes.
  • the sample holding layer 13 of the first member 2 can hold the test sample 45 (deammonified test sample) from which ammonia has been removed or reduced.
  • the step (B) is a step of enzymatically treating the test sample 45 held on the sample holding layer 13 of the first member 2 on the sample holding layer 13 .
  • the enzyme used in the present invention is phenylalanine ammonia lyase (PAL).
  • PAL is an enzyme that reacts with Phe to produce ammonia and cinnamic acid equimolar to Phe, as shown in FIG. In other words, when Phe is contained in the test sample (that is, test blood), it reacts with PAL to produce equimolar ammonia.
  • PAL can be prepared using Escherichia coli as shown in the examples below, but it can be conveniently obtained commercially.
  • the recombinant prepared using E. coli is stable, with no significant decrease in specific activity even after freeze-drying and subsequent storage at room temperature, as shown in the Examples section below.
  • PAL can be used or stored in a state of being dissolved in a solvent.
  • the solvent is not limited as long as it does not impair the activity of PAL, and for example, a 50 mM Tris-HCl aqueous solution can be used.
  • an osmotic pressure adjuster such as NaCl
  • a preservative such as sodium azide
  • a stabilizer such as trehalose
  • the enzymatic treatment in step (B) is performed by placing the first member 2 obtained in step (A) above the second member 2 so that the sample holding layer 13 overlaps the indicator layer 15 of the second member 3 in a non-contact state. This is done after lamination on member 3 . When laminated, the openings of the holes 12 of the first base material 11 are covered with the indicator layer 15 of the second member 3 to be closed.
  • the enzymatic treatment in the step (B) is performed by applying a PAL-containing liquid 47 obtained by diluting PAL with a solvent to the sample holding layer 13 containing the test sample 45 in a state in which the first member 2 is laminated on the second member 3 . is added dropwise and allowed to react at room temperature for a certain period of time.
  • the humidity of the environment in which the present test piece 1 is left is not limited, it is preferable to set and adjust the relative humidity within the range of 60 to 80% RH.
  • the temperature and humidity during the standing time may be controlled by using a constant temperature and humidity chamber, or by placing the test piece in a container or bag containing a moisture absorbent such as silica gel. .
  • the test blood-derived Phe contained in the test sample 45 becomes ammonia by the action of PAL, and the ammonium ions are gasified by the action of the alkaline buffer in the sample holding layer 13 to generate ammonia gas.
  • This ammonia gas contacts the indicator layer 15 of the second member 3 through the holes 12 (NH 3 ventilation holes) of the first substrate 11 .
  • the indicator of the indicator layer 15 reacts and changes color (colored portion 49 of the indicator layer). For example, when the indicator is bromcresol green, the color changes from the initial yellow to blue (see the top of FIG. 7).
  • the standing time may be the time required for the total amount of Phe contained in the test sample to be converted to ammonia by PAL, and as a result, the color of the indicator layer 15 changes as described above. Under the above temperature and humidity conditions, it may be 5 minutes or longer. Although not limited, it is preferably 8 minutes or more, more preferably 10 minutes or more. If rapid results are required, it is preferable to keep the standing time within 15 minutes. More preferably, it is about 8 to 10 minutes.
  • the step (C) is a step of calculating the ammonia concentration derived from Phe in the test sample from the color (reference numeral 49) of the indicator layer 15 of the second member 3 obtained in the step (B).
  • the method can be easily implemented by using the blood ammonia measuring device 5 .
  • a blood ammonia measuring device Pocketchem TM BA PA-4140 manufactured by ARKRAY, Inc. can be mentioned.
  • the measuring device is a compact device developed to measure ammonia concentration in blood samples using a test paper (AMMONIA TEST KIT II Amicheck (registered trademark)) sold by the company (measurement principle: single wavelength reflection measurement method, measurement wavelength: 635 nm).
  • the cross-sectional structure of the test paper (referred to as "Amicheck") is shown in FIG. 9 (cited from the attached document of Amicheck).
  • Amicheck 20 ⁇ L of venous blood is dropped on the sample holding layer of Amicheck, reacted for 180 seconds, the spacer is peeled off from the base film, and the colored part of the indicator layer of the base film is
  • the measurement is automatically started, and after 20 seconds, the ammonia concentration (N- ⁇ g/dl) (as nitrogen content) is displayed on the liquid crystal display panel.
  • the concentration range of ammonia measured by this device is 6 to 240 ⁇ M, which is 10 to 400 N- ⁇ g/dl in terms of nitrogen content.
  • the first member 2 and the second member 3 are separated from the main test piece 1 subjected to the enzyme treatment in the step (B), and the colored portion of the indicator layer 15 of the second member 3 ( 49) is set in the measuring section of the blood ammonia measuring device.
  • the ammonia concentration (N- ⁇ g/dl) (as nitrogen content) is automatically displayed on the liquid crystal display panel.
  • This ammonia concentration reflects the amount of ammonia (Phe-derived ammonia) produced from Phe in the test sample by the action of PAL in the sample-holding layer 13 of the first member 2 in the enzyme treatment step (B). and correlates with the amount of Phe contained in the test sample dropped onto the sample holding layer 13 .
  • test blood diluted with a solvent is used as the test sample, the ammonia concentration corresponding to the amount of Phe contained in the test blood can be obtained by conversion using the dilution ratio.
  • Step (D) is a step of calculating the blood Phe concentration of the subject from the Phe-derived ammonia concentration contained in the test blood obtained in the (C) step.
  • the blood Phe concentration includes both the Phe concentration in the subject's venous blood (whole blood) and the Phe concentration in the plasma. It is known that the Phe concentration in whole blood is about 20% less than the Phe concentration in plasma. Therefore, if one Phe concentration can be calculated, the other Phe concentration can be calculated.
  • the blood Phe concentration of the subject can be calculated from the Phe-derived ammonia concentration in the test sample using a calibration curve prepared in advance by experiments or a function (regression formula) obtained from the calibration curve.
  • a calibration curve can be prepared, for example, as follows, depending on the origin of test blood (venous blood, capillary blood). [When using venous blood as test blood] (a) Perform the steps (A) to (C) described above for a plurality of test samples prepared by adding a known amount of Phe stepwise to venous blood (whole blood) collected from one healthy subject. Then, the Phe-derived ammonia concentration in the test sample is determined from the degree of color development of the indicator layer of this test piece. (b) Plot the concentration of Phe added to venous blood on the horizontal axis (or vertical axis) and plot the Phe-derived ammonia concentration obtained in (a) on the vertical axis (or horizontal axis) to create a calibration curve.
  • the blood Phe concentration obtained in (B) is plotted on the horizontal axis (or vertical axis), and the Phe-derived ammonia concentration obtained in (A) is plotted on the vertical axis (or horizontal axis), and a calibration curve is drawn. create.
  • the subject is preferably a human having a venous Phe concentration in the range of 0 to 1400 ⁇ M, preferably 0 to 437 ⁇ M, and may be a patient with phenylketonuria, or may be a patient with Phe orally. It may be a healthy person who has taken it. Moreover, both may be mixed in the subject.
  • a regression equation can be calculated from these calibration curves.
  • the Phe-derived ammonia concentration in the test sample obtained in the above steps (A) to (C) correlates very well with the blood Phe concentration (or plasma Phe concentration) of the subject.
  • the subject's The actual blood Phe concentration can be estimated with high accuracy.
  • the Phe measurement kit of the present invention contains at least the following (a) and (b), or (a) to (c). By using the kit, the present quantification method described above can be easily carried out.
  • (a) A first member having a sample-holding layer containing an alkaline buffer and a second member having an indicator layer that changes color upon reaction with ammonia gas are laminated in a separated or releasable state. test piece, (b) PAL, and (c) solvent.
  • test piece is as described above as the main test piece 1 , and the above description can be incorporated herein.
  • a test paper AMMONIA TEST KIT II Amicheck (registered trademark)
  • ARKRAY, Inc. a test paper manufactured by ARKRAY, Inc.
  • PAL is preferably a freeze-dried product from the viewpoint of storage stability.
  • recombinant PAL prepared from Escherichia coli has an enzymatic activity sufficient for use in the present invention for at least 5 weeks even when stored in a dry state at room temperature after freeze-drying. It has been confirmed (see the column of Examples described later).
  • the solvent can be used for diluting blood used as test blood and/or dissolving PAL in a freeze-dried state.
  • a 50 mM Tris-HCl aqueous solution pH 8.5 to 9.5
  • an equivalent buffer-containing aqueous solution can be used.
  • kit of the present invention may include a blood collection capillary tube, a pipettor, an Eppendorf (tube), an instruction manual, and the like.
  • test piece AMMONIA TEST KIT II Amicheck registered trademark
  • reaction test strip in vitro diagnostic drug
  • Fig. 9 shows a cross-sectional view of Amicheck.
  • the "spacer” corresponds to the "first base material” of this test piece.
  • a hole is formed in the spacer, and a sample holding layer is laminated on the upper surface thereof so as to close the hole.
  • the sample holding layer holds an alkaline buffer (0.426 mg/sheet of boric acid, 0.187 mg/sheet of sodium hydroxide).
  • the "base film” corresponds to the "second base material” of this test piece.
  • An indicator layer is laminated on the base film through the holes of the spacer so that the sample holding layer is laminated in a non-contact state.
  • the indicator layer is coated with bromcresol green (0.04 mg/sheet) as an indicator.
  • PAL-containing solution (a) Preparation of PAL
  • the PAL cDNA contained in the plasmid (#78286, Addgene, Cambridge, USA) was cloned into pET21d(+) using the In-Fusion HD Cloning Kit (TaKaRa, Japan). It was inserted into a vector (69743, Novagen Merck Millipore, Germany) and a His6 tag was added to the C-terminus.
  • the cultured E. coli was collected, lysed using BugBuster protein extraction reagent (70584, Novagen Merck Millipore, Germany), and micrococcal nuclease (2900A, TaKaRa, Japan) was added.
  • PAL was collected with HisSpinTrap (28401353, GE Healthcare, UK) and treated with 50 mM Tris-HCl solution (pH 8.8) three times ( 1 hour, 2 hours, 1 day) were dialyzed. After concentration using Amicon Ultra (UFC500324, Merck Millipore, Germany), protein concentration was determined with the Pierce TM BCA Protein Assay Kit (Thermo Fisher Scientific Inc., Waltham, USA).
  • the protein was stained with TaKaRa CBB Protein Safe Stain (TaKaRa, Japan) after electrophoresis on an SDS-PAGE gel, and a single band matching the position of the predicted molecular weight was confirmed.
  • PAL-containing liquid No.1
  • a PAL-containing liquid is prepared with ultrapure water so as to have the following concentration. Store at 4°C until use.
  • PAL 1-3 mg/mL (as protein content) Tris-HCl 50 mM NaCl 154 mM sodium azide 3.3 mM
  • PAL-containing liquid No.2
  • a PAL-containing solution (for stock) is prepared with ultrapure water so that the concentration below is obtained, 20 ⁇ L of each solution is dispensed into an Eppendorf, and stored at -20° C. until use. Before use, the temperature of the product is returned to room temperature, and the volume is increased to 100 ⁇ L with 50 mM Tris-HCl to obtain a PAL-containing solution.
  • PAL 5-15 mg/mL (as protein content) Tris-HCl 50 mM NaCl 770 mM Sodium azide 16.7 mM.
  • the PAL-containing liquid prepared by the above method was used (the PAL content in the diluted PAL-containing liquid was 1 to 3 mg/mL (in terms of protein content)).
  • PAL-containing liquid No.3
  • a PAL-containing solution (for freeze-drying) is prepared so as to have the following concentrations, 100 ⁇ L of each is dispensed into an Eppendorf, and pre-freezing is performed by freezing at ⁇ 80° C. for 24 hours. This is freeze-dried using a freeze-dryer, and the resulting freeze-dried PAL is stored under normal temperature conditions until use. Before use, 100 ⁇ L of ultrapure water is added to dissolve the freeze-dried PAL to obtain a PAL-containing solution. Tris-HCl 50 mM PAL 1-3 mg/mL (as protein content) NaCl 154 mM sodium azide 3.3 mM Trehalose 10 mg/mL.
  • PAL enzymatic activity (specific activity) 96 ⁇ L of 30 mM Phe aqueous solution was placed in a 96-well plate and allowed to stand at 30° C. for 6 minutes. Absorbance at 275 nm was measured every 5 seconds for 2 minutes. Specific activity (U/mg) was calculated using the following formula (Non-Patent Document 1: Journal of Biotechnology 258 (2017) 148-157). As a result, the specific activity of PAL (recombinant with E. coli) produced in (a) above was 0.332 ⁇ 0.014 U/mg.
  • Table 1 shows that the freeze-dried PAL prepared in (iii) above was stored at room temperature for 0 days, 1 week, 3 weeks, and 5 weeks, and then 100 ⁇ L of ultrapure water was added and dissolved to obtain a PAL-containing solution. After that, the specific activity (U/mg) of PAL was measured by the method (c) above.
  • Reference experiment example 1 Capillary blood was collected from the fingertips of 6 healthy subjects (volunteers) and used as test blood, and the ammonia concentration in the test blood was measured using an Amicheck and an ammonia meter. The blood ammonia concentration was measured according to the method described in the package insert of Amicek. The results are shown in FIG. While the normal blood ammonia level in healthy subjects is reported to be 60 ⁇ M or less, the average ammonia value obtained was as high as 68.20 ⁇ 28.70 ⁇ M. In addition, variations were observed in the measured values among the tested bloods.
  • the method of the present invention is a method for indirectly determining the blood Phe concentration of a subject by measuring the amount of Phe-derived ammonia produced by reacting Phe in a test sample with PAL. For this reason, if the ammonia concentration in the test sample fluctuates before measurement, it affects the Phe value to be obtained, reducing its reliability.
  • capillary blood collected from the fingertips of 7 healthy volunteers was used as test blood, and the following operations were performed.
  • the samples are placed on top of each other and allowed to stand for 180 seconds to allow the ammonia gas generated in the sample-retaining layer to react with the indicator layer.
  • the indicator layer portion of the colored base film is provided to the measuring part of the ammonia meter, and the measured ammonia value displayed on the ammonia meter is read.
  • the X axis represents the time left in the step (3), the ratio of the measured ammonia value at 0 minutes of standing time and the measured ammonia value at each standing time (1 minute, 2 minutes, 5 minutes, 10 minutes) (for each time A graph plotting measured value/measured value at 0 minutes: A.U.) on the Y-axis is shown in FIG.
  • FIG. 11 it was confirmed that 61.2% of the ammonia contained in the test blood was removed by dropping the test blood onto the sample holding layer of the spacer and leaving it for 5 minutes. Furthermore, it was confirmed that even 86.7% of the ammonia contained in the test blood was removed by allowing it to stand for 10 minutes.
  • test blood contains ammonia at the maximum concentration measured in Reference Experimental Example 1, after dropping the test blood onto the sample holding layer of the spacer part, the spacer is attached to the base film. By leaving it for a certain period of time such as 5 to 10 minutes in a separated state, 61.2 to 86.7% of the total amount of ammonia is removed, and the ammonia content is reduced to about 14.5 to 26.4 ⁇ M. was confirmed to be possible. Even if this amount of ammonia remains in the test blood, there is almost no effect on the measurement of the blood Phe concentration of the test subject.
  • Venous blood from three subjects was used as test blood, and the Phe concentration ( ⁇ M) added to the test blood was plotted on the X axis, and the measured value ( ⁇ M) by the ammonia meter was plotted on the Y axis. C).
  • the R2 values of the regression lines obtained from the results of (A) to (C) were 0.99, 0.97 and 0.99, respectively. From this result, it was confirmed that Phe in the test sample can be indirectly quantified by measuring the amount of ammonia generated by the reaction with PAL using venous blood containing Phe as the test sample using Amicekk.
  • FIG. 13 shows the results of plotting the plasma Phe concentration ( ⁇ M) on the X-axis and the ammonia measurement value ( ⁇ M) by the ammonia meter on the Y-axis.
  • FIG. 14 shows the results of actually measured plasma Phe concentrations ( ⁇ M) plotted on the X-axis.
  • R2 obtained from the regression equation was 0.8794, and a good correlation was obtained. From this result, it was confirmed that the blood Phe concentration of the subject can be indirectly calculated by measuring the ammonia concentration in the test blood by the method of the present invention.
  • This value (estimated plasma Phe value) was plotted on the Y-axis, and the plasma Phe concentration in the venous blood of the PKU patient obtained in experiment A was plotted on the X-axis (Fig. 17).
  • the R2 of the regression equation was 0.97.
  • the average measurement error of the estimated plasma Phe value relative to the actual plasma Phe value was 9.55% (95% confidence interval 4.7-14.4). ) was considered to have sufficient accuracy for clinical use or home use.
  • the detectable blood Phe concentration range is roughly calculated to be from 0 to 437 ⁇ M. be.
  • a plasma Phe concentration of 0 to 1400 ⁇ M, preferably 0 to 437 ⁇ M, detectable by the method of the present invention is clinically acceptable.
  • the method of the present invention is a clinically practicable method and can be measured easily and quickly. It can be effectively used for monitoring the blood Phe concentration in the body, and for monitoring and managing the blood Phe concentration in diet therapy in daily life.
  • Test piece of the present invention 2 First sheet-like member of the test piece of the present invention 3: Second sheet-like member of the test piece of the present invention 11: Base material of the first sheet-like member (first sheet base material) 12: Holes for the first sheet-like member (NH 3 ventilation holes) 13: Sample holding layer of first sheet-like member 14: Base material of second sheet-like member (second sheet base material) 15: Indicator layer 16a of second sheet-like member: Adhesive layer of second sheet-like member (front part of indicator layer) 16b: Adhesive layer of second sheet-like member (rear part of indicator layer) 40: Test blood 41: Blood collection capillary tube 42: Eppendorf 43: Solvent 44: Test sample containing test blood and solvent 45: Deammonified test sample left after dropping onto sample holding layer 46: Phenylalanine ammonia lyase (PAL) 47: PAL-containing liquid obtained by dissolving PAL in a solvent 48: Reaction spot between test sample containing test blood and PAL-containing liquid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本発明は血中に含まれるフェニルアラニン(Phe)を簡便且つ迅速に定量する方法、及びその方法に使用する測定キットを提供する。本発明の定量方法は、少なくとも2つのシート状部材(第1部材及び第2部材)からなる試験片を用い、下記の工程を有する: (A)血液を、第2部材と分離した状態で、試験片の第1部材の試料保持層に滴下し、一定時間放置する工程、 (B)前記第1部材を、その試料保持層と第2部材の指示薬層とが非接触状態で重なるように、第2部材に積層し、当該試料保持層にフェニルアラニンアンモニアリアーゼ含有液を滴下し、一定時間放置する工程、 (C)第2部材の指示薬層の色からアンモニア濃度を測定する工程、及び (D)前記アンモニア濃度から血中Phe濃度を算出する工程。

