WO2022244756A1 - Adhesive tape - Google Patents

Adhesive tape Download PDF

Info

Publication number
WO2022244756A1
WO2022244756A1 PCT/JP2022/020469 JP2022020469W WO2022244756A1 WO 2022244756 A1 WO2022244756 A1 WO 2022244756A1 JP 2022020469 W JP2022020469 W JP 2022020469W WO 2022244756 A1 WO2022244756 A1 WO 2022244756A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
adhesive layer
adhesive tape
weight
Prior art date
Application number
PCT/JP2022/020469
Other languages
French (fr)
Japanese (ja)
Inventor
徳之 内田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022536880A priority Critical patent/JPWO2022244756A1/ja
Publication of WO2022244756A1 publication Critical patent/WO2022244756A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to adhesive tapes.
  • a micro LED display is a display device in which each chip constituting a pixel is a fine light emitting diode (LED) chip, and the micro LED chip emits light by itself to display an image.
  • LED light emitting diode
  • Micro LED displays have high contrast, fast response speed, and can be made thinner because they do not require color filters used in liquid crystal displays and organic EL displays. is attracting attention as In a micro LED display, a large number of micro LED chips are densely laid out in a plane.
  • a transfer laminate in which a large number of chip parts are arranged on an adhesive layer is opposed to a drive circuit board, and the chips are separated from the transfer laminate.
  • the components are peeled off and electrically connected to the drive circuit board (transfer process).
  • a method for peeling the chip component from the transfer laminate for example, a method of irradiating a laser beam from the back surface of the support of the transfer laminate focusing on the adhesive layer is known (see, for example, Patent Documents 1). Such a method is also called laser ablation.
  • heat-expandable particles, heat-expandable microcapsules, etc. are blended in the adhesive layer, and the heat-expandable particles, heat-expandable microcapsules, etc. are thermally expanded by thermocompression bonding between the transfer laminate and the drive circuit board.
  • a method of peeling chip components by reducing the adhesive area due to deformation of the adhesive layer for example, Patent Documents 2 and 3).
  • An object of the present invention is to provide an adhesive tape which is excellent in peeling performance from chip components and which can suppress adhesive residue on the chip components.
  • the present disclosure 1 is a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer, wherein the pressure-sensitive adhesive layer includes a block A having a structure derived from an aromatic vinyl monomer and a block B having a structure derived from a (meth)acrylic monomer. and a cross-linking agent, the block B contains a structure derived from a cross-linkable functional group-containing monomer, and the pressure-sensitive adhesive layer has a tensile modulus of 0. 008 MPa or more and 2 MPa or less.
  • the present disclosure 2 is the pressure-sensitive adhesive tape of the present disclosure 1, wherein the pressure-sensitive adhesive layer has a breaking strength of 1 MPa or more.
  • Present Disclosure 3 is the adhesive tape according to Present Disclosure 1 or 2, wherein the adhesive layer has a gel fraction of 70% by weight or more.
  • Present Disclosure 4 is the pressure-sensitive adhesive tape according to Present Disclosure 1, 2 or 3, wherein the pressure-sensitive adhesive layer has a spherical phase separation structure.
  • Present Disclosure 5 is the pressure-sensitive adhesive tape according to Present Disclosure 1, 2 or 3, wherein the pressure-sensitive adhesive layer has a cylindrical phase-separated structure.
  • Present Disclosure 6 is the pressure-sensitive adhesive tape of Present Disclosure 1, 2, 3, 4 or 5, wherein the content of the block A in the ABA type block copolymer is 1% by weight or more and 40% by weight or less. .
  • Present Disclosure 7 is the pressure-sensitive adhesive tape according to Present Disclosure 1, 2, 3, 4, 5, or 6, wherein the cross-linking agent is an epoxy-based cross-linking agent or an isocyanate-based cross-linking agent.
  • the (meth)acrylic monomer contains a (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms
  • the ABA type block copolymer contains 8 or more carbon atoms 8.
  • This disclosure 9 is present disclosure 1, 2, 3, 4, 5, 6, 7 or 8 adhesive tape.
  • Present Disclosure 10 is the pressure-sensitive adhesive tape according to Present Disclosure 1, 2, 3, 4, 5, 6, 7, 8 or 9, wherein the ABA type block copolymer has a weight average molecular weight of 100,000 or more.
  • the present disclosure 11 is the pressure-sensitive adhesive tape according to the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, wherein the pressure-sensitive adhesive layer further contains a tackifier that is liquid at room temperature.
  • Present Disclosure 12 is the adhesive tape according to Present Disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the adhesive layer has a thickness of 3 ⁇ m or more and 30 ⁇ m or less.
  • the present invention will be described in detail below.
  • the present inventors have found that in a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer, a specific ABA type block copolymer and a pressure-sensitive adhesive layer containing a cross-linking agent are used, and the tensile modulus of the pressure-sensitive adhesive layer is set to a specific range. Considered adjusting.
  • the inventors of the present invention have found that such an adhesive tape can improve the peeling performance of the chip parts even when the chip parts are peeled off by laser ablation, and can suppress adhesive residue on the chip parts. This led to the completion of the present invention.
  • FIG. 1 shows a cross-sectional view schematically showing an example of a process of peeling off a chip part arranged on an adhesive layer by laser abrasion.
  • the chip component 1 is placed on the adhesive layer 4 laminated on the support 5, and the chip component 1 is peeled off by the laser beam 8a emitted from the laser beam irradiation device 8. to electrically connect the chip component 1 and the drive circuit board 7 (transfer step).
  • the adhesive layer 4 may be a double-sided adhesive tape having a substrate.
  • the laminate 9 of the support and the adhesive layer may be a single-sided adhesive tape using the support 5 as a base material.
  • the portion of the adhesive layer 4 irradiated with the laser beam 8a is deformed. More specifically, when the adhesive layer 4 is irradiated with the laser light 8a, the molecules of the adhesive layer 4 are cut by the heat to become low-molecular-weight, and evaporate instantaneously or sublimate when the temperature rises. A portion of the adhesive layer 4 irradiated with the laser beam 8a is deformed. Thereby, the chip component 1 can be peeled off. By using the laser beam 8a, the chip component 1 can be peeled off in a very small area. 1 can be peeled off individually and with high peeling performance.
  • the adhesive tape of the present invention is an adhesive tape having an adhesive layer.
  • the pressure-sensitive adhesive layer contains an ABA type block copolymer having a block A having a structure derived from an aromatic vinyl monomer and a block B having a structure derived from a (meth)acrylic monomer, and a cross-linking agent. contains.
  • (meth)acryl means acryl or methacryl here. Since the pressure-sensitive adhesive layer contains the ABA type block copolymer and the cross-linking agent, the tensile elastic modulus, breaking strength, gel fraction, etc. of the pressure-sensitive adhesive layer are easily adjusted to the ranges described later. As a result, the adhesive tape of the present invention is excellent in peeling performance from chip components and can suppress adhesive residue on chip components.
  • the ABA type block copolymer includes a rigid structure block A (hereinafter also referred to as "hard segment”) and a flexible structure block B (hereinafter also referred to as "soft segment”). It is a copolymer.
  • the ABA type block copolymer has a heterogeneous phase separation structure in which two blocks are difficult to be compatible, and spherical islands formed by agglomeration of the block A are scattered in the sea of the block B.
  • a non-uniform phase-separated structure in which cylindrical structures formed by agglomeration of the block A are interspersed in the sea of the block B may be formed.
  • phase-separated structure in which spherical islands are scattered is also called a spherical phase-separated structure
  • a phase-separated structure in which cylindrical structures are scattered is also called a cylindrical phase-separated structure.
  • the block A is not particularly limited as long as it has a rigid structure, and in addition to the structure derived from the aromatic vinyl monomer, it may be, for example, a compound having a cyclic structure, a compound having a short side chain substituent, or the like. It may have a derived structure.
  • the block B may have a structure derived from a monomer other than the (meth)acrylic monomer as long as the effects of the present invention are not lost.
  • aromatic vinyl monomer in the block A examples include styrene, alpha-methylstyrene, paramethylstyrene, chlorostyrene and the like. These aromatic vinyl monomers may be used alone, or two or more of them may be used in combination. Among these, styrene is preferable because it can further improve the peeling performance of the adhesive tape from the chip component and can further suppress adhesive residue on the chip component.
  • the structure derived from an aromatic vinyl monomer refers to a structure represented by the following general formula (1) or (2).
  • R 1 represents a substituent having an aromatic ring.
  • the aromatic ring-containing substituent R 1 includes a phenyl group, a methylphenyl group, a chlorophenyl group, and the like.
  • the content of the structure derived from the aromatic vinyl monomer in the ABA type block copolymer is not particularly limited, but is preferably 1% by weight or more and 30% by weight or less.
  • the tensile modulus and breaking strength of the pressure-sensitive adhesive layer can be adjusted to more preferable ranges.
  • a more preferable lower limit of the content of the structure derived from the aromatic vinyl monomer is 5% by weight, a more preferable lower limit is 8% by weight, a particularly preferable lower limit is 10% by weight, a more preferable upper limit is 28% by weight, and a further preferable upper limit is 25%. % by weight, a particularly preferred upper limit is 20% by weight.
  • the (meth)acrylic monomer may be a single monomer, or a plurality of monomers may be used.
  • a structure derived from a (meth)acrylic monomer refers to a structure represented by the following general formula (5) or (6).
  • R3 represents a side chain.
  • the side chain R3 includes methyl group , ethyl group, propyl group, butyl group, isobutyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, Examples include an isononyl group, a decyl group, a lauryl group, a stearyl group, an isostearyl group, and an isobornyl group.
  • Examples of the (meth)acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, pentyl (meth)acrylate, hexyl ( meth)acrylate, cyclohexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, Decyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, isobornyl (meth)acrylate and the like.
  • (meth)acrylic monomers may be used alone, or two or more of them may be used in combination.
  • butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and lauryl (meth)acrylate are preferable from the viewpoint of balancing the peeling performance of chip parts and the effect of suppressing adhesive residue on chip parts. More preferred are butyl acrylate, 2-ethylhexyl acrylate and lauryl acrylate.
  • (meth)acrylate means an acrylate or a methacrylate in this specification.
  • the content of the structure derived from the (meth)acrylic monomer is not particularly limited as long as the effect of the present invention is exhibited. % or less.
  • the content of the structure derived from the (meth)acrylic monomer is more preferably 40% by weight or more and 95% by weight or less, and even more preferably 50% by weight or more and 90% by weight or less.
  • the (meth)acrylic monomer preferably contains a (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms.
  • the tensile elastic modulus of the pressure-sensitive adhesive layer can be adjusted to a more preferable range.
  • Examples of the (meth)acrylate monomer having an alkyl group having 8 or more carbon atoms include octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, Lauryl (meth)acrylate and isostearyl (meth)acrylate can be mentioned. 2-Ethylhexyl (meth)acrylate and lauryl (meth)acrylate are particularly preferred.
  • the content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group of 8 or more carbon atoms is not particularly limited, and may be 0% by weight. , the preferred lower limit is 35% by weight.
  • the content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group of 8 or more carbon atoms is 35% by weight or more, the release performance of the adhesive tape from chip components is further improved.
  • a more preferable lower limit of the content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms is 40% by weight.
  • the upper limit of the content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms is not particularly limited, but from the viewpoint of suppressing adhesive residue on chip parts, the preferred upper limit is 70% by weight. A more preferable upper limit is 60% by weight.
  • the glass transition temperature of the block B in the ABA type block copolymer is not particularly limited, it is preferably ⁇ 30° C. or higher and 0° C. or lower.
  • the glass transition temperature of the block B is preferably ⁇ 30° C. or higher and 0° C. or lower.
  • the more preferable lower limit of the glass transition temperature of the block B is -28°C, the more preferable lower limit is -25°C, the more preferable upper limit is -5°C, and the more preferable upper limit is -10°C.
  • the glass transition temperature of block B can be obtained by measurement using, for example, a differential scanning calorimeter (manufactured by TA Instruments, Hitachi High-Tech Science, etc.). More specifically, using a differential scanning calorimeter (for example, SII Exstar 6000/DSC 6220 manufactured by Hitachi High-Tech Science Co., Ltd.), an ABA type block was obtained in a nitrogen atmosphere at a heating rate of 10°C/min. The value obtained in the 2nd run when measuring the copolymer can be used. A peak derived from block A and a peak derived from block B are obtained.
  • a differential scanning calorimeter manufactured by TA Instruments, Hitachi High-Tech Science, etc.
  • SII Exstar 6000/DSC 6220 manufactured by Hitachi High-Tech Science Co., Ltd.
  • the method for adjusting the glass transition temperature of the block B to the above range is not particularly limited. It is preferable to contain a (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher. By containing a (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher when the (meth)acrylic monomer is the homopolymer, the tensile elastic modulus of the pressure-sensitive adhesive layer is set in a more preferable range. can be adjusted. Examples of (meth)acrylic acid ester monomers having a glass transition temperature of 0° C.
  • methyl acrylate and methyl methacrylate are preferred.
  • the content of the structure derived from the (meth)acrylic acid ester monomer having a glass transition temperature of 0 ° C. or higher when converted to the homopolymer is not particularly limited, and is 0% by weight. but the preferred lower limit is 35% by weight. If the content of the structure derived from the (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher when converted to the homopolymer is 35% by weight or more, the peeling performance of the adhesive tape chip parts is further improved. do.
  • the upper limit of the content of the structure derived from the (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher when converted to the homopolymer is not particularly limited, but from the viewpoint of temporarily fixing the chip component, the preferred upper limit is 60% by weight, more preferably 50% by weight.
  • the block B contains a structure derived from a crosslinkable functional group-containing monomer. Since the block B contains a structure derived from the crosslinkable functional group-containing monomer, the cohesive force of the adhesive layer is increased by crosslinking of the crosslinkable functional group, so that the peeling performance of the adhesive tape chip component is improved. Furthermore, it is possible to suppress adhesive residue on the chip component.
  • the crosslinkable functional group may or may not be crosslinked, but is more preferably crosslinked. However, even if the structure remains uncrosslinked, the interaction between the functional groups increases the cohesive force of the pressure-sensitive adhesive layer, improves the peeling performance of the pressure-sensitive adhesive tape from the chip parts, and increases the adhesion of the pressure-sensitive adhesive tape to the chip parts. Residual glue can be suppressed.
  • the structure derived from a monomer having a crosslinkable functional group refers to a structure represented by the following general formula (3) or (4).
  • R2 represents a substituent containing at least one crosslinkable functional group.
  • crosslinkable functional groups include carboxyl groups, hydroxyl groups, epoxy groups, double bonds, triple bonds, amino groups, amide groups, nitrile groups and the like.
  • the substituent R 2 containing at least one crosslinkable functional group may contain an alkyl group, an ether group, a carbonyl group, an ester group, a carbonate group, an amide group, a urethane group, etc. as its constituent elements.
  • the monomer having a crosslinkable functional group is not particularly limited, and examples include carboxyl group-containing monomers, hydroxyl group-containing monomers, epoxy group-containing monomers, double bond-containing monomers, triple bond-containing monomers, amino group-containing monomers, and amide group-containing monomers. , a nitrile group-containing monomer, and the like. These monomers having crosslinkable functional groups may be used alone, or two or more of them may be used in combination. Among them, carboxyl group-containing monomers, hydroxyl group-containing monomers, epoxy group-containing monomers, and double bond-containing monomers have been found to improve the peeling performance of adhesive tapes from chip parts and to further suppress adhesive residue on chip parts.
  • At least one selected from the group consisting of monomers, triple bond-containing monomers and amide group-containing monomers is preferred.
  • the carboxyl group-containing monomer include (meth)acrylic acid-based monomers such as (meth)acrylic acid.
  • the hydroxyl group-containing monomer include hydroxyalkyl acrylates and hydroxyalkyl methacrylates such as 4-hydroxybutyl (meth)acrylate and 2-hydroxyethyl (meth)acrylate. Glycidyl (meth)acrylate etc. are mentioned as said epoxy group containing monomer.
  • the double bond-containing monomer include allyl (meth)acrylate, hexanediol di(meth)acrylate, and the like.
  • Examples of the triple bond-containing monomer include propargyl (meth)acrylate.
  • Examples of the amide group-containing monomer include (meth)acrylamide.
  • carboxyl group-containing monomers and hydroxyl group-containing monomers are preferable because they can further improve the peeling performance of the adhesive tape from chip parts and can further suppress adhesive residue on chip parts.
  • (meth)acrylic acid-based monomers and hydroxyalkyl acrylates are more preferred, and acrylic acid, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are even more preferred.
  • the block A may also contain a structure derived from the crosslinkable functional group-containing monomer.
  • the content of the structure derived from the monomer having the crosslinkable functional group (the sum of the content in the block A and the content in the block B) is not particularly limited. is preferably 0.1% by weight or more and 30% by weight or less.
  • the content of the structure derived from the monomer having the crosslinkable functional group is within the above range, the cohesive force of the pressure-sensitive adhesive layer is further increased, the peeling performance of the pressure-sensitive adhesive tape for chip components is further improved, and the chip Adhesive residue on parts can be further suppressed.
  • a more preferable lower limit of the content of the structure derived from the monomer having the crosslinkable functional group is 0.5% by weight, a more preferable lower limit is 1% by weight, a more preferable upper limit is 25% by weight, and a further preferable upper limit is 20% by weight. be.
  • the content of the block A (hard segment) in the ABA type block copolymer is not particularly limited, but is preferably 1% by weight or more and 40% by weight or less.
  • the tensile elastic modulus of the pressure-sensitive adhesive layer can be adjusted to a more preferable range.
  • a more preferred lower limit for the content of block A is 2% by weight, a still more preferred lower limit is 5% by weight, and a particularly preferred lower limit is 10% by weight.
  • the upper limit of the content of block A is 35% by weight, more preferably 30% by weight, still more preferably 25% by weight, still more preferably 22% by weight, and particularly preferably 20% by weight.
  • the weight average molecular weight (Mw) of the ABA type block copolymer is not particularly limited, but is preferably 50,000 or more and 800,000 or less. When the weight-average molecular weight is within the above range, the tensile elastic modulus of the pressure-sensitive adhesive layer can be adjusted to a more preferable range.
  • a more preferable lower limit of the weight average molecular weight is 75,000, a still more preferable lower limit is 100,000, and a still more preferable lower limit is 200,000.
  • a more preferable upper limit of the weight average molecular weight is 600,000.
  • the weight average molecular weight can be determined, for example, by GPC (Gel Permeation Chromatography) in terms of standard polystyrene.
  • the raw material monomers of the block A and the block B are radically reacted in the presence of a polymerization initiator to obtain the block A and the block B. , the two may be reacted or copolymerized. Alternatively, after the block A is obtained, the raw material monomer for the block B may be continuously added for copolymerization.
  • the method of causing the radical reaction that is, the polymerization method
  • conventionally known methods are used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization, and the like.
  • the cross-linking agent is not particularly limited, and is selected according to the type of cross-linkable functional group in the ABA type block copolymer.
  • a chelate-based cross-linking agent and the like are included. More specifically, for example, when the crosslinkable functional group in the ABA type block copolymer is a carboxyl group, the crosslinker may be, for example, an epoxy crosslinker, an isocyanate crosslinker, or a metal chelate crosslinker. agents and the like.
  • the epoxy-based cross-linking agent and the isocyanate-based cross-linking agent are preferable because the tensile modulus of elasticity of the pressure-sensitive adhesive layer can be easily adjusted to a more preferable range.
  • the content of the cross-linking agent is not particularly limited, and by adjusting the amount of the cross-linkable functional group in the ABA type block copolymer and the content of the cross-linking agent, the pressure-sensitive adhesive layer can be cross-linked. degree (gel fraction) can be adjusted.
  • the content of the cross-linking agent is preferably 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the ABA type block copolymer. When the content of the cross-linking agent is within the above range, the ABA type block copolymer can be appropriately cross-linked to increase the cohesive force of the pressure-sensitive adhesive layer, and the release performance of the adhesive tape chip parts. is further improved, and adhesive residue on chip parts can be further suppressed.
  • a more preferable lower limit of the content of the crosslinking agent is 0.1 parts by weight, a more preferable upper limit is 5 parts by weight, a still more preferable lower limit is 0.15 parts by weight, and a still more preferable upper limit is 3 parts by weight.
  • the pressure-sensitive adhesive layer may further contain a tackifier (tackifier).
  • tackifier is not particularly limited and may be a tackifier that is solid at room temperature, but a tackifier that is liquid at room temperature is preferable. Since the pressure-sensitive adhesive layer contains the tackifier that is liquid at room temperature, the tensile modulus of the pressure-sensitive adhesive layer can be easily adjusted within a more preferable range, and thus the release performance of the pressure-sensitive adhesive tape for chip parts is further improved.
  • normal temperature means 20 to 25° C.
  • liquid means having fluidity.
  • the tackifier that is solid at room temperature is not particularly limited, and examples thereof include rosin ester resins, terpene phenol resins, terpene resins, and coumarone resins.
  • the tackifier that is liquid at room temperature is not particularly limited, and examples thereof include liquid rosin esters and liquid terpene phenols.
  • the content of the tackifier, which is solid at room temperature is not particularly limited, and from the viewpoint of the peeling performance of the adhesive tape from chip parts, it is preferred that the tackifier is not contained in the adhesive layer.
  • the tackifier, which is solid at room temperature is contained, it is preferably 10 parts by weight or less per 100 parts by weight of the ABA type block copolymer.
  • the content of the tackifier, which is solid at room temperature is within the above range, the release performance of the adhesive tape for chip components is further improved.
  • a more preferable upper limit of the content of the tackifier that is solid at room temperature is 5 parts by weight.
  • the content of the tackifier, which is liquid at room temperature is not particularly limited, but is preferably 5 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the ABA type block copolymer.
  • the content of the tackifier, which is liquid at room temperature is within the above range, the release performance of the adhesive tape for chip components is further improved.
  • a more preferred lower limit to the content of the tackifier that is liquid at room temperature is 10 parts by weight, and a more preferred upper limit is 30 parts by weight.
  • the pressure-sensitive adhesive layer preferably further contains an ultraviolet absorber.
  • the pressure-sensitive adhesive layer contains the ultraviolet absorber, the stimulation of the laser light in the pressure-sensitive adhesive layer is efficiently converted into heat or vibration, so that the pressure-sensitive adhesive layer is easily deformed by laser abrasion, resulting in an adhesive tape.
  • the peeling performance of the chip parts is further improved.
  • the ultraviolet absorber is not particularly limited, and examples thereof include benzotriazole-based ultraviolet absorbers, hydroxylphenyltriazine-based ultraviolet absorbers, and the like. Further examples include ethylhexyl methoxycinnamate, octyl methoxycinnamate, ethylhexyl paramethoxycinnamate, hexyl diethylaminohydroxybenzoylbenzoate, bisethylhexyloxyphenolmethoxyphenyltriazine, t-butylmethoxydibenzoylmethane and the like.
  • benzotriazole-based UV absorbers and hydroxylphenyltriazine-based UV absorbers are preferable from the viewpoint of excellent compatibility with other components in the pressure-sensitive adhesive layer.
  • These ultraviolet absorbers may be used alone, or two or more of them may be used in combination.
  • the content of the ultraviolet absorber is not particularly limited, but the preferred lower limit is 6 parts by weight with respect to 100 parts by weight of the ABA type block copolymer. When the content of the ultraviolet absorber is 6 parts by weight or more, the peeling performance of the adhesive tape for chip components is further improved. A more preferable lower limit for the content of the ultraviolet absorber is 10 parts by weight, and a more preferable lower limit is 15 parts by weight.
  • the upper limit of the content of the ultraviolet absorber is not particularly limited, but from the viewpoint of ensuring the adhesive strength of the pressure-sensitive adhesive layer, the preferred upper limit is 30 parts by weight.
  • the pressure-sensitive adhesive layer may further contain an inorganic filler such as fumed silica.
  • an inorganic filler such as fumed silica.
  • the pressure-sensitive adhesive layer may further contain known additives such as plasticizers, resins, surfactants, waxes and fine particle fillers. These additives may be used alone, or two or more of them may be used in combination.
  • the pressure-sensitive adhesive layer has a tensile modulus with a lower limit of 0.008 MPa and an upper limit of 2 MPa.
  • the tensile modulus of elasticity is 0.008 MPa or more, the pressure-sensitive adhesive layer is less likely to tear when the chip component is peeled off by laser abrasion, and adhesive residue on the chip component can be suppressed.
  • the tensile elastic modulus is 2 MPa or less, the adhesive layer is likely to be deformed by laser abrasion, and the peeling performance of the adhesive tape for chip components is improved.
  • the preferred lower limit of the tensile modulus is 0.01 MPa, the preferred upper limit is 0.7 MPa, the more preferred lower limit is 0.015 MPa, the more preferred upper limit is 0.68 MPa, and the still more preferred upper limit is 0.65 MPa.
  • the preferable lower limit of the tensile modulus is 0.01 MPa, and the preferable upper limit thereof is 2 MPa. From the same point of view, the more preferable lower limit of the tensile modulus is 0.7 MPa, the more preferable upper limit is 1.9 MPa, the more preferable lower limit is 0.8 MPa, the more preferable upper limit is 1.8 MPa, and the still more preferable upper limit is 1.5 MPa.
  • the tensile modulus of the pressure-sensitive adhesive layer can be measured, for example, using Autograph (manufactured by Shimadzu Corporation) or the like, according to JIS K7161:2014, under an environment of a temperature of 23° C. and a relative humidity of 50%, and a tensile speed of 500 mm/ It can be calculated from the slope of the stress-strain curve at 100% strain when the pressure-sensitive adhesive layer is pulled at min.
  • the tensile modulus is measured after removing the substrate and preparing a sample of only the adhesive layer.
  • the method for removing the substrate is not particularly limited as long as treatment using a solvent, treatment involving a chemical reaction, treatment at a high temperature, or the like is avoided in order to avoid denaturation of the pressure-sensitive adhesive layer.
  • a method of selecting an appropriate temperature and peeling speed, peeling off the substrate and the adhesive layer by peeling off, and removing the substrate, or A method of physically grinding the substrate can be selected.
  • the breaking strength of the pressure-sensitive adhesive layer is not particularly limited, the preferred lower limit is 1 MPa.
  • the breaking strength is 1 MPa or more, the adhesive layer is less likely to be torn off when the chip component is peeled off by laser ablation, and adhesive residue on the chip component can be further suppressed.
  • a more preferable lower limit of the breaking strength is 1.3 MPa, and a further preferable lower limit is 1.4 MPa.
  • the upper limit of the breaking strength is not particularly limited, but if the breaking strength is too high, the tensile elastic modulus also increases, and the peeling performance of the adhesive tape from the chip parts decreases.
  • a more preferred upper limit is 4 MPa, and a still more preferred upper limit is 3.1 MPa.
  • the breaking strength of the pressure-sensitive adhesive layer is measured, for example, using Autograph (manufactured by Shimadzu Corporation) or the like according to JIS K7161: 2014 at a temperature of 23 ° C. and a tensile speed of 500 mm / min under an environment of relative humidity of 50%. It can be calculated from the stress at break when the pressure-sensitive adhesive layer is pulled with.
  • the adhesive tape has a substrate
  • the tensile modulus is measured after removing the substrate and preparing a sample of only the adhesive layer.
  • the method for removing the substrate is not particularly limited as long as treatment using a solvent, treatment involving a chemical reaction, treatment at a high temperature, or the like is avoided in order to avoid denaturation of the pressure-sensitive adhesive layer.
  • a method of selecting an appropriate temperature and peeling speed, peeling off the substrate and the adhesive layer by peeling off, and removing the substrate, or A method of physically grinding the substrate can be selected.
  • the gel fraction of the pressure-sensitive adhesive layer is not particularly limited, but the preferred lower limit is 70% by weight. When the gel fraction is 70% by weight or more, the peeling performance of the adhesive tape from chip components is further improved, and adhesive residue on chip components can be further suppressed. A more preferable lower limit of the gel fraction is 80% by weight. Although the upper limit of the gel fraction is not particularly limited, the preferred upper limit is 98% by weight, and the more preferred upper limit is 95% by weight, from the viewpoint that the tensile elastic modulus of the pressure-sensitive adhesive layer is easily adjusted to a more preferred range. In addition, the gel fraction of the adhesive layer can be measured by the following method.
  • the method for adjusting the tensile elastic modulus, breaking strength, gel fraction, etc. of the pressure-sensitive adhesive layer within the above range is not particularly limited. Examples include a method of adjusting the type or amount of the cross-linking agent as described above.
  • the phase-separated structure of the pressure-sensitive adhesive layer is not particularly limited, it preferably has a spherical phase-separated structure. Since the pressure-sensitive adhesive layer has a sphere-like phase separation structure, the tensile elastic modulus, breaking strength, gel fraction, etc. of the pressure-sensitive adhesive layer are easily adjusted within the ranges described later, and the peeling performance of the adhesive tape chip parts. is further improved, and adhesive residue on chip parts can be further suppressed.
  • the phase separation structure of the adhesive layer can be controlled by adjusting the ratio of each block in the ABA type block copolymer.
  • the pressure-sensitive adhesive layer may have a cylindrical phase-separated structure. Since the pressure-sensitive adhesive layer has a cylindrical phase separation structure, the tensile elastic modulus, breaking strength, gel fraction, etc. of the pressure-sensitive adhesive layer are easily adjusted within the ranges described later, and the peeling performance of the chip parts of the pressure-sensitive adhesive tape. is further improved, and adhesive residue on chip parts can be further suppressed. In particular, when the pressure-sensitive adhesive layer has a cylindrical phase-separated structure, it becomes easier to adjust the tensile modulus, breaking strength, etc.
  • phase separation structure of the pressure-sensitive adhesive layer can be confirmed by observation with a transmission electron microscope (TEM). means that the microphase separation structure is a cylindrical structure.
  • the size of the island structure in the sphere-like phase separation structure is not particularly limited.
  • a more preferable lower limit is 10 nm, and a more preferable upper limit is 50 nm.
  • the average length of the island structure in the sphere-like phase-separated structure can be measured by the following method. Observation of the pressure-sensitive adhesive layer with a transmission electron microscope (TEM) is performed at a magnification of 5000 times to acquire an observation image of an area of 4.3 ⁇ m ⁇ 4.3 ⁇ m.
  • TEM transmission electron microscope
  • the acquired image is automatically binarized using image analysis software (eg, Avizo, ver2019.4, manufactured by Thermo Fisher Scientific, etc.).
  • image analysis software eg, Avizo, ver2019.4, manufactured by Thermo Fisher Scientific, etc.
  • the major axis of each island structure is measured from the binarized image, and the arithmetic mean value of these is taken as the average major axis.
  • the automatic binarization method refer to a known document ("Automatic Threshold Selection Method Based on Discrimination and Least Squares Criteria", Nobuyuki Otsu, The Institute of Electronics, Information and Communication Engineers Transactions D, Vol. J63-D, No. .4, pp.349-356).
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but the preferred lower limit is 3 ⁇ m and the preferred upper limit is 200 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is 3 ⁇ m or more, the chip component holding performance and peeling performance of the pressure-sensitive adhesive tape are further improved. If the thickness of the pressure-sensitive adhesive layer is 200 ⁇ m or less, adhesive residue on the chip component can be further suppressed.
  • the more preferable lower limit of the thickness of the adhesive layer is 5 ⁇ m, and the more preferable upper limit is 50 ⁇ m, since the adhesive tape can further improve the holding performance and peeling performance of the chip components and can further suppress the adhesive residue on the chip components. is.
  • the more preferable lower limit of the thickness of the pressure-sensitive adhesive layer is 10 ⁇ m
  • the more preferable upper limit is 30 ⁇ m
  • the even more preferable lower limit is 15 ⁇ m
  • the much more preferable lower limit is 20 ⁇ m.
  • the pressure-sensitive adhesive tape of the present invention may be a support type having a substrate or a non-support type having no substrate.
  • the adhesive tape of the present invention may be a single-sided adhesive tape having an adhesive layer only on one side of the substrate, or a double-sided adhesive tape having an adhesive layer on both sides of the substrate. good.
  • at least one side may be an adhesive layer as described above.
  • the adhesive layers on both sides may have the same composition or may have different compositions.
  • the substrate is not particularly limited, and examples of materials for the substrate include polyethylene terephthalate, polyethylene naphthalate, polyacetal, polyamide, polycarbonate, polyphenylene ether, polybutylene terephthalate, ultra-high molecular weight polyethylene, syndiotactic polystyrene, poly Arylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer and the like.
  • polyethylene terephthalate and polyethylene naphthalate are preferable because of their excellent heat resistance.
  • the thickness of the base material is not particularly limited, but a preferable lower limit is 5 ⁇ m and a preferable upper limit is 188 ⁇ m. When the thickness of the base material is within the above range, the pressure-sensitive adhesive tape can have appropriate stiffness and excellent handleability.
  • a more preferable lower limit of the thickness of the substrate is 12 ⁇ m, and a more preferable upper limit thereof is 125 ⁇ m.
  • the application of the adhesive tape of the present invention is not particularly limited. It is suitable for use in the step of peeling off chip components placed on the agent layer by laser ablation.
  • the chip component is not particularly limited, and examples thereof include MiniLED chips, microLED chips, optical chips for image sensors, etc. MicroLED chips are particularly preferred.
  • the method of transferring chip components using the adhesive tape of the present invention is not particularly limited. and a method of transferring a chip component including a step of peeling off.
  • the method for manufacturing electronic device components using the adhesive tape of the present invention is not particularly limited, and examples thereof include methods for manufacturing electronic device components, including the transfer method for chip components as described above. According to these methods, it is possible to transfer the chip components with a high yield, and to suppress the adhesive residue on the chip components.
  • the adhesive tape which is excellent in the peeling performance of a chip component and can suppress the adhesive residue on a chip component can be provided.
  • Example 1 Preparation of ABA type block copolymer 0.902 g of 1,6-hexanedithiol, 1.83 g of carbon disulfide and 11 mL of dimethylformamide were put into a two-necked flask and stirred at 25°C. To this, 2.49 g of triethylamine was added dropwise over 15 minutes, and the mixture was stirred at 25°C for 3 hours. Then, 2.75 g of methyl- ⁇ -bromophenylacetic acid was added dropwise over 15 minutes, and the mixture was stirred at 25°C for 4 hours.
  • reaction solution A portion of the reaction solution was sampled, 4000 parts by weight of n-hexane was added thereto, stirred to precipitate the reaction product, unreacted monomers and solvent were filtered, and the reaction product was dried under reduced pressure at 70°C. to obtain an ABA type block copolymer.
  • the weight average molecular weight of the obtained ABA type block copolymer was measured by GPC method and found to be 250,000. The measurement was performed using a "2690 Separations Module" manufactured by Water as a measuring instrument, a "GPC KF-806L” manufactured by Showa Denko as a column, ethyl acetate as a solvent, a sample flow rate of 1 mL/min, and a column temperature of 40°C.
  • the obtained ABA type block copolymer was measured using a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., SII Exstar 6000/DSC 6220) under the conditions of a temperature increase rate of 10°C/min under a nitrogen atmosphere.
  • the glass transition temperature of block B was obtained using the value obtained in the 2nd run when the measurement was performed.
  • a peak derived from block A and a peak derived from block B were obtained.
  • the obtained pressure-sensitive adhesive solution was applied onto a corona-treated PET film having a thickness of 50 ⁇ m as a substrate using an applicator so that the thickness of the dry film became 20 ⁇ m, and dried at 110° C. for 3 minutes. rice field. Then, it was heated and cured at 40° C. for 48 hours to obtain an adhesive tape.
  • Adhesive was prepared in the same manner as in Example 1 except that the composition of the ABA block copolymer, the type or amount of the tackifier, or the type or amount of the cross-linking agent was changed as shown in Tables 1 and 2. got the tape.
  • the tackifiers include ME-GH (manufactured by Arakawa Chemical Industries, Ltd.) as a liquid (liquid at room temperature) tackifier, YS Polyster G-150 (manufactured by Yasuhara Chemical Co., Ltd.) as a non-liquid (solid at room temperature) tackifier A, Pencel D-135 (manufactured by Arakawa Chemical Industries, Ltd.) was used as the non-liquid (solid at room temperature) tackifier B.
  • an ABA type block copolymer having a higher weight average molecular weight was prepared by prolonging the polymerization reaction time.
  • Example 1 A pressure-sensitive adhesive tape was obtained in the same manner as in Example 1, except that a (meth)acrylic polymer prepared as follows was used instead of the ABA type block copolymer.
  • Example 4 In the same manner as in Example 1, except that the styrene-ethylene-butylene-styrene (SEBS) block copolymer (Dynaron 8300, manufactured by JSR Corporation) shown in Table 2 was used instead of the ABA type block copolymer. , got the adhesive tape.
  • SEBS styrene-ethylene-butylene-styrene
  • the adhesive tape which is excellent in the peeling performance of a chip component and can suppress the adhesive residue on a chip component can be provided.

