WO2022244659A1 - 水素製造システム - Google Patents

水素製造システム Download PDF

Info

Publication number
WO2022244659A1
WO2022244659A1 PCT/JP2022/019902 JP2022019902W WO2022244659A1 WO 2022244659 A1 WO2022244659 A1 WO 2022244659A1 JP 2022019902 W JP2022019902 W JP 2022019902W WO 2022244659 A1 WO2022244659 A1 WO 2022244659A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
carbon dioxide
plant
methane
boiler
Prior art date
Application number
PCT/JP2022/019902
Other languages
English (en)
French (fr)
Inventor
洋 水谷
拓也 岡本
フラビアヌス ハルディ
卓 池
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to KR1020237038220A priority Critical patent/KR20230166127A/ko
Publication of WO2022244659A1 publication Critical patent/WO2022244659A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/60Biochemical treatment, e.g. by using enzymes
    • B09B3/65Anaerobic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • C25B1/265Chlorates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/50Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers for draining or expelling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen production system that produces hydrogen using a combustion furnace such as a garbage incinerator equipped with a boiler.
  • a methane fermentation apparatus that decomposes organic waste to produce biogas emits carbon dioxide together with methane gas.
  • the ratio of carbon dioxide in the total biogas produced by the methane fermentation apparatus is about two-thirds by weight, although it depends on the composition of the organic waste. Specifically, when about 2 tons of methane gas is produced, about 4 tons of carbon dioxide are produced at the same time. Therefore, in order to reduce the amount of carbon dioxide emissions, technologies such as separating carbon dioxide from biogas and using it in plant factories, and technology to mix ash from waste incinerators with carbon dioxide and make it into cement materials are being developed. has been developed (see Patent Document 1).
  • the carbon dioxide produced by the methane fermentation and the hydrogen produced by the water electrolyzer are used for methanation (methane synthesis), and the produced methane is used as city gas, and as a fuel for gas engines, etc.
  • a technique utilizing methane has also been developed (see Patent Document 2).
  • a technology has been developed in which a water electrolyzer is installed in a waste incinerator plant, ammonia is synthesized from the hydrogen produced by the water electrolyzer and nitrogen in the air, and the ammonia is used as fuel for gas engines, etc. (See Patent Document 3).
  • JP-A-2006-212524 Japanese Patent Application Laid-Open No. 2019-090084 Japanese Patent Application Laid-Open No. 2019-216501
  • Patent Literature 1 The amount of carbon dioxide used in the plant factory and cement synthesis described in Patent Literature 1 is not large enough to consume all the carbon dioxide generated in the methane fermentation.
  • a large amount of carbon dioxide can be converted into high-demand methane, which is commercially beneficial.
  • a large amount of electric power and water are required to generate hydrogen for methanation in a water electrolyzer. Therefore, as described in Patent Document 3, the power generated by the steam turbine and generator of the boiler provided in the waste incineration plant and the cooling waste water of the desuperheating tower for reducing the temperature of the exhaust gas are used to It is conceivable to implement nationalization.
  • Patent Literature 3 a temperature reduction tower, which is a so-called scrubber, is installed upstream of the dust collector, and cooling wastewater after temperature reduction is supplied to the water electrolysis device.
  • this cooling wastewater contains fly ash, heavy metals, and chemicals for exhaust gas treatment, it cannot be directly supplied to the water electrolysis apparatus.
  • the wastewater from the waste incinerator plant consists of wastewater from washing the platform for throwing the waste collected by the waste collection truck into the waste pit, wastewater from the waste stored in the waste pit, and bottom ash from the waste incinerator.
  • wastewater from the waste incinerator plant consists of wastewater from washing the platform for throwing the waste collected by the waste collection truck into the waste pit, wastewater from the waste stored in the waste pit, and bottom ash from the waste incinerator.
  • waste water from an ash extruder that cools and discharges.
  • the wastewater from the platform and the waste pit contains organic components
  • the wastewater from the ash extruder contains inorganic components.
  • a water electrolyzer when a water electrolyzer is installed in a waste incinerator plant, which is a kind of combustion furnace plant, and the wastewater generated in the plant (plant wastewater) is used for the water electrolyzer, the general wastewater treatment that the plant generally has It is common practice to combine all plant wastewater, such as wastewater from platforms and waste pits, and wastewater from ash extruders, into the system, and use the water that has been treated to remove organic and inorganic components in the water electrolysis system. It was technical common sense of a trader.
  • the integrated wastewater treatment system is also installed in plants other than waste incinerator plants, such as thermal power plants and chemical plants, as long as it is a combustion furnace plant equipped with a combustion furnace and a boiler.
  • the present invention has been devised in view of the above problems, and reduces the load of water treatment of a comprehensive wastewater treatment system, and economically by electrolysis using plant wastewater generated in a combustion furnace plant.
  • An object of the present invention is to provide a hydrogen production system capable of producing hydrogen.
  • the hydrogen production system of the present invention is applied to a combustion furnace plant, a boiler-equipped combustion system comprising at least a combustion furnace and a boiler that generates steam from heat burned in the combustion furnace; an ion removing device for generating separated water from which unnecessary ions are removed by introducing at least a portion of the boiler blow water discharged from the boiler and water to be separated containing the unnecessary ions; an electrolysis system comprising at least a water electrolyzer that generates hydrogen by electrolyzing water; and a waste water treatment system including at least an inorganic waste water treatment facility that performs inorganic water treatment on plant waste water generated in the combustion furnace plant and containing the remainder of the boiler blow water.
  • water electrolysis is performed using part of the boiler blow water, which is particularly clean although it contains low-concentration chemicals, among the plant wastewater generated in the combustion furnace plant. At least a part of the boiler blow water subjected to water electrolysis does not enter the waste water treatment system, so the load of water treatment in the waste water treatment system can be reduced. Therefore, it is possible to provide a hydrogen production system that can reduce the water treatment load of the waste water treatment system and can economically produce hydrogen by electrolysis using plant waste water generated in the combustion furnace plant.
  • FIG. 4 is a block diagram showing a first modified example of the hydrogen production system of the present invention
  • 4 is a block diagram showing an example of a carbon dioxide separator 60.
  • FIG. FIG. 4 is a block diagram showing part of a second modified example of the hydrogen production system of the present invention
  • FIG. 11 is a block diagram showing part of a third modified example of the hydrogen production system of the present invention.
  • FIG. 1 The hydrogen production systems of the embodiments and modifications (first, second and third modifications) will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 numerals only represent physical elements such as devices, parts, and parts related to the hydrogen production system.
  • a symbol combining an alphabetic character F and a number represents a fluid such as a liquid or a gas generated in the hydrogen production system.
  • FIG. 1 is an embodiment of the invention
  • FIG. 2 is a first modification of the invention.
  • the hydrogen production system 1 of the embodiment and the first modification includes a combustion system 10 with a boiler, a waste water treatment system (comprehensive waste water treatment system) 30, a high-purity carbon dioxide generation system 40, and an electrolysis system 50 (first modification 50') and a methanation system 72. Since the embodiment and the first modification differ only in the configuration of the electrolysis systems 50, 50' provided in the hydrogen production system 1, the embodiment and the first modification will be described simultaneously.
  • These systems 10, 30, 40, 50 (50'), and 72 may all be installed in one building, or may be installed in individual buildings corresponding to each system.
  • all of these systems may be located at the same site, or may be located at separate sites, eg, sites remote from each other.
  • each system When each system is installed on a site far away from each other, each system may be appropriately connected by a pipeline, car transportation, or the like.
  • the boiler-equipped combustion system 10 is a system that includes at least a combustion furnace and a boiler that generates steam from the heat of combustion in the combustion furnace.
  • the combustion furnace plant to which the hydrogen production system 1 is applied is diverse, such as a garbage incinerator plant, a thermal power plant, and a chemical plant, depending on the fuel (waste, coal, etc.) burned in the combustion furnace and its purpose.
  • the boiler-equipped combustion system 10 includes the boiler 20, boiler blow water F1, which will be described later, is always discharged.
  • the boiler-equipped combustion system 10 includes the refuse incinerator 13 as an example of a combustion furnace.
  • the wastewater treatment system 30 is the integrated wastewater treatment system described in [Problems to be Solved by the Invention].
  • An organic wastewater treatment facility 31 that treats organic components contained in plant wastewater by biological treatment or the like, and an inorganic wastewater treatment plant 32 that treats inorganic components contained in plant wastewater after the organic components are treated.
  • water treatment is performed to purify the wastewater to the extent that it can be discharged to the outside of the combustion furnace plant.
  • the plant wastewater treated by the wastewater treatment system 30 may be used in the combustion furnace plant as reused water F14, which will be described later, or may be discharged outside the combustion furnace plant if there is a surplus.
  • the wastewater treatment system 30 is an organic wastewater treatment facility 31. Both inorganic wastewater treatment facilities 32 are provided. However, in a combustion furnace plant in which organic components are not contained in the plant wastewater, such as a thermal power plant, the wastewater treatment system 30 may not include the organic wastewater treatment facility 31 and may only include the inorganic wastewater treatment facility 32. .
  • the high-purity carbon dioxide generation system 40 is a system that generates high-purity carbon dioxide without a special concentration process. As described in [Background Art], a large amount of high-purity carbon dioxide is generated during methane fermentation, so the high-purity carbon dioxide generation system 40 of FIGS. 42 at least.
  • the high-purity carbon dioxide generation system 40 includes an alcohol fermentation device 66 (described later using FIG. 4 as a second modification), a gasification furnace 69 for gasifying woody biomass (a third modification) (described later with reference to FIG. 5) may be included at least.
  • the methanation system 72 uses as raw materials at least carbon dioxide F7 produced by the high-purity carbon dioxide production system 40 and hydrogen F4 produced by the water electrolysis device 53 of the electrolysis system 50 described later, and methanation is performed by the methanation device 46. and produce methane F12.
  • the electrolysis system 50 is a system that generates hydrogen F4 by electrolysis using boiler blow water F1.
  • the electrolysis system 50 includes at least an ion removal device 52 that removes unnecessary ions from the boiler blow water F1 and a water electrolysis device 53 .
  • the water supplied to the boiler 20 is pure water F15, for example, chemicals such as a boiler agent, anticorrosive agent (oxygen absorber), and scale inhibitor are added at a low concentration, and water stored in the boiler 20 is added. is adjusted to be slightly alkaline. For this reason, the boiler blow water F1 has conventionally been mixed with other plant waste water containing a large amount of impurities such as high-concentration chemicals and ash, and treated in general waste water treatment facilities.
  • the water stored in the boiler 20 is pure water F15 to which a low-concentration chemical is added, does not contain ash or heavy metals, and is different from other plant waste water in a plant equipped with a combustion furnace. Therefore, if the boiler blow water F1 discharged from the boiler 20 at any time is used in the water electrolysis device 53 that requires the pure water F15, hydrogen F4 can be produced efficiently and economically. The inventor thought that it could be done. Therefore, based on the configuration in which the boiler blow water F1 is used to generate the hydrogen F4 in the water electrolysis device 53, the hydrogen F4 generated in the water electrolysis device 53 can be used to generate valuable substances such as methane F12.
  • FIG. 1 As described above, the embodiment and the first modification are examples in which the hydrogen production system 1 of the present invention is applied to a refuse incinerator plant among combustion furnace plants.
  • a refuse incinerator plant is, for example, a facility for incinerating refuse such as municipal refuse and industrial waste, that is, waste.
  • the boiler-equipped combustion system 10 includes a platform 11, which is a space where a garbage delivery vehicle (garbage truck, truck, dump truck, etc.) unloads waste, and a temporary space where waste unloaded from the garbage delivery vehicle is put.
  • a garbage pit 12 (garbage storage tank) is provided in which the garbage is systematically stored.
  • the waste thrown into the garbage pit 12 is transferred to the garbage incinerator 13 by a garbage crane. Since the wastewater that washed the platform 11 (platform washing wastewater) and the wastewater that seeped out from the waste stored in the waste pit 12 (pit wastewater) generally contain organic components, the organic matter of the wastewater treatment system 30 is treated as plant wastewater. The water is treated at the system wastewater treatment facility 31 .
  • the garbage incinerator 13 is a furnace for incinerating waste, such as a stoker furnace or a fluidized bed furnace.
  • the ash extrusion device 14 is a device for cooling and discharging incineration ash (main ash) remaining after incinerating waste in the refuse incinerator 13 .
  • Wastewater discharged from the ash extruder 14 (ash extruder wastewater) is alkaline water containing ash and heavy metals, and is treated as plant wastewater in the inorganic wastewater treatment facility 32 of the wastewater treatment system 30 .
  • the inorganic wastewater treatment facility 32 also receives and treats wastewater that has been treated in the organic wastewater treatment facility 31 .
  • Exhaust gas generated by burning waste in the waste incinerator 13 passes through a flue 15 and flows through a temperature reduction tower 16 that reduces the temperature of the exhaust gas, a dust remover 17 that removes fly ash from the exhaust gas, and a chimney 19 in that order. released to the outside air.