Description

血中フェニルアラニン定量方法、及びそれに使用する測定キット
 本発明は、血中に含まれるフェニルアラニン濃度を定量する方法に関する。また本発明は、前記方法に使用する測定キットに関する。さらに本発明は、フェニルケトン尿症患者について、前記方法または前記キットを用いて、ベッドサイド若しくは医療機関以外の場所で簡便に血中フェニルアラニン濃度を確認し管理する方法に関する。
 フェニルケトン尿症は、体内のフェニルアラニン水酸化酵素(以下、「PAH」とも称する)の活性が低下することにより、フェニルアラニン(以下、「Phe」とも称する)がチロシンに代謝できず、Pheが体内に蓄積する先天性アミノ酸代謝異常症のひとつである。乳幼児期にPhe濃度の著しい上昇が続いた場合は重度の精神発達遅滞を起こす。血中Phe濃度を一定範囲内にコントロールすることによって精神発達遅滞を予防し、正常の知的発達を獲得することができる。よって、フェニルケトン尿症の患者は、血中Phe濃度をバイオマーカーとして、食事療法によって摂取Phe量を調整する必要がある。血中Phe濃度は、食事に含まれるPhe量に影響を受けやすく、またPhe耐用能は個人のPAH活性に依存することから、定期若しくは不定期に、繰り返し、血中Phe濃度を測定することで、細やかに摂取Phe量を調整することが必要である。この為には、血中Phe濃度が、患者のベッドサイドにて、若しくは日常生活において医療機関以外の場所で、簡便且つ迅速に測定できることが求められる。
 現在、臨床現場で使用可能な血中Phe濃度の測定方法は、HPLC法によるものである。しかし、この方法は、結果がわかるまでに最低1週間は要するため、食事療法における摂取Phe量の調整など、即時的な評価が求められる場面での測定方法としては不適である。一方、迅速な測定が可能な方法として、新生児マススクリーニングで用いられる質量分析法が挙げられる。しかし、この方法は、検体の前処理が必要であり、また大型の分析機器を要するため、医療機関以外での検査に用いることはできない。
 また、フェニルケトン尿症の診断方法として、従来、炭素同位体にて標識されたPheを、被験者に経口又は注射投与して、呼気中に含まれる炭素同位体量の変動によりフェニルケトン尿症を診断する方法(特許文献1)、及び生体試料中のL-フェニルアラニンに特異的な脱水素酵素と補酵素と電子メディエータ及びテトラゾリウム塩を反応試薬として用いて、生体試料と反応試薬との酵素反応及び酸化還元反応によってホルマザンを生成させ、これを光学的又は/及び電気化学的に検出するにより、生体試料中のL-フェニルアラニンを定量する方法(特許文献2)が提案されている。しかし、前者の方法は、炭素同位体量の測定に質量分析器が必要であるという問題がある。一方、後者は、簡易且つ迅速にフェニルケトン尿症が検査できる方法であるものの、先天性代謝異常症であるガラクトース血症、メープルシロップ尿症、及びフェニルケトン尿症の3疾患を同時に検査可能とする方法であり、後述する本発明の測定方法とは原理を異にするものである。
特開平9-257791号公報 国際公開第02/018627号
Journal of Biotechnology 258(2017) p.148-157 新生児マススクリーニング対象疾患等診療ガイドライン2019、診断と治療社、日本先天代謝異常学会編集、16頁 Moat, S. J. et al. J Inherit Metab Dis 43, 179-188 (2020).
 前述するように、従来から、簡便且つ迅速に血中のPhe濃度を測定するための方法の確立が切望されている。そこで、本発明は血中Phe濃度を簡便且つ迅速に測定する方法を提供することを課題とする。また本発明は、前記方法に使用される測定キットを提供することを課題とする。さらに本発明は、フェニルケトン尿症患者を対象として、当該患者における血中Phe濃度の管理方法を提供することを課題とする。
 本発明者らは、Pheをフェニルアラニンアンモニアリアーゼ(以下、「PAL」とも称する)で分解すると、Pheと等量のアンモニアが生成することに注目し、このアンモニア生成量を指標として、静脈血中のPhe濃度が定量的に測定できるのではないかと考えた。しかし、日夜検討を重ねていくなかで、被験試料(被験血)として指先等から採取した毛細管血を用いると、汗等に含まれるアンモニアが混入し、被験者の静脈血中のPhe濃度が正確に測定できないという問題に直面した。そこで、この問題を解決するために、さらに鋭意検討を重ねたところ、採取した毛細管血を、一旦、アルカリ緩衝剤と共存させて、その中に含まれるアンモニウムイオンをガス化し揮発させた後に、PALと反応させることで、被験血として毛細管血を用いながらも静脈血中のPhe濃度が正確に測定できることを確認した。また、被験血として静脈血を用いる場合でも、事前に内在するアンモニウムイオンをガス化して除去しておくことで、より高い精度で、被験者の血中Phe濃度を測定することができる。
 本発明は、こうした検討の積み重ねによって完成したものであり、下記の実施形態を有するものである。
(I)血中Phe濃度の定量方法
(I-1)少なくとも2つのシート状部材からなる試験片を用いた被験者の血中Phe濃度の定量方法であって、
 前記試験片は、アルカリ緩衝剤を含有する試料保持層を備えた第1のシート状部材(以下、これを「第1部材」と略称する場合がある)と、アンモニアガスと反応して変色する指示薬層を備えた第2のシート状部材(以下、これを「第2部材」と略称する場合がある)が、剥離された状態又は剥離可能な状態で積層されてなるものであり、
 前記定量方法は、下記(A)~(D)の工程を有する方法である、血中Phe濃度の定量方法:
(A)被験者から採取した血液(被験血)を、そのまま又は希釈した後、第2部材と分離した状態で、前記試験片の第1部材の試料保持層に滴下し、一定時間放置する工程、
(B)前記第1部材を、その試料保持層と第2部材の指示薬層とが非接触状態で重なるように、第2部材に積層し、当該試料保持層にPAL含有液を滴下し、一定時間放置する工程、
(C)第2部材の指示薬層の色の程度から被験血中のアンモニア濃度を測定する工程、及び
(D)前記アンモニア濃度から被験者の血中Phe濃度を算出する工程。
(I-2)前記第1部材の試料保持層中のアルカリ緩衝剤が、ホウ酸及び水酸化ナトリウムを含有するアルカリ緩衝剤であり、
 前記第2部材の指示薬層の指示薬が、ブロムクレゾールグリーンである、(I-1)に記載する血中Pheの定量方法。
(I-3)前記第1部材の試料保持層中のホウ酸及び水酸化ナトリウムの含有量が1部材あたり、それぞれ0.40~0.45mg及び0.15~0.20mgであり、
 前記第2部材の指示薬層中のブロムクレゾールグリーンの含有量が1部材あたり、0.3~0.5mgであり、
 前記(A)工程で試料保持層に滴下する被験血の量が少なくとも10μlであり、
 前記(B)工程で前記試料保持層に滴下するPAL含有液のPAL量が少なくとも2mUであり、
 前記(D)工程で算出できる血中Phe濃度が0~1400μM、好ましくは0~437μMである、
(I-2)に記載する血中Pheの定量方法。
(I-4)前記(C)工程が、指示薬層の色を波長635nmの吸光度を測定する工程である、(I-2)又は(I-3)に記載する血中フェニルアラニンの定量方法。
(I-5)前記被験者から採取する血液(被験血)が毛細管血である、(I-1)~(I-4)のいずれかに記載する血中Pheの定量方法。
(I-6)前記被験者がフェニルケトン尿症の患者である、(I-1)~(I-5)のいずれかに記載する血中Pheの定量方法。
(I-7)前記血中Pheの定量方法を、後記(II-1)に記載するキットを用いて実施する、(I-1)~(I-6)のいずれかに記載する血中Phe濃度の定量方法。
 なお、これらの定量方法は、血中Pheの推定的定量方法または血中Phe濃度の推定方法と言い換えることもできる。
(II)血中フェニルアラニンの測定キット
(II-1)(I-1)~(I-6)のいずれかに記載する血中Pheの定量方法に使用するための、少なくとも下記(a)及び(b)、又は(a)~(c)を含有するキット:(a)アルカリ緩衝剤を含有する試料保持層を備えた第1部材と、アンモニアガスと反応して変色する指示薬層を備えた第2部材が、剥離された状態又は剥離可能な状態で積層されてなる試験片、
(b)PAL、及び
(c)溶媒。
(III)血中Phe濃度の管理方法
(III-1)フェニルケトン尿症患者の血中Phe濃度の管理方法であって、
医療機関以外の場所で定期若しくは不定期に、フェニルケトン尿症患者の毛細管血を被験血として用いて、(I-1)~(I-6)のいずれか一項に記載する血中Pheの定量方法を実施する、前記管理方法。
(III-2)前記血中Pheの定量方法を、前記(II-1)に記載するキットを用いて実施する方法である、(III-1)記載の管理方法。
 本発明の方法によれば、採血現場において簡便且つ迅速に被験者の血中Phe濃度を測定することができる。また、本発明の方法によれば、例えば指先からの微量の血液(毛細管血)を被験血とした場合でも、高い精度で被験者の静脈血中又は血漿中のPhe濃度を求めることができる。このため、本発明の方法は、新生児におけるフェニルケトン尿症の早期発見のためのスクリーニング、フェニルケトン尿症患者のベッドサイドでの血中Phe濃度のモニタリング、また日常生活において、医療機関以外の場所で、特に食事療法における血中のPhe濃度のモニタリング及び管理に有効に利用することができる。
本試験片の一例の斜視図を示す。 本試験片の一例のA-A断面図を示す。 本試験片の一例のB-B断面図を示す。 本試験片の第1シート状部材と第2シート状部材との剥離操作、及び両者が剥離された状態を示した図である。 本発明の定量方法の(A)の工程を示す図である。 本発明の定量方法の(B)の工程を示す図である。 本発明の定量方法の(C)の工程を示す図である。 本発明の測定原理を示す反応模式図を示す。 実験例で使用したAMMONIA TEST KIT IIアミチェック(登録商標)反応試験紙(アミチェック)の断面図を示す。 参考実験例1において、アミチェック及びアンモニア測定器を用いて、指先から採取した毛細管血(被験血)中のアンモニア濃度(μM)を測定した結果を示す。 参考実験例2において、アミチェックのスペーサー部分の試料保持層に指先から採取した毛細管血(被験血)を滴下した後、放置した時間(0~10分間)(X軸)と、被験血中のアンモニア濃度の測定値との関係を示す(Y軸[A.U.]は、「各放置時間時の測定値/放置時間0分時の測定値」)。 実験例1において、健常者(3名:A~C)から採取した静脈血(被験血)に、それぞれ既知濃度(μM)(X軸)のPheを添加して(被験試料(A)~(C))、アミチェック及びアンモニア測定器を用いて、被験試料中のアンモニア濃度(μM)(Y軸)を測定した結果を示す。 実験例2において、フェニルケトン尿症患者の毛細管血を被験血として、アミチェック及びアンモニア測定器を用いて測定した被験血中のアンモニア濃度(μM)(Y軸)と、同患者の血漿Phe濃度が相関することを示した図である。 実験例3において、フェニルケトン尿症患者の毛細管血を被験血として、本発明の方法で測定したアンモニア値から予測される同患者の血漿Phe濃度が、同患者の実際の血漿Phe濃度と相関することを示した図である。 実験例4(1)で測定した実験Aの結果(PKU患者の血漿Phe濃度)をX軸に、実験B1の結果(PKU患者の毛細管血Phe濃度)をY軸にプロットし、両者の相関性を示した図である。 実験例4(2)で測定した実験B2の結果(被験試料中のPhe濃度)をX軸に、実験C2の結果(アンモニア測定値)をY軸にプロットし、両者の相関性を示した図である。 実験例4(3)において、実験Aの結果(PKU患者の血漿Phe濃度)をX軸に、また、実験例4(1)と(2)から導いた回帰式に、当該PKU患者の指先毛細管血を被験血として実験C1により測定したアンモニア測定値を当てはめて推定した血漿Phe濃度をY軸にプロットし、両者の相関性を示した図である。