Abstract

The purpose of the present invention is to provide an adhesive tape which exhibits excellent peeling performance with respect to a chip component, and which can suppress adhesive residue on a chip component. The present invention is an adhesive tape which has an adhesive layer. The adhesive layer contains a crosslinking agent and an A-B-A type block copolymer having a block A, which has a structure derived from an aromatic vinyl monomer, and a block B, which has a structure derived from a (meth)acrylic monomer. The block B contains a structure derived from a crosslinkable functional group-containing monomer. The adhesive layer has a tensile modulus of elasticity of 0.008-2 MPa.

Description

粘着テープAdhesive tape
本発明は、粘着テープに関する。 The present invention relates to adhesive tapes.
半導体デバイスの製造工程において、粘着剤層上に配置された多数のチップ部品を駆動回路基板上に転写することがある。
例えば、マイクロLEDディスプレイは、画素を構成するチップの1つ1つが微細な発光ダイオード(LED、Light Emitting Diode)チップであり、このマイクロLEDチップが自発光して画像を表示する表示装置である。マイクロLEDディスプレイは、コントラストが高く、応答速度が速く、また、液晶ディスプレイ、有機ELディスプレイ等で使用されるカラーフィルターを必要としないこと等により薄型化も可能であることから、次世代の表示装置として注目されている。マイクロLEDディスプレイにおいては、多数のマイクロLEDチップが平面状に高密度で敷き詰められている。
2. Description of the Related Art In the manufacturing process of semiconductor devices, a large number of chip components arranged on an adhesive layer may be transferred onto a drive circuit board.
For example, a micro LED display is a display device in which each chip constituting a pixel is a fine light emitting diode (LED) chip, and the micro LED chip emits light by itself to display an image. Micro LED displays have high contrast, fast response speed, and can be made thinner because they do not require color filters used in liquid crystal displays and organic EL displays. is attracting attention as In a micro LED display, a large number of micro LED chips are densely laid out in a plane.
このようなマイクロLEDディスプレイ等の半導体デバイスの製造工程においては、例えば、粘着剤層上に多数のチップ部品が配置された転写用積層体を、駆動回路基板と対向させ、転写用積層体からチップ部品を剥離させて駆動回路基板と電気的な接続を行う(転写工程)。 In the manufacturing process of such a semiconductor device such as a micro LED display, for example, a transfer laminate in which a large number of chip parts are arranged on an adhesive layer is opposed to a drive circuit board, and the chips are separated from the transfer laminate. The components are peeled off and electrically connected to the drive circuit board (transfer process).
転写用積層体からチップ部品を剥離させる方法としては、例えば、転写用積層体の支持体の背面から粘着剤層に焦点をあててレーザー光を照射する方法が知られている(例えば、特許文献1)。このような方法は、レーザーアブレーション(laser ablation)とも呼ばれる。また、粘着剤層に熱膨張性粒子、熱膨張性マイクロカプセル等を配合し、転写用積層体と駆動回路基板との熱圧着により熱膨張性粒子、熱膨張性マイクロカプセル等を熱膨張させることで、粘着剤層の変形による接着面積低下によりチップ部品を剥離させる方法も知られている(例えば、特許文献2、3)。 As a method for peeling the chip component from the transfer laminate, for example, a method of irradiating a laser beam from the back surface of the support of the transfer laminate focusing on the adhesive layer is known (see, for example, Patent Documents 1). Such a method is also called laser ablation. In addition, heat-expandable particles, heat-expandable microcapsules, etc. are blended in the adhesive layer, and the heat-expandable particles, heat-expandable microcapsules, etc. are thermally expanded by thermocompression bonding between the transfer laminate and the drive circuit board. Also known is a method of peeling chip components by reducing the adhesive area due to deformation of the adhesive layer (for example, Patent Documents 2 and 3).
特開2019-138949号公報JP 2019-138949 A 特開2019-15899号公報JP 2019-15899 A 特開2003-7986号公報JP-A-2003-7986
しかしながら、従来のチップ部品を剥離させる方法では、チップ部品の剥離不良により、歩留まりよくチップ部品を転写することが難しいという問題があった。
また、従来の粘着剤層を用いてレーザーアブレーションを行った場合、チップ部品に粘着剤層の残渣が付着するという問題もあった。即ち、レーザーアブレーションによりチップ部品を剥離させること自体はできたとしても、チップ部品が剥離する際に粘着剤層がちぎれ、チップ部品に粘着剤層の残渣が付着することがある。残渣の付着を防ぐためには、例えば、粘着剤層の架橋度(ゲル分率)を上げることが考えられるが、単に粘着剤層の架橋度(ゲル分率)を上げただけではチップ部品が剥離しにくくなることから、チップ部品の剥離性能と、チップ部品への糊残り抑制効果とをともに高めることは困難であった。
However, in the conventional method of peeling off the chip parts, there is a problem that it is difficult to transfer the chip parts with a good yield due to poor peeling of the chip parts.
Moreover, when laser ablation is performed using a conventional adhesive layer, there is also a problem that a residue of the adhesive layer adheres to the chip component. That is, even if the chip component can be peeled off by laser ablation, the adhesive layer may be torn off when the chip component is peeled off, and a residue of the adhesive layer may adhere to the chip component. For example, increasing the degree of cross-linking (gel fraction) of the adhesive layer is conceivable to prevent residue from sticking. Therefore, it has been difficult to improve both the peeling performance of the chip component and the effect of suppressing adhesive residue on the chip component.
本発明は、チップ部品の剥離性能に優れ、かつ、チップ部品への糊残りを抑えることのできる粘着テープを提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide an adhesive tape which is excellent in peeling performance from chip components and which can suppress adhesive residue on the chip components.
本開示1は、粘着剤層を有する粘着テープであって、上記粘着剤層は、芳香族ビニルモノマーに由来する構造を有するブロックAと(メタ)アクリル系モノマーに由来する構造を有するブロックBとを有するA-B-A型ブロックコポリマー、及び、架橋剤を含有し、上記ブロックBは、架橋性官能基含有モノマーに由来する構造を含有し、上記粘着剤層は、引張弾性率が0.008MPa以上、2MPa以下である粘着テープである。 The present disclosure 1 is a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer, wherein the pressure-sensitive adhesive layer includes a block A having a structure derived from an aromatic vinyl monomer and a block B having a structure derived from a (meth)acrylic monomer. and a cross-linking agent, the block B contains a structure derived from a cross-linkable functional group-containing monomer, and the pressure-sensitive adhesive layer has a tensile modulus of 0. 008 MPa or more and 2 MPa or less.
本開示2は、上記粘着剤層の破断強度が1MPa以上である本開示1の粘着テープである。 The present disclosure 2 is the pressure-sensitive adhesive tape of the present disclosure 1, wherein the pressure-sensitive adhesive layer has a breaking strength of 1 MPa or more.
本開示3は、上記粘着剤層のゲル分率が70重量%以上である本開示1又は2の粘着テープである。 Present Disclosure 3 is the adhesive tape according to Present Disclosure 1 or 2, wherein the adhesive layer has a gel fraction of 70% by weight or more.
本開示4は、上記前記粘着剤層が、スフィア状の相分離構造を有する本開示1、2又は3の粘着テープである。 Present Disclosure 4 is the pressure-sensitive adhesive tape according to Present Disclosure 1, 2 or 3, wherein the pressure-sensitive adhesive layer has a spherical phase separation structure.
本開示5は、上記粘着剤層が、シリンダー状の相分離構造を有する本開示1、2又は3の粘着テープである。 Present Disclosure 5 is the pressure-sensitive adhesive tape according to Present Disclosure 1, 2 or 3, wherein the pressure-sensitive adhesive layer has a cylindrical phase-separated structure.
本開示6は、上記A-B-A型ブロックコポリマー中、上記ブロックAの含有量が1重量%以上、40重量%以下である本開示1、2、3、4又は5の粘着テープである。 Present Disclosure 6 is the pressure-sensitive adhesive tape of Present Disclosure 1, 2, 3, 4 or 5, wherein the content of the block A in the ABA type block copolymer is 1% by weight or more and 40% by weight or less. .
本開示7は、上記架橋剤が、エポキシ系架橋剤又はイソシアネート系架橋剤である本開示1、2、3、4、5又は6の粘着テープである。 Present Disclosure 7 is the pressure-sensitive adhesive tape according to Present Disclosure 1, 2, 3, 4, 5, or 6, wherein the cross-linking agent is an epoxy-based cross-linking agent or an isocyanate-based cross-linking agent.
本開示8は、上記(メタ)アクリル系モノマーが、炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーを含有し、上記A-B-A型ブロックコポリマー中、上記炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構造の含有量が40重量%以上である本開示1、2、3、4、5、6又は7の粘着テープである。 In the present disclosure 8, the (meth)acrylic monomer contains a (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms, and the ABA type block copolymer contains 8 or more carbon atoms 8. The pressure-sensitive adhesive tape according to 1, 2, 3, 4, 5, 6 or 7 of the present disclosure, wherein the content of a structure derived from a (meth)acrylic acid ester monomer having an alkyl group of is 40% by weight or more.
本開示9は、上記A-B-A型ブロックコポリマー中、上記ブロックBのガラス転移温度が-30℃以上、0℃以下である本開示1、2、3、4、5、6、7又は8の粘着テープである。 This disclosure 9 is present disclosure 1, 2, 3, 4, 5, 6, 7 or 8 adhesive tape.
本開示10は、上記A-B-A型ブロックコポリマーの重量平均分子量が10万以上である本開示1、2、3、4、5、6、7、8又は9の粘着テープである。 Present Disclosure 10 is the pressure-sensitive adhesive tape according to Present Disclosure 1, 2, 3, 4, 5, 6, 7, 8 or 9, wherein the ABA type block copolymer has a weight average molecular weight of 100,000 or more.
本開示11は、上記粘着剤層が、更に、常温で液状のタッキファイヤーを含有する本開示1、2、3、4、5、6、7、8、9又は10の粘着テープである。 The present disclosure 11 is the pressure-sensitive adhesive tape according to the present disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, wherein the pressure-sensitive adhesive layer further contains a tackifier that is liquid at room temperature.
本開示12は、上記粘着剤層の厚みが3μm以上、30μm以下である本開示1、2、3、4、5、6、7、8、9、10又は11の粘着テープである。
以下に本発明を詳述する。
Present Disclosure 12 is the adhesive tape according to Present Disclosure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, wherein the adhesive layer has a thickness of 3 μm or more and 30 μm or less.
The present invention will be described in detail below.
本発明者らは、粘着剤層を有する粘着テープにおいて、特定のA-B-A型ブロックコポリマー、及び、架橋剤を含有する粘着剤層を用い、粘着剤層の引張弾性率を特定範囲に調整することを検討した。本発明者らは、このような粘着テープであれば、レーザーアブレーションによりチップ部品を剥離させる場合にも、チップ部品の剥離性能が向上し、かつ、チップ部品への糊残りを抑えることができることを見出し、本発明を完成させるに至った。 The present inventors have found that in a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer, a specific ABA type block copolymer and a pressure-sensitive adhesive layer containing a cross-linking agent are used, and the tensile modulus of the pressure-sensitive adhesive layer is set to a specific range. Considered adjusting. The inventors of the present invention have found that such an adhesive tape can improve the peeling performance of the chip parts even when the chip parts are peeled off by laser ablation, and can suppress adhesive residue on the chip parts. This led to the completion of the present invention.
ここで、図1に、粘着剤層上に配置されたチップ部品をレーザーアブレーションにより剥離させる工程の一例を模式的に示す断面図を示す。図1に示す工程においては、支持体5上に積層された粘着剤層4上にチップ部品1が配置されており、レーザー光照射装置8から照射されるレーザー光8aによりチップ部品1を剥離させて、チップ部品1と駆動回路基板7との電気的な接続を行う(転写工程)。粘着剤層4は、基材を有する両面粘着テープであってもよい。また、支持体と粘着剤層との積層体9は、支持体5を基材とする片面粘着テープであってもよい。
なお、このような工程において、レーザー光8aを粘着剤層4に照射すると、粘着剤層4のレーザー光8aを照射した部分が変形する。より詳細には、レーザー光8aを粘着剤層4に照射すると、熱によって粘着剤層4の分子が切れて低分子化し、瞬間的に蒸発したり、高温となることで昇華したりするため、粘着剤層4のレーザー光8aを照射した部分が変形する。これにより、チップ部品1を剥離させることができる。レーザー光8aを用いることで、ごく小さい範囲に対してチップ部品1の剥離を起こさせることができるため、例えばマイクロLEDチップ等の極小のチップ部品が配列している場合であっても、チップ部品1を個別かつ高い剥離性能にて剥離させることができる。
Here, FIG. 1 shows a cross-sectional view schematically showing an example of a process of peeling off a chip part arranged on an adhesive layer by laser abrasion. In the process shown in FIG. 1, the chip component 1 is placed on the adhesive layer 4 laminated on the support 5, and the chip component 1 is peeled off by the laser beam 8a emitted from the laser beam irradiation device 8. to electrically connect the chip component 1 and the drive circuit board 7 (transfer step). The adhesive layer 4 may be a double-sided adhesive tape having a substrate. Moreover, the laminate 9 of the support and the adhesive layer may be a single-sided adhesive tape using the support 5 as a base material.
In such a process, when the adhesive layer 4 is irradiated with the laser beam 8a, the portion of the adhesive layer 4 irradiated with the laser beam 8a is deformed. More specifically, when the adhesive layer 4 is irradiated with the laser light 8a, the molecules of the adhesive layer 4 are cut by the heat to become low-molecular-weight, and evaporate instantaneously or sublimate when the temperature rises. A portion of the adhesive layer 4 irradiated with the laser beam 8a is deformed. Thereby, the chip component 1 can be peeled off. By using the laser beam 8a, the chip component 1 can be peeled off in a very small area. 1 can be peeled off individually and with high peeling performance.
本発明の粘着テープは、粘着剤層を有する粘着テープである。
上記粘着剤層は、芳香族ビニルモノマーに由来する構造を有するブロックAと(メタ)アクリル系モノマーに由来する構造を有するブロックBとを有するA-B-A型ブロックコポリマー、及び、架橋剤を含有する。なお、ここで(メタ)アクリルとは、アクリル又はメタクリルを意味する。
上記粘着剤層が上記A-B-A型ブロックコポリマー、及び、上記架橋剤を含有することで、上記粘着剤層の引張弾性率、破断強度、ゲル分率等が後述する範囲に調整されやすくなり、本発明の粘着テープは、チップ部品の剥離性能に優れ、かつ、チップ部品への糊残りを抑えることができるものとなる。
The adhesive tape of the present invention is an adhesive tape having an adhesive layer.
The pressure-sensitive adhesive layer contains an ABA type block copolymer having a block A having a structure derived from an aromatic vinyl monomer and a block B having a structure derived from a (meth)acrylic monomer, and a cross-linking agent. contains. In addition, (meth)acryl means acryl or methacryl here.
Since the pressure-sensitive adhesive layer contains the ABA type block copolymer and the cross-linking agent, the tensile elastic modulus, breaking strength, gel fraction, etc. of the pressure-sensitive adhesive layer are easily adjusted to the ranges described later. As a result, the adhesive tape of the present invention is excellent in peeling performance from chip components and can suppress adhesive residue on chip components.
上記A-B-A型ブロックコポリマーは、剛直な構造であるブロックA(以下、「ハードセグメント」ともいう)と、柔軟な構造であるブロックB(以下、「ソフトセグメント」ともいう)とを含む共重合体である。
上記A-B-A型ブロックコポリマーは、2つのブロックが相溶し難く、上記ブロックBの海の中に上記ブロックAが凝集してできた球状の島が点在する不均一な相分離構造、又は、上記ブロックBの海の中に上記ブロックAが凝集してできた円筒状の構造が点在する不均一な相分離構造をとることがある。このような球状の島が点在する相分離構造を、スフィア状の相分離構造ともいい、円筒状の構造が点在する相分離構造を、シリンダー状の相分離構造ともいう。そして、これらの相分離構造が疑似架橋点となることで、上記A-B-A型ブロックコポリマーにゴム弾性を付与できることから、上記粘着剤層の引張弾性率、破断強度、ゲル分率等が後述する範囲に調整されやすくなる。
上記A-B-A型ブロックコポリマーは、A-B-A型トリブロックコポリマーであることが好ましい。
The ABA type block copolymer includes a rigid structure block A (hereinafter also referred to as "hard segment") and a flexible structure block B (hereinafter also referred to as "soft segment"). It is a copolymer.
The ABA type block copolymer has a heterogeneous phase separation structure in which two blocks are difficult to be compatible, and spherical islands formed by agglomeration of the block A are scattered in the sea of the block B. Alternatively, a non-uniform phase-separated structure in which cylindrical structures formed by agglomeration of the block A are interspersed in the sea of the block B may be formed. Such a phase-separated structure in which spherical islands are scattered is also called a spherical phase-separated structure, and a phase-separated structure in which cylindrical structures are scattered is also called a cylindrical phase-separated structure. Then, these phase separation structures become pseudo-crosslinking points, so that rubber elasticity can be imparted to the ABA type block copolymer, so that the tensile elastic modulus, breaking strength, gel fraction, etc. of the adhesive layer are improved. It becomes easier to adjust within the range described later.
The ABA type block copolymer is preferably an ABA type triblock copolymer.
上記ブロックAは、剛直な構造を有していれば特に限定されず、上記芳香族ビニルモノマーに由来する構造に加えて更に、例えば、環状構造を有する化合物、側鎖置換基が短い化合物等に由来する構造を有していてもよい。上記ブロックBは、本発明の効果を失わない範囲で、上記(メタ)アクリル系モノマー以外のモノマーに由来する構造を有していてもよい。 The block A is not particularly limited as long as it has a rigid structure, and in addition to the structure derived from the aromatic vinyl monomer, it may be, for example, a compound having a cyclic structure, a compound having a short side chain substituent, or the like. It may have a derived structure. The block B may have a structure derived from a monomer other than the (meth)acrylic monomer as long as the effects of the present invention are not lost.
上記ブロックAにおいて、上記芳香族ビニルモノマーとしては、例えば、スチレン、アルファメチルスチレン、パラメチルスチレン、クロロスチレン等が挙げられる。これらの芳香族ビニルモノマーは単独で用いられてもよく、2種以上が併用されてもよい。なかでも、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができることから、スチレンが好ましい。なお、本明細書において芳香族ビニルモノマーに由来する構造とは、下記一般式(1)又は(2)に示すような構造のことを指す。 Examples of the aromatic vinyl monomer in the block A include styrene, alpha-methylstyrene, paramethylstyrene, chlorostyrene and the like. These aromatic vinyl monomers may be used alone, or two or more of them may be used in combination. Among these, styrene is preferable because it can further improve the peeling performance of the adhesive tape from the chip component and can further suppress adhesive residue on the chip component. In this specification, the structure derived from an aromatic vinyl monomer refers to a structure represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
一般式(1)及び(2)中、Rは芳香環を有する置換基を表す。芳香環を有する置換基Rとしては、フェニル基、メチルフェニル基、クロロフェニル基等が挙げられる。 In general formulas (1) and (2), R 1 represents a substituent having an aromatic ring. The aromatic ring-containing substituent R 1 includes a phenyl group, a methylphenyl group, a chlorophenyl group, and the like.