  • a carbon dioxide separation device 60 for separating low-concentration carbon dioxide F18 contained in the exhaust gas is arranged in the flue 15 between the dust remover 17 and the chimney 19.
  • a denitration device, an induced draft fan, or the like may be installed in the flue gas flow path.
  • Dust (fly ash) removed by a dust remover 17 such as a bag filter is washed by a fly ash washing device 18, stored in a fly ash pit (not shown), and carried out of the plant.
  • Wastewater (washing wastewater) discharged from the fly ash washing device 18 is alkaline water containing ash and heavy metals, and is treated as plant wastewater in the inorganic wastewater treatment facility 32 of the wastewater treatment system 30 .
  • the plant wastewater (reused water F14) that has been water-treated in the inorganic wastewater treatment facility 32 of the wastewater treatment system 30 is sprayed to reduce the temperature of the exhaust gas, tap water is sprayed. Superior in terms of cost-effectiveness.
  • the cooling tower 16 is not the scrubber of Patent Document 3, but the cooling tower 16 generally used in a refuse incinerator plant.
  • a desuperheating tower 16 in which the off-gas is substantially completely vaporized is desirable. Since substantially all of the sprayed water evaporates, plant wastewater is not discharged from the temperature reducing tower 16, and the load of water treatment in the wastewater treatment system 30 can be reduced.
  • the fly ash washing device 18 if dust (fly ash) is washed with plant wastewater (recycled water F14) that has been water-treated in the inorganic wastewater treatment facility 32 of the wastewater treatment system 30, the dust (fly ash) is washed with tap water. It is superior in terms of cost-effectiveness compared to
  • the boiler 20 includes a water purifier 27 that produces pure water F15 from tap water, industrial water, or the like, and the pure water F15 produced by the water purifier 27 is added with a boiler agent, an anticorrosive agent (oxygen absorber), a scale inhibitor, and the like.
  • a chemical addition device 28 that adds the chemical, a steam drum 21 that stores pure water F15 to which the chemical is added, and a heat transfer tube, a superheater tube, etc. that converts the water stored in the steam drum 21 into steam with the heat of the exhaust gas.
  • a heat recovery device 22 a steam turbine 23 that rotates an impeller with the steam generated by the exhaust heat recovery device 22 and supplied to the steam drum 21, a power generator 24 that generates power by the rotational force of the impeller of the steam turbine 23, and a steam turbine.
  • a deaerator 26 feeding 21 is provided.
  • the boiler blow water F1 is discharged as needed from the blow pipe 29 arranged below the steam drum 21 .
  • the waste steam has a high temperature, it is appropriately supplied to devices that require heating in the plant, such as the carbon dioxide separation device 60, the methanation device 46, and the pretreatment device 41 (in the case of solubilization and hydrothermal treatment), which will be described later. It is more cost-effective than using electricity purchased from an electric power company for heating.
  • the power generated by the generator 24 is used to operate various electric appliances (water electrolyzer 53, electrolyzer 54, methanation device 46, etc.) installed in the plant, and surplus power is supplied to the electric power company. You can sell electricity. The electric power is not sold to the electric power company, or the amount of electric power sold is small, and all or most of the electric power is appropriately designed to be supplied to various electric appliances arranged in the plant to which the hydrogen production system 1 is applied. By doing so, it is possible to construct a combustion furnace plant that is substantially power independent.
  • the carbon dioxide separation device 60 is, for example, a device that separates carbon dioxide using an amine solution, as shown in FIG. If it is possible in terms of design, it may have the same configuration as the carbon dioxide separation membrane 45 described later.
  • the carbon dioxide separator 60 of FIG. 3 has an absorber 61 , a heat exchanger 62 , a desorber 63 and a reheater 64 .
  • the absorber 61 is a device for causing the amine solution to absorb the carbon dioxide F18 in the exhaust gas. Inside the absorber 61, a relatively cold amine solution is injected toward the exhaust gas. The amine solution that has absorbed carbon dioxide F18 falls downward inside the absorber 61 and is introduced into the heat exchanger 62 . Further, the exhaust gas from which the carbon dioxide F18 has been removed flows out from above the absorber 61 and is discharged from the chimney 19 into the atmosphere.
  • the heat exchanger 62 is a device for raising the temperature of the amine solution discharged from the absorber 61 . A relatively high-temperature amine solution discharged from a desorber 63, which will be described later, is introduced into the heat exchanger 62 as a heat source.
  • the heat in the hot amine solution is transferred inside heat exchanger 62 to the cold amine solution.
  • the temperature-raised amine solution (amine solution containing carbon dioxide F18) is introduced into the desorber 63 .
  • the desorber 63 is a device for desorbing carbon dioxide F18 from the amine solution.
  • the amine solution introduced into the desorber 63 is sprayed inside the desorber 63 .
  • the desorber 63 is provided with a reheater 64 for heating the introduced amine solution while circulating it.
  • waste steam from the steam turbine 23 may be used to raise the temperature of the amine solution.
  • the carbon dioxide separation device 60 and the carbon dioxide storage tank 49 can significantly reduce the amount of carbon dioxide F18 in the exhaust gas discharged to the outside of the combustion furnace plant.
  • the high-purity carbon dioxide generation system 40 will be described in detail.
  • the high-purity carbon dioxide generation system 40 will be described as a system that generates high-purity carbon dioxide F7 by methane fermentation.
  • organic matter contained in the waste delivered to the refuse incinerator plant is used here as raw material for methane fermentation. Since the organic matter contained in the waste is used as the raw material, there is no need for raw material costs, and it is excellent from the viewpoint of cost effectiveness.
  • the pretreatment device 41 is a device that performs pretreatment (for example, crushing, solubilization, hydrothermal treatment, etc.) for removing substances unsuitable for fermentation from raw materials and adjusting the properties of the substances suitable for fermentation.
  • the raw material is transferred from, for example, the garbage pit 12 .
  • the raw material that has been appropriately pretreated by the pretreatment device 41 is introduced into the methane fermentation device 42 .
  • the methane fermentation device 42 is a device for methane fermentation of the raw material pretreated by the pretreatment device 41 to generate a biogas F8 and discharge a fermentation residue F9.
  • the fermentation method of methane fermentation may be dry or wet.
  • the biogas F8 contains at least two kinds of methane F6 (CH 4 ) and carbon dioxide F7 (CO 2 ) as major components of the biogas F8.
  • the biogas F8 produced by the methane fermentation device 42 is introduced into the carbon dioxide separation membrane 45, and the fermentation residue F9 is transferred to the dehydrator 43.
  • the dehydrator 43 is, for example, a trommel.
  • the dehydrator 43 is a device that dehydrates the fermentation residue F9 and separates it into a filtrate F10 and a residue (dehydrated sludge).
  • the filtrate F10 separated here is transferred to the water treatment device 51 of the electrolysis system 50, 50'. Further, the residue (dewatered sludge) is transferred to the refuse pit 12 by the conveyor 44 and incinerated by the refuse incinerator 13 .
  • the carbon dioxide separation membrane 45 is a device incorporating a separation membrane that separates carbon dioxide F7 from biogas F8.
  • Polymer membranes such as hollow fiber membranes, dendrimer membranes, polyethylene glycol membranes, and polyvinyl alcohol membranes can be used as separation membranes.
  • the carbon dioxide F7 separated by the carbon dioxide separation membrane 45 does not contain nitrogen oxides or particulate matter like exhaust gas from a combustion furnace or an internal combustion engine, and is high-purity carbon dioxide that does not contain impurities. F7, in other words extremely clean carbon dioxide F7. Therefore, carbon dioxide F7 can be used directly without purification or filtering as a feedstock for the methanation device 46 of the methanation system 72 or as a feedstock for plant photosynthesis in the plant growth facility 48. .
  • the carbon dioxide F7 may be stored in the carbon dioxide storage tank 49 .
  • carbon dioxide generated by methane fermentation in the methane fermentation device 42 is stored in the carbon dioxide storage tank 49 or used as a raw material for the methanation device 46 and the plant growing facility 48.
  • the emission of carbon dioxide F7 to the outside of the combustion furnace plant can be greatly reduced.
  • the plant growing facility 48 includes a storage facility (a carbon dioxide tank, a carbon dioxide cylinder) that stores carbon dioxide F7, and a building and facility (plant factories, greenhouses for cultivation, tanks for cultivation, etc.).
  • a storage facility a carbon dioxide tank, a carbon dioxide cylinder
  • plant factories, greenhouses for cultivation, tanks for cultivation, etc. for example, algae, flowers, vegetables, fruits and vegetables, foliage plants, succulents, and trees can be grown in the plant growing facility 48 .
  • the residual gas from which the carbon dioxide F7 has been separated by the carbon dioxide separation membrane 45 is substantially methane F6 (“second methane” in the claims).
  • the methane F6 is stored in a gas cylinder or the like, or supplied to the methane gas utilization facility 47 for use.
  • the methane gas utilization equipment 47 include equipment for introducing city gas into gas pipes (gas pipe introduction equipment), gas water heaters and gas heaters that burn city gas to supply hot water, gas engines (gas power generators), and the like. homes, businesses, or factories where Exhaust gas generated when methane F6 is burned in a gas engine is introduced into the waste incinerator 13 as gas for EGR (exhaust gas recirculation), and nitrogen oxides (NOx ) may be reduced.
  • EGR exhaust gas recirculation
  • NOx nitrogen oxides
  • the methanation device 46 when power is generated by a gas engine using methane F6 as fuel, it can be used as power to operate the methanation device 46, the water electrolysis device 53, the electrolysis device 54, etc., in the same way as the power generated by the steam turbine 23 and the power generator 24.
  • the residual gas from which the carbon dioxide F7 has been separated by the carbon dioxide separation membrane 45 is substantially methane F6, but may contain a small amount of sulfur and the like. Therefore, in this case, an impure gas remover such as a desulfurization device (not shown) may be used to remove impure gases other than methane F6 from the residual gas to obtain methane F6.
  • the methanation device 46 provided in the methanation system 72 is a device that synthesizes carbon dioxide F7 and hydrogen F4 generated by a water electrolysis device 53 described below to generate methane F12 (“first methane” in the claims).
  • methane F12 and pure water F13 are synthesized from carbon dioxide F7 and hydrogen F4 by a methanation reaction or a Sabatier reaction via a co-electrolytic reaction (this synthesis technique is called methanation).
  • the methanation device 46 is provided with a reactor (catalyst container) containing a catalyst for methane synthesis, and methane F12 is generated therein.
  • the temperature and pressure in the reactor are controlled within a range in which catalytic activity suitable for the desired reaction can be obtained, for example, about 250° C. and about 20 to 30 atmospheres.
  • Waste steam from the steam turbine 23 can be used to heat and pressurize the methanation device 46 . Since about 20 to 30 atmospheres is a relatively high pressure, the methanation device 46 has recently been developed to reduce the pressure so that methanation can be performed at a pressure lower than this.
  • Electric power for operating the methanation device 46 can use electric power generated by the steam turbine 23 and generator 24 or the gas engine, as described above.
  • the methane F12 synthesized in the methanation device 46 is supplied to the methane gas utilization facility 47 and used or stored. Further, the pure water F13 generated by the methanation device 46 may be directly introduced into the steam drum 21 without passing through the water purifying device 27 . As a result, the operating cost of the combustion furnace plant can be reduced in terms of power for operating the device and production of pure water.
  • the electrolysis system 50, 50' electrolyzes the filtrate F11 biologically treated by the water treatment device 51 in the water electrolysis device 53 or in the electrolysis device 54 different from the water electrolysis device 53, thereby producing a sodium hypochlorite solution F16. , F17. Since the electrolysis systems 50 and 50' have different configurations between the embodiment and the first modification, the electrolysis system 50 in the embodiment will be described first, and then the electrolysis system 50' in the first modification will be described.
  • the electrolysis system 50 in the embodiment has a water treatment device 51 , an ion removal device 52 , a water electrolysis device 53 and an electrolysis device 54 .
  • the water treatment device 51 is an organic water treatment device 51 (biological treatment device) that biologically treats the filtrate F10 separated by the dehydrator 43 of the high-purity carbon dioxide generation system 40 and containing organic components.
  • the water treatment equipment 51 performs biological treatment in the same manner as the organic wastewater treatment facility 31 of the wastewater treatment system 30, but the amount of filtrate F10 is small compared to the amount of plant wastewater treated by the organic wastewater treatment facility 31. . Therefore, the water treatment device 51 is much smaller and less expensive than the organic wastewater treatment facility 31 .
  • Filtrate F11 that has been biologically treated in the water treatment device 51 is introduced into the ion removal device 52 .
  • the ion removing device 52 is supplied with at least a part of the boiler blow water F1 discharged from the steam drum 21 at any time, and separates the separated water F2 (pure water) containing no unnecessary ions from the separated water F2 containing unnecessary ions. It is a device for separating into separated water F3. Since the boiler blow water F1 and the filtrate F11 biologically treated by the water treatment device 51 are introduced into the ion removal device 52 shown in FIG. be done. The filtrate F11 contains sodium ions (Na + ) and chloride ions (Cl ⁇ ) that are not removed by the biological treatment of the water treatment device 51 .
  • the boiler blow water F1 contains phosphate ions (PO 4 3 ⁇ ). Therefore, when the mixed liquid is supplied to the ion removing device 52, the water to be separated F3 containing sodium ions (Na + ), chloride ions (Cl ⁇ ), phosphate ions (PO 4 3 ⁇ ), These unnecessary ions are removed to produce separated water F2, which is pure water.
  • the rest of the boiler blow water F1 not supplied to the ion removing device 52 is introduced into the inorganic wastewater treatment facility 32 of the wastewater treatment system 30 and subjected to inorganic water treatment.
  • the reused water F14 that has undergone water treatment in the inorganic wastewater treatment facility 32 of the wastewater treatment system 30 is sprayed by an important device in the plant, for example, the cooling tower 16 for cooling the exhaust gas, so it can be reused. It is desirable to introduce a part of the boiler blow water F1 into the ion removal device 52 instead of the whole amount so as not to cause a shortage of the water F14.