(I)血中Pheの定量方法
 本発明の血中Pheの定量方法(以下、「本定量法」とも称する)は、少なくとも2つのシート状部材からなる試験片(以下、「本試験片」と称する)を用いて、後述する(A)~(D)の工程を実施することを特徴とする。
 以下、本試験片と(A)~(D)の工程について説明する。
(1)本試験片
 本試験片は、アルカリ緩衝剤を含有する試料保持層を備えた第1のシート状部材(第1部材)と、アンモニアガスと反応して変色する指示薬層を備えた第2のシート状部材(第2部材)からなる。これらの部材は、第2部材の上に第1部材が配置(積層)されている。両部材は互いに剥離された状態であってもよいし、また両者がバラバラにならないように、剥離可能なように仮接着された状態であってもよい。
 図1~3に、本試験片の一例を示す。図1は、本試験片の斜視図である。図2は、図1で示す本試験片をA-A方向にみた断面図である。図3は図1で示す本試験片をB-B方向にみた断面図である。これらの図において、同一部分には同一符号を付している。
 図示するように、本試験片を構成する第1部材のシート状の基材11(以下、単に「第1基材11」ともいう)には孔12が形成されており、その孔を覆うようにその上には試料保持層13が配置されている。また本試験片を構成する第2部材のシート上の基材14(以下、単に「第2基材14」ともいう)の上には、前記第1基材11の孔12に対応する部分に、指示薬層15が配置されており、その前と後には各々接着層16a16bが配置されている。なお、第1基材11に形成された孔12は、後述するように、試料保持層13で生じるアンモニアガスを、第2基材14に配置された指示薬層15に到達させるための通気孔である。このためNH通気孔とも称する。
 図1は、第1部材が第2部材の上に積層された状態にある本試験片を示す。この場合、図2及び3に示すように、第1基材11の孔12が、第2部材の指示薬層15の上に位置し、孔12の開口部が指示薬層15で覆われるように、第2部材の上に第1部材を配置する。指示薬層15の前後の接着層16a及び16bは、第1部材と第2部材とを剥離可能な状態で仮付け可能にするための部分である。仮付け可能であればよく、第1部材2と第2部材とは必ずしも接着している必要はなく、剥離した状態であってもよい。当該接着層16a及び16bは、2回以上繰り返して、接着可能なように形成されていてもよい。また接着層は、指示薬層15の前だけ、又は後ろだけに形成されていてもよい。
 第1基材11の大きさは、特に制限されず、短冊状の場合、例えば、長さ20~80mm×幅3~10mm×厚み0.1~0.7mmであり、好ましくは長さ30~60mm×幅4~9mm×厚み0.1~0.5mmであり、より好ましくは長さ30~40mm×幅5~8mm×厚み0.1~0.4mmである。第2基材14の大きさは、制限されないものの、短冊状の場合、前記第1基材11と同じ幅で、長さが異なるものであることが好ましい。例えば、長さ20~100mm×幅3~10mm×厚み0.1~0.7mmであり、好ましくは長さ40~80mm×幅4~9mm×厚み0.1~0.5mmであり、より好ましくは長さ40~60mm×幅5~8mm×厚み0.1~0.4mmである。これらの部材の材質も特に制限されず、例えばポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメタクリル酸メチル(PMMA)、ポリ塩化ビニル(PVC)、ポリカーボネート(PC)等が挙げられる。この中でもPET及びPCが好ましく、特に好ましくはPETである。
 第1基材11に形成された孔12は、図1では円形状として示すが、これに限定されず、例えば矩形等の任意の形状とすることができる。孔の大きさも制限されず、例えば円形状の場合、第1基材11の大きさ(特に幅)に応じて、直径が2~8mmの範囲で設定することができる。好ましくは、3~5.5mm、より好ましくは3.5~4.5mmの範囲である。
 第1基材11上に配置された試料保持層13は、多孔質部材にアルカリ緩衝剤を含む水溶液を含浸させて乾燥させたものである。多孔質部材としては、少なくとも被験試料である血液(全血)やアルカリ緩衝剤に対して不活性であり、本発明の方法に影響を及ぼさないものであれば、繊維性及び非繊維性の別を問わず、いずれの多孔質部材をも使用することができる。繊維性多孔質部材としては、例えばろ紙、不織布、織物生地などが挙げられる。また非繊維性多孔質部材としては、6-ナイロン、6,6-ナイロン、セルロースアセテート、硝酸セルロース、ポリエチレン、ポリプロピレンなどで作製された多孔質部材が挙げられる。制限されないものの、好ましくは非繊維性の多孔質部材である。試料保持層13の大きさは、第1部材11に形成された孔12を塞ぐことができる大きさであればよく、その限りにおいて制限されない。例えば、図1に示すように、第1部材が短冊状である場合、試料保持層13の平面形状は矩形であり、その一辺(横)の長さは第1基材11の幅と同じであることが好ましい。例えば、横幅3~10mm×縦3~10mm×厚み0.1~0.5mmであり、好ましくは横幅4~9mm×縦4~9mm×厚み0.1~0.4mmであり、より好ましくは横幅5~8mm×縦4~9mm×厚み0.1~0.3mmである。
 試料保持層13に保持させるアルカリ緩衝剤は、試料保持層13に点着させる被験試料をアルカリ性にし、被験試料に含まれるアンモニウムイオンをガス化させて、アンモニアガスを生じさせるものであればよく、その限りにおいて特に制限されない。例えば、ホウ酸と水酸化ナトリウムから調製されるホウ酸緩衝剤、ホウ酸ナトリウムと水酸化ナトリウムから調製されるホウ酸ナトリウム緩衝剤、炭酸ナトリウムと炭酸水素ナトリウムから調製される炭酸-重炭酸緩衝剤などのpH9~11のアルカリ緩衝剤を例示することができる。好ましくはホウ酸緩衝剤である。アルカリ緩衝剤は、例えば超純水に溶解してアルカリ緩衝液にした状態で試料保持層13に含浸させ、乾燥(例えば自然乾燥、風乾、加熱乾燥、減圧乾燥等)させることで、試料保持層13に乾燥状態で保持させることができる。
 第2基材14上に配置された指示薬層15には、後述する指示薬が保持されている。当該指示薬層15は、任意の部材に指示薬がコーティングされてなるものであっても、また前記試料保持層13と同様に、多孔質部材に指示薬を含む水溶液を含浸させて乾燥させてなるものであってもよい。これらの部材は、少なくとも指示薬やアンモニアガスに対して不活性であり、本発明の方法に影響を及ぼさないものであればよい。指示薬層15の大きさは、第1基材11に形成された孔12を塞ぐ程度の大きさであればよく、その限りにおいて制限されない。例えば、図1に示すように、第2シート状部材が短冊状である場合、指示薬層15の平面形状は矩形であり、その一辺(横)の長さは第2基材14の幅と同じであることが好ましい。例えば、横幅3~10mm×縦3~10mm×厚み0.01~0.3mmであり、好ましくは横幅4~9mm×縦4~9mm×厚み0.01~0.2mmであり、より好ましくは横幅5~8mm×縦4~9mm×厚み0.01~0.1mmである。
 指示薬層15に保持させる指示薬としては、アンモニアガスに起因するpH変化に反応して発色若しくは変色する作用を有するpH指示薬を用いることができる。制限されないが、好ましくはブロムクレゾールグリーンを挙げることができる。ブロムクレゾールグリーンは、pHが3.8付近では黄色を呈するが、pH5.4付近で青色に変色するpH指示薬である。
 第2部材において、前記指示薬層15の前後に配置する接着層16a及び16bは、前述するように、第1部材と第2部材とを剥離可能な状態で接着しておくための部分である。本発明の方法に影響を及ぼさないものである限り、接着層を構成する部材、及び接着成分や接着手段は特に制限されない。制限されないものの、接着手段として、アクリル系接着剤やエラストマー系接着剤等の接着剤を用いる方法、両面テープを用いる方法を例示することができる、また、熱融着によるラミネート法も使用することができる。また、接着層16は、2回以上、繰り返して接着可能なものであってもよい。この場合、接着手段として接着剤や両面テープを使用することができる。
 接着層16a及び16bの大きさも特に制限されない。例えば、第2部材が短冊状である場合、接着層16a及び16bの平面形状は矩形であり、その一辺(横)の長さは第2部材14の幅と同じであることが好ましい。例えば、横幅3~10mm×縦2~10mm×厚み0.01~0.3mmであり、好ましくは横幅4~9mm×縦2~9mm×厚み0.01~0.2mmであり、より好ましくは横幅5~8mm×縦2~8mm×厚み0.01~0.1mmである。また、接着層16は、2回若しくは複数回、貼着可能なものであってもよい。
 本試験片は、第1基材11の孔12が、第2部材の指示薬層15の上に位置し、孔12の開口部が指示薬層15で覆われるように、第2部材の上に第1部材を配置し、接着層16a及び16bを介して、剥離可能な状態で接着することにより製造することができる。
 但し、後述するように、本試験片は、本定量法の実施に際して、まずは、第1部材と第2部材との接着(仮接着)を外して(剥離)、第1部材を、第2部材と分離した状態で使用する(図4参照)。なお、第1部材と第2部材とが最初から剥離された状態の本試験片を使用する場合は、前記剥離操作は不要である。
(2)本試験片を用いた血中Phe定量方法
 前述する本試験片を用いた本定量法は、次の(A)~(D)の工程により実施することができる。一連の工程の一例を、図5~7に示す。
(A)被験者から採取した血液(被験血)を、そのまま又は希釈した後、第2部材と分離した状態にある、本試験片の第1部材の試料保持層13に滴下し、一定時間放置する工程、
(B)前記第1部材を、その試料保持層13と第2部材の指示薬層15とが非接触状態で重なるように、第2部材の上に積層し、当該試料保持層13にPAL含有液を滴下し、一定時間放置する工程、
(C)第2部材の指示薬層15の色の程度から、被験血中のアンモニア濃度を測定する工程、及び