上記A-B-A型ブロックコポリマー中、上記芳香族ビニルモノマーに由来する構造の含有量は特に限定されないが、1重量%以上、30重量%以下であることが好ましい。上記芳香族ビニルモノマーに由来する構造の含有量が上記範囲であることで、上記粘着剤層の引張弾性率及び破断強度をより好ましい範囲に調整することができる。上記芳香族ビニルモノマーに由来する構造の含有量のより好ましい下限は5重量%、更に好ましい下限は8重量%、特に好ましい下限は10重量%、より好ましい上限は28重量%、更に好ましい上限は25重量%、特に好ましい上限は20重量%である。 The content of the structure derived from the aromatic vinyl monomer in the ABA type block copolymer is not particularly limited, but is preferably 1% by weight or more and 30% by weight or less. When the content of the structure derived from the aromatic vinyl monomer is within the above range, the tensile modulus and breaking strength of the pressure-sensitive adhesive layer can be adjusted to more preferable ranges. A more preferable lower limit of the content of the structure derived from the aromatic vinyl monomer is 5% by weight, a more preferable lower limit is 8% by weight, a particularly preferable lower limit is 10% by weight, a more preferable upper limit is 28% by weight, and a further preferable upper limit is 25%. % by weight, a particularly preferred upper limit is 20% by weight.
上記ブロックBにおいて、上記(メタ)アクリル系モノマーは、単一のものであってもよいし、複数のモノマーを用いてもよい。なお、本明細書において(メタ)アクリル系モノマーに由来する構造とは、下記一般式(5)又は(6)に示すような構造のことを指す。 In the block B, the (meth)acrylic monomer may be a single monomer, or a plurality of monomers may be used. In this specification, a structure derived from a (meth)acrylic monomer refers to a structure represented by the following general formula (5) or (6).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
一般式(5)及び(6)中、Rは側鎖を表す。側鎖Rとしては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルへキシル基、ノニル基、イソノニル基、デシル基、ラウリル基、ステアリル基、イソステアリル基、イソボルニル基等が挙げられる。 In general formulas (5) and ( 6 ), R3 represents a side chain. The side chain R3 includes methyl group , ethyl group, propyl group, butyl group, isobutyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl group, Examples include an isononyl group, a decyl group, a lauryl group, a stearyl group, an isostearyl group, and an isobornyl group.
上記(メタ)アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。これらの(メタ)アクリル系モノマーは単独で用いられてもよく、2種以上が併用されてもよい。なかでも、チップ部品の剥離性能と、チップ部品への糊残り抑制効果とのバランスを取る観点から、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレートが好ましく、ブチルアクリレート、2-エチルへキシルアクリレート、ラウリルアクリレートが更に好ましい。なお、本明細書中において(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。 Examples of the (meth)acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, pentyl (meth)acrylate, hexyl ( meth)acrylate, cyclohexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, Decyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, isobornyl (meth)acrylate and the like. These (meth)acrylic monomers may be used alone, or two or more of them may be used in combination. Among them, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and lauryl (meth)acrylate are preferable from the viewpoint of balancing the peeling performance of chip parts and the effect of suppressing adhesive residue on chip parts. More preferred are butyl acrylate, 2-ethylhexyl acrylate and lauryl acrylate. In addition, (meth)acrylate means an acrylate or a methacrylate in this specification.
上記A-B-A型ブロックコポリマー中、上記(メタ)アクリル系モノマーに由来する構造の含有量は特に限定されず、本発明の効果が発揮されればよいが、30重量%以上、99重量%以下であることが好ましい。上記(メタ)アクリル系モノマーに由来する構造の含有量は、40重量%以上、95重量%以下であることがより好ましく、50重量%以上、90重量%以下であることが更に好ましい。 In the ABA type block copolymer, the content of the structure derived from the (meth)acrylic monomer is not particularly limited as long as the effect of the present invention is exhibited. % or less. The content of the structure derived from the (meth)acrylic monomer is more preferably 40% by weight or more and 95% by weight or less, and even more preferably 50% by weight or more and 90% by weight or less.
なかでも、上記(メタ)アクリル系モノマーは、炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーを含有することが好ましい。
上記(メタ)アクリル系モノマーが上記炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーを含有することで、上記粘着剤層の引張弾性率をより好ましい範囲に調整することができる。上記炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーとしては、例えば、オクチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソステアリル(メタ)アクリレートが挙げられる。特に、2-エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレートが好ましい。
Among them, the (meth)acrylic monomer preferably contains a (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms.
When the (meth)acrylic monomer contains the (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms, the tensile elastic modulus of the pressure-sensitive adhesive layer can be adjusted to a more preferable range. Examples of the (meth)acrylate monomer having an alkyl group having 8 or more carbon atoms include octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, Lauryl (meth)acrylate and isostearyl (meth)acrylate can be mentioned. 2-Ethylhexyl (meth)acrylate and lauryl (meth)acrylate are particularly preferred.
上記A-B-A型ブロックコポリマー中、上記炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構造の含有量は特に限定されず、0重量%であってもよいが、好ましい下限は35重量%である。上記炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構造の含有量が35重量%以上であれば、粘着テープのチップ部品の剥離性能がより向上する。上記炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構造の含有量のより好ましい下限は40重量%である。
上記炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構造の含有量の上限は特に限定されないが、チップ部品への糊残りを抑える観点から、好ましい上限は70重量%、より好ましい上限は60重量%である。
In the ABA type block copolymer, the content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group of 8 or more carbon atoms is not particularly limited, and may be 0% by weight. , the preferred lower limit is 35% by weight. When the content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group of 8 or more carbon atoms is 35% by weight or more, the release performance of the adhesive tape from chip components is further improved. A more preferable lower limit of the content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms is 40% by weight.
The upper limit of the content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms is not particularly limited, but from the viewpoint of suppressing adhesive residue on chip parts, the preferred upper limit is 70% by weight. A more preferable upper limit is 60% by weight.
上記A-B-A型ブロックコポリマー中、上記ブロックBのガラス転移温度は特に限定されないが、-30℃以上、0℃以下であることが好ましい。上記ブロックBのガラス転移温度が上記範囲であることで、突起を有するチップ部品、又は、小さいサイズのチップ部品を転写する場合にも粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。上記ブロックBのガラス転移温度のより好ましい下限は-28℃、更に好ましい下限は-25℃であり、より好ましい上限は-5℃、更に好ましい上限は-10℃である。
なお、ブロックBのガラス転移温度は、例えば、示差走査熱量計(ティー・エイ・インスツルメント社製、日立ハイテクサイエンス社製等)等を用いて測定することによって求めることができる。より具体的には、示差走査熱量計(例えば、日立ハイテクサイエンス社製、SII Exstar 6000/DSC 6220)を用い、窒素雰囲気下、昇温速度10℃/minの条件でA-B-A型ブロックコポリマーの測定を行った際に2nd runで得られる値を用いることができる。なお、ブロックAに由来するピークとブロックBに由来するピークとが得られるが、低温側のピークをブロックBに由来するピークとし、ブロックBのガラス転移温度を決定する。
Although the glass transition temperature of the block B in the ABA type block copolymer is not particularly limited, it is preferably −30° C. or higher and 0° C. or lower. By setting the glass transition temperature of the block B to be within the above range, even when transferring a chip part having projections or a small-sized chip part, the peeling performance of the adhesive tape for the chip part is further improved, and the chip is Adhesive residue on parts can be further suppressed. The more preferable lower limit of the glass transition temperature of the block B is -28°C, the more preferable lower limit is -25°C, the more preferable upper limit is -5°C, and the more preferable upper limit is -10°C.
The glass transition temperature of block B can be obtained by measurement using, for example, a differential scanning calorimeter (manufactured by TA Instruments, Hitachi High-Tech Science, etc.). More specifically, using a differential scanning calorimeter (for example, SII Exstar 6000/DSC 6220 manufactured by Hitachi High-Tech Science Co., Ltd.), an ABA type block was obtained in a nitrogen atmosphere at a heating rate of 10°C/min. The value obtained in the 2nd run when measuring the copolymer can be used. A peak derived from block A and a peak derived from block B are obtained.
上記ブロックBのガラス転移温度を上記範囲に調整する方法は特に限定されないが、上記ブロックBのガラス転移温度を上記範囲に調整するためには、上記(メタ)アクリル系モノマーが、ホモポリマーとしたときのガラス転移温度が0℃以上である(メタ)アクリル酸エステルモノマーを含有することが好ましい。
上記(メタ)アクリル系モノマーが上記ホモポリマーとしたときのガラス転移温度が0℃以上である(メタ)アクリル酸エステルモノマーを含有することで、上記粘着剤層の引張弾性率をより好ましい範囲に調整することができる。上記ホモポリマーとしたときのガラス転移温度が0℃以上である(メタ)アクリル酸エステルモノマーとしては、例えば、メチルアクリレート、メチルメタクリレート、エチルメタクリレート、ノルマルブチルメタクリレート、イソブチルメタクリレート、ターシャリーブチルアクリレート、ターシャリーブチルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、ベンジルメタクリレートが挙げられる。特に、メチルアクリレート、メチルメタクリレートが好ましい。
The method for adjusting the glass transition temperature of the block B to the above range is not particularly limited. It is preferable to contain a (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher.
By containing a (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher when the (meth)acrylic monomer is the homopolymer, the tensile elastic modulus of the pressure-sensitive adhesive layer is set in a more preferable range. can be adjusted. Examples of (meth)acrylic acid ester monomers having a glass transition temperature of 0° C. or higher when homopolymerized include methyl acrylate, methyl methacrylate, ethyl methacrylate, normal butyl methacrylate, isobutyl methacrylate, tertiary butyl acrylate, tertiary Libutyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, isobornyl acrylate, isobornyl methacrylate, benzyl methacrylate. In particular, methyl acrylate and methyl methacrylate are preferred.
上記A-B-A型ブロックコポリマー中、上記ホモポリマーとしたときのガラス転移温度が0℃以上である(メタ)アクリル酸エステルモノマーに由来する構造の含有量は特に限定されず、0重量%であってもよいが、好ましい下限は35重量%である。上記ホモポリマーとしたときのガラス転移温度が0℃以上である(メタ)アクリル酸エステルモノマーに由来する構造の含有量が35重量%以上であれば、粘着テープのチップ部品の剥離性能がより向上する。上記ホモポリマーとしたときのガラス転移温度が0℃以上である(メタ)アクリル酸エステルモノマーに由来する構造の含有量のより好ましい下限は40重量%である。
上記ホモポリマーとしたときのガラス転移温度が0℃以上である(メタ)アクリル酸エステルモノマーに由来する構造の含有量の上限は特に限定されないが、チップ部品を仮固定する観点から、好ましい上限は60重量%、より好ましい上限は50重量%である。
In the ABA type block copolymer, the content of the structure derived from the (meth)acrylic acid ester monomer having a glass transition temperature of 0 ° C. or higher when converted to the homopolymer is not particularly limited, and is 0% by weight. but the preferred lower limit is 35% by weight. If the content of the structure derived from the (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher when converted to the homopolymer is 35% by weight or more, the peeling performance of the adhesive tape chip parts is further improved. do. A more preferable lower limit of the content of the structure derived from the (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher when converted to the homopolymer is 40% by weight.
The upper limit of the content of the structure derived from the (meth)acrylic acid ester monomer having a glass transition temperature of 0° C. or higher when converted to the homopolymer is not particularly limited, but from the viewpoint of temporarily fixing the chip component, the preferred upper limit is 60% by weight, more preferably 50% by weight.
上記ブロックBは、架橋性官能基含有モノマーに由来する構造を含有する。
上記ブロックBが上記架橋性官能基含有モノマーに由来する構造を含有することで、架橋性官能基の架橋によって上記粘着剤層の凝集力が高まることから、粘着テープのチップ部品の剥離性能が向上し、かつ、チップ部品への糊残りを抑えることができる。上記架橋性官能基は架橋されていても架橋されていなくてもよいが、架橋されていることがより好ましい。ただし、架橋されていない構造のままであったとしても、官能基間の相互作用により上記粘着剤層の凝集力が高まり、粘着テープのチップ部品の剥離性能が向上し、かつ、チップ部品への糊残りを抑えることができる。なお、本明細書において架橋性官能基を有するモノマーに由来する構造とは、下記一般式(3)又は(4)に示すような構造のことを指す。
The block B contains a structure derived from a crosslinkable functional group-containing monomer.
Since the block B contains a structure derived from the crosslinkable functional group-containing monomer, the cohesive force of the adhesive layer is increased by crosslinking of the crosslinkable functional group, so that the peeling performance of the adhesive tape chip component is improved. Furthermore, it is possible to suppress adhesive residue on the chip component. The crosslinkable functional group may or may not be crosslinked, but is more preferably crosslinked. However, even if the structure remains uncrosslinked, the interaction between the functional groups increases the cohesive force of the pressure-sensitive adhesive layer, improves the peeling performance of the pressure-sensitive adhesive tape from the chip parts, and increases the adhesion of the pressure-sensitive adhesive tape to the chip parts. Residual glue can be suppressed. In this specification, the structure derived from a monomer having a crosslinkable functional group refers to a structure represented by the following general formula (3) or (4).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
一般式(3)及び(4)中、Rは少なくとも1つの架橋性官能基を含む置換基を表す。架橋性官能基としては、例えば、カルボキシル基、水酸基、エポキシ基、二重結合、三重結合、アミノ基、アミド基、ニトリル基等が挙げられる。なお、少なくとも1つの架橋性官能基を含む置換基Rは、その構成要素として、アルキル基、エーテル基、カルボニル基、エステル基、カーボネート基、アミド基、ウレタン基等を含んでいてもよい。 In general formulas (3) and (4), R2 represents a substituent containing at least one crosslinkable functional group. Examples of crosslinkable functional groups include carboxyl groups, hydroxyl groups, epoxy groups, double bonds, triple bonds, amino groups, amide groups, nitrile groups and the like. The substituent R 2 containing at least one crosslinkable functional group may contain an alkyl group, an ether group, a carbonyl group, an ester group, a carbonate group, an amide group, a urethane group, etc. as its constituent elements.
上記架橋性官能基を有するモノマーは特に限定されず、例えば、カルボキシル基含有モノマー、水酸基含有モノマー、エポキシ基含有モノマー、二重結合含有モノマー、三重結合含有モノマー、アミノ基含有モノマー、アミド基含有モノマー、ニトリル基含有モノマー等が挙げられる。これらの架橋性官能基を有するモノマーは単独で用いられてもよく、2種以上が併用されてもよい。なかでも、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができることから、カルボキシル基含有モノマー、水酸基含有モノマー、エポキシ基含有モノマー、二重結合含有モノマー、三重結合含有モノマー及びアミド基含有モノマーからなる群から選択される少なくとも1種が好ましい。
上記カルボキシル基含有モノマーとしては、(メタ)アクリル酸等の(メタ)アクリル酸系モノマーが挙げられる。上記水酸基含有モノマーとしては、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートが挙げられる。上記エポキシ基含有モノマーとしては、グリシジル(メタ)アクリレート等が挙げられる。上記二重結合含有モノマーとしては、アリル(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート等が挙げられる。上記三重結合含有モノマーとしては、プロパルギル(メタ)アクリレート等が挙げられる。上記アミド基含有モノマーとしては、(メタ)アクリルアミド等が挙げられる。なかでも、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができることから、カルボキシル基含有モノマー及び水酸基含有モノマーが好ましい。更に、(メタ)アクリル酸系モノマー及びヒドロキシアルキルアクリレートがより好ましく、アクリル酸、2-ヒドロキシエチルアクリレート及び4-ヒドロキシブチルアクリレートが更に好ましい。
The monomer having a crosslinkable functional group is not particularly limited, and examples include carboxyl group-containing monomers, hydroxyl group-containing monomers, epoxy group-containing monomers, double bond-containing monomers, triple bond-containing monomers, amino group-containing monomers, and amide group-containing monomers. , a nitrile group-containing monomer, and the like. These monomers having crosslinkable functional groups may be used alone, or two or more of them may be used in combination. Among them, carboxyl group-containing monomers, hydroxyl group-containing monomers, epoxy group-containing monomers, and double bond-containing monomers have been found to improve the peeling performance of adhesive tapes from chip parts and to further suppress adhesive residue on chip parts. At least one selected from the group consisting of monomers, triple bond-containing monomers and amide group-containing monomers is preferred.
Examples of the carboxyl group-containing monomer include (meth)acrylic acid-based monomers such as (meth)acrylic acid. Examples of the hydroxyl group-containing monomer include hydroxyalkyl acrylates and hydroxyalkyl methacrylates such as 4-hydroxybutyl (meth)acrylate and 2-hydroxyethyl (meth)acrylate. Glycidyl (meth)acrylate etc. are mentioned as said epoxy group containing monomer. Examples of the double bond-containing monomer include allyl (meth)acrylate, hexanediol di(meth)acrylate, and the like. Examples of the triple bond-containing monomer include propargyl (meth)acrylate. Examples of the amide group-containing monomer include (meth)acrylamide. Among these, carboxyl group-containing monomers and hydroxyl group-containing monomers are preferable because they can further improve the peeling performance of the adhesive tape from chip parts and can further suppress adhesive residue on chip parts. Furthermore, (meth)acrylic acid-based monomers and hydroxyalkyl acrylates are more preferred, and acrylic acid, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are even more preferred.
なお、上記ブロックBに加えて、上記ブロックAも、上記架橋性官能基含有モノマーに由来する構造を含有していてもよい。 In addition to the block B, the block A may also contain a structure derived from the crosslinkable functional group-containing monomer.
上記A-B-A型ブロックコポリマー中、上記架橋性官能基を有するモノマーに由来する構造の含有量(上記ブロックA中の含有量と上記ブロックB中の含有量との合計)は特に限定されないが、0.1重量%以上、30重量%以下であることが好ましい。上記架橋性官能基を有するモノマーに由来する構造の含有量が上記範囲であることで、上記粘着剤層の凝集力がより高まり、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。上記架橋性官能基を有するモノマーに由来する構造の含有量のより好ましい下限は0.5重量%、更に好ましい下限は1重量%、より好ましい上限は25重量%、更に好ましい上限は20重量%である。 In the ABA type block copolymer, the content of the structure derived from the monomer having the crosslinkable functional group (the sum of the content in the block A and the content in the block B) is not particularly limited. is preferably 0.1% by weight or more and 30% by weight or less. When the content of the structure derived from the monomer having the crosslinkable functional group is within the above range, the cohesive force of the pressure-sensitive adhesive layer is further increased, the peeling performance of the pressure-sensitive adhesive tape for chip components is further improved, and the chip Adhesive residue on parts can be further suppressed. A more preferable lower limit of the content of the structure derived from the monomer having the crosslinkable functional group is 0.5% by weight, a more preferable lower limit is 1% by weight, a more preferable upper limit is 25% by weight, and a further preferable upper limit is 20% by weight. be.