  • the entire amount of the boiler blow water F1 discharged from the steam drum 21 may be supplied to the ion removing device 52 instead of the part of the boiler blow water F1 to be used as a raw material for hydrogen production.
  • the "remainder of the boiler blow water F1" is naturally zero, the boiler blow water F1 is not supplied to the waste water treatment system 30, and the entire amount of the boiler blow water F1 is supplied to the ion removal device 52, and is used as a raw material for hydrogen production. used as
  • the ion remover 52 incorporates, for example, an RO membrane (reverse osmosis membrane) or an ion exchange resin.
  • the RO membrane is a membrane that allows hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) in water to pass through and blocks other unwanted ions from passing through.
  • the ion exchange resin is a gel-like synthetic resin bead that replaces unnecessary ions in water with hydrogen ions or hydroxide ions.
  • the separated water F2 is supplied to the water electrolysis device 53, and the water to be separated F3 is supplied to the electrolysis device 54 different from the water electrolysis device 53.
  • the water electrolysis device 53 is a device that electrolyzes the separated water F2 (pure water). Since the water electrolysis device 53 is a device for electrolyzing pure water, although not shown, in addition to the separated water F2, the pure water F13 generated by the methanation device 46 is supplied to the water electrolysis device 53, and the amount of hydrogen produced is may be increased. When the water electrolyzer 53 produces a predetermined amount of hydrogen F4, if the separated water F2 made from the boiler blow water F1 is insufficient, pure water F13 produced by the methanation device 46, Pure water F13 and F15 other than the separated water F2, such as pure water F15 produced by the water purifier 27, may be mixed and supplied to the water electrolysis device 53.
  • a water electrolysis apparatus is equipped with a heating device for heating room-temperature pure water in order to perform electrolysis efficiently.
  • the water electrolysis device 53 in the embodiment or modified example does not need to be equipped with a heating device. This is because the boiler blow water F1, which is the raw material for hydrogen production in the water electrolysis device 53, is at a high temperature, so the separated water F2 separated by the ion removal device 52 can be adjusted to a higher temperature (approximately 70° C. to 90° C.) than normal temperature. is.
  • the water electrolysis device 53 can electrolyze pure water and liquid mixtures at temperatures higher than room temperature. Therefore, the water electrolysis device 53 can efficiently produce hydrogen without the heating device, and is therefore cost-effective.
  • the temperature of the pure water or the mixed liquid can be adjusted to a temperature higher than normal temperature, if the temperature is insufficient for hydrogen production, the water electrolysis device 53 may be added with the above-mentioned heating device, for example. , the waste steam may be supplied to the heating device for heating.
  • Electric power for operating the water electrolysis device 53 can be electric power generated by the steam turbine 23, the generator 24, or the gas engine described above.
  • the separated water F2 supplied to the water electrolysis device 53 is generated from the boiler blow water F1, which is plant waste water, it is free of raw material cost and does not need to be separately purchased. Therefore, hydrogen F4, which is a valuable resource, can be economically produced from boiler blow water F1, which is plant waste water.
  • the separated water F2 is electrolyzed to generate hydrogen F4 (H2) and oxygen F5 ( O2 ).
  • Hydrogen F4 is introduced into methanation device 46 .
  • the oxygen F5 may be released into the atmosphere, or may be mixed with the combustion air supplied to the inside of the refuse incinerator 13 to promote combustion of the waste.
  • the boiler blow water F1 since at least a part of the boiler blow water F1 is used as a raw material for the water electrolysis device 53, compared to the conventional method in which the entire amount of the boiler blow water F1 is introduced into the inorganic waste water treatment facility 32 of the waste water treatment system 30, the inorganic waste water The load of water treatment in the wastewater treatment facility 32 can be reduced.
  • the electrolyzer 54 is a device that electrolyzes the water to be separated F3, and uses sodium ions and chloride ions contained in the water to be separated F3 to generate a sodium hypochlorite solution F16 (NaClO solution). can be done. Electric power for operating the electrolytic device 54 can be electric power generated by the steam turbine 23, the generator 24, or the aforementioned gas engine.
  • the sodium hypochlorite solution F16 generated by the electrolyzer 54 may be sprayed as a sterilizing agent for the platform 11 of a refuse incinerator plant, which is a combustion furnace plant, and roads, for example, or as a disinfectant for rooms in the plant.
  • Both the filtrate F10 of the methane fermentation device 42 and the boiler blow water F1 are plant waste water, and the sodium hypochlorite solution F16 is produced in the electrolytic device 54 using these plant waste water as raw materials without the need for raw material costs, so it is excellent in terms of cost effectiveness. .
  • the economically produced sodium hypochlorite solution F16 can maintain good sanitary conditions in the combustion furnace plant and improve the working environment.
  • the electrolysis system 50' in the first modification will now be described.
  • a major difference of the electrolysis system 50 ′ from the electrolysis system 50 is that the electrolysis system 50 ′ does not have the electrolyzer 54 and the filtrate F 11 is directly supplied to the water electrolyzer 53 .
  • the electrolysis system 50 ′ only the boiler blow water F 1 is supplied to the ion removal device 52 , and the separated water F 2 produced by the ion removal device 52 is supplied to the water electrolysis device 53 .
  • the water to be separated F3 is supplied to the inorganic wastewater treatment facility 32 of the wastewater treatment system 30 and subjected to water treatment.
  • the electrolysis in the water electrolysis device 53 produces hydrogen F4 and sodium hypochlorite solution F17. be.
  • the electrolysis system 50' can also economically produce the sodium hypochlorite solution F17.
  • the sodium hypochlorite solution F17 produced economically can maintain good sanitary conditions in the combustion furnace plant and improve the working environment.
  • the embodiment and the first modified example have been described above.
  • the amount of methane F6 produced is about 1.9 tons, and carbon dioxide F7 is produced.
  • the production amount is about 3.5 tons.
  • the recovery rate of methane F6 in the carbon dioxide separation membrane 45 is, for example, about 92% (performance varies depending on the type of carbon dioxide separation membrane 45, etc.)
  • the entire amount of carbon dioxide F7 is introduced into the methanation device 46. Assuming that, about 3.45 tons of carbon dioxide F7 and about 0.1 tons of methane component will be introduced into the methanation device 46 .
  • the amount of methane F6 separated by the carbon dioxide separation membrane 45 is about 1.8 tons.
  • the ion removal device 52 obtains about 5.65 tons of separated water F2 from about 6 tons of boiler blow water F1, so that the water electrolysis device 53 obtains about 0.63 tons of hydrogen F4.
  • methanation is performed in the methanation device 46 using all of this hydrogen F4 and carbon dioxide F7, about 1.4 tons of methane F12 and about 2.8 tons of pure water F13 are produced. Therefore, a total of 3.2 tons of methane F6 and F12, which are valuable materials, can be obtained from methane F6 (secondary methane) and methane F12 (first methane), and the emission of carbon dioxide F7 can be substantially reduced.
  • the carbon dioxide separator 60 carbon dioxide F18 contained in the exhaust gas from the combustion furnace can also be recovered. Further, the electric power generated by the boiler-equipped combustion system 10 can be supplied to devices requiring electric power, such as the methanation device 46 and the water electrolysis device 53 in the hydrogen production system 1 .
  • the raw material cost of the boiler blow water F1 which is plant waste water
  • the carbon dioxide F7 used for methanation also has a raw material cost of zero
  • the methanation device 46 , water electrolysis device 53, and the like can be substantially reduced to zero cost.
  • Carbon dioxide F18 discharged from the plant can be reduced.
  • the hydrogen production system 1 of the embodiment and the first modified example can be said to be a hydrogen production system 1 that enables realization of a decarbonized society, which is a recent global environmental issue.
  • the other systems that are not changed in the above another example are the Alternatively, it may be the same as the first modified example.
  • the same reference numerals are assigned to the same configurations as those described in the embodiment and the first modified example, and descriptions of the configurations and effects are omitted.
  • the inflow and outflow of liquid or gas, the transfer of objects, etc. may be the same. omitted.
  • a hydrogen production system 1 of a second modified example will be described with reference to FIG.
  • the hydrogen production system 1 of the second modification differs from the hydrogen production system 1 of the embodiment or the first modification in the high-purity carbon dioxide generation system 40'.
  • the high-purity carbon dioxide generation system 40' like the high-purity carbon dioxide generation system 40, is a system that generates high-purity carbon dioxide F7 and F19 without a special concentration process.
  • the high-purity carbon dioxide generation system 40 includes at least the methane fermentation device 42 as an example, but the high-purity carbon dioxide generation system 40' includes at least the alcohol fermentation device 66 as an example.
  • the high-purity carbon dioxide production system 40' of FIG. 4 produces high-purity carbon dioxide F7, F19 from both the alcohol fermentation device 66 and the methane fermentation device 42, but the methane fermentation device 42 is not necessarily provided.
  • the alcohol fermentation system 65 includes an alcohol fermentation device 66 and a solid-liquid separation device 67 that solid-liquid separates the mash F20 produced in the alcohol fermentation device 66 into alcohol F21 and residue F22.
  • the solid-liquid separator 67 is, for example, a screw press, a belt press, or the like.
  • biomass such as waste wood and bacas (sugar cane residue) is introduced into the pretreatment device 41 .
  • the biomass is hydrolyzed and saccharified in the pretreatment device 41 to produce glucose.
  • the glucose produced in the pretreatment device 41 is then introduced into the alcohol fermentation device 66 of the alcohol fermentation system 65 .
  • the yeast is supplied to the alcoholic fermentation device 66 and alcoholic fermentation is performed.
  • a chemical reaction formula for producing alcohol F21 (C 2 H 5 OH) and carbon dioxide F19 using glucose (C 6 H 12 O 6 ) is illustrated below.
  • Moromi F20 produced in the alcohol fermentation device 66 by alcohol fermentation is separated into alcohol F21 and residue F22 by the solid-liquid separation device 67, and the residue F22 becomes the raw material of the methane fermentation device . That is, the methane fermentation device 42 performs methane fermentation using the residue F22.
  • the alcohol F21 is concentrated by a distillation apparatus or a dehydrator (not shown), and can be sold as valuable alcoholic beverages.
  • the carbon dioxide F19 discharged from the alcohol fermentation device 66 by alcohol fermentation does not contain nitrogen oxides or particulate matter unlike exhaust gas from a combustion furnace or an internal combustion engine, and is a high-purity carbon dioxide that does not contain impurities. carbon dioxide F19, in other words, extremely clean carbon dioxide F19. Therefore, carbon dioxide F19 can be used directly as a feedstock for the methanation device 46 of the methanation system 72 or as a feedstock for plant photosynthesis in the plant growth facility 48 without purification or filtering. .
  • the carbon dioxide F19 may be stored in the carbon dioxide storage tank 49 .
  • the carbon dioxide F19 generated by alcohol fermentation in the alcohol fermentation device 66 is stored in the carbon dioxide storage tank 49 or used as a raw material for the methanation device 46 and the plant growth facility 48, so the combustion furnace The amount of carbon dioxide F19 emitted to the outside of the plant can be greatly reduced.
  • the gas discharged from the alcohol fermentation device 66 is carbon dioxide F19, it may contain a trace amount of impurities such as sulfur depending on the type of biomass. Therefore, in this case, the impurities may be removed using an impure gas removing device such as a desulfurization device (not shown).
  • a hydrogen production system 1 of a third modification will be described with reference to FIG.
  • the hydrogen production system 1 of the third modification differs from the hydrogen production system 1 of the embodiment or the first modification in the boiler-equipped combustion system 10' and the high-purity carbon dioxide generation system 40''.
  • the boiler-equipped combustion system 10 ′ is, like the boiler-equipped combustion system 10 , at least a combustion furnace 68 and a boiler 20 that generates steam from heat burned in the combustion furnace 68 .
  • the boiler-equipped combustion system 10 includes the refuse incinerator 13 as an example of the combustion furnace 68, the boiler-equipped combustion system 10' need not necessarily be the refuse incinerator 13.
  • the high-purity carbon dioxide generation system 40′′ is a system that generates high-purity carbon dioxide without a special concentration process.
  • High-purity carbon dioxide generation system 40 , 40' includes, as an example, the methane fermentation device 42 and the alcohol fermentation device 66, but the high-purity carbon dioxide generation system 40'' includes, as an example, at least a gasification furnace 69 for gasifying woody biomass.
  • woody biomass such as waste wood is introduced into the pretreatment device 41 and crushed.
  • the waste wood crushed by the pretreatment device 41 is introduced into the gasification furnace 69 and gasified in the gasification furnace 69 . Since the gasification gas generated in the gasification furnace 69 contains tar, it is supplied to a tar reformer 70 that reforms or removes tar. Then, the gasification gas from which the tar is reformed or removed by the tar reformer 70 is introduced into the desulfurization device 71 .
  • other impurities may be removed using an impure gas remover.
  • the gasified gas from which trace amounts of sulfur and impurities have been removed by the desulfurization device 71 or the like is supplied to the methanation device 46 of the methanation system 72 as a raw material for methanation.
  • the pyrolysis residue generated by the gasification gas coming out of the waste wood in the gasification furnace 69 is burned in the combustion furnace 68 of the boiler-equipped combustion system 10'. Further, the heat generated by the combustion in the combustion furnace 68 heats the gasification furnace 69 to promote gasification in the gasification furnace 69 .
  • the gasification gas generated in the gasification furnace 69 is used as the raw material for the methanation device 46, so the amount of carbon dioxide emitted from the gasification furnace 69 to the outside of the combustion furnace plant is greatly reduced. can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Biochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Chimneys And Flues (AREA)
  • Processing Of Solid Wastes (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