(D)前記アンモニア濃度から被験者の血中Phe濃度を算出する工程。
(A)工程(図5参照)
 (A)工程は被験血を試験片の試料保持層に滴下し点着する工程である。
 被験血としては、測定対象とする被験者から採取した血液である。被験者はフェニルケトン尿症が疑われる新生児(検査が必要な新生児)、もしくはフェニルケトン尿症の患者である。血液は全血であり、毛細管から採取した毛細管血であっても、また静脈から採取いた静脈血であってもよい。好ましくは毛細管血である。より好ましく採血が容易であることから、指先から採取される毛細管血である。血液は、そのまま被験試料として試料保持層に点着してもよいが、血液中のPhe濃度が高い場合や採血量が少ない場合など、必要に応じて本発明に影響しない溶媒に希釈した後に、試料保持層に点着することもできる。制限されないが、一例として、指先から採取した毛細管血40に任意量の50mM Tris-HCl緩衝液43を加えて希釈したもの(希釈試料44)を被験試料として使用することもできる(図5参照)。この場合の希釈倍率は、制限されないものの、後述する(C)工程で得られるアンモニア測定値が、その測定に使用する血中アンモニア測定装置の検出範囲に収まるように、適宜設定することができる。
 この被験血40またはそれを含む希釈試料44(これらを区別することなく総じて「被験試料」とも称する)を、予め第2部材と分離した状態にある、第1部材の試料保持層13に滴下し、室温条件下(1~30℃、以下同じ)で5分以上放置する。この操作により、被験試料中に含まれるアンモニアを除去することができる。具体的には、被験試料を試料保持層13に滴下すると、試料保持層中のアルカリ緩衝剤が溶解して、被験試料がアルカリ性になり、被験試料に含まれるアンモニウムイオンがガス化する。ガス化したアンモニアガスは一定時間放置することで揮発して除去される。放置時間として、アンモニアガスを除去し低減できる時間であればよく、例えば室温条件であれば5分以上であればよい。制限されないが、好ましくは8分以上、より好ましくは10分以上である。結果の迅速性が要求される場合は、放置時間は15分以内に留めることが好ましい。より好ましくは8~10分程度である。こうして第1部材の試料保持層13にはアンモニアを除去又は低減させた被験試料45(脱アンモニア被験試料)を保持させることができる。
 (B)工程(図6及び図7上段参照)
 (B)工程は、第1部材の試料保持層13に保持させた被験試料45を、試料保持層13上で酵素処理する工程である。
 本発明で使用する酵素は、フェニルアラニンアンモニアリアーゼ(PAL)である。PALは、図8に示すように、Pheと反応して、Pheと等量モルのアンモニアとケイ皮酸を生成する酵素である。つまり、被験試料中(つまり、被験血)にPheが含まれている場合、PALと反応して等量モルのアンモニアが生成する。なお、PALは、後述する実施例に示すように大腸菌を用いて調製することもできるが、簡便には商業的に入手することができる。特に、大腸菌を用いて調製される組み換え体は、後述する実施例の欄に示すように、凍結乾燥処理やその後の室温条件下での保存によっても比活性が大きく低下することなく、安定性が良好であるため、取り扱いやすい。
 なお、PALは溶媒に溶解した状態で使用又は保存することができる。溶媒はPALの活性を損なわないことを限度として制限されないが、例えば50mM Tris-HCl水溶液を例示することができる。また、PALの活性を損なわないことを限度として、溶媒に加えてNaCl等の浸透圧調整剤、アジ化ナトリウム等の防腐剤、及び/又はトレハロース等の安定化剤を配合することもできる。
 (B)工程の酵素処理は、前記(A)工程で得られた第1部材を、試料保持層13が、第2部材の指示薬層15と、非接触状態で重なるように、第2部材の上に積層した後に行われる。積層したとき、第1基材11の孔12の開口部は、第2部材の指示薬層15に覆われて塞がれた状態になっている。つまり、(B)工程の酵素処理は、第1部材を第2部材の上に積層させた状態で、被験試料45を含む試料保持層13に、PALを溶媒で希釈したPAL含有液47を滴下し、室温条件下で一定時間放置して反応させる。この際、本試験片を放置する環境の湿度は、制限されないものの、相対湿度が60~80%RHの範囲になるように設定調整することが好ましい。なお、放置時間中の温度や湿度の管理は、恒温恒湿器を用いて行ってもよいし、またシリカゲル等の吸湿剤をいれた容器や袋に本試験片を入れることで行ってもよい。
 この放置時間、被験試料45に含まれる被験血由来のPheがPALの作用によりアンモニアとなり、このアンモニウムイオンが試料保持層13中のアルカリ緩衝剤の作用でガス化し、アンモニアガスが生じる。このアンモニアガスは、第1基材11の孔12(NH通気孔)を通じて第2部材の指示薬層15に接触する。そして、その指示薬層15の指示薬が反応して変色する(指示薬層の発色部分49)。例えば、指示薬がブロムクレゾールグリーンである場合は、当初の黄色から青色に変色する(図7の上段参照)。
 放置時間としては、被験試料に含まれるPheの全量がPALによりアンモニアとなり、その結果、上記するように指示薬層15が変色するのに要する時間であればよい。上記の温度及び湿度条件であれば5分以上であればよい。制限されないが、好ましくは8分以上、より好ましくは10分以上である。結果の迅速性が要求される場合は、放置時間は15分以内に留めることが好ましい。より好ましくは8~10分程度である。
 (C)工程(図7参照)
 (C)工程は、前記(B)工程で得られた第2部材の指示薬層15の色(符号49)から、被験試料中のPheに由来するアンモニア濃度を算出する工程である。
 当該方法は、血中アンモニア測定装置を用いることで簡便に実施することができる。当該装置は商業的に入手することができ、例えばアークレイ株式会社の血中アンモニア測定装置 ポケットケムTMBA PA-4140を挙げることができる。
 当該測定装置は、同社が販売する試験紙(AMMONIA TEST KIT IIアミチェック(登録商標))を用いて、血液試料中のアンモニア濃度を測定するために開発された小型装置(測定原理:1波長反射測定法、測定波長:635nm)である。前記試験紙(「アミチェック」と称する)の断面構造を図9に示す(アミチェックの添付書類から援用)。アミチェックの添付書類によると、アミチェックの試料保持層に、静脈血を20μL滴下し、180秒間反応させた後、ベースフィルムからスペーサーを剥ぎ取り、ベースフィルムの指示薬層の発色部分を、血中アンモニア測定装置の測定部にセットすると、自動的に測定が開始され、20秒後に液晶表示板にアンモニア濃度(N-μg/dl)(窒素量として)が表示される。この装置のアンモニアの測定濃度範囲は6~240μM、窒素量に換算すると10~400N-μg/dlである。
 本発明の(C)工程では、前記(B)工程で酵素処理した本試験片について、第1部材と第2部材とを分離し、第2部材3の指示薬層15の発色部分(49)を、前記血中アンモニア測定装置の測定部にセットする。こうすることで、自動的に液晶表示板にアンモニア濃度(N-μg/dl)(窒素量として)が表示される。なお、このアンモニア濃度は、前記(B)の酵素処理工程で、第1部材の試料保持層13内でPALの作用により被験試料中のPheから生じたアンモニア(Phe由来アンモニア)の量を反映するものであり、試料保持層13に滴下した被験試料中に含まれるPheの量に相関する。なお、被験試料として溶媒で希釈した被験血を使用した場合は、その希釈倍率で換算することで、被験血中に含まれるPheの量に対応するアンモニア濃度を求めることができる。
 (D)工程
 (D)工程は、前記(C)工程で得られた被験血中に含まれるPhe由来アンモニア濃度から被験者の血中Phe濃度を算出する工程である。ここで血中Phe濃度には、被験者の静脈血(全血)中のPhe濃度、及びその血漿中のPhe濃度の両方の意味が含まれる。全血中のPhe濃度は血漿中のPhe濃度の約2割少ないことが知られている。このため、一方のPhe濃度が算出できれば、他方のPhe濃度は自ずと算出できる。
 被験試料中のPhe由来アンモニア濃度から被験者の血中Phe濃度の算出は、予め実験により作成した検量線またはその検量線から得られる関数(回帰式)を用いて行うことができる。
 検量線の作成は、被験血の由来(静脈血、毛細管血)に応じて、例えば、次のようにして行うことができる。
[静脈血を被験血として用いる場合]
(a)一人の健常者から採取した静脈血(全血)に、既知量のPheを段階的に添加して調製した複数の被験試料について、前述する(A)~(C)の工程を実施して、本試験片の指示薬層の発色の程度から被験試料中のPhe由来アンモニア濃度を求める。
(b)静脈血に添加したPhe濃度を横軸(又は縦軸)に、(a)で得られたPhe由来アンモニア濃度を縦軸(又は横軸)にプロットして検量線を作成する。
[毛細管血を被験血として用いる場合]
(ア)複数の被験者の指先から採取した毛細管血(全血)を被験試料として、前述する(A)~(C)の工程を実施して、本試験片の指示薬層の発色の程度から被験試料中のPhe由来アンモニア濃度を求める。
(イ)別途、同被験者の静脈血(全血)のPhe濃度を、HPLC法にて測定し、血中Phe濃度を取得する。
(ウ)(イ)で取得した血中Phe濃度を横軸(又は縦軸)に、(ア)で得られたPhe由来アンモニア濃度を縦軸(又は横軸)にプロットして、検量線を作成する。
 なお、前記被験者は、静脈血中のPhe濃度が0~1400μM、好ましくは0~437μMの範囲にあるヒトであることが好ましく、フェニルケトン尿症の患者であってもよいし、またPheを経口摂取した健常者であってもよい。また、被験者中に両者が混在していてもよい。
 回帰式はこれらの検量線から算出することができる。
 実験例1~4で示すように、前述する(A)~(C)工程で得られる被験試料中のPhe由来アンモニア濃度は被験者の血中Phe濃度(又は血漿Phe濃度)に非常によく相関しており、(A)~(C)工程で得られる被験試料中のPhe由来アンモニア濃度から推定される被験者の血中Phe濃度(=(D)工程で得られる血中Phe濃度)は、実際のフェニルケトン尿症患者の血中Phe濃度とほぼ一致する。
 従って、前記方法で得られる検量線またはそれから得られる関数(回帰式)を用いることで、(A)~(C)の工程を実施して得られる被験試料中のPhe由来アンモニア濃度から、被験者の実際の血中Phe濃度を高い精度で推定することができる。
(II)血中Pheの測定キット
 本発明のPhe測定キットは、少なくとも下記(a)及び(b)、又は(a)~(c)を含有するものである。当該キットを用いることで、前述する本定量方法を簡便に実施することができる。
(a)アルカリ緩衝剤を含有する試料保持層を備えた第1部材と、アンモニアガスと反応して変色する指示薬層を備えた第2部材が、剥離された状態又は剥離可能な状態で積層されてなる試験片、
(b)PAL、及び
(c)溶媒。