上記A-B-A型ブロックコポリマー中、上記ブロックA(ハードセグメント)の含有量は特に限定されないが、1重量%以上、40重量%以下であることが好ましい。上記ブロックAの含有量が上記範囲であることで、上記粘着剤層の引張弾性率をより好ましい範囲に調整することができる。上記ブロックAの含有量のより好ましい下限は2重量%、更に好ましい下限は5重量%、特に好ましい下限は10重量%である。上記ブロックAの含有量のより好ましい上限は35重量%、更に好ましい上限は30重量%、更に好ましい上限は25重量%、更により好ましい上限は22重量%、特に好ましい上限は20重量%である。 The content of the block A (hard segment) in the ABA type block copolymer is not particularly limited, but is preferably 1% by weight or more and 40% by weight or less. When the content of the block A is within the above range, the tensile elastic modulus of the pressure-sensitive adhesive layer can be adjusted to a more preferable range. A more preferred lower limit for the content of block A is 2% by weight, a still more preferred lower limit is 5% by weight, and a particularly preferred lower limit is 10% by weight. More preferably, the upper limit of the content of block A is 35% by weight, more preferably 30% by weight, still more preferably 25% by weight, still more preferably 22% by weight, and particularly preferably 20% by weight.
上記A-B-A型ブロックコポリマーの重量平均分子量(Mw)は特に限定されないが、5万以上、80万以下であることが好ましい。上記重量平均分子量が上記範囲であることで、上記粘着剤層の引張弾性率をより好ましい範囲に調整することができる。上記重量平均分子量のより好ましい下限は75000、更に好ましい下限は10万、更により好ましい下限は20万である。上記重量平均分子量のより好ましい上限は60万である。
なお、重量平均分子量は、例えば、GPC(Gel Permeation Chromatography:ゲルパーミエーションクロマトグラフィ)法により標準ポリスチレン換算にて求めることができる。より具体的には、例えば、測定機器としてWater社製「2690 Separations Module」、カラムとして昭和電工社製「GPC KF-806L」、溶媒として酢酸エチルを用い、サンプル流量1mL/min、カラム温度40℃の条件で測定することができる。
The weight average molecular weight (Mw) of the ABA type block copolymer is not particularly limited, but is preferably 50,000 or more and 800,000 or less. When the weight-average molecular weight is within the above range, the tensile elastic modulus of the pressure-sensitive adhesive layer can be adjusted to a more preferable range. A more preferable lower limit of the weight average molecular weight is 75,000, a still more preferable lower limit is 100,000, and a still more preferable lower limit is 200,000. A more preferable upper limit of the weight average molecular weight is 600,000.
The weight average molecular weight can be determined, for example, by GPC (Gel Permeation Chromatography) in terms of standard polystyrene. More specifically, for example, using "2690 Separations Module" manufactured by Water as a measuring instrument, "GPC KF-806L" manufactured by Showa Denko as a column, and ethyl acetate as a solvent, a sample flow rate of 1 mL/min, and a column temperature of 40°C. can be measured under the conditions of
上記A-B-A型ブロックコポリマーを得るには、上記ブロックA及び上記ブロックBの原料モノマーを、重合開始剤の存在下にてそれぞれラジカル反応させて上記ブロックA及び上記ブロックBを得た後、両者を反応させる又は共重合すればよい。また、上記ブロックAを得た後、続けて上記ブロックBの原料モノマーを投入し、共重合してもよい。
上記ラジカル反応をさせる方法、即ち、重合方法としては、従来公知の方法が用いられ、例えば、溶液重合(沸点重合又は定温重合)、乳化重合、懸濁重合、塊状重合等が挙げられる。
In order to obtain the ABA type block copolymer, the raw material monomers of the block A and the block B are radically reacted in the presence of a polymerization initiator to obtain the block A and the block B. , the two may be reacted or copolymerized. Alternatively, after the block A is obtained, the raw material monomer for the block B may be continuously added for copolymerization.
As the method of causing the radical reaction, that is, the polymerization method, conventionally known methods are used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization, and the like.
上記架橋剤は特に限定されず、上記A-B-A型ブロックコポリマー中の架橋性官能基の種類に応じて選択され、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。より具体的には、例えば、上記A-B-A型ブロックコポリマー中の架橋性官能基がカルボキシル基の場合、上記架橋剤として、例えば、エポキシ系架橋剤、イソシアネート系架橋剤、金属キレート系架橋剤等が挙げられる。
なかでも、上記粘着剤層の引張弾性率をより好ましい範囲に調整しやすいことから、エポキシ系架橋剤及びイソシアネート系架橋剤が好ましい。
The cross-linking agent is not particularly limited, and is selected according to the type of cross-linkable functional group in the ABA type block copolymer. A chelate-based cross-linking agent and the like are included. More specifically, for example, when the crosslinkable functional group in the ABA type block copolymer is a carboxyl group, the crosslinker may be, for example, an epoxy crosslinker, an isocyanate crosslinker, or a metal chelate crosslinker. agents and the like.
Among them, the epoxy-based cross-linking agent and the isocyanate-based cross-linking agent are preferable because the tensile modulus of elasticity of the pressure-sensitive adhesive layer can be easily adjusted to a more preferable range.
上記架橋剤の含有量は特に限定されず、上記A-B-A型ブロックコポリマー中の架橋性官能基の量、及び、上記架橋剤の含有量を調整することで、上記粘着剤層の架橋度(ゲル分率)を調整することができる。
上記架橋剤の含有量は、上記A-B-A型ブロックコポリマー100重量部に対して0.01重量部以上、10重量部以下であることが好ましい。上記架橋剤の含有量が上記範囲であることで、上記A-B-A型ブロックコポリマーを適度に架橋して上記粘着剤層の凝集力を高めることができ、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。上記架橋剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部であり、更に好ましい下限は0.15重量部、更に好ましい上限は3重量部である。
The content of the cross-linking agent is not particularly limited, and by adjusting the amount of the cross-linkable functional group in the ABA type block copolymer and the content of the cross-linking agent, the pressure-sensitive adhesive layer can be cross-linked. degree (gel fraction) can be adjusted.
The content of the cross-linking agent is preferably 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the ABA type block copolymer. When the content of the cross-linking agent is within the above range, the ABA type block copolymer can be appropriately cross-linked to increase the cohesive force of the pressure-sensitive adhesive layer, and the release performance of the adhesive tape chip parts. is further improved, and adhesive residue on chip parts can be further suppressed. A more preferable lower limit of the content of the crosslinking agent is 0.1 parts by weight, a more preferable upper limit is 5 parts by weight, a still more preferable lower limit is 0.15 parts by weight, and a still more preferable upper limit is 3 parts by weight.
上記粘着剤層は、更に、タッキファイヤー(粘着付与剤)を含有してもよい。
上記タッキファイヤーは特に限定されず、常温で固体状のタッキファイヤーであってもよいが、常温で液状のタッキファイヤーが好ましい。上記粘着剤層が上記常温で液状のタッキファイヤーを含有することで、上記粘着剤層の引張弾性率をより好ましい範囲に調整しやすいことから、粘着テープのチップ部品の剥離性能がより向上する。なお、常温とは、20~25℃を意味し、液状とは、流動性を有することを意味する。
The pressure-sensitive adhesive layer may further contain a tackifier (tackifier).
The tackifier is not particularly limited and may be a tackifier that is solid at room temperature, but a tackifier that is liquid at room temperature is preferable. Since the pressure-sensitive adhesive layer contains the tackifier that is liquid at room temperature, the tensile modulus of the pressure-sensitive adhesive layer can be easily adjusted within a more preferable range, and thus the release performance of the pressure-sensitive adhesive tape for chip parts is further improved. Here, normal temperature means 20 to 25° C., and liquid means having fluidity.
上記常温で固体状のタッキファイヤーは特に限定されず、例えば、ロジンエステル樹脂、テルペンフェノール樹脂、テルペン樹脂、クマロン樹脂等が挙げられる。
上記常温で液状のタッキファイヤーは特に限定されず、例えば、液状ロジンエステル、液状テルペンフェノール等が挙げられる。
The tackifier that is solid at room temperature is not particularly limited, and examples thereof include rosin ester resins, terpene phenol resins, terpene resins, and coumarone resins.
The tackifier that is liquid at room temperature is not particularly limited, and examples thereof include liquid rosin esters and liquid terpene phenols.
上記常温で固体状のタッキファイヤーの含有量は特に限定されず、粘着テープのチップ部品の剥離性能の観点から、上記粘着剤層に含有されないことが好ましい。上記常温で固体状のタッキファイヤーを含有する場合は、上記A-B-A型ブロックコポリマー100重量部に対して10重量部以下であることが好ましい。上記常温で固体状のタッキファイヤーの含有量が上記範囲であることで、粘着テープのチップ部品の剥離性能がより向上する。上記常温で固体状のタッキファイヤーの含有量のより好ましい上限は5重量部である。
また、上記常温で液状のタッキファイヤーの含有量は特に限定されないが、上記A-B-A型ブロックコポリマー100重量部に対して5重量部以上、50重量部以下であることが好ましい。上記常温で液状のタッキファイヤーの含有量が上記範囲であることで、粘着テープのチップ部品の剥離性能がより向上する。上記常温で液状のタッキファイヤーの含有量のより好ましい下限は10重量部、より好ましい上限は30重量部である。
The content of the tackifier, which is solid at room temperature, is not particularly limited, and from the viewpoint of the peeling performance of the adhesive tape from chip parts, it is preferred that the tackifier is not contained in the adhesive layer. When the tackifier, which is solid at room temperature, is contained, it is preferably 10 parts by weight or less per 100 parts by weight of the ABA type block copolymer. When the content of the tackifier, which is solid at room temperature, is within the above range, the release performance of the adhesive tape for chip components is further improved. A more preferable upper limit of the content of the tackifier that is solid at room temperature is 5 parts by weight.
The content of the tackifier, which is liquid at room temperature, is not particularly limited, but is preferably 5 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the ABA type block copolymer. When the content of the tackifier, which is liquid at room temperature, is within the above range, the release performance of the adhesive tape for chip components is further improved. A more preferred lower limit to the content of the tackifier that is liquid at room temperature is 10 parts by weight, and a more preferred upper limit is 30 parts by weight.
上記粘着剤層は、更に、紫外線吸収剤を含有することが好ましい。
上記粘着剤層が上記紫外線吸収剤を含有することで、上記粘着剤層においてレーザー光の刺激が効率よく熱又は振動に変わるため、レーザーアブレーションによる上記粘着剤層の変形が起こりやすくなり、粘着テープのチップ部品の剥離性能がより向上する。
The pressure-sensitive adhesive layer preferably further contains an ultraviolet absorber.
When the pressure-sensitive adhesive layer contains the ultraviolet absorber, the stimulation of the laser light in the pressure-sensitive adhesive layer is efficiently converted into heat or vibration, so that the pressure-sensitive adhesive layer is easily deformed by laser abrasion, resulting in an adhesive tape. The peeling performance of the chip parts is further improved.
上記紫外線吸収剤は特に限定されず、例えば、ベンゾトリアゾール系紫外線吸収剤、ヒドロキシルフェニルトリアジン系紫外線吸収剤等が挙げられる。また、例えば、メトキシケイヒ酸エチルヘキシル、メトキシケイヒ酸オクチル、パラメトキシ桂皮酸エチルヘキシル、ジエチルアミノヒドロキシベンゾイル安息香酸ヘキシル、ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン、t-ブチルメトキシジベンゾイルメタン等が挙げられる。なかでも、上記粘着剤層において他の成分との相溶性に優れる観点から、ベンゾトリアゾール系紫外線吸収剤、及び、ヒドロキシルフェニルトリアジン系紫外線吸収剤が好ましい。これらの紫外線吸収剤は単独で用いられてもよく、2種以上が併用されてもよい。 The ultraviolet absorber is not particularly limited, and examples thereof include benzotriazole-based ultraviolet absorbers, hydroxylphenyltriazine-based ultraviolet absorbers, and the like. Further examples include ethylhexyl methoxycinnamate, octyl methoxycinnamate, ethylhexyl paramethoxycinnamate, hexyl diethylaminohydroxybenzoylbenzoate, bisethylhexyloxyphenolmethoxyphenyltriazine, t-butylmethoxydibenzoylmethane and the like. Among them, benzotriazole-based UV absorbers and hydroxylphenyltriazine-based UV absorbers are preferable from the viewpoint of excellent compatibility with other components in the pressure-sensitive adhesive layer. These ultraviolet absorbers may be used alone, or two or more of them may be used in combination.
上記紫外線吸収剤の含有量は特に限定されないが、上記A-B-A型ブロックコポリマー100重量部に対する好ましい下限が6重量部である。上記紫外線吸収剤の含有量が6重量部以上であれば、粘着テープのチップ部品の剥離性能がより向上する。上記紫外線吸収剤の含有量のより好ましい下限は10重量部、更に好ましい下限は15重量部である。
上記紫外線吸収剤の含有量の上限は特に限定されないが、上記粘着剤層の粘着力を確保する観点から、好ましい上限は30重量部である。
The content of the ultraviolet absorber is not particularly limited, but the preferred lower limit is 6 parts by weight with respect to 100 parts by weight of the ABA type block copolymer. When the content of the ultraviolet absorber is 6 parts by weight or more, the peeling performance of the adhesive tape for chip components is further improved. A more preferable lower limit for the content of the ultraviolet absorber is 10 parts by weight, and a more preferable lower limit is 15 parts by weight.
The upper limit of the content of the ultraviolet absorber is not particularly limited, but from the viewpoint of ensuring the adhesive strength of the pressure-sensitive adhesive layer, the preferred upper limit is 30 parts by weight.
上記粘着剤層は、更に、ヒュームドシリカ等の無機フィラーを含有してもよい。
上記無機フィラーを配合することにより、上記粘着剤層の凝集力を高めることができ、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。
The pressure-sensitive adhesive layer may further contain an inorganic filler such as fumed silica.
By blending the inorganic filler, the cohesive force of the adhesive layer can be increased, the peeling performance of the adhesive tape from the chip components can be further improved, and the adhesive residue on the chip components can be further suppressed.
上記粘着剤層は、更に、可塑剤、樹脂、界面活性剤、ワックス、微粒子充填剤等の公知の添加剤を含有してもよい。これらの添加剤は単独で用いられてもよく、2種以上が併用されてもよい。 The pressure-sensitive adhesive layer may further contain known additives such as plasticizers, resins, surfactants, waxes and fine particle fillers. These additives may be used alone, or two or more of them may be used in combination.
上記粘着剤層は、引張弾性率の下限が0.008MPa、上限が2MPaである。
上記引張弾性率が0.008MPa以上であれば、レーザーアブレーションによりチップ部品が剥離する際に上記粘着剤層がちぎれにくくなり、チップ部品への糊残りを抑えることができる。上記引張弾性率が2MPa以下であれば、レーザーアブレーションによる上記粘着剤層の変形が起こりやすくなり、粘着テープのチップ部品の剥離性能が向上する。上記引張弾性率の好ましい下限は0.01MPa、好ましい上限は0.7MPaであり、より好ましい下限は0.015MPa、より好ましい上限は0.68MPaであり、更に好ましい上限は0.65MPaである。
The pressure-sensitive adhesive layer has a tensile modulus with a lower limit of 0.008 MPa and an upper limit of 2 MPa.
When the tensile modulus of elasticity is 0.008 MPa or more, the pressure-sensitive adhesive layer is less likely to tear when the chip component is peeled off by laser abrasion, and adhesive residue on the chip component can be suppressed. When the tensile elastic modulus is 2 MPa or less, the adhesive layer is likely to be deformed by laser abrasion, and the peeling performance of the adhesive tape for chip components is improved. The preferred lower limit of the tensile modulus is 0.01 MPa, the preferred upper limit is 0.7 MPa, the more preferred lower limit is 0.015 MPa, the more preferred upper limit is 0.68 MPa, and the still more preferred upper limit is 0.65 MPa.
また、突起を有するチップ部品、又は、小さいサイズのチップ部品を転写する場合にも粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる観点からは、上記引張弾性率の好ましい下限は0.01MPa、好ましい上限は2MPaである。同様の観点から、上記引張弾性率のより好ましい下限は0.7MPa、より好ましい上限は1.9MPaであり、更に好ましい下限は0.8MPa、更に好ましい上限は1.8MPaであり、更により好ましい上限は1.5MPaである。
なお、粘着剤層の引張弾性率は、例えば、オートグラフ(島津製作所社製)等を用いて、JIS K7161:2014に準じて、温度23℃、相対湿度50%の環境下で引張速度500mm/minで粘着剤層を引っ張った際の歪み100%での応力-歪み曲線の傾きから算出することができる。なお、粘着テープが基材を有する場合は、基材を取り除き、粘着剤層のみのサンプルを作製した後に引張弾性率の測定を行う。基材を取り除く方法としては、粘着剤層の変性を避けるため、溶剤を用いた処理、化学反応を伴う処理、高温での処理等を避ける限りにおいて特に限定されない。具体的な方法としては、粘着剤層同士を貼り合わせた後、適切な温度及び剥離速度を選択し、引き剥がすことによって基材と粘着剤層とを剥離し、基材を取り除く方法、又は、基材を物理的に研削する方法を選択することができる。
In addition, even when chip parts having protrusions or small-sized chip parts are transferred, the peeling performance of the adhesive tape on the chip parts is further improved, and the adhesive residue on the chip parts can be further suppressed. The preferable lower limit of the tensile modulus is 0.01 MPa, and the preferable upper limit thereof is 2 MPa. From the same point of view, the more preferable lower limit of the tensile modulus is 0.7 MPa, the more preferable upper limit is 1.9 MPa, the more preferable lower limit is 0.8 MPa, the more preferable upper limit is 1.8 MPa, and the still more preferable upper limit is 1.5 MPa.
The tensile modulus of the pressure-sensitive adhesive layer can be measured, for example, using Autograph (manufactured by Shimadzu Corporation) or the like, according to JIS K7161:2014, under an environment of a temperature of 23° C. and a relative humidity of 50%, and a tensile speed of 500 mm/ It can be calculated from the slope of the stress-strain curve at 100% strain when the pressure-sensitive adhesive layer is pulled at min. When the adhesive tape has a substrate, the tensile modulus is measured after removing the substrate and preparing a sample of only the adhesive layer. The method for removing the substrate is not particularly limited as long as treatment using a solvent, treatment involving a chemical reaction, treatment at a high temperature, or the like is avoided in order to avoid denaturation of the pressure-sensitive adhesive layer. As a specific method, after bonding the adhesive layers together, a method of selecting an appropriate temperature and peeling speed, peeling off the substrate and the adhesive layer by peeling off, and removing the substrate, or A method of physically grinding the substrate can be selected.
上記粘着剤層の破断強度は特に限定されないが、好ましい下限が1MPaである。上記破断強度が1MPa以上であれば、レーザーアブレーションによりチップ部品が剥離する際に上記粘着剤層がよりちぎれにくくなり、チップ部品への糊残りをより抑えることができる。上記破断強度のより好ましい下限は1.3MPa、更に好ましい下限は1.4MPaである。
上記破断強度の上限は特に限定されないが、上記破断強度が高すぎると上記引張弾性率も高くなり、粘着テープのチップ部品の剥離性能が低下することから、好ましい上限は10MPa、より好ましい上限は8MPa、更に好ましい上限は4MPa、更により好ましい上限は3.1MPaである。