水素製造システム(1)は、燃焼炉プラントに適用され、燃焼炉と、前記燃焼炉で燃焼した熱で蒸気を生成するボイラとを少なくとも備えるボイラ付燃焼システム(10)と、前記ボイラから排出されるボイラブロー水(F1)のうち、少なくとも一部の前記ボイラブロー水が導入されて不要イオンを除去した分離水(F2)と前記不要イオンを含有する被分離水(F3)とを生成するイオン除去装置(52)と、前記分離水を電気分解することで水素を生成する水電解装置(53)とを少なくとも備える電解システム(50)と、前記ボイラブロー水の残部を含み、前記燃焼炉プラントで生じるプラント排水に対して無機系の水処理を行う無機系排水処理施設(32)を少なくとも備える排水処理システム(30)とを有する。

Description

水素製造システム
 本発明は、ボイラを備えたごみ焼却炉等の燃焼炉を利用して水素生成を行う水素製造システムに関する。
 近年、地球温暖化対策としての脱炭素化の機運が世界的に高まりつつあり、二酸化炭素の排出削減技術や、二酸化炭素を排出しない水素製造技術が注目されている。日本においては、2050年までに温室効果ガスの排出を実質的にゼロにすること(カーボンニュートラル)が環境省によって宣言されている。これを受けて国内の企業各社は、目標を達成するためのさまざまな取り組みを進めている。
 例えば、有機性廃棄物を分解してバイオガスを製造するメタン発酵装置は、メタンガスとともに二酸化炭素を排出する。メタン発酵装置で生産されるバイオガス全体に占める二酸化炭素の割合は、有機性廃棄物の組成にも依存するものの、重量比でおよそ三分の二前後である。具体的には、約2トンのメタンガスを生成する際に、約4トンの二酸化炭素が同時に生成される。そこで、二酸化炭素の排出量を削減すべく、バイオガスから二酸化炭素を分離して植物工場で利用する技術や、廃棄物焼却炉から生じる灰を二酸化炭素と混合してセメント材料にする技術等が開発されている(特許文献1参照)。
 また、メタン発酵で生じた二酸化炭素と水電解装置で生成した水素とを用いてメタネーション(メタン合成)を実施し、生成されたメタンを都市ガスとして利用する技術や、ガスエンジン等の燃料としてメタンを活用する技術も開発されている(特許文献2参照)。
 さらに、ごみ焼却炉プラントに水電解装置を設置し、水電解装置で生成した水素と空気中の窒素とからアンモニアを合成し、そのアンモニアをガスエンジン等の燃料として活用する技術も開発されている(特許文献3参照)。
特開2006-212524号公報 特開2019-090084号公報 特開2019-216501号公報
 特許文献1に記載の植物工場やセメントの合成で使用される二酸化炭素の量は、メタン発酵で生じるすべての二酸化炭素を消費できるほど多量ではない。これに対し、特許文献2に記載のメタネーションによれば、多量の二酸化炭素を高需要のメタンへと変換することができ、商業的に有益である。一方、メタネーションのための水素を水電解装置で生成するには、多量の電力及び水が必要となる。そこで、特許文献3に記載のように、ごみ焼却炉プラントが備えるボイラの蒸気タービン及び発電機で発電した電力と排ガスの温度を低減するための減温塔の冷却排水とを使用して、メタネーションを実施することが考えられる。
 しかし、水電解装置で効率よく水素を生成するには、不純物を含まない水を使用する必要がある。この点に関して、特許文献3の技術では、いわゆるスクラバーである減温塔を集塵機の上流側に設置し、減温後の冷却排水を水電解装置に供給している。しかし、この冷却排水には、排ガス中の飛灰、重金属、排ガス処理用の薬品が含有されているため、そのまま水電解装置に供給することはできない。
 一方、ごみ焼却炉プラントの排水には、ごみ収集車が回収したごみをごみピットへ投入するためのプラットフォームを洗浄した排水、ごみピットに貯留したごみから出る排水、ごみ焼却炉で焼却した主灰を冷却して排出する灰押出装置からの排水などもある。しかし、プラットフォームやごみピットからの排水には有機成分が含まれ、灰押出装置からの排水には無機成分が含まれるため、やはり、そのまま水電解装置に供給することはできない。
 従って、燃焼炉プラントの一種であるごみ焼却炉プラントに水電解装置を配置して、当該プラントで生じる排水(プラント排水)を水電解装置に使用する場合、当該プラントが一般的に備える総合排水処理システムに、プラットフォームやごみピットからの排水、灰押出装置からの排水などの全てのプラント排水を合流させて、有機成分及び無機成分を水処理した水を、水電解装置に使用するというのが当業者の技術常識であった。
 なお、総合排水処理システムは、燃焼炉とボイラを備えた燃焼炉プラントであれば、ごみ焼却炉プラント以外のプラント、例えば、火力発電プラントや化学プラントなどにも備えられている。
 本発明は、上記のような課題に鑑み案出されたものであり、総合排水処理システムの水処理の負荷を低減し、且つ、燃焼炉プラントで生じるプラント排水を利用した電気分解により経済的に水素を生成できる水素製造システムを提供することを目的とする。
 本発明の水素製造システムは、燃焼炉プラントに適用され、
 燃焼炉と、前記燃焼炉で燃焼した熱で蒸気を生成するボイラとを少なくとも備えるボイラ付燃焼システムと、
 前記ボイラから排出されるボイラブロー水のうち、少なくとも一部の前記ボイラブロー水が導入されて不要イオンを除去した分離水と前記不要イオンを含有する被分離水とを生成するイオン除去装置と、前記分離水を電気分解することで水素を生成する水電解装置とを少なくとも備える電解システムと、
 前記ボイラブロー水の残部を含み、前記燃焼炉プラントで生じるプラント排水に対して無機系の水処理を行う無機系排水処理施設を少なくとも備える排水処理システムと
を有する。
 本発明の水素製造システムによれば、燃焼炉プラントで生じるプラント排水のうち、低濃度の薬品が混入しているものの特にきれいなボイラブロー水の一部を利用して水電解を行う。水電解される少なくとも一部のボイラブロー水は排水処理システムに混入しないため、排水処理システムにおける水処理の負荷を低減することができる。
 従って、排水処理システムの水処理の負荷を低減し、且つ、燃焼炉プラントで生じるプラント排水を利用した電気分解により経済的に水素を生成できる水素製造システムを提供することができる。
本発明の水素製造システムの実施例を示すブロック図である。 本発明の水素製造システムの第一変形例を示すブロック図である。 二酸化炭素分離装置60の一例を示すブロック図である。 本発明の水素製造システムの第二変形例の一部を示すブロック図である。 本発明の水素製造システムの第三変形例の一部を示すブロック図である。
 以下、図1~図5を参照して、実施例及び変形例(第一、第二、第三変形例)の水素製造システムについて説明する。図中において、数字のみの符号は、水素製造システムに関係する装置、部品、部位等の物理的な要素を表す。また、アルファベットのFと数字とを組み合わせた符号は、水素製造システムで生じる液体や気体などの流体(Fluid)を表す。
 以下に示す実施例及び変形例は、あくまでも例示に過ぎず、明示しない種々の変形や技術の適用を排除する意図はない。以下の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施できる。また、以下の各構成は、本発明に必須の構成を除いて必要に応じて取捨選択でき、あるいは公知の構成と組み合わせ可能である。
 [1.実施例及び第一変形例]
 図1は、本発明の実施例であり、図2は、本発明の第一変形例である。実施例及び第一変形例の水素製造システム1は、ボイラ付燃焼システム10と、排水処理システム(総合排水処理システム)30と、高純度二酸化炭素生成システム40と、電解システム50(第一変形例では50′)と、メタネーションシステム72とを有する複合処理施設である。
 実施例と第一変形例とでは、水素製造システム1の備える電解システム50、50′の構成が異なるのみであるので、ここでは、実施例と第一変形例とを同時に説明する。
 これらのシステム10、30、40、50(50′)、72は、全てのシステムが一つの建物内に設けられてもよいし、各々のシステムに対応した個別の建物に設けられてもよい。また、これら全システムが同一の敷地に設けられてもよいし、別個の敷地、例えば、互いに遠方の敷地に設けられてもよい。各々のシステムが互いに遠方の敷地に設けられる場合は、パイプラインや自動車搬送などで、各々のシステムを適宜接続すればよい。
 [A.基本構成]
 まず、上述の5つのシステム10、30、40、50(50′)、72について概要を説明し、その後、当該各システムの具体的構成及び効果について詳述する。
 ボイラ付燃焼システム10は、燃焼炉と、燃焼炉で燃焼した熱で蒸気を生成するボイラとを少なくとも備えるシステムである。水素製造システム1が適用される燃焼炉プラントは、燃焼炉で燃焼される燃料(廃棄物、石炭など)やその目的に応じて、ごみ焼却炉プラント、火力発電プラント、化学プラントなど、多様である。
 ボイラ付燃焼システム10は、ボイラ20を備えるため、後述のボイラブロー水F1が必ず排出される。
 なお、実施例及び第一変形例では、ボイラ付燃焼システム10は、燃焼炉の一例としてごみ焼却炉13を備えている。
 排水処理システム30は、[発明が解決しようとする課題]で述べた総合排水処理システムである。プラント排水に含まれる有機成分を生物処理などして水処理する有機系排水処理施設31と、当該有機成分を水処理した後に、プラント排水に含まれる無機成分を水処理する無機系排水処理施設32とを備える。排水処理システム30では、燃焼炉プラントの外部へ放流可能な程度に排水を浄化する水処理がなされる。排水処理システム30が水処理したプラント排水は、後述の再利用水F14として燃焼炉プラント内で利用してもよいし、余剰分があれば燃焼炉プラントの外部へ放流してもよい。
 なお、実施例及び第一変形例の水素製造システム1は、燃焼炉プラントの一種であるごみ焼却炉プラントに適用された例を示しているので、排水処理システム30は有機系排水処理施設31と無機系排水処理施設32のいずれも備えている。しかし、有機成分がプラント排水に含有されない燃焼炉プラント、例えば、火力発電プラントなどでは、排水処理システム30は、有機系排水処理施設31を含まず、無機系排水処理施設32のみの場合もありうる。
 高純度二酸化炭素生成システム40は、特段の濃縮工程を経ずに高純度の二酸化炭素を生成するシステムである。[背景技術]で述べたように、メタン発酵の際には高純度の二酸化炭素が多量に生成されるので、図1及び図2の高純度二酸化炭素生成システム40は、一例として、メタン発酵装置42を少なくとも備えている。
 高純度二酸化炭素生成システム40は、メタン発酵装置42のほか、アルコール発酵装置66(第二変形例として図4を用いて後述)、木質バイオマスをガス化するガス化炉69(第三変形例として図5を用いて後述)などを少なくとも含んで構成してもよい。
 メタネーションシステム72は、少なくとも高純度二酸化炭素生成システム40で生成された二酸化炭素F7と、後述の電解システム50の水電解装置53が生成した水素F4とを原料として、メタネーション装置46でメタネーションを行い、メタンF12を生成するシステムである。
 電解システム50は、ボイラブロー水F1を用いた電気分解により水素F4を生成するシステムである。電解システム50は、ボイラブロー水F1から不要なイオンを除去するイオン除去装置52と、水電解装置53とを少なくとも備える。
 ボイラ20に供給される水は純水F15であるが、例えば、清缶剤、防食剤(脱酸素剤)、スケール防止剤などの薬品が低濃度で添加され、ボイラ20内に貯留された水は弱アルカリ性に調整される。このため、従来、ボイラブロー水F1は、高濃度の薬品や灰などの不純物を多量に含む他のプラント排水と混合され、総合排水処理施設で水処理されてきた。