 (a)試験片は、本試験片として前述した通りであり、前記の記載はここに援用することができる。簡便には、アークレイ株式会社製の試験紙(AMMONIA TEST KIT IIアミチェック(登録商標))を用いることができる。
 (b)PALは保存安定性の観点から、凍結乾燥品であることが好ましい。制限はされないものの、例えば、大腸菌から調製される組換えPALは、凍結乾燥処理後、乾燥した状態で室温保存しても、少なくとも5週間は本発明の使用に差し支えない酵素活性を有していることが確認されている(後述する実施例の欄参照)。
 (c)溶媒は、被験血として使用する血液の希釈、及び/又は、凍結乾燥状態にあるPALの溶解に使用することができる。制限されないものの、例えば50mM Tris-HCl水溶液(pH8.5~9.5)やそれと同等の緩衝剤含有水溶液を用いることができる。 
 その他、本発明のキットには、採血用毛細管、ピペッター、エッペンドルフ(チューブ)、及び使用説明書などが含まれていても良い。
(III)血中Phe濃度の管理方法
 前述する本定量方法を用いることで、静脈血や毛細管血を被験血として、フェニルケトン尿症患者の血中Phe濃度を簡便に評価することができる。被験血として、好ましくは、指先から採取する毛細管血である。その結果、フェニルケトン尿症患者における血中Phe濃度を、医療機関以外の場所で定期的(例えば、毎日又は一定間隔おき)若しくは不定期に、管理することができる。このため、本発明によれば、前述する本定量方法を用いることによる、フェニルケトン尿症患者における血中Phe濃度の管理方法を提供することができる。当該方法は、前述する測定キットを用いて行うことができる。
 以下、本発明の構成及び効果について、その理解を助けるために、実験例を用いて本発明を説明する。但し、本発明はこれらの実験例によって何ら制限を受けるものではない。以下の実験は、特に言及しない限り、常温(20±5℃)、及び大気圧条件下で実施した。なお、特に言及しない限り、以下に記載する「%」は「質量%」、「部」は「質量部」を意味する。また、下記の実験は、事前に東北大学大学院医学系研究科倫理委員会(日本)で承認を得たうえで実施した(承認番号2020-1-362)。
 下記の実験例で使用した試験片、アンモニア測定器、及びPAL含有溶液は下記の通りである。
(1)試験片
 AMMONIA TEST KIT IIアミチェック(登録商標)反応試験紙(体外診断用医薬品):アークレイ株式会社製
 以下の実験例では、これを「アミチェック」と称する。
 図9にアミチェックの断面図を示す。ここで「スペーサー」は、本試験片の「第1基材」に該当する。図9に示すように、スペーサーには孔が形成されており、その孔を塞ぐようにその上面に試料保持層が積層されている。試料保持層にはアルカリ緩衝剤(ホウ酸0.426mg/シート、水酸化ナトリウム0.187mg/シート)が保持されている。また図9において「ベースフィルム」は、本試験片の「第2基材」に該当する。ベースフィルムの上には、スペーサーの孔を介して、前記試料保持層が非接触状態で積層するように、指示薬層が積層されている。指示薬層には、指示薬としてブロムクレゾールグリーン(0.04mg/シート)がコーティングされている。
[アミチェックによる全血中アンモニアの測定原理]
 アミチェックのスペーサー上の試料保持層に被験試料(血液)を点着すると、試料保持層中のアルカリ緩衝剤が溶解して、被験試料がアルカリ性になる。そうすることで被験試料中のアンモニウムイオンがガス化してアンモニアガスになり、これがスペーサーの孔を通過して指示薬層に移行する。指示薬層に移行したアンモニアガスは指示薬層中の指示薬と反応することで指示薬層の色が変色する。ベースフィルムに積層されているスペーサーを剥がし、ベースフィルム上の指示薬層の部分を、下記のアンモニア測定器の測定部に供すると、指示薬層の変色度(色の強度)を自動的に感知してアンモニア濃度(N-μg/dL)(窒素量として)が表示される。このようにして、アミチェック及びアンモニア測定器を用いることで、被験試料(血液)中のアンモニア濃度を測定することができる。
(2)アンモニア測定器
 血中アンモニア測定装置ポケットケムTM BA PA-4140:アークレイ株式会社製
 以下の実験例では、これを「アンモニア測定器」と称する。
(3)PAL含有液
(a)PALの作製
 プラスミド(#78286、Addgene、Cambridge、USA)に含まれるPALのcDNAを、In-Fusion HD Cloning Kit(TaKaRa, Japan)を用いて、pET21d(+)ベクター(69743, Novagen Merck Millipore, Germany)に挿入し、C末端にHis6タグを付加した。作製したpET21d(+)を大腸菌HMS174(DE3)株(69453, Merck Millipore, Germany)にトランスフェクションし、OD600=0.6になるまで培養した後に、1mMイソプロピルチオ-α-D-ガラクトピラノシド (9030, TaKaRa, Japan)を添加し、さらに25℃で15時間培養を継続した。培養した大腸菌を回収し、BugBuster protein extraction reagent (70584, Novagen Merck Millipore, Germany)を用いて溶菌し、micrococcal nuclease (2900A, TaKaRa, Japan)を加えた。PALをHisSpinTrap (28401353, GE Healthcare,UK)で回収し、Mini Dialysis Kit with a 1 kDa cut‐off (28955964, GE Healthcare, UK)を用いて50mM Tris-HCl溶液(pH8.8)で3回(1時間、2時間、1日)透析した。アミコンウルトラ (UFC500324, Merck Millipore, Germany)を用いて濃縮した後、PierceTM BCA Protein Assay Kit(Thermo Fisher Scientific Inc., Waltham, USA)で蛋白濃度を測定した。また蛋白は、SDS-PAGEゲルで電気泳動した後にTaKaRa CBB Protein Safe Stain (TaKaRa, Japan)で染色し、予測分子量の位置に合致する単一バンドを確認した。
(b)PAL含有液の調製
 前記(a)で大腸菌を用いて作製した組み換えPALを用いて、下記の3種類のPAL含有液を調製した。
(i)PAL含有液(No.1)
 下記濃度になるように超純水にてPAL含有液を調製する。使用するまで4℃で保存。
 PAL       1~3 mg/mL(蛋白含量として)
 Tris-HCl   50 mM
 NaCl      154 mM
 アジ化ナトリウム  3.3 mM
(ii)PAL含有液(No.2)
 下記濃度になるように超純水にてPAL含有液(ストック用)を調製し、エッペンドルフに20μLずつ分注して、使用するまで-20℃に保存する。使用前に品温を室温に戻し、50mM Tris-HClで100μLまでメスアップしてPAL含有液とする。
 PAL      5~15 mg/mL(蛋白含量として)
 Tris-HCl   50 mM
 NaCl      770 mM
 アジ化ナトリウム 16.7 mM。
 なお、後述する参考実験例及び実験例では、上記方法で調製したPAL含有液を使用した(希釈後のPAL含有液中のPAL含有量は1~3mg/mL(蛋白含量として))。
(iii)PAL含有液(No.3)
下記濃度になるようにPAL含有液(凍結乾燥用)を調製し、エッペンドルフに100μLずつ分注して、-80℃で24時間冷凍保存して予備凍結する。これを、凍結乾燥機を用いて凍結乾燥し、得られた凍結乾燥PALを、使用するまで常温条件下で保存する。使用前に超純水で100μLを添加して凍結乾燥PALを溶解してPAL含有液とする。 
 Tris-HCl   50 mM
 PAL       1~3 mg/mL(蛋白含量として)
 NaCl      154 mM
 アジ化ナトリウム  3.3 mM
 トレハロース    10 mg/mL。
(c)PALの酵素活性(比活性)
 30mMのPhe水溶液96μLを96ウェルプレートに入れ、30℃で6分間静置した後、上記で作製したPAL含有液(No.3のうち、冷凍凍結前のもの)4μLを混合し、30℃で5秒おきに2分間、275nmの吸光度を測定した。比活性(U/mg)は、以下の数式を用いて算出した (非特許文献1:Journal of Biotechnology 258 (2017) 148-157)。
 その結果、上記(a)で作製したPAL(大腸菌による組換体)の比活性は、0.332±0.014 U/mgであった。
Figure JPOXMLDOC01-appb-M000001
(d)PALの安定性
 下記表1に示すように、上記のPALは、凍結乾燥した後、その状態で少なくとも5週間保存(常温)した場合でも、本発明の使用に差し支えない酵素活性を保持している。
 表1は、前記(iii)で調製した凍結乾燥PALを、常温で0日、1週間、3週間、5週間、各々保存した後に、これに超純水100μLを添加溶解してPAL含有液とした後に、上記(c)の方法で、PALの比活性(U/mg)を測定した結果である。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、PALの比活性は、凍結乾燥後、常温下で5週間保存した場合でも、0.2mU以上保持されていた。このことから、大腸菌組み換えPALは乾燥状態で比較的安定であり、常温条件下で少なくとも5週間以内の保存であれば、本定量法に使用することができることが確認された。
参考実験例1
 健常者(ボランティア)6名の指先から毛細管血を採取し、これを被験血として、被験血中のアンモニア濃度を、アミチェックおよびアンモニア測定器を用いて測定した。血中アンモニア濃度の測定は、アミチェックの添付文書に記載する方法に従って実施した。
 結果を図10に示す。健常者における正常な血中アンモニア値は60μM以下であることが報告されているのに対して、得られたアンモニア値の平均は68.20±28.70μMと高値であった。また被験血間で、測定値にバラツキが認められた。
 この理由として、指先の毛細血管から血液を採取する際に、指先の汗や汚れに含まれるアンモニアが混入し、毛細管血中のアンモニア量が正確に測定できなかった可能性が考えられた。このことは、アミチェックの添付文書に、「操作上の注意」として「汗や組織液が混入すると高値を示すことがあるため、指先血は使用しないでください。」と記載されていることとも合致する。
参考実験例2
 本発明の方法は、被験試料のPheにPALを反応させて生じるPhe由来アンモニアの量を測定することにより、間接的に被験者の血中Phe濃度を求める方法である。このため、測定前に被験試料中のアンモニア濃度が変動してしまうと、求めるPhe値に影響し、その信頼性が低下する。