なお、粘着剤層の破断強度は、例えば、オートグラフ(島津製作所社製)等を用いて、JIS K7161:2014に準じて、温度23℃、相対湿度50%の環境下で引張速度500mm/minで粘着剤層を引っ張った際の破断時の応力から算出することができる。なお、粘着テープが基材を有する場合は、基材を取り除き、粘着剤層のみのサンプルを作製した後に引張弾性率の測定を行う。基材を取り除く方法としては、粘着剤層の変性を避けるため、溶剤を用いた処理、化学反応を伴う処理、高温での処理等を避ける限りにおいて特に限定されない。具体的な方法としては、粘着剤層同士を貼り合わせた後、適切な温度及び剥離速度を選択し、引き剥がすことによって基材と粘着剤層とを剥離し、基材を取り除く方法、又は、基材を物理的に研削する方法を選択することができる。
Although the breaking strength of the pressure-sensitive adhesive layer is not particularly limited, the preferred lower limit is 1 MPa. When the breaking strength is 1 MPa or more, the adhesive layer is less likely to be torn off when the chip component is peeled off by laser ablation, and adhesive residue on the chip component can be further suppressed. A more preferable lower limit of the breaking strength is 1.3 MPa, and a further preferable lower limit is 1.4 MPa.
The upper limit of the breaking strength is not particularly limited, but if the breaking strength is too high, the tensile elastic modulus also increases, and the peeling performance of the adhesive tape from the chip parts decreases. A more preferred upper limit is 4 MPa, and a still more preferred upper limit is 3.1 MPa.
The breaking strength of the pressure-sensitive adhesive layer is measured, for example, using Autograph (manufactured by Shimadzu Corporation) or the like according to JIS K7161: 2014 at a temperature of 23 ° C. and a tensile speed of 500 mm / min under an environment of relative humidity of 50%. It can be calculated from the stress at break when the pressure-sensitive adhesive layer is pulled with. When the adhesive tape has a substrate, the tensile modulus is measured after removing the substrate and preparing a sample of only the adhesive layer. The method for removing the substrate is not particularly limited as long as treatment using a solvent, treatment involving a chemical reaction, treatment at a high temperature, or the like is avoided in order to avoid denaturation of the pressure-sensitive adhesive layer. As a specific method, after bonding the adhesive layers together, a method of selecting an appropriate temperature and peeling speed, peeling off the substrate and the adhesive layer by peeling off, and removing the substrate, or A method of physically grinding the substrate can be selected.
上記粘着剤層のゲル分率は特に限定されないが、好ましい下限が70重量%である。上記ゲル分率が70重量%以上であれば、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。上記ゲル分率のより好ましい下限は80重量%である。
上記ゲル分率の上限は特に限定されないが、上記粘着剤層の引張弾性率がより好ましい範囲に調整されやすくなる観点から、好ましい上限は98重量%、より好ましい上限は95重量%である。
なお、粘着剤層のゲル分率は、以下の方法により測定することができる。
粘着テープから粘着剤層(粘着剤組成物)のみを0.1g取り出し、酢酸エチル50mL中に浸漬し、振とう機で温度23度、200rpmの条件で24時間振とうする。振とう後、金属メッシュ(目開き#200メッシュ)を用いて、酢酸エチルと酢酸エチルを吸収し膨潤した粘着剤組成物を分離する。分離後の粘着剤組成物を110℃の条件下で1時間乾燥させる。乾燥後の金属メッシュを含む粘着剤組成物の重量を測定し、下記式を用いて粘着剤層のゲル分率を算出する。
ゲル分率(重量%)=100×(W-W)/W
(W:初期粘着剤組成物重量、W:乾燥後の金属メッシュを含む粘着剤組成物重量、W:金属メッシュの初期重量)
The gel fraction of the pressure-sensitive adhesive layer is not particularly limited, but the preferred lower limit is 70% by weight. When the gel fraction is 70% by weight or more, the peeling performance of the adhesive tape from chip components is further improved, and adhesive residue on chip components can be further suppressed. A more preferable lower limit of the gel fraction is 80% by weight.
Although the upper limit of the gel fraction is not particularly limited, the preferred upper limit is 98% by weight, and the more preferred upper limit is 95% by weight, from the viewpoint that the tensile elastic modulus of the pressure-sensitive adhesive layer is easily adjusted to a more preferred range.
In addition, the gel fraction of the adhesive layer can be measured by the following method.
Only 0.1 g of the adhesive layer (adhesive composition) is taken out from the adhesive tape, immersed in 50 mL of ethyl acetate, and shaken with a shaker at 200 rpm and a temperature of 23° C. for 24 hours. After shaking, a metal mesh (#200 mesh) is used to separate the ethyl acetate and the pressure-sensitive adhesive composition that has absorbed and swollen the ethyl acetate. The adhesive composition after separation is dried at 110° C. for 1 hour. The weight of the pressure-sensitive adhesive composition containing the metal mesh after drying is measured, and the gel fraction of the pressure-sensitive adhesive layer is calculated using the following formula.
Gel fraction (% by weight) = 100 x (W 1 - W 2 )/W 0
(W 0 : initial weight of adhesive composition, W 1 : weight of adhesive composition containing metal mesh after drying, W 2 : initial weight of metal mesh)
上記粘着剤層の引張弾性率、破断強度、ゲル分率等を上記範囲に調整する方法は特に限定されず、例えば、上記A-B-Aブロックコポリマーの組成又は重量平均分子量(Mw)、上記架橋剤の種類又は量を上述したように調整する方法等が挙げられる。 The method for adjusting the tensile elastic modulus, breaking strength, gel fraction, etc. of the pressure-sensitive adhesive layer within the above range is not particularly limited. Examples include a method of adjusting the type or amount of the cross-linking agent as described above.
上記粘着剤層の相分離構造は特に限定されないが、スフィア状の相分離構造を有することが好ましい。上記粘着剤層がスフィア状の相分離構造を有することで、上記粘着剤層の引張弾性率、破断強度、ゲル分率等が後述する範囲に調整されやすくなり、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。上記粘着剤層の相分離構造は、上記A-B-A型ブロックコポリマーにおける各ブロックの比を調整することで制御することができる。 Although the phase-separated structure of the pressure-sensitive adhesive layer is not particularly limited, it preferably has a spherical phase-separated structure. Since the pressure-sensitive adhesive layer has a sphere-like phase separation structure, the tensile elastic modulus, breaking strength, gel fraction, etc. of the pressure-sensitive adhesive layer are easily adjusted within the ranges described later, and the peeling performance of the adhesive tape chip parts. is further improved, and adhesive residue on chip parts can be further suppressed. The phase separation structure of the adhesive layer can be controlled by adjusting the ratio of each block in the ABA type block copolymer.
上記粘着剤層は、シリンダー状の相分離構造を有していてもよい。上記粘着剤層がシリンダー状の相分離構造を有することで、上記粘着剤層の引張弾性率、破断強度、ゲル分率等が後述する範囲に調整されやすくなり、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。特に、上記粘着剤層がシリンダー状の相分離構造を有する場合、上記粘着剤層の引張弾性率、破断強度等を比較的大きい範囲に調整しやすくなり、突起を有するチップ部品、又は、小さいサイズのチップ部品を転写する場合にも粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。
なお、粘着剤層の相分離構造は、透過型電子顕微鏡(TEM)観察を行うことにより確認することができ、スフィア状とは、ミクロ相分離構造が球構造であることを意味し、シリンダー状とは、ミクロ相分離構造が円筒構造であることを意味する。
The pressure-sensitive adhesive layer may have a cylindrical phase-separated structure. Since the pressure-sensitive adhesive layer has a cylindrical phase separation structure, the tensile elastic modulus, breaking strength, gel fraction, etc. of the pressure-sensitive adhesive layer are easily adjusted within the ranges described later, and the peeling performance of the chip parts of the pressure-sensitive adhesive tape. is further improved, and adhesive residue on chip parts can be further suppressed. In particular, when the pressure-sensitive adhesive layer has a cylindrical phase-separated structure, it becomes easier to adjust the tensile modulus, breaking strength, etc. of the pressure-sensitive adhesive layer to a relatively large range, and chip parts having protrusions or small-sized Even when the chip parts are transferred, the peeling performance of the adhesive tape for the chip parts can be further improved, and the adhesive residue on the chip parts can be further suppressed.
The phase separation structure of the pressure-sensitive adhesive layer can be confirmed by observation with a transmission electron microscope (TEM). means that the microphase separation structure is a cylindrical structure.
上記粘着剤層がスフィア状の相分離構造を有する場合、スフィア状の相分離構造における島構造のサイズは特に限定されないが、島構造の平均長径の好ましい下限が5nm、好ましい上限が100nmであり、より好ましい下限が10nm、より好ましい上限が50nmである。上記平均長径が上記範囲内であることで、粘着テープのチップ部品の剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができる。
なお、スフィア状の相分離構造における島構造の平均長径は、以下の方法により測定することができる。
倍率5000倍で粘着剤層の透過型電子顕微鏡(TEM)観察を行い、4.3μm×4.3μmの領域についての観察画像を取得する。取得した画像について、画像解析ソフトウェア(例えば、Avizo、ver2019.4、Thermo Fisher Scientific社製等)を用いて自動二値化を行う。二値化された画像から、それぞれの島構造(暗部)の長径を計測し、これらの算術平均値を平均長径とする。なお、自動二値化手法の詳細は、既知文献(「判別および最小2乗規準に基づく自動しきい値選定法」、大津展之、電子情報通信学会論文誌 D、Vol.J63-D、No.4、pp.349-356)に基づく。
When the pressure-sensitive adhesive layer has a sphere-like phase separation structure, the size of the island structure in the sphere-like phase separation structure is not particularly limited. A more preferable lower limit is 10 nm, and a more preferable upper limit is 50 nm. When the average major axis is within the above range, the peeling performance of the adhesive tape from the chip component can be further improved, and the adhesive residue on the chip component can be further suppressed.
The average length of the island structure in the sphere-like phase-separated structure can be measured by the following method.
Observation of the pressure-sensitive adhesive layer with a transmission electron microscope (TEM) is performed at a magnification of 5000 times to acquire an observation image of an area of 4.3 μm×4.3 μm. The acquired image is automatically binarized using image analysis software (eg, Avizo, ver2019.4, manufactured by Thermo Fisher Scientific, etc.). The major axis of each island structure (dark area) is measured from the binarized image, and the arithmetic mean value of these is taken as the average major axis. For details of the automatic binarization method, refer to a known document ("Automatic Threshold Selection Method Based on Discrimination and Least Squares Criteria", Nobuyuki Otsu, The Institute of Electronics, Information and Communication Engineers Transactions D, Vol. J63-D, No. .4, pp.349-356).
上記粘着剤層の厚みは特に限定されないが、好ましい下限が3μm、好ましい上限が200μmである。上記粘着剤層の厚みが3μm以上であれば、粘着テープのチップ部品の保持性能及び剥離性能がより向上する。上記粘着剤層の厚みが200μm以下であれば、チップ部品への糊残りをより抑えることができる。粘着テープのチップ部品の保持性能及び剥離性能がより向上し、かつ、チップ部品への糊残りをより抑えることができることから、上記粘着剤層の厚みのより好ましい下限は5μm、より好ましい上限は50μmである。同様の観点から、上記粘着剤層の厚みの更に好ましい下限は10μm、更に好ましい上限は30μmであり、更により好ましい下限は15μm、一層好ましい下限は20μmである。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, but the preferred lower limit is 3 µm and the preferred upper limit is 200 µm. When the thickness of the pressure-sensitive adhesive layer is 3 μm or more, the chip component holding performance and peeling performance of the pressure-sensitive adhesive tape are further improved. If the thickness of the pressure-sensitive adhesive layer is 200 μm or less, adhesive residue on the chip component can be further suppressed. The more preferable lower limit of the thickness of the adhesive layer is 5 μm, and the more preferable upper limit is 50 μm, since the adhesive tape can further improve the holding performance and peeling performance of the chip components and can further suppress the adhesive residue on the chip components. is. From the same point of view, the more preferable lower limit of the thickness of the pressure-sensitive adhesive layer is 10 µm, the more preferable upper limit is 30 µm, the even more preferable lower limit is 15 µm, and the much more preferable lower limit is 20 µm.
本発明の粘着テープは、基材を有するサポートタイプであってもよいし、基材を有さないノンサポートタイプであってもよい。サポートタイプの場合、本発明の粘着テープは、基材の片面のみに粘着剤層を有する片面粘着テープであってもよいし、基材の両面に粘着剤層を有する両面粘着テープであってもよい。両面粘着テープの場合、少なくとも片面が上述したような粘着剤層であればよい。両面の粘着剤層は、同じ組成であってもよいし、異なる組成であってもよい。 The pressure-sensitive adhesive tape of the present invention may be a support type having a substrate or a non-support type having no substrate. In the case of the support type, the adhesive tape of the present invention may be a single-sided adhesive tape having an adhesive layer only on one side of the substrate, or a double-sided adhesive tape having an adhesive layer on both sides of the substrate. good. In the case of a double-sided adhesive tape, at least one side may be an adhesive layer as described above. The adhesive layers on both sides may have the same composition or may have different compositions.
上記基材は特に限定されず、上記基材の材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリブチレンテレフタレート、超高分子量ポリエチレン、シンジオタクチックポリスチレン、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、液晶ポリマー等が挙げられる。なかでも、耐熱性に優れることから、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましい。 The substrate is not particularly limited, and examples of materials for the substrate include polyethylene terephthalate, polyethylene naphthalate, polyacetal, polyamide, polycarbonate, polyphenylene ether, polybutylene terephthalate, ultra-high molecular weight polyethylene, syndiotactic polystyrene, poly Arylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer and the like. Among them, polyethylene terephthalate and polyethylene naphthalate are preferable because of their excellent heat resistance.
上記基材の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は188μmである。上記基材の厚みが上記範囲内であることにより、適度なコシがあって、取り扱い性に優れる粘着テープとすることができる。上記基材の厚みのより好ましい下限は12μm、より好ましい上限は125μmである。 The thickness of the base material is not particularly limited, but a preferable lower limit is 5 μm and a preferable upper limit is 188 μm. When the thickness of the base material is within the above range, the pressure-sensitive adhesive tape can have appropriate stiffness and excellent handleability. A more preferable lower limit of the thickness of the substrate is 12 μm, and a more preferable upper limit thereof is 125 μm.
本発明の粘着テープの用途は特に限定されないが、本発明の粘着テープは、チップ部品の剥離性能に優れ、かつ、チップ部品への糊残りを抑えることができることから、図1に示すような粘着剤層上に配置されたチップ部品をレーザーアブレーションにより剥離させる工程に好適に用いられる。
上記チップ部品は特に限定されず、例えば、MiniLEDチップ、マイクロLEDチップ、イメージセンサーの光学チップ等が挙げられ、特にマイクロLEDチップが好ましい。
The application of the adhesive tape of the present invention is not particularly limited. It is suitable for use in the step of peeling off chip components placed on the agent layer by laser ablation.
The chip component is not particularly limited, and examples thereof include MiniLED chips, microLED chips, optical chips for image sensors, etc. MicroLED chips are particularly preferred.
本発明の粘着テープを用いたチップ部品の転写方法は特に限定されず、例えば、本発明の粘着テープの粘着剤層上にチップ部品を配置する工程と、レーザー光を照射し、上記チップ部品を剥離させる工程とを含む、チップ部品の転写方法等が挙げられる。また、本発明の粘着テープを用いた電子機器部品の製造方法も特に限定されず、例えば、上記のようなチップ部品の転写方法を含む、電子機器部品の製造方法等が挙げられる。これらの方法によれば、チップ部品を歩留まりよく転写することができ、かつ、チップ部品への糊残りを抑えることができる。 The method of transferring chip components using the adhesive tape of the present invention is not particularly limited. and a method of transferring a chip component including a step of peeling off. Also, the method for manufacturing electronic device components using the adhesive tape of the present invention is not particularly limited, and examples thereof include methods for manufacturing electronic device components, including the transfer method for chip components as described above. According to these methods, it is possible to transfer the chip components with a high yield, and to suppress the adhesive residue on the chip components.
本発明によれば、チップ部品の剥離性能に優れ、かつ、チップ部品への糊残りを抑えることのできる粘着テープを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the adhesive tape which is excellent in the peeling performance of a chip component and can suppress the adhesive residue on a chip component can be provided.
粘着剤層上に配置されたチップ部品をレーザーアブレーションにより剥離させる工程の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the process of peeling the chip components arrange|positioned on the adhesive layer by laser abrasion.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 EXAMPLES The aspects of the present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.
(実施例1)
(1)A-B-A型ブロックコポリマーの調製
1,6-ヘキサンジチオール0.902gと、二硫化炭素1.83gと、ジメチルホルムアミド11mLとを2口フラスコに投入し、25℃で攪拌した。これに、トリエチルアミン2.49gを15分かけて滴下し、25℃で3時間攪拌した。次いで、メチル-α-ブロモフェニル酢酸2.75gを15分かけて滴下し、25℃で4時間攪拌した。その後、反応液に抽出溶媒(n-ヘキサン:酢酸エチル=50:50)100mLと水50mLとを加えて分液抽出した。1回目と2回目の分液抽出で得られた有機層を混合し、1M塩酸50mL、水50mL、飽和食塩水50mLで順に洗浄した。洗浄後の有機層に硫酸ナトリウムを加えて乾燥した後、硫酸ナトリウムをろ過し、ろ液をエバポレーターで濃縮して、有機溶媒を除去した。得られた濃縮物をシリカゲルカラムクロマトグラフィにて精製することでRAFT剤を得た。
(Example 1)
(1) Preparation of ABA type block copolymer 0.902 g of 1,6-hexanedithiol, 1.83 g of carbon disulfide and 11 mL of dimethylformamide were put into a two-necked flask and stirred at 25°C. To this, 2.49 g of triethylamine was added dropwise over 15 minutes, and the mixture was stirred at 25°C for 3 hours. Then, 2.75 g of methyl-α-bromophenylacetic acid was added dropwise over 15 minutes, and the mixture was stirred at 25°C for 4 hours. After that, 100 mL of an extraction solvent (n-hexane:ethyl acetate=50:50) and 50 mL of water were added to the reaction solution for separation and extraction. The organic layers obtained by the first and second liquid separation extractions were mixed and washed with 50 mL of 1M hydrochloric acid, 50 mL of water, and 50 mL of saturated brine in this order. After the washed organic layer was dried by adding sodium sulfate, the sodium sulfate was filtered and the filtrate was concentrated by an evaporator to remove the organic solvent. The RAFT agent was obtained by refine|purifying the obtained concentrate with silica gel column chromatography.