 しかし、ボイラ20内に貯留された水は、純水F15に低濃度の薬品が添加されたものであり、灰や重金属を含んでおらず、燃焼炉を備えたプラント内の他のプラント排水と比べ格段に純水F15に近いため、ボイラ20から随時排出されるボイラブロー水F1を、純水F15を必要とする水電解装置53に利用すれば、効率よく経済的に水素F4を生成することができると発明者は考えた。
 そこで、ボイラブロー水F1を利用して水電解装置53で水素F4を生成する構成を基本とし、水電解装置53で生成した水素F4を用いてメタンF12などの有価物を生成することができ、さらに燃焼炉プラントから排出される二酸化炭素F18を削減できる水素製造システム1、言い換えれば、近年の世界の環境課題である脱炭素社会の実現を可能とする水素製造システム1を発明した。
 以上、実施例及び第一変形例が備える5つのシステム10、30、40、50(50′)、72について概要を説明した。そこで、以下、各システムの構成及び効果を詳述する。
 [B.詳細構成]
 では、図1、図2を用いて、水素製造システム1の詳細を説明する。上述のように、実施例及び第一変形例は、燃焼炉プラントのうち、本発明の水素製造システム1がごみ焼却炉プラントに適用された例である。
 ごみ焼却炉プラントは、例えば、都市ごみや産業廃棄物等のごみ、すなわち廃棄物を焼却処理する施設である。ボイラ付燃焼システム10には、ごみ搬入車両(ごみ収集車、トラック、ダンプカー等)が廃棄物を荷下ろしする空間であるプラットフォーム11や、ごみ搬入車両から荷下ろしされた廃棄物が投入されて一時的に貯留されるごみピット12(ごみ貯留槽)が設けられる。ごみピット12に投入された廃棄物は、ごみクレーンによってごみ焼却炉13へと移送される。
 プラットフォーム11を洗浄した排水(プラットフォーム洗浄排水)やごみピット12に貯留された廃棄物からしみ出た排水(ピット排水)は、一般的に有機成分を含むため、プラント排水として排水処理システム30の有機系排水処理施設31で水処理される。
 ごみ焼却炉13は、廃棄物を焼却するための炉であり、例えば、ストーカ炉や流動床炉等である。灰押出装置14は、ごみ焼却炉13で廃棄物を焼却した後に残る焼却灰(主灰)を冷却して排出するための装置である。灰押出装置14から排出される排水(灰押出装置排水)は、灰や重金属を含むアルカリ性水であり、プラント排水として排水処理システム30の無機系排水処理施設32で水処理される。なお、無機系排水処理施設32は、有機系排水処理施設31で水処理された排水も受け入れて水処理する。
 ごみ焼却炉13で廃棄物が燃焼することにより発生した排ガスは、煙道15を通り、排ガスを減温する減温塔16、排ガスから飛灰を除塵する除塵装置17、煙突19の順に流れて外気に放出される。ここでは、除塵装置17と煙突19の間の煙道15に、排ガスに含まれる低濃度の二酸化炭素F18を分離する二酸化炭素分離装置60が配置される。必要に応じて、図示しない脱硝装置、誘引送風機などを排ガスの流路に設置してもよい。
 バグフィルタ等の除塵装置17で取り除かれた塵(飛灰)は、飛灰洗浄装置18で洗浄された後に、図示しない飛灰ピットに貯留され、プラントの外へ搬出される。飛灰洗浄装置18から排出される排水(洗浄排水)は、灰や重金属を含むアルカリ性水であり、プラント排水として排水処理システム30の無機系排水処理施設32で水処理される。
 なお、減温塔16において、排水処理システム30の無機系排水処理施設32で水処理されたプラント排水(再利用水F14)を噴霧して排ガスを減温すれば、水道水を噴霧する場合に比べ、費用対効果の観点で優れる。ここで、減温塔16は、特許文献3のスクラバーではなく、ごみ焼却炉プラントで一般的に使用される減温塔16、すなわち、噴霧された水(例えば、再利用水F14)は高温の排ガスによって実質的に全て蒸発するような減温塔16が望ましい。噴霧された水が実質的に全て蒸発するので減温塔16からプラント排水が排出されず、排水処理システム30における水処理の負荷を低減することができる。
 また、飛灰洗浄装置18において、排水処理システム30の無機系排水処理施設32で水処理されたプラント排水(再利用水F14)で塵(飛灰)を洗浄すれば、水道水で洗浄する場合に比べ、費用対効果の観点で優れる。
 ボイラ20は、水道水や工業用水などから純水F15を製造する純水装置27、純水装置27が製造した純水F15に、清缶剤、防食剤(脱酸素剤)、スケール防止剤などの薬品を添加する薬品添加装置28、当該薬品が添加された純水F15を貯留する蒸気ドラム21、蒸気ドラム21に貯留された水を排ガスの熱で蒸気にする伝熱管や過熱管などの排熱回収器22、排熱回収器22で生成され且つ蒸気ドラム21に供給された蒸気で羽根車を回転する蒸気タービン23、蒸気タービン23の羽根車の回転力で発電する発電機24、蒸気タービン23の羽根車を回転させた後の蒸気(廃蒸気)を水に戻す復水器25、復水器25で生成された復水から溶存ガス(酸素、二酸化炭素等)を除去して蒸気ドラム21へ供給する脱気器26を備える。
 ボイラブロー水F1は、蒸気ドラム21の下方に配置されたブロー配管29から随時排出される。
 なお、廃蒸気は高温であるので、後述の二酸化炭素分離装置60、メタネーション装置46、前処理装置41(可溶化や水熱処理の場合)など、プラント内で加温が必要な装置に適宜供給して利用すれば、電力会社から購入した電力を使用して加温するよりも費用対効果の観点で優れる。
 発電機24で発電された電力は、プラント内に配置された各種電気製品(水電解装置53、電解装置54、メタネーション装置46など)を作動させるために利用され、余った電力は電力会社に売電してもよい。当該電力を電力会社に売電しない、または、売電量を少量とし、当該電力の全てまたは大部分を水素製造システム1が適用されるプラント内に配置された各種電気製品に供給するよう適宜設計することで、実質的に電力自立型の燃焼炉プラントを構築しうる。
 また、排水処理システム30の無機系排水処理施設32で水処理されたプラント排水(再利用水F14)を純水装置27に供給し、純水装置27で純水F15を製造すれば、水道水を供給する場合に比べ、費用対効果の観点で優れる。
 二酸化炭素分離装置60は、例えば、図3に示すように、アミン溶液を利用して二酸化炭素を分離する装置である。設計上可能であれば、後述の二酸化炭素分離膜45と同様の構成でもよい。
 図3の二酸化炭素分離装置60は、吸収器61と熱交換器62と脱離器63と再加熱器64とを有する。
 吸収器61は、排ガス中の二酸化炭素F18をアミン溶液に吸収させるための装置である。吸収器61の内部では、比較的低温のアミン溶液が排ガスに向かって噴射される。二酸化炭素F18を吸収したアミン溶液は、吸収器61の内部で下方へ落下し、熱交換器62に導入される。また、二酸化炭素F18が除去された排ガスは吸収器61の上方から流出し、煙突19から大気中に排出される。
 熱交換器62は、吸収器61から流出したアミン溶液の温度を上昇させるための装置である。熱交換器62には、後述する脱離器63から流出した比較的高温のアミン溶液が、熱源として導入される。高温のアミン溶液が持つ熱量は、熱交換器62の内部で低温のアミン溶液へと移動する。ここで昇温したアミン溶液(二酸化炭素F18を含有するアミン溶液)は、脱離器63に導入される。
 脱離器63は、二酸化炭素F18をアミン溶液から脱離させるための装置である。脱離器63に導入されたアミン溶液は、脱離器63の内部に噴霧される。これにより、アミン溶液中に吸収されていた二酸化炭素F18が脱離し、脱離器63の上方から流出して二酸化炭素貯留タンク49に貯留される。
 脱離器63には、内部に導入されたアミン溶液を循環させながら加温するための再加熱器64が併設される。再加熱器64では、例えば、蒸気タービン23の廃蒸気を利用して、アミン溶液の温度を上昇させてもよい。
 二酸化炭素分離装置60と二酸化炭素貯留タンク49により、排ガス中の二酸化炭素F18の燃焼炉プラントの外部への排出量を大幅に削減できる。
 以上、ボイラ付燃焼システム10の各構成について詳述した。排水処理システム30の各構成については、概要説明の箇所においてすでに説明済であるので省略する。
 では、高純度二酸化炭素生成システム40の各構成について詳述する。
 実施例および第一変形例の水素製造システム1においては、高純度二酸化炭素生成システム40は、メタン発酵により高純度の二酸化炭素F7を生成するシステムであるとして説明する。特に、ここでは、メタン発酵の原料として、ごみ焼却炉プラントに搬入された廃棄物に含まれる有機物を使用する。原料として廃棄物に含まれる有機物を使用するので、原料費が不要であり、費用対効果の観点で優れる。
 前処理装置41は、原料から発酵不適物を除去し、発酵適物の性状を整える前処理(例えば、破砕、可溶化、水熱処理など)を実施する装置である。原料は、例えば、ごみピット12から移送される。
 前処理装置41で適切に前処理がなされた原料は、メタン発酵装置42に導入される。
 メタン発酵装置42は、前処理装置41で前処理がなされた原料をメタン発酵させることでバイオガスF8を生成するとともに発酵残渣F9を排出する装置である。メタン発酵の発酵方式は、乾式でもよいし湿式でもよい。
 バイオガスF8には、少なくともメタンF6(CH)及び二酸化炭素F7(CO)の2種が、バイオガスF8の大部分を占める主成分として含まれる。
 メタン発酵装置42で生成されたバイオガスF8は、二酸化炭素分離膜45に導入され、発酵残渣F9は、脱水機43へと移送される。脱水機43は、例えばトロンメルなどである。
 脱水機43は、発酵残渣F9を脱水して濾液F10と残余物(脱水汚泥)とに分離する装置である。ここで分離された濾液F10は、電解システム50、50′の水処理装置51に移送される。また、当該残余物(脱水汚泥)は、コンベヤ44でごみピット12に移送され、ごみ焼却炉13で焼却される。
 二酸化炭素分離膜45は、バイオガスF8から二酸化炭素F7を分離する分離膜を内蔵した装置である。分離膜として、例えば中空糸膜、デンドリマー膜、ポリエチレングリコール膜、ポリビニルアルコール膜等の高分子膜を用いることができる。
 二酸化炭素分離膜45で分離された二酸化炭素F7は、燃焼炉や内燃機関の排ガスのように窒素酸化物や粒子状物質(Particulate matter)を含むものではなく、不純物を含まない高純度の二酸化炭素F7、言い換えれば、極めてクリーンな二酸化炭素F7である。従って、二酸化炭素F7を、浄化処理やフィルタ処理なしに直接的に、メタネーションシステム72のメタネーション装置46の原料として、または、植物育成設備48における植物の光合成の原料として、使用することができる。二酸化炭素F7は、二酸化炭素貯留タンク49に貯留してもよい。
 実施例及び第一変形例においては、メタン発酵装置42におけるメタン発酵により生じる二酸化炭素を二酸化炭素貯留タンク49に貯留したり、メタネーション装置46や植物育成設備48の原料に使用したりするので、燃焼炉プラントの外部への二酸化炭素F7の排出量を大幅に削減できる。
 なお、植物育成設備48には、二酸化炭素F7を貯留する貯留設備(二酸化炭素タンク、二酸化炭素ボンベ)や、光合成で成長する植物に二酸化炭素F7を供給して植物を育成する建物及び設備(植物工場、栽培用温室、栽培用水槽等)が含まれる。植物育成設備48では、例えば藻、草花、野菜、青果物、観葉植物、多肉植物、樹木等が栽培されうる。
 一方、二酸化炭素分離膜45で二酸化炭素F7が分離された残余ガスは実質的にメタンF6(請求項に記載の「第二メタン」)である。メタンF6は、ガスボンベなどに貯留、または、メタンガス利用設備47に供給されて使用される。メタンガス利用設備47としては、例えば、都市ガスとしてガス管に導入する設備(ガス管導入設備)や、都市ガスを燃焼させて給湯するガス給湯器やガス暖房装置、ガスエンジン(ガス発電機器)等が設置された家庭、企業、もしくは工場などが挙げられる。
 メタンF6をガスエンジンで燃焼させた場合に生じる排ガスは、EGR(排ガス再循環)用のガスとしてごみ焼却炉13へ導入し、ごみ焼却炉13で発生する排ガス中に含まれる窒素酸化物(NOx)の量を低減させてもよい。また、メタンF6を燃料としてガスエンジンで発電した場合、蒸気タービン23及び発電機24で発電した電力と同様に、メタネーション装置46、水電解装置53、電解装置54等を作動させる電力として活用できる。