 そこで、これを解決する方法として、健常者(ボランティア)7名の指先から採取した毛細管血を被験血として用いて、下記の操作を行った。
(1)仮接着されているアミチェックのスペーサー部(第1部材)とベースフィルム部(第2部材)とを分離する。
(2)スペーサー部の試料保持層に被験血(全血)を10μL滴下する。
(3)そのままの状態で、0分、1分、2分、5分、及び10分間の各時間、相対湿度40~80%RHの条件下で放置した後に、スペーサーをベースフィルムの上に元通りに重ね合わせて、アミチェックの添付文書に記載されている通り、180秒間放置し、試料保持層で生じたアンモニアガスを指示薬層で反応させる。
(4)各放置時間ごとに、発色したベースフィルムの指示薬層部をアンモニア測定器の測定部に供して、アンモニア測定器に表示されたアンモニア測定値を読み取る。
 前記(3)の工程で放置した時間をX軸、放置時間0分のアンモニア測定値と各放置時間(1分、2分、5分、10分間)のアンモニア測定値との比(各時間の測定値/0分の測定値:A.U.)をY軸としてプロットしたグラフを図11に示す。
 図11に示すように、被験血をスペーサーの試料保持層に滴下した後、5分放置することで被験血中に含まれていたアンモニアの61.2%が除去されることが確認された。さらに、10分間静置することで、被験血中に含まれていたアンモニアの86.7%までもが除去されることが確認された。このことから、仮に、被験血中にアンモニアが参考実験例1で測定された最大値の濃度で含まれている場合でも、スペーサー部の試料保持層に被験血を滴下後、当該スペーサーをベースフィルムと分離した状態で5~10分間といった一定時間放置しておくことで、全アンモニア量の61.2~86.7%が除去され、アンモニア含量を14.5~26.4μM程度まで低減させることができることが確認された。被験血にこの程度アンモニアが残存していても、被験者の血中Phe濃度の測定にはほとんど影響がない。
実験例1
 健常者(ボランティア)3名(A~C)の静脈から採血(静脈血)し、この被験血に既知濃度のPhe溶液を、被験血に5%v/vとなる割合で添加混合した。なお、Phe溶液は、被験血へのPheの添加濃度が0~500μMになるように、50mMのTris-HCl水溶液に、段階的に溶解して作製した。
 被験血に既知量のPheを添加混合した被験試料を、2倍容量のPAL含有液と混合し、そのうち20μLをアミチェックの試料保持層に滴下して、10分間常温で放置した。その後、ベースフィルムからスペーサーを剥がし、発色したベースフィルム上の指示薬層部をアンモニア測定器の測定部に供して、アンモニア測定器に表示されたアンモニア測定値を読み取った。
 3名の静脈血を被験血として、各々、被験血に添加したPhe濃度(μM)をX軸、アンモニア測定器による測定値(μM)をY軸にプロットした結果を図12(A)~(C)に示す。図12に示すように、(A)~(C)の結果から得られる回帰直線のRは、それぞれ0.99、0.97、0.99であった。
 この結果から、Pheを含む静脈血を被験試料としてPALとの反応で生じるアンモニア量を、アミチェックを用いて測定することで、間接的に被験試料中のPheが定量できることが確認された。
実験例2
 フェニルケトン尿症(PKU)の患者(N=3)の指先から採取した毛細管血(被験血)10μLを、スペーサー(第1部材)とベースフィルム(第2部材)とを分離したアミチェックの、スペーサー上の試料保持層に滴下して、10分間、常温で放置した。放置後にスペーサーをベースフィルム上の元の位置に重ね合わせ、PAL含有液をスペーサー上の試料保持層に10μL滴下し、再び10分間常温で放置した。放置後に、発色したベースフィルム上の指示薬層部をアンモニア測定器の測定部に供して、アンモニア測定器に表示されたアンモニア測定値を読み取った。
 また、並行して、同PKU患者の静脈から採取した血液(静脈血)の血漿を被験試料として、血漿中のPhe濃度の測定(HPLC法)を、外部の臨床検査会社(株式会社ビー・エム・エル)に委託した。
[HPLC法]
 測定試薬:アミノ酸キット(ニンヒドリン試液ワコー アミノ酸自動分析装置用キット:富士フィルム和光純薬(株)製)
 アミノ酸分析計:L-8900((株)日立ハイテクノロジーズ)
 血漿Phe濃度(μM)をX軸、アンモニア測定器によるアンモニア測定値(μM)をY軸にプロットした結果を図13に示す。図13に示すように、回帰式はY=0.1151X+78.78であり、Rは0.99であった。このことから、PKU患者の毛細管血を被験血として本発明の方法で測定される被験血中のアンモニア濃度と、同PKU患者の血漿中のPhe濃度とは非常によく相関しており、本発明の方法で被験血中のアンモニア濃度を測定することで、PKU患者の血液中又は血漿中のPhe濃度が間接的に算出できる可能性が確認された。
実験例3
 実験例2の結果を検証するために、実験例2とは異なるPKU患者(N=3)の指先から採取した毛細管血10μLを被験血として、実験例2と同様にして、アミチェックとアンモニア測定器を用いて、被験血中のアンモニア濃度を測定した。また、実験例2と同様に、並行して、同PKU患者の静脈から採取した血液(静脈血)を被験試料として、血漿中のPhe濃度の測定を外部業者に委託した。
 毛細管血を被験血として得られたアンモニア測定値(μM)を、実験例2で得られた回帰式を用いて、血漿Phe濃度に換算した値(血漿Phe予測値)(μM)をY軸、実際に測定した血漿Phe濃度(μM)をX軸にプロットした結果を図14に示す。図14に示すように、回帰式から得られるRは0.8794であり、良好な相関が得られた。この結果から、本発明の方法で被験血中のアンモニア濃度を測定することで、被験者の血中Phe濃度が間接的に算出できることが確認された。
 なお、実験例2の図13で得られた回帰式に、アンモニア測定器の測定可能範囲6~240μM(10~400μg/dL)を適用すると、検出可能な血中Phe濃度の範囲は0~1400μMであると概算される。
実験例4
 表2に記載する実験A~Cを行い、実験Aと実験B1、実験B2と実験Cを、それぞれ対比することで本定量法(実験C)の精度(毛細血中アンモニア濃度と血漿Phe濃度との相関性)を評価した。
Figure JPOXMLDOC01-appb-T000003
(1)実験A及び実験B1
 PKU患者(N=14)から静脈血及び毛細管血(指先から採血)を採取し、これらを被験血として、各々表2の実験例A及びB1の方法で、血漿中及び毛細管血中のPhe濃度を測定した。
 得られた結果を、血漿Phe濃度をX軸に、毛細管血Phe濃度をY軸にプロットした(図15)。この図から得られる回帰式はY=0.8731X―12.75であり、Rは0.99であった。この結果から、PKU患者の血漿Phe濃度と毛細管血Phe濃度とは非常によく相関しており、前記回帰式を用いることによって、毛細管血Phe濃度から血漿Phe濃度が推定できることがわかる。なお、PKU患者の血漿Phe濃度と毛細管血Phe濃度とが相関していることは、以前より報告されており(非特許文献3)、前記の結果は既報と整合していた。
(2)実験B2及び実験C2
 超純水を溶媒として、Phe濃度がそれぞれ0mM、1.21mM、2.42mM、及び3.63mMとなるように、各Phe水溶液を調製した。健常者の指先から採取した毛細管血に、前記各濃度のPhe水溶液を5%v/vの割合で添加し混合し、これを被験試料(N=105)とした。
 前記被験試料について、表2の実験例B2の方法でPhe濃度を測定するとともに、実験例C2の方法でNH濃度を測定した。
 得られた結果を、Phe濃度をX軸に、NH濃度(アンモニア測定値)をY軸にプロットした(図16)。この図から得られる回帰式はY=0.5007X+50.485であり、Rは0.81あった。
 この結果から、Pheを含む毛細管血を被験試料として、PALとの反応で生じるアンモニア量(Phe由来NH3)をアミチェック及びアンモニア測定器を用いて測定し、得られたアンモニア測定値に、前記回帰式を当てはめることで、間接的に被験試料中のPhe濃度が定量(推定)できることが確認された。
(3)実験A~Cの結果の考察
 前記(1)と(2)で求めた2つの回帰式Y=0.8731Xー12.75とY=0.5007X+50.48を組み合わせると、下記の関係式が成り立つ:
Figure JPOXMLDOC01-appb-M000004
 この関係式のXに、PKU患者由来の毛細管血(N = 11)を用いて実験C1を行って得られたアンモニア測定値を入れて、当該患者の静脈血の血漿Phe濃度(Y)を算出した。この値(推定血漿Phe値)をY軸に、実験Aで得られたPKU患者の静脈血の血漿Phe濃度をX軸にプロットした(図17)。図17に示すように、その回帰式のRは0.97であった。実際の血漿Phe値に対して推定血漿Phe値の測定誤差は平均9.55%(95%信頼区間4.7~14.4)であり、このことから、本定量法による血漿Phe値の定量(推定的定量)は、臨床現場ないしは家庭での使用に差し支えない精度を有するものと考えられた。
 なお、前記で得られた回帰式に、アンモニア測定器の測定可能範囲6~235μM(10~400μg/dL)を適用すると、検出可能な血中Phe濃度の範囲は0~437μMであると概算される。
 PKU患者においては合併症の予防のために血漿Phe濃度を120~360μMの範囲内でコントロールすることが推奨されている(新生児マススクリーニング対象疾患等診療ガイドライン2019、診断と治療社、16ページ:非特許文献2)。このため、本発明の方法で検出できる血漿Phe濃度0~1400μM、好ましくは0~437μMは、臨床的に十分使用可能である。つまり、本発明の方法は、臨床的に実用可能な方法であり、しかも簡易に迅速に測定できるため、新生児におけるフェニルケトン尿症の早期発見のためのスクリーニング、フェニルケトン尿症患者のベッドサイドでの血中Phe濃度のモニタリング、また日常生活での食事療法における血中Phe濃度のモニタリング及び管理に有効に利用することができる。
1:本発明の試験片
2:本発明の試験片の第1のシート状部材
3:本発明の試験片の第2のシート状部材
11:第1のシート状部材の基材(第1のシート基材)
12:第1のシート状部材分の孔(NH通気孔)
13:第1のシート状部材の試料保持層
14:第2のシート状部材の基材(第2のシート基材)
15:第2のシート状部材の指示薬層
16a:第2のシート状部材の接着層(指示薬層の前方部)
16b:第2のシート状部材の接着層(指示薬層の後方部)
40:被験血
41:採血用毛細管
42:エッペンドルフ
43:溶媒
44:被験血と溶媒を含む被験試料
45:試料保持層に滴下後放置した脱アンモニア被験試料
46:フェニルアラニンアンモニアリアーゼ(PAL)
47:PALを溶媒で溶解したPAL含有液
48:被験血を含む被験試料とPAL含有液との反応スポット
49:アンモニアガスに反応して発色した指示薬層
5:アンモニア測定器
51:アンモニア測定器の測定結果を示す表示板