スチレン(St)15重量部と、アクリル酸(AAc)2重量部と、RAFT剤1.9重量部と、2,2’-アゾビス(2-メチルブチロニトリル)(ABN-E)0.2重量部とを2口フラスコに投入し、フラスコ内を窒素ガスで置換しながら85℃に昇温した。その後、85℃で6時間撹拌して重合反応を行った(第一段階反応)。
反応終了後、フラスコ内にn-ヘキサン4000重量部を投入し、撹拌して反応物を沈殿させた後、未反応のモノマー及びRAFT剤をろ過し、反応物を70℃で減圧乾燥して共重合体(ブロックA)を得た。
15 parts by weight of styrene (St), 2 parts by weight of acrylic acid (AAc), 1.9 parts by weight of a RAFT agent, and 0.2 parts of 2,2′-azobis(2-methylbutyronitrile) (ABN-E) parts by weight were put into a two-necked flask, and the temperature was raised to 85° C. while replacing the inside of the flask with nitrogen gas. After that, the mixture was stirred at 85° C. for 6 hours to carry out a polymerization reaction (first stage reaction).
After completion of the reaction, 4000 parts by weight of n-hexane was added to the flask and stirred to precipitate the reaction product. Unreacted monomers and RAFT agent were filtered, and the reaction product was dried under reduced pressure at 70°C. A polymer (block A) was obtained.
アクリル酸ブチル(BA)81重量部、アクリル酸(AAc)2重量部、ABN-E0.058重量部及び酢酸エチル50重量部を含む混合物と、上記で得られた共重合体(ブロックA)とを2口フラスコに投入し、フラスコ内を窒素ガスで置換しながら85℃に昇温した。その後、85℃で6時間撹拌して重合反応を行い(第二段階反応)、ブロックAとブロックBとから形成されるブロック共重合体を含む反応液を得た。
反応液の一部を採取し、これにn-ヘキサン4000重量部を投入し、撹拌して反応物を沈殿させた後、未反応のモノマー及び溶媒をろ過し、反応物を70℃で減圧乾燥してA-B-A型ブロックコポリマーを得た。
得られたA-B-A型ブロックコポリマーについて、GPC法により重量平均分子量を測定したところ、25万であった。なお、測定機器としてWater社製「2690 Separations Module」、カラムとして昭和電工社製「GPC KF-806L」、溶媒として酢酸エチルを用い、サンプル流量1mL/min、カラム温度40℃の条件で測定した。
A mixture containing 81 parts by weight of butyl acrylate (BA), 2 parts by weight of acrylic acid (AAc), 0.058 parts by weight of ABN-E and 50 parts by weight of ethyl acetate, and the copolymer obtained above (block A) was put into a two-necked flask, and the temperature was raised to 85° C. while replacing the inside of the flask with nitrogen gas. After that, the mixture was stirred at 85° C. for 6 hours to carry out a polymerization reaction (second stage reaction) to obtain a reaction liquid containing a block copolymer formed from block A and block B.
A portion of the reaction solution was sampled, 4000 parts by weight of n-hexane was added thereto, stirred to precipitate the reaction product, unreacted monomers and solvent were filtered, and the reaction product was dried under reduced pressure at 70°C. to obtain an ABA type block copolymer.
The weight average molecular weight of the obtained ABA type block copolymer was measured by GPC method and found to be 250,000. The measurement was performed using a "2690 Separations Module" manufactured by Water as a measuring instrument, a "GPC KF-806L" manufactured by Showa Denko as a column, ethyl acetate as a solvent, a sample flow rate of 1 mL/min, and a column temperature of 40°C.
また、得られたA-B-A型ブロックコポリマーについて、示差走査熱量計(日立ハイテクサイエンス社製、SII Exstar 6000/DSC 6220)を用い、窒素雰囲気下、昇温速度10℃/minの条件で測定を行った際に2nd runで得られた値を用い、ブロックBのガラス転移温度を求めた。なお、ブロックAに由来するピークとブロックBに由来するピークとが得られたが、低温側のピークをブロックBに由来するピークとし、ブロックBのガラス転移温度を決定した。 In addition, the obtained ABA type block copolymer was measured using a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., SII Exstar 6000/DSC 6220) under the conditions of a temperature increase rate of 10°C/min under a nitrogen atmosphere. The glass transition temperature of block B was obtained using the value obtained in the 2nd run when the measurement was performed. A peak derived from block A and a peak derived from block B were obtained.
(2)粘着テープの製造
得られたA-B-A型ブロックコポリマーを固形分率が35%になるよう酢酸エチルに溶解させた。A-B-A型ブロックコポリマー100重量部に対して、エポキシ系架橋剤としてテトラッドC(三菱ガス化学社製)1重量部、紫外線吸収剤としてTinuvin 928(BASFジャパン社製)8重量部を加えて更に充分に撹拌し、粘着剤溶液を得た。
得られた粘着剤溶液を、乾燥皮膜の厚さが20μmになるようにアプリケーターを用いて基材としてのコロナ処理がなされた厚み50μmのPETフィルム上に塗工し、110℃で3分間乾燥させた。その後、40℃で48時間加熱養生し、粘着テープを得た。
(2) Production of Adhesive Tape The obtained ABA type block copolymer was dissolved in ethyl acetate so that the solid content was 35%. To 100 parts by weight of the ABA type block copolymer, 1 part by weight of Tetrad C (manufactured by Mitsubishi Gas Chemical Co., Ltd.) as an epoxy-based cross-linking agent and 8 parts by weight of Tinuvin 928 (manufactured by BASF Japan Ltd.) as an ultraviolet absorber are added. The mixture was further sufficiently stirred to obtain an adhesive solution.
The obtained pressure-sensitive adhesive solution was applied onto a corona-treated PET film having a thickness of 50 μm as a substrate using an applicator so that the thickness of the dry film became 20 μm, and dried at 110° C. for 3 minutes. rice field. Then, it was heated and cured at 40° C. for 48 hours to obtain an adhesive tape.
(3)粘着剤層の引張弾性率の測定
粘着テープの粘着剤層について、オートグラフ(島津製作所社製)を用いて、JIS K7161:2014に準じて、温度23℃、相対湿度50%の環境下で引張速度500mm/minで引っ張った際の歪み100%での応力-歪み曲線の傾きから引張弾性率を算出した。
(3) Measurement of tensile modulus of adhesive layer For the adhesive layer of the adhesive tape, using Autograph (manufactured by Shimadzu Corporation), according to JIS K7161: 2014, temperature 23 ° C., relative humidity 50% environment. The tensile modulus was calculated from the slope of the stress-strain curve at a strain of 100% when pulled at a tensile speed of 500 mm/min.
(4)粘着剤層の破断強度の測定
粘着テープの粘着剤層について、オートグラフ(島津製作所社製)を用いて、JIS K7161:2014に準じて、温度23℃、相対湿度50%の環境下で引張速度500mm/minで引っ張った際の破断時の応力から破断強度を算出した。
(4) Measuring the breaking strength of the adhesive layer For the adhesive layer of the adhesive tape, using Autograph (manufactured by Shimadzu Corporation), in accordance with JIS K7161: 2014, in an environment with a temperature of 23 ° C. and a relative humidity of 50%. The breaking strength was calculated from the stress at break when pulled at a tensile speed of 500 mm/min.
(5)粘着剤層のゲル分率の測定
粘着テープから粘着剤層(粘着剤組成物)のみを0.1g取り出し、酢酸エチル50mL中に浸漬し、振とう機で温度23度、200rpmの条件で24時間振とうした。振とう後、金属メッシュ(目開き#200メッシュ)を用いて、酢酸エチルと酢酸エチルを吸収し膨潤した粘着剤組成物を分離した。分離後の粘着剤組成物を110℃の条件下で1時間乾燥させた。乾燥後の金属メッシュを含む粘着剤組成物の重量を測定し、下記式を用いて粘着剤層のゲル分率を算出した。
ゲル分率(重量%)=100×(W-W)/W
(W:初期粘着剤組成物重量、W:乾燥後の金属メッシュを含む粘着剤組成物重量、W:金属メッシュの初期重量)
(5) Measurement of Gel Fraction of Adhesive Layer Take out 0.1 g of only the adhesive layer (adhesive composition) from the adhesive tape, immerse it in 50 mL of ethyl acetate, and use a shaker at 23°C and 200 rpm. and shaken for 24 hours. After shaking, ethyl acetate and the adhesive composition swollen by absorbing ethyl acetate were separated using a metal mesh (#200 mesh opening). The adhesive composition after separation was dried at 110° C. for 1 hour. The weight of the adhesive composition containing the dried metal mesh was measured, and the gel fraction of the adhesive layer was calculated using the following formula.
Gel fraction (% by weight) = 100 x (W 1 - W 2 )/W 0
(W 0 : initial weight of adhesive composition, W 1 : weight of adhesive composition containing metal mesh after drying, W 2 : initial weight of metal mesh)
(6)粘着剤層の相分離構造の確認
実施例及び比較例と同様の方法にて粘着剤層のみを作製した。粘着剤層をトリミングした小片を2%オスミウム酸水溶液で60℃12時間染色した後、洗浄した。クライオミクロトーム(LEICA社製、ULTRACUT FC7)を用いて粘着剤層の厚み方向に小片温度-100℃で切断し、厚み100nm未満の切片を切り出した。切り出した切片を、支持膜を張ったシートメッシュ上に載せ、測定サンプルとした。
得られた測定サンプルを、透過型電子顕微鏡(JEOL社製、JEM-2100)を用いて倍率5000倍で観察して相分離構造を確認したところ、スフィア状の相分離構造を有していた。
(6) Confirmation of phase-separated structure of pressure-sensitive adhesive layer Only the pressure-sensitive adhesive layer was produced in the same manner as in Examples and Comparative Examples. A small piece obtained by trimming the adhesive layer was dyed with a 2% aqueous osmic acid solution at 60° C. for 12 hours, and then washed. Using a cryomicrotome (ULTRACUT FC7, manufactured by LEICA), the pressure-sensitive adhesive layer was cut in the thickness direction at a temperature of -100°C to cut out sections with a thickness of less than 100 nm. The cut section was placed on a sheet mesh covered with a support film to obtain a measurement sample.
When the resulting measurement sample was observed at a magnification of 5000 using a transmission electron microscope (JEM-2100 manufactured by JEOL) to confirm the phase separation structure, it had a spherical phase separation structure.
(実施例2~17)
A-B-A型ブロックコポリマーの組成、タッキファイヤーの種類又は量、或いは、架橋剤の種類又は量を表1~2に示したとおりに変更したこと以外は実施例1と同様にして、粘着テープを得た。タッキファイヤーとしては、液状(常温で液状の)タッキファイヤーとしてME-GH(荒川化学工業社製)、非液状(常温で固体状の)タッキファイヤーAとしてYSポリスターG-150(ヤスハラケミカル社製)、非液状(常温で固体状の)タッキファイヤーBとしてペンセルD-135(荒川化学工業社製)を用いた。なお、実施例5~7では、重合反応の時間を長くすることにより、重量平均分子量がより大きいA-B-A型ブロックコポリマーを調製した。
(Examples 2 to 17)
Adhesive was prepared in the same manner as in Example 1 except that the composition of the ABA block copolymer, the type or amount of the tackifier, or the type or amount of the cross-linking agent was changed as shown in Tables 1 and 2. got the tape. The tackifiers include ME-GH (manufactured by Arakawa Chemical Industries, Ltd.) as a liquid (liquid at room temperature) tackifier, YS Polyster G-150 (manufactured by Yasuhara Chemical Co., Ltd.) as a non-liquid (solid at room temperature) tackifier A, Pencel D-135 (manufactured by Arakawa Chemical Industries, Ltd.) was used as the non-liquid (solid at room temperature) tackifier B. In Examples 5 to 7, an ABA type block copolymer having a higher weight average molecular weight was prepared by prolonging the polymerization reaction time.
また、表中のアルファベット記号はそれぞれ下記の略称である。
St:スチレン
AAc:アクリル酸
BA:ブチルアクリレート
2-EHA:2-エチルヘキシルアクリレート
LA:ラウリルアクリレート
MA:メチルアクリレート
2-HEA:2-ヒドロキシエチルアクリレート
Alphabetic symbols in the table are the following abbreviations, respectively.
St: styrene AAc: acrylic acid BA: butyl acrylate 2-EHA: 2-ethylhexyl acrylate LA: lauryl acrylate MA: methyl acrylate 2-HEA: 2-hydroxyethyl acrylate
(比較例1)
A-B-A型ブロックコポリマーの代わりに、以下のようにして調製した(メタ)アクリル系ポリマーを用いたこと以外は実施例1と同様にして、粘着テープを得た。
(Comparative example 1)
A pressure-sensitive adhesive tape was obtained in the same manner as in Example 1, except that a (meth)acrylic polymer prepared as follows was used instead of the ABA type block copolymer.
((メタ)アクリル系ポリマーの調製)
温度計、攪拌機、冷却管を備えた反応器に酢酸エチル52重量部を入れて、窒素置換した後、反応器を加熱して還流を開始した。酢酸エチルが沸騰してから、30分後に重合開始剤としてアゾビスイソブチロニトリル0.08重量部を投入した。ここにアクリル酸ブチル(BA)98重量部、及び、アクリル酸(AAc)2重量部を1時間30分かけて、均等かつ徐々に滴下し反応させた。滴下終了30分後にアゾビスイソブチロニトリル0.1重量部を添加し、更に5時間重合反応させ、反応器内に酢酸エチルを加えて希釈しながら冷却することにより、(メタ)アクリル系ポリマーの溶液を得た。
(Preparation of (meth)acrylic polymer)
A reactor equipped with a thermometer, a stirrer and a cooling tube was charged with 52 parts by weight of ethyl acetate, and after the atmosphere was replaced with nitrogen, the reactor was heated to initiate reflux. After 30 minutes from the boiling of ethyl acetate, 0.08 part by weight of azobisisobutyronitrile was added as a polymerization initiator. 98 parts by weight of butyl acrylate (BA) and 2 parts by weight of acrylic acid (AAc) were dropped uniformly and gradually over 1 hour and 30 minutes to react. 0.1 part by weight of azobisisobutyronitrile was added 30 minutes after the completion of dropping, and the polymerization reaction was continued for 5 hours. A solution of
(比較例2~3及び5~6)
A-B-A型ブロックコポリマーの組成を表2に示したとおりに変更したこと以外は実施例1と同様にして、粘着テープを得た。
(Comparative Examples 2-3 and 5-6)
A pressure-sensitive adhesive tape was obtained in the same manner as in Example 1, except that the composition of the ABA type block copolymer was changed as shown in Table 2.
(比較例4)
A-B-A型ブロックコポリマーの代わりに、表2に示したスチレン-エチレン-ブチレン-スチレン(SEBS)ブロックコポリマー(ダイナロン8300、JSR社製)を用いたこと以外は実施例1と同様にして、粘着テープを得た。
(Comparative Example 4)
In the same manner as in Example 1, except that the styrene-ethylene-butylene-styrene (SEBS) block copolymer (Dynaron 8300, manufactured by JSR Corporation) shown in Table 2 was used instead of the ABA type block copolymer. , got the adhesive tape.
<評価>
実施例及び比較例で得られた粘着テープについて以下の評価を行った。結果を表1~2に示した。
<Evaluation>
The adhesive tapes obtained in Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 1-2.
(1)180°粘着力の測定
厚さ2mmのSUS板の表面をエタノールで洗浄し、充分に乾燥させた。予め幅25mm、長さ10cmにカットした粘着テープとSUS板とを重ね、2kgローラーを1往復させることで測定用サンプルを得た。
得られた測定サンプルについて、オートグラフ(島津製作所社製)を用い、JIS Z0237:2009に準じて、温度23℃、相対湿度50%の環境下で300mm/minの引張速度で180°方向に粘着テープを引き剥がす剥離試験を行い、180°粘着力(N/25mm)を測定した。
(1) Measurement of 180° Adhesive Strength The surface of a SUS plate having a thickness of 2 mm was washed with ethanol and thoroughly dried. An adhesive tape preliminarily cut to a width of 25 mm and a length of 10 cm was layered on a SUS plate, and a 2 kg roller was reciprocated once to obtain a sample for measurement.
Using Autograph (manufactured by Shimadzu Corporation), the resulting measurement sample was adhered in the 180° direction at a tensile speed of 300 mm/min under an environment of 23°C and 50% relative humidity in accordance with JIS Z0237:2009. A peeling test was performed to peel off the tape, and the 180° adhesive strength (N/25 mm) was measured.
(2)レーザーアブレーション評価
(2-1)チップ部品の剥離性能(チップサイズ500μm×500μm角)
Siチップ(500μm×500μm角、厚み50μm)が10個配列されたウエハのSiチップ側の面に、得られた粘着テープを貼り合わせた。その後、ウエハを剥離することで、Siチップを粘着テープ上へ配置した。半導体固体レーザーを用いて、出力4W、4KHzの365nmのレーザー光を粘着テープの基材側から各Siチップに照射して、Siチップを粘着テープから剥離した。
10個のSiチップをすべて剥離できた場合を「◎」、8~9個剥離できた場合を「○」、剥離できたSiチップが7個以下であった場合を「×」としてチップ部品の剥離性能を評価した。
(2) Laser ablation evaluation (2-1) Peeling performance of chip parts (chip size 500 μm × 500 μm square)
The resulting adhesive tape was attached to the Si chip side surface of a wafer on which ten Si chips (500 μm×500 μm square, 50 μm thick) were arranged. After that, the Si chip was arranged on the adhesive tape by peeling off the wafer. A semiconductor solid-state laser was used to irradiate each Si chip with a laser beam of 365 nm with an output of 4 W and 4 kHz from the substrate side of the adhesive tape, and the Si chip was peeled off from the adhesive tape.
When all 10 Si chips could be peeled off, "◎" was used. When 8 to 9 Si chips were peeled off, "○" was used. The release performance was evaluated.
(2-2)糊残り(チップサイズ500μm×500μm角)
チップ部品の剥離性能を評価した後、粘着テープから剥離したSiチップの表面を顕微鏡にて観察し、糊残りの有無を確認した。糊残りが全くなかった場合を「◎」、チップ部品の表面の面積の20%未満に糊残りがあった場合を「〇」、チップ部品の表面の面積の20%以上に糊残りがあった場合を「×」として糊残りを評価した。
(2-2) Adhesive residue (chip size 500 μm × 500 μm square)
After evaluating the peeling performance of the chip component, the surface of the Si chip peeled from the adhesive tape was observed under a microscope to confirm the presence or absence of adhesive residue. "◎" indicates no adhesive residue, "○" indicates adhesive residue on less than 20% of the surface area of the chip component, and 20% or more of the surface area of the chip component has adhesive residue. Adhesive residue was evaluated by marking the case as "x".
(2-3)小さいサイズのチップ部品の剥離性能(チップサイズ30μm×40μm角)
実施例12~17で得られた粘着テープについて、小さいサイズのチップ部品の剥離性能を評価した。
Siチップ(30μm×40μm角、厚み10μm)が10個配列されたウエハのSiチップ側の面に、得られた粘着テープを貼り合わせた。その後、ウエハを剥離することで、Siチップを粘着テープ上へ配置した。半導体固体レーザーを用いて、出力4W、4KHzの365nmのレーザー光を粘着テープの基材側から各Siチップに照射して、Siチップを粘着テープから剥離した。
10個のSiチップをすべて剥離できた場合を「◎」、8~9個剥離できた場合を「○」、剥離できたSiチップが7個以下であった場合を「×」としてチップ部品の剥離性能(小チップ)を評価した。
(2-3) Peeling performance of small size chip parts (chip size 30 μm × 40 μm square)
The pressure-sensitive adhesive tapes obtained in Examples 12 to 17 were evaluated for peeling performance on small-sized chip components.
The resulting adhesive tape was attached to the Si chip side surface of a wafer on which ten Si chips (30 μm×40 μm square, 10 μm thick) were arranged. After that, the Si chip was arranged on the adhesive tape by peeling off the wafer. A semiconductor solid-state laser was used to irradiate each Si chip with a laser beam of 365 nm with an output of 4 W and 4 kHz from the substrate side of the adhesive tape, and the Si chip was peeled off from the adhesive tape.
When all 10 Si chips could be peeled off, "◎" was used. When 8 to 9 Si chips were peeled off, "○" was used. Release performance (small chips) was evaluated.
(2-4)糊残り(チップサイズ30μm×40μm角)
小さいサイズのチップ部品の剥離性能を評価した後、粘着テープから剥離したSiチップの表面を顕微鏡にて観察し、糊残りの有無を確認した。糊残りが全くなかった場合を「◎」、チップ部品の表面の面積の20%未満に糊残りがあった場合を「〇」、チップ部品の表面の面積の20%以上に糊残りがあった場合を「×」として糊残りを評価した。
(2-4) Adhesive residue (chip size 30 μm × 40 μm square)
After evaluating the peeling performance of small-sized chip parts, the surface of the Si chip peeled from the adhesive tape was observed under a microscope to confirm the presence or absence of adhesive residue. "◎" indicates no adhesive residue, "○" indicates adhesive residue on less than 20% of the surface area of the chip component, and 20% or more of the surface area of the chip component has adhesive residue. Adhesive residue was evaluated by marking the case as "x".
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
本発明によれば、チップ部品の剥離性能に優れ、かつ、チップ部品への糊残りを抑えることのできる粘着テープを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the adhesive tape which is excellent in the peeling performance of a chip component and can suppress the adhesive residue on a chip component can be provided.
1  チップ部品
1a 電極
4  粘着剤層
5  支持体
7  駆動回路基板
7a 電極
8  レーザー光照射装置 
8a レーザー光
9  支持体と粘着剤層との積層体
1 chip component 1a electrode 4 adhesive layer 5 support 7 drive circuit board 7a electrode 8 laser light irradiation device
8a Laser beam 9 Laminate of support and pressure-sensitive adhesive layer