 なお、二酸化炭素分離膜45で二酸化炭素F7が分離された残余ガスは実質的にメタンF6であるが、微量の硫黄分などが含まれる場合がある。そこで、この場合には、図示しない脱硫装置などの不純ガス除去装置を用いて当該残余ガスからメタンF6以外の不純ガスを取り除き、メタンF6としてもよい。
 次に、メタネーションシステム72について詳述する。
 メタネーションシステム72が備えるメタネーション装置46は、二酸化炭素F7及び後述の水電解装置53が生成した水素F4を合成してメタンF12(請求項に記載の「第一メタン」)を生成する装置である。ここでは、例えば、共電解反応を介したメタン化反応やサバティエ反応により、二酸化炭素F7及び水素F4からメタンF12や純水F13が合成される(当該合成技術をメタネーションという)。メタネーション装置46には、メタン合成に係る触媒が内蔵された反応器(触媒容器)が設けられ、その内部でメタンF12が生成される。反応器内の温度や圧力は、所望の反応に適した触媒活性が得られる範囲、例えば、約250℃、約20~30気圧に制御される。メタネーション装置46の加温や高圧化には、蒸気タービン23の廃蒸気を使用することができる。
 なお、約20~30気圧は比較的高圧であるため、これより低い圧力でメタネーションができるよう、近年、メタネーション装置46は低圧化の開発が進められている。
 メタネーション装置46を作動させるための電力には、先述のように、蒸気タービン23及び発電機24またはガスエンジンで発電された電力を使用することができる。
 メタネーション装置46で合成されたメタンF12は、メタンガス利用設備47に供給されて使用され、あるいは貯留される。また、メタネーション装置46で生成された純水F13は、純水装置27を介さずにそのまま蒸気ドラム21に導入してもよい。
 これにより、装置の作動用の電力や純水製造の観点で、燃焼炉プラントの運転コストを低減することができる。
 メタネーション装置46におけるメタン合成に係る化学反応式を、以下に例示する。
  共電解反応   : CO+3HO→ CO+3H+2O
  メタン化反応  : CO+3H → CH+H
  サバティエ反応 : CO+4H → CH+2H
 では、最後に、電解システム50、50′について詳述する。電解システム50、50′は、水処理装置51で生物処理された濾液F11を用いて水電解装置53または水電解装置53と異なる電解装置54で電気分解することで、次亜塩素酸ナトリウム溶液F16、F17を生成する。
 実施例と第一変形例では、各々の電解システム50、50′の構成が異なるので、まず、実施例における電解システム50について説明し、その後、第一変形例における電解システム50′について説明する。
 実施例における電解システム50は、水処理装置51と、イオン除去装置52と、水電解装置53と、電解装置54とを有する。
 水処理装置51は、高純度二酸化炭素生成システム40の脱水機43で分離され、有機成分を含む濾液F10を生物処理する有機系の水処理装置51(生物処理装置)である。
 水処理装置51は、排水処理システム30の有機系排水処理施設31と同様に生物処理を行うが、濾液F10の量は有機系排水処理施設31が処理するプラント排水の量に比べて少量である。従って、水処理装置51は、有機系排水処理施設31に比べて大幅に小型な装置であり、安価である。水処理装置51で生物処理された濾液F11は、イオン除去装置52に導入される。
 イオン除去装置52は、蒸気ドラム21から随時排出されるボイラブロー水F1のうち、少なくとも一部のボイラブロー水F1が供給されて、不要イオンを含まない分離水F2(純水)と不要イオンを含む被分離水F3とに分離する装置である。図1に示すイオン除去装置52には、ボイラブロー水F1と水処理装置51で生物処理された濾液F11とが導入されるので、ボイラブロー水F1と濾液F11とが混合された液体から不要イオンが除去される。
 濾液F11には、水処理装置51の生物処理では除去されないナトリウムイオン(Na)や塩化物イオン(Cl)が含まれる。一方、薬品添加装置28で添加される防食剤にリン酸系の薬品が含まれている場合には、ボイラブロー水F1にリン酸イオン(PO 3-)が含まれる。
 従って、上記混合された液体がイオン除去装置52に供給されると、ナトリウムイオン(Na)、塩化物イオン(Cl)、リン酸イオン(PO 3-)を含む被分離水F3と、これら不要イオンが除去されて純水となった分離水F2が生成される。
 なお、イオン除去装置52に供給されないボイラブロー水F1の残部は、排水処理システム30の無機系排水処理施設32に導入されて無機系の水処理がなされる。
 排水処理システム30の無機系排水処理施設32で水処理がなされた再利用水F14は、プラント内の重要な装置、例えば、排ガスの冷却のために減温塔16で噴霧されるため、再利用水F14が不足する事態が生じないよう、イオン除去装置52へはボイラブロー水F1の全量ではなく一部を導入するのが望ましい。しかし、設計上可能であれば、上記一部のボイラブロー水F1ではなく、蒸気ドラム21から随時排出されるボイラブロー水F1の全量をイオン除去装置52に供給して水素製造の原料としてもよい。この場合は、上記「ボイラブロー水F1の残部」は当然にゼロであり、ボイラブロー水F1は排水処理システム30に供給されず、全量のボイラブロー水F1がイオン除去装置52に供給され、水素製造の原料として使用される。
 イオン除去装置52には、例えば、RO膜(逆浸透膜)やイオン交換樹脂が内蔵される。RO膜は、水中の水素イオン(H)や水酸化物イオン(OH)を通過させ、その他の不要イオンの通過を阻止する膜である。また、イオン交換樹脂は、水中の不要イオンを水素イオンや水酸化物イオンに置換するゲル状の合成樹脂ビーズである。
 分離水F2は水電解装置53に供給され、被分離水F3は水電解装置53とは異なる電解装置54に供給される。
 水電解装置53は、分離水F2(純水)を電気分解する装置である。水電解装置53は純水を電気分解する装置であるので、図示がないが、分離水F2に加え、メタネーション装置46で生成した純水F13を水電解装置53に供給して、水素製造量を増加させてもよい。なお、水電解装置53で所定の水素F4を製造するにあたり、ボイラブロー水F1を原料とする分離水F2だけでは水の量が足りない場合には、メタネーション装置46で生成した純水F13や、純水装置27で製造した純水F15など、分離水F2以外の純水F13、F15を混合して水電解装置53に供給してもよい。
 ここで、一般的に、水電解装置は、効率よく電気分解を行うため、常温の純水を加温する加温装置を備えている。しかし、実施例又は変形例における水電解装置53は加温装置を備える必要がない。なぜなら、水電解装置53における水素製造の原料であるボイラブロー水F1は高温であるため、イオン除去装置52で分離される分離水F2は常温よりも高温(約70℃~90℃)に調整できるからである。このため、上述の分離水F2以外の純水を混合する場合のみならず、分離水F2に濾液F11を混合する場合(後述の第一変形例における電解システム50′)においても、水電解装置53は、常温よりも温度の高い純水や混合液を電気分解することができる。従って、水電解装置53は、当該加温装置を備えなくても効率よく水素を製造することができるので、費用対効果に優れる。もちろん、当該純水や混合液の温度を常温よりも高い温度に調整できるとはいえ水素製造に適した所定の温度に足りない場合には、水電解装置53に上記加温装置を加え、例えば、当該加温装置に上記廃蒸気を供給して加温してもよい。
 水電解装置53を作動させる電力には、蒸気タービン23及び発電機24や上述のガスエンジンで発電された電力を使用することができる。また、水電解装置53に供給する分離水F2は、プラント排水であるボイラブロー水F1から生成するので原料費無料で別途購入する必要がない。従って、プラント排水であるボイラブロー水F1から有価物である水素F4を経済的に製造できる。
 水電解装置53では、分離水F2が電気分解されて、水素F4(H)と酸素F5(O)とが生成される。水素F4は、メタネーション装置46に導入される。また、酸素F5は、大気に放出してもよいし、ごみ焼却炉13の内部に供給される燃焼用空気と混合して廃棄物の燃焼を促進してもよい。
 なお、ボイラブロー水F1の少なくとも一部が水電解装置53の原料として使用されるため、ボイラブロー水F1の全量を排水処理システム30の無機系排水処理施設32に導入していた従来に比べ、無機系排水処理施設32における水処理の負荷を軽減できる。
 電解装置54は、被分離水F3を電気分解する装置であり、被分離水F3に含まれるナトリウムイオンと塩化物イオンとを用いて、次亜塩素酸ナトリウム溶液F16(NaClO溶液)を生成することができる。
 電解装置54を作動させる電力には、蒸気タービン23及び発電機24や先述のガスエンジンで発電された電力を使用することができる。
 電解装置54で生成された次亜塩素酸ナトリウム溶液F16は、例えば、燃焼炉プラントであるごみ焼却炉プラントのプラットフォーム11や道路の除菌剤として散布してもよいし、当該プラント内の部屋や設備の除菌清掃のため、持ち運んで使用できるように、バケツやペットボトル等の容器に注いでもよい。
 メタン発酵装置42の濾液F10もボイラブロー水F1もプラント排水であり、これらプラント排水を原料費不要の原料として電解装置54で次亜塩素酸ナトリウム溶液F16を製造するので、費用対効果の観点で優れる。また、経済的に製造した次亜塩素酸ナトリウム溶液F16で燃焼炉プラントの衛生状態を良好に維持でき、作業環境を改善することができる。
 次亜塩素酸ナトリウムの生成に係る化学反応式を、以下に例示する。
  陽極 : 2Cl → Cl+2e
  陰極 : 2Na+2HO+2e → 2NaOH+H
  液中 : Cl+2NaOH → NaClO+NaCl+H
 以上、実施例における電解システム50について説明したので、次に、第一変形例における電解システム50′について説明する。
 電解システム50′が、電解システム50と異なる大きな点は、電解システム50′は電解装置54を備えておらず、濾液F11が直接的に水電解装置53に供給される点である。電解システム50′においては、イオン除去装置52には、ボイラブロー水F1のみが供給され、イオン除去装置52で生成された分離水F2は水電解装置53に供給される。また、被分離水F3は排水処理システム30の無機系排水処理施設32に供給され、水処理される。
 電解システム50′の水電解装置53には、分離水F2と濾液F11とが混合されて導入されるので、水電解装置53における電気分解により、水素F4と次亜塩素酸ナトリウム溶液F17が生成される。
 電解システム50′も、電解システム50と同様に、経済的に次亜塩素酸ナトリウム溶液F17を製造できる。そして、経済的に製造した次亜塩素酸ナトリウム溶液F17で燃焼炉プラントの衛生状態を良好に維持でき、作業環境を改善することができる。
 以上、実施例及び第一変形例について説明した。
 実施例または第一変形例の水素製造システム1において、メタン発酵装置42に、例えば、約30トンの有機物が投入されると、メタンF6の生成量が約1.9トンとなり、二酸化炭素F7の生成量が約3.5トンとなる。ここで、二酸化炭素分離膜45におけるメタンF6の回収率が、例えば約92%(二酸化炭素分離膜45の種類等により性能が異なる)である場合、二酸化炭素F7の全量がメタネーション装置46に導入されるとすると、二酸化炭素F7が約3.45トンと、約0.1トンのメタン成分がメタネーション装置46に導入されることになる。また、二酸化炭素分離膜45で分離されたメタンF6は、約1.8トンとなる。
 一方、イオン除去装置52では、約6トンのボイラブロー水F1から約5.65トンの分離水F2が得られるので、水電解装置53で約0.63トンの水素F4が得られる。