Claims (9)

  1.  少なくとも2つのシート状部材からなる試験片を用いた被験者の血中フェニルアラニン濃度の定量方法であって、
     前記試験片は、アルカリ緩衝剤を含有する試料保持層を備えた第1のシート状部材と、アンモニアガスと反応して変色する指示薬層を備えた第2のシート状部材が、剥離した状態又は剥離可能な状態で積層されてなるものであり、
     前記定量方法は、下記(A)~(D)の工程を有する方法である、血中フェニルアラニンの定量方法:
    (A)被験者から採取した血液(被験血)を、そのまま又は希釈した後、第2のシート状部材と分離した状態で、前記試験片の第1のシート状部材の試料保持層に滴下し、一定時間放置する工程、
    (B)前記第1のシート状部材を、その試料保持層と第2のシート状部材の指示薬層とが非接触状態で重なるように、第2のシート状部材に積層し、当該試料保持層にフェニルアラニンアンモニアリアーゼ含有液を滴下し、一定時間放置する工程、
    (C)第2のシート状部材の指示薬層の色の程度から被験血中のアンモニア濃度を算出する工程、及び
    (D)前記のアンモニア濃度から被験者の血中フェニルアラニン濃度を算出する工程。
  2.  前記第1のシート状部材の試料保持層中のアルカリ緩衝剤が、ホウ酸及び水酸化ナトリウムを含有するアルカリ緩衝剤であり、
     前記第2のシート状部材の指示薬層で使用の指示薬が、ブロムクレゾールグリーンである、請求項1に記載する血中フェニルアラニンの定量方法。
  3.  前記第1のシート状部材の試料保持層中のホウ酸及び水酸化ナトリウムの含有量が1部材あたり、それぞれ0.40~0.45mg及び0.15~0.20mgであり、
     前記第2のシート状部材の指示薬層中のブロムクレゾールグリーンの含有量が1部材あたり、0.3~0.5mgであり、
     前記(A)工程で第1のシート状部材の試料保持層に適用する被験血の量が少なくとも10μlであり、
     前記(B)工程で前記試料保持層に滴下するフェニルアラニンアンモニアリアーゼ含有液のフェニルアラニンアンモニアリアーゼ量が少なくとも2mUであり、
     前記(D)工程で算出できる血中フェニルアラニン濃度が0~1400μMである、請求項2に記載する血中フェニルアラニンの定量方法。
  4.  前記(C)工程が、指示薬層の色を波長635nmの吸光度を測定する工程である、請求項3に記載する血中フェニルアラニンの定量方法。
  5.  前記被験者から採取する血液(被験血)が毛細管血である、請求項1に記載する血中フェニルアラニンの定量方法。
  6.  前記被験者がフェニルケトン尿症の患者である、請求項1に記載する血中フェニルアラニンの定量方法。
  7.  請求項1~6のいずれか一項に記載する血中フェニルアラニンの定量方法に使用するための、少なくとも下記(a)及び(b)、又は(a)~(c)を含有するキット:
    (a)アルカリ緩衝剤を含有する試料保持層を備えた第1のシート状部材と、アンモニアガスと反応して変色する指示薬層を備えた第2のシート状部材が、剥離された状態又は剥離可能な状態で積層されてなる試験片、
    (b)フェニルアラニンアンモニアリアーゼ、
    (c)溶媒。
  8.  フェニルケトン尿症患者の血中フェニルアラニン濃度の管理方法であって、
    定期若しくは不定期に、毛細管血を被験試料として、請求項1~6のいずれか一項に記載する血中フェニルアラニン濃度の定量方法を実施する、前記管理方法。
  9.  前記血中フェニルアラニン濃度の定量方法を、請求項7に記載するキットを用いて実施する、請求項8に記載する管理方法。
PCT/JP2022/020562 2021-05-17 2022-05-17 血中フェニルアラニン定量方法、及びそれに使用する測定キット WO2022244783A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/561,497 US20240248095A1 (en) 2021-05-17 2022-05-17 Method for quantifying phenylalanine in blood, and measurement kit used therefor
JP2023522681A JPWO2022244783A1 (ja) 2021-05-17 2022-05-17
EP22804694.2A EP4353829A1 (en) 2021-05-17 2022-05-17 Method for quantifying phenylalanine in blood, and measurement kit used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-083432 2021-05-17
JP2021083432 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022244783A1 true WO2022244783A1 (ja) 2022-11-24