Claims (12)

  1. 粘着剤層を有する粘着テープであって、
    前記粘着剤層は、芳香族ビニルモノマーに由来する構造を有するブロックAと(メタ)アクリル系モノマーに由来する構造を有するブロックBとを有するA-B-A型ブロックコポリマー、及び、架橋剤を含有し、
    前記ブロックBは、架橋性官能基含有モノマーに由来する構造を含有し、
    前記粘着剤層は、引張弾性率が0.008MPa以上、2MPa以下である
    ことを特徴とする粘着テープ。
    An adhesive tape having an adhesive layer,
    The pressure-sensitive adhesive layer contains an ABA type block copolymer having a block A having a structure derived from an aromatic vinyl monomer and a block B having a structure derived from a (meth)acrylic monomer, and a cross-linking agent. contains,
    The block B contains a structure derived from a crosslinkable functional group-containing monomer,
    The pressure-sensitive adhesive tape, wherein the pressure-sensitive adhesive layer has a tensile modulus of 0.008 MPa or more and 2 MPa or less.
  2. 前記粘着剤層は、破断強度が1MPa以上であることを特徴とする請求項1記載の粘着テープ。 2. The pressure-sensitive adhesive tape according to claim 1, wherein the pressure-sensitive adhesive layer has a breaking strength of 1 MPa or more.
  3. 前記粘着剤層は、ゲル分率が70重量%以上であることを特徴とする請求項1又は2記載の粘着テープ。 3. The pressure-sensitive adhesive tape according to claim 1, wherein the pressure-sensitive adhesive layer has a gel fraction of 70% by weight or more.
  4. 前記粘着剤層は、スフィア状の相分離構造を有することを特徴とする請求項1、2又は3記載の粘着テープ。 4. The pressure-sensitive adhesive tape according to claim 1, wherein the pressure-sensitive adhesive layer has a spherical phase-separated structure.
  5. 前記粘着剤層は、シリンダー状の相分離構造を有することを特徴とする請求項1、2又は3記載の粘着テープ。 4. The pressure-sensitive adhesive tape according to claim 1, wherein the pressure-sensitive adhesive layer has a cylindrical phase-separated structure.
  6. 前記A-B-A型ブロックコポリマー中、前記ブロックAの含有量が1重量%以上、40重量%以下であることを特徴とする請求項1、2、3、4又は5記載の粘着テープ。 6. The pressure-sensitive adhesive tape according to claim 1, wherein the content of said block A in said ABA type block copolymer is 1% by weight or more and 40% by weight or less.
  7. 前記架橋剤は、エポキシ系架橋剤又はイソシアネート系架橋剤であることを特徴とする請求項1、2、3、4、5又は6記載の粘着テープ。 7. The pressure-sensitive adhesive tape according to claim 1, wherein the cross-linking agent is an epoxy-based cross-linking agent or an isocyanate-based cross-linking agent.
  8. 前記(メタ)アクリル系モノマーは、炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーを含有し、
    前記A-B-A型ブロックコポリマー中、前記炭素数8以上のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構造の含有量が40重量%以上である
    ことを特徴とする請求項1、2、3、4、5、6又は7記載の粘着テープ。
    The (meth)acrylic monomer contains a (meth)acrylic acid ester monomer having an alkyl group having 8 or more carbon atoms,
    2. The content of the structure derived from the (meth)acrylic acid ester monomer having an alkyl group of 8 or more carbon atoms in the ABA type block copolymer is 40% by weight or more. , 2, 3, 4, 5, 6 or 7.
  9. 前記A-B-A型ブロックコポリマー中、前記ブロックBのガラス転移温度が-30℃以上、0℃以下であることを特徴とする請求項1、2、3、4、5、6、7又は8記載の粘着テープ。 1, 2, 3, 4, 5, 6, 7, or 7, wherein the glass transition temperature of the block B in the ABA type block copolymer is −30° C. or higher and 0° C. or lower; 9. The adhesive tape according to 8.
  10. 前記A-B-A型ブロックコポリマーは、重量平均分子量が10万以上であることを特徴とする請求項1、2、3、4、5、6、7、8又は9記載の粘着テープ。 10. The pressure-sensitive adhesive tape according to claim 1, wherein the ABA type block copolymer has a weight average molecular weight of 100,000 or more.
  11. 前記粘着剤層は、更に、常温で液状のタッキファイヤーを含有することを特徴とする請求項1、2、3、4、5、6、7、8、9又は10記載の粘着テープ。 11. The pressure-sensitive adhesive tape according to claim 1, wherein the pressure-sensitive adhesive layer further contains a tackifier that is liquid at room temperature.
  12. 前記粘着剤層は、厚みが3μm以上、30μm以下であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10又は11記載の粘着テープ。
     