 この水素F4と二酸化炭素F7とを全量使用してメタネーション装置46でメタネーションをした場合、メタンF12が約1.4トン生成され、純水F13が約2.8トン生成される。
 よって、メタンF6(第二メタン)とメタンF12(第一メタン)とで有価物である合計3.2トンのメタンF6、F12を得ることができるとともに、二酸化炭素F7の排出量を実質的にゼロにすることができる。
 その上、二酸化炭素分離装置60を備えることで、燃焼炉の排ガスに含まれる二酸化炭素F18も回収することができる。
 さらに、水素製造システム1内のメタネーション装置46や水電解装置53など、電力を要する装置にボイラ付燃焼システム10で発電した電力を供給することもできる。
 従って、実施例及び第一変形例の水素製造システム1においては、プラント排水であるボイラブロー水F1は原料費ゼロであり、メタネーションに使用する二酸化炭素F7も原料費ゼロであり、メタネーション装置46や水電解装置53などを作動する電力も実質的に費用ゼロとできるので、水電解装置53で生成した水素F4を用いて安価に有価物であるメタンF12を生成することができるとともに、燃焼炉プラントから排出される二酸化炭素F18を削減できる。言い換えれば、実施例及び第一変形例の水素製造システム1は、近年の世界の環境課題である脱炭素社会の実現を可能とする水素製造システム1であるといえる。
 [2.第二変形例及び第三変形例]
 では、次に、実施例及び第一変形例の水素製造システム1に含まれる高純度二酸化炭素生成システム40を、別の例である高純度二酸化炭素生成システム40′とした水素製造システム1を、図4を用い、第二変形例として説明する。また、実施例及び第一変形例の水素製造システム1に含まれるボイラ付燃焼システム10を、別の例であるボイラ付燃焼システム10′とし、実施例及び第一変形例の水素製造システム1に含まれる高純度二酸化炭素生成システム40を、別の例である高純度二酸化炭素生成システム40″とした水素製造システム1を、図5を用い、第三変形例として説明する。
 第二変形例及び第三変形例の水素製造システム1において、5つのシステム10、30、40、50(50′)、72のうち、上記別の例に変更がない他のシステムは、実施例または第一変形例と同一でよい。
 実施例及び第一変形例で説明した構成と同一の構成については、同一の符号を付して構成及び効果の説明を省略する。また、実施例及び第一変形例で示した構成と同一の構成については、液体または気体の流入や流出、物体の移送などは同一でよいため、これらの流入、流出、移送の一部の図示を省略する。
 [A.第二変形例]
 図4を用いて、第二変形例の水素製造システム1について説明する。第二変形例の水素製造システム1は、実施例または第一変形例の水素製造システム1の構成のうち、高純度二酸化炭素生成システム40′が異なる。
 高純度二酸化炭素生成システム40′は、高純度二酸化炭素生成システム40と同様、特段の濃縮工程を経ずに高純度の二酸化炭素F7、F19を生成するシステムである。高純度二酸化炭素生成システム40では、一例として、メタン発酵装置42を少なくとも備えていたが、高純度二酸化炭素生成システム40′では、一例として、アルコール発酵装置66を少なくとも備える。
 図4の高純度二酸化炭素生成システム40′は、アルコール発酵装置66とメタン発酵装置42の双方から高純度の二酸化炭素F7、F19を生成するが、メタン発酵装置42を必ずしも備える必要はない。
 図4の高純度二酸化炭素生成システム40′は、高純度二酸化炭素生成システム40における前処理装置41とメタン発酵装置42の間に、アルコール発酵システム65を介在させたシステムである。アルコール発酵システム65は、アルコール発酵装置66と、アルコール発酵装置66で生成されたもろみF20を固液分離してアルコールF21と残渣F22に分離する固液分離装置67とを備える。固液分離装置67は、例えば、スクリュープレス、ベルトプレスなどである。
 まず、前処理装置41に、廃木材やバカス(サトウキビの搾りかす)などのバイオマスが導入される。当該バイオマスは、前処理装置41で加水分解及び糖化され、グルコースが生成される。
 次に、前処理装置41で生成されたグルコースは、アルコール発酵システム65のアルコール発酵装置66に導入される。そして、アルコール発酵装置66に酵母菌が供給され、アルコール発酵がなされる。
 グルコース(C12)を用いたアルコールF21(COH)及び二酸化炭素F19の生成に係る化学反応式を、以下に例示する。
   アルコール発酵 : C12 → 2COH+2CO
 アルコール発酵により、アルコール発酵装置66で生成されたもろみF20は、固液分離装置67によりアルコールF21と残渣F22に分離され、残渣F22はメタン発酵装置42の原料となる。すなわち、メタン発酵装置42は、残渣F22を用いてメタン発酵を行う。
 アルコールF21は、図示しない蒸留装置や脱水装置により濃縮され、有価物であるアルコール飲料などとして販売可能である。
 アルコール発酵により、アルコール発酵装置66から排出される二酸化炭素F19は、燃焼炉や内燃機関の排ガスのように窒素酸化物や粒子状物質(Particulate matter)を含むものではなく、不純物を含まない高純度の二酸化炭素F19、言い換えれば、極めてクリーンな二酸化炭素F19である。従って、二酸化炭素F19を、浄化処理やフィルタ処理なしに直接的に、メタネーションシステム72のメタネーション装置46の原料として、または、植物育成設備48における植物の光合成の原料として、使用することができる。二酸化炭素F19は、二酸化炭素貯留タンク49に貯留してもよい。
 第二変形例においては、アルコール発酵装置66におけるアルコール発酵により生じる二酸化炭素F19を二酸化炭素貯留タンク49に貯留したり、メタネーション装置46や植物育成設備48の原料に使用したりするので、燃焼炉プラントの外部への二酸化炭素F19の排出量を大幅に削減できる。
 なお、アルコール発酵装置66から排出されるガスは、大部分が二酸化炭素F19であるが、バイオマスの種類によっては微量の硫黄分などの不純物が含まれる場合がある。そこで、この場合には、図示しない脱硫装置などの不純ガス除去装置を用いて当該不純物を除去すればよい。
 [B.第三変形例]
 図5を用いて、第三変形例の水素製造システム1について説明する。第三変形例の水素製造システム1は、実施例または第一変形例の水素製造システム1の構成のうち、ボイラ付燃焼システム10′と高純度二酸化炭素生成システム40″とが異なる。
 ボイラ付燃焼システム10′は、ボイラ付燃焼システム10と同様、燃焼炉68と、燃焼炉68で燃焼した熱で蒸気を生成するボイラ20とを少なくとも備えるシステムである。ボイラ付燃焼システム10は、燃焼炉68の一例としてごみ焼却炉13を備えていたが、ボイラ付燃焼システム10′の燃焼炉68はごみ焼却炉13でなくともよい。後述のようにガス化炉69と燃焼炉68とが一対をなすように形成される場合は、一般的に燃焼炉68として流動床炉が使用される。
 高純度二酸化炭素生成システム40″は、高純度二酸化炭素生成システム40、40′と同様、特段の濃縮工程を経ずに高純度の二酸化炭素を生成するシステムである。高純度二酸化炭素生成システム40、40′では、一例として、メタン発酵装置42やアルコール発酵装置66を備えていたが、高純度二酸化炭素生成システム40″では、一例として、木質バイオマスをガス化するガス化炉69を少なくとも備える。
 図5の高純度二酸化炭素生成システム40″は、ガス化炉69でガス化したガス(ガス化ガス)に、高純度の二酸化炭素のみならず、メタネーション装置46でメタネーションの原料となりうる組成が多量に含まれることを鑑みて構成された。具体的には、ガス化炉69で木質バイオマスをガス化した場合、ガス化ガスに含まれる成分は、COが約15%、Hが約35%、COが約40%、CHが約4%である。残余の成分には、微量の硫黄分などが含まれる。
 まず、前処理装置41に、木質バイオマス、例えば、廃木材が導入され、破砕される。次に、前処理装置41で破砕された廃木材は、ガス化炉69に導入され、ガス化炉69でガス化される。ガス化炉69で生成されたガス化ガスにはタールが含まれるため、タールを改質または除去するタール改質装置70に供給される。
 そして、タール改質装置70でタールが改質または除去されたガス化ガスは、脱硫装置71に導入される。図示しないが、このとき、その他の不純物については不純ガス除去装置を用いて当該不純物を除去してもよい。
 脱硫装置71などで微量の硫黄分や不純物が除去されたガス化ガスは、メタネーションシステム72のメタネーション装置46に、メタネーションの原料として供給される。
 なお、ガス化炉69にて廃木材からガス化ガスが抜け出して生成された熱分解残渣は、ボイラ付燃焼システム10′の燃焼炉68で燃焼される。また、燃焼炉68における燃焼で発生した熱で、ガス化炉69を加温し、ガス化炉69におけるガス化を促進させる。
 第三変形例においては、ガス化炉69で生じるガス化ガスをメタネーション装置46の原料に使用するので、ガス化炉69からの燃焼炉プラントの外部への二酸化炭素の排出量を大幅に削減できる。
 以上、本発明の実施例、第一、第二、及び第三変形例について説明した。これら実施例及び各変形例の水素製造システム1におけるボイラ付燃焼システム10、10′、電解システム50、50′、高純度二酸化炭素生成システム40、40′、40″は、適宜入れ替えてもよいし、並列に接続してもよい。
1 水素製造システム
10、10′ ボイラ付燃焼システム
11 プラットフォーム
12 ごみピット
13 ごみ焼却炉
14 灰押出装置
15 煙道
16 減温塔
17 除塵装置(バグフィルタ、電気集塵機など)
18 飛灰洗浄装置
19 煙突
20 ボイラ
21 蒸気ドラム
22 排熱回収器(伝熱管、過熱管など)
23 蒸気タービン
24 発電機
25 復水器
26 脱気器
27 純水装置
28 薬品添加装置
29 ブロー配管
30 排水処理システム
31 有機系排水処理施設(生物処理施設など)
32 無機系排水処理施設
40、40′、40″ 高純度二酸化炭素生成システム
41 前処理装置
42 メタン発酵装置
43 脱水機(トロンメルなど)
44 コンベヤ
45 二酸化炭素分離膜
46 メタネーション装置
47 メタンガス利用設備
48 植物育成設備
49 二酸化炭素貯留タンク
50、50′ 電解システム
51 水処理装置(生物処理装置)
52 イオン除去装置
53 水電解装置
54 電解装置
60 二酸化炭素分離装置
61 吸収器
62 熱交換器
63 脱離器
64 再加熱器
65 アルコール発酵システム
66 アルコール発酵装置
67 固液分離装置(スクリュープレス、ベルトプレスなど)
68 燃焼炉
69 ガス化炉
70 タール改質装置
71 脱硫装置
72 メタネーションシステム
F1 ボイラブロー水
F2 分離水
F3 被分離水
F4 水素
F5 酸素
F6 メタン(メタン発酵装置42で生成され二酸化炭素分離膜45で分離されたもの、第二メタン)
F7 二酸化炭素(メタン発酵装置42で生成され二酸化炭素分離膜45で分離されたもの)
F8 バイオガス
F9 発酵残渣
F10 濾液(脱水機43で脱水されたもの)
F11 濾液(水処理装置51で生物処理されたもの)
F12 メタン(メタネーション装置46で生成されたもの、第一メタン)
F13 純水(メタネーション装置46で生成されたもの)
F14 再利用水
F15 純水(純水装置27で生成されたもの)
F16 次亜塩素酸ナトリウム溶液(電解装置54で生成されたもの)
F17 次亜塩素酸ナトリウム溶液(水電解装置53で生成されたもの)
F18 二酸化炭素(二酸化炭素分離装置60で分離されたもの)
F19 二酸化炭素(アルコール発酵装置66で分離されたもの)
F20 もろみ(アルコール発酵装置66で生成されたもの)
F21 アルコール(固液分離装置67で分離されたもの)
F22 残渣(固液分離装置67で分離されたもの)
 

Claims (7)

  1.  燃焼炉プラントに適用され、
     燃焼炉と、前記燃焼炉で燃焼した熱で蒸気を生成するボイラとを少なくとも備えるボイラ付燃焼システムと、
     前記ボイラから排出されるボイラブロー水のうち、少なくとも一部の前記ボイラブロー水が導入されて不要イオンを除去した分離水と前記不要イオンを含有する被分離水とを生成するイオン除去装置と、前記分離水を電気分解することで水素を生成する水電解装置とを少なくとも備える電解システムと、
     前記ボイラブロー水の残部を含み、前記燃焼炉プラントで生じるプラント排水に対して無機系の水処理を行う無機系排水処理施設を少なくとも備える排水処理システムと
     を有する水素製造システム。
  2.  メタン発酵、アルコール発酵、または木質バイオマスのガス化により、高純度の二酸化炭素を生成する高純度二酸化炭素生成システムと、
     前記二酸化炭素と前記水素とを用いたメタネーションにより第一メタンと純水とを生成するメタネーションシステムと
     をさらに有する請求項1に記載の水素製造システム。
  3.  メタンを都市ガスとして利用するガス管導入設備、家庭、企業、もしくは工場、または、メタンを燃焼させて発電するガスエンジンに、前記第一メタンを供給し、
     または、
     光合成で成長する植物を育成する植物育成設備に、前記二酸化炭素を供給し、
     または、
     二酸化炭素貯留タンクに、前記二酸化炭素を貯留する請求項2に記載の水素製造システム。
  4.  前記高純度二酸化炭素生成システムは、
     メタン発酵により、前記二酸化炭素と第二メタンの少なくとも2種を含むバイオガス及び発酵残渣を生成するメタン発酵装置と、
     前記バイオガスから前記二酸化炭素と前記第二メタンとを分離する二酸化炭素分離膜と、
     前記発酵残渣を脱水して濾液を生成する脱水機と
     を備え、
     前記電解システムは、前記濾液を生物処理する水処理装置をさらに備え、
     前記電解システムは、前記生物処理された前記濾液を用いて前記水電解装置または前記水電解装置と異なる電解装置で電気分解することで、前記濾液に含まれるナトリウムイオンと塩化物イオンを用いて次亜塩素酸ナトリウム溶液を生成し、
     前記ガス管導入設備、前記家庭、前記企業、前記工場、または前記ガスエンジンに、前記第二メタンを供給する請求項3に記載の水素製造システム。
  5.  前記ボイラ付燃焼システムは、
     前記燃焼炉で生じた排ガスを冷却する減温塔と、
     前記減温塔で冷却された排ガスを除塵する除塵装置と、
     前記除塵装置で除塵された排ガスに含有された二酸化炭素を前記排ガスから分離して前記二酸化炭素貯留タンクに貯留する二酸化炭素分離装置と
     をさらに備え、
     前記二酸化炭素分離装置は、アミン溶液を用いて前記排ガスに含有された二酸化炭素の吸収及び脱離を行う請求項4に記載の水素製造システム。
  6.  前記ボイラ付燃焼システムは、
     前記蒸気を貯留する蒸気ドラムと、
     前記蒸気ドラムに貯留された前記蒸気により羽根車を回転する蒸気タービンと、
     前記回転により発電する発電機と
     をさらに備え、
     前記発電した電力は、前記水電解装置、前記異なる電解装置、または前記メタネーションシステムに供給され、
     または、
     前記羽根車を回転した後に生じる廃蒸気は、前記メタネーションシステムまたは前記二酸化炭素分離装置に供給され、
     または、
     前記純水は、前記蒸気ドラムに供給される請求項5に記載の水素製造システム。
  7.  前記燃焼炉プラントは、ごみ焼却炉プラント、火力発電プラント、または化学プラントのいずれか1つである請求項1乃至請求項6のいずれか一項に記載の水素製造システム。
     
PCT/JP2022/019902 2021-05-18 2022-05-11 水素製造システム WO2022244659A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237038220A KR20230166127A (ko) 2021-05-18 2022-05-11 수소 제조 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-083811 2021-05-18
JP2021083811A JP6940713B1 (ja) 2021-05-18 2021-05-18 水素製造システム

Publications (1)

Publication Number Publication Date
WO2022244659A1 true WO2022244659A1 (ja) 2022-11-24

Family

ID=77846977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019902 WO2022244659A1 (ja) 2021-05-18 2022-05-11 水素製造システム

Country Status (4)

Country Link
JP (2) JP6940713B1 (ja)
KR (1) KR20230166127A (ja)
TW (1) TWI822008B (ja)
WO (1) WO2022244659A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023175328A (ja) * 2022-05-30 2023-12-12 株式会社プランテック 間欠運転焼却施設及びその運転方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000563A (ja) * 2012-05-25 2014-01-09 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd アンモニア処理システム
JP2017089916A (ja) * 2015-11-04 2017-05-25 Jfeエンジニアリング株式会社 廃棄物焼却及び水素製造装置並びに方法
JP2019216501A (ja) * 2018-06-11 2019-12-19 Jfeエンジニアリング株式会社 廃棄物焼却によるエネルギーの貯蔵供給装置
JP2020056358A (ja) * 2018-10-02 2020-04-09 清水建設株式会社 発電システム
JP2020525638A (ja) * 2017-06-29 2020-08-27 赫普能源▲環▼境科技股▲ふぇん▼有限公司Hepu Energy Environmenial Technology Co., Ltd. 燃料製造用反応システム、発電所ピーク調整システム及び発電所

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7188478B2 (en) * 2004-09-13 2007-03-13 General Electric Company Power generation system and method of operating same
JP4702715B2 (ja) 2005-02-02 2011-06-15 三菱重工環境・化学エンジニアリング株式会社 複合廃棄物焼却処理システム及び方法
JP6331145B2 (ja) * 2014-11-26 2018-05-30 三菱重工環境・化学エンジニアリング株式会社 アンモニア処理システム
JP2019090084A (ja) 2017-11-15 2019-06-13 東邦瓦斯株式会社 低炭素エネルギーシステム及び低炭素エネルギーネットワークシステム
CN108796537A (zh) * 2018-08-14 2018-11-13 赫普科技发展(北京)有限公司 一种火电厂电解制氢合成氨系统
JP7104591B2 (ja) * 2018-09-07 2022-07-21 三菱重工業株式会社 水素製造システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000563A (ja) * 2012-05-25 2014-01-09 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd アンモニア処理システム