Family

ID=84141359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020562 WO2022244783A1 (ja) 2021-05-17 2022-05-17 血中フェニルアラニン定量方法、及びそれに使用する測定キット

Country Status (4)

Country Link
US (1) US20240248095A1 (ja)
EP (1) EP4353829A1 (ja)
JP (1) JPWO2022244783A1 (ja)
WO (1) WO2022244783A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877663A (ja) * 1981-11-02 1983-05-11 Kyoto Daiichi Kagaku:Kk 尿素分析方法および分析用具
WO2006022113A1 (ja) * 2004-08-24 2006-03-02 Toyama Prefecture His-Tag融合フェニルアラニン脱水素酵素を用いた固定化酵素チップによるL-フェニルアラニンの定量方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877663A (ja) * 1981-11-02 1983-05-11 Kyoto Daiichi Kagaku:Kk 尿素分析方法および分析用具
WO2006022113A1 (ja) * 2004-08-24 2006-03-02 Toyama Prefecture His-Tag融合フェニルアラニン脱水素酵素を用いた固定化酵素チップによるL-フェニルアラニンの定量方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Japanese Society for Inherited Metabolic Diseases", 2019, SHINDAN TO CHIRYO SHA, INC., article "Clinical practice guideline for neonatal mass screening target diseases", pages: 16
ARKRAY FACTORY, INC.: "Blood Test Ammonia Kit Amicheck", PACKAGE INSERT, 31 March 2017 (2017-03-31), JP, pages 1 - 2, XP009541523 *
JOURNAL OF BIOTECHNOLOGY, vol. 258, 2017, pages 148 - 157
MOAT, S. J. ET AL., J INHERIT METAB DIS, vol. 43, 2020, pages 179 - 188

Also Published As

Publication number Publication date
JPWO2022244783A1 (ja) 2022-11-24
EP4353829A1 (en) 2024-04-17
US20240248095A1 (en) 2024-07-25

Similar Documents

Publication Publication Date Title
US6958129B2 (en) Combined assay for current glucose level and intermediate or long-term glycemic control
EP1369686B1 (en) Analyte concentration determination meters and methods of using the same
US20090075389A1 (en) Method for determining an analyte in a fluid
EP3289353B1 (en) Device and methods of using device for detection of hyperammonemia
US4397956A (en) Means for monitoring the status of control of ketoacidosis-prone diabetics
US10151743B2 (en) Rapid small volume detection of blood ammonia
US20170059506A1 (en) Diagnostic products having an enzyme and a stabilized coenzyme
JP2611890B2 (ja) 乾式分析要素を用いた測定方法及び乾式分析要素
WO2022244783A1 (ja) 血中フェニルアラニン定量方法、及びそれに使用する測定キット
JP7066726B2 (ja) 流体試料中のグルコース濃度を検出するための垂直流アッセイデバイス
EP1159613A1 (en) Method and apparatus for controlling the adsorption of a liquid sample through an absorbent layer
US8501111B2 (en) Small volume and fast acting optical analyte sensor
JPH02176565A (ja) 多層分析素子
JPH0481438B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804694

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522681

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18561497

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022804694

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804694

Country of ref document: EP

Effective date: 20231218