     
    12. The pressure-sensitive adhesive tape according to claim 1, wherein the pressure-sensitive adhesive layer has a thickness of 3 [mu]m or more and 30 [mu]m or less.


PCT/JP2022/020469 2021-05-17 2022-05-17 Adhesive tape WO2022244756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536880A JPWO2022244756A1 (en) 2021-05-17 2022-05-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021083208 2021-05-17
JP2021-083208 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022244756A1 true WO2022244756A1 (en) 2022-11-24

Family

ID=84141585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020469 WO2022244756A1 (en) 2021-05-17 2022-05-17 Adhesive tape

Country Status (3)

Country Link
JP (1) JPWO2022244756A1 (en)
TW (1) TW202311466A (en)
WO (1) WO2022244756A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115124A (en) * 1998-12-08 2001-04-24 Nitto Denko Corp Adhesive composition, its preparation process and adhesive sheet
JP2002241451A (en) * 2000-12-15 2002-08-28 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and its use
JP2018080330A (en) * 2016-11-07 2018-05-24 協立化学産業株式会社 Compatible composition, adhesive composition, composite structure and method for producing and decomposing the composite structure, surface processing method of chip, and method for producing composite body
JP2018098225A (en) * 2016-12-07 2018-06-21 住友ベークライト株式会社 Adhesive tape
WO2020032163A1 (en) * 2018-08-08 2020-02-13 東亞合成株式会社 Adhesive composition and use thereof
WO2020059791A1 (en) * 2018-09-21 2020-03-26 積水化学工業株式会社 Double-sided adhesive tape
JP2020132713A (en) * 2019-02-15 2020-08-31 積水化学工業株式会社 Adhesive tape
WO2020218430A1 (en) * 2019-04-24 2020-10-29 積水化学工業株式会社 Pressure-sensitive adhesive tape
WO2022102691A1 (en) * 2020-11-13 2022-05-19 積水化学工業株式会社 Method for producing electronic component, method for producing display device, and support tape

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115124A (en) * 1998-12-08 2001-04-24 Nitto Denko Corp Adhesive composition, its preparation process and adhesive sheet
JP2002241451A (en) * 2000-12-15 2002-08-28 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and its use
JP2018080330A (en) * 2016-11-07 2018-05-24 協立化学産業株式会社 Compatible composition, adhesive composition, composite structure and method for producing and decomposing the composite structure, surface processing method of chip, and method for producing composite body
JP2018098225A (en) * 2016-12-07 2018-06-21 住友ベークライト株式会社 Adhesive tape
WO2020032163A1 (en) * 2018-08-08 2020-02-13 東亞合成株式会社 Adhesive composition and use thereof
WO2020059791A1 (en) * 2018-09-21 2020-03-26 積水化学工業株式会社 Double-sided adhesive tape
JP2020132713A (en) * 2019-02-15 2020-08-31 積水化学工業株式会社 Adhesive tape
WO2020218430A1 (en) * 2019-04-24 2020-10-29 積水化学工業株式会社 Pressure-sensitive adhesive tape
WO2022102691A1 (en) * 2020-11-13 2022-05-19 積水化学工業株式会社 Method for producing electronic component, method for producing display device, and support tape

Also Published As

Publication number Publication date
JPWO2022244756A1 (en) 2022-11-24
TW202311466A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5286085B2 (en) Dicing die bonding tape and semiconductor chip manufacturing method
CN101376797B (en) Photocurable composition for the formation of pressure-sensitive adhesive layer and dicing tape produced using the same
JP5286084B2 (en) Dicing die bonding tape and semiconductor chip manufacturing method
TWI424036B (en) Adhesive, both sides of the adhesive film and display device
TWI478997B (en) Adhesive tape, laminated body and image display device
TWI490262B (en) A hardened composition, a sintered crystal tape, a connecting structure, and a method of manufacturing a semiconductor wafer with an adhesive layer
JP6595082B2 (en) Manufacturing method of laminate
JP2004256793A (en) Adhesive tape for sticking wafer
JP2010202833A (en) Adhesive tape for processing electronic element
JP5551959B2 (en) Easy peelable adhesive sheet and easy peelable adhesive tape
JP2009146974A (en) Double-sided adhesive tape for semiconductor processing
WO2019235287A1 (en) Pressure-sensitive adhesive tape
JP2011044444A (en) Multilayered pressure-sensitive adhesive sheet, and manufacturing method for electronic component with multilayered pressure-sensitive adhesive sheet
JP2009239190A (en) Dicing die-bonding tape
WO2022244756A1 (en) Adhesive tape
JP2017114945A (en) Die Bonding Film
JP2011023692A (en) Dicing-die bonding tape and method of manufacturing the same, and method of manufacturing semiconductor chip
JP7219373B1 (en) Adhesive tape for semiconductor device manufacturing
WO2023033176A1 (en) Adhesive tape for semiconductor device manufacturing
JP2020107628A (en) Dicing die bonding film and method for manufacturing semiconductor device using dicing die bonding film
KR20240057380A (en) Adhesive tape for semiconductor device manufacturing
JP2008202001A (en) Adhesive tape
JP7476351B2 (en) Adhesive tape
JP2024061681A (en) Adhesive tape for semiconductor manufacturing process
JP2010067772A (en) Dicing/die bonding tape and method for manufacturing semiconductor chip

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022536880

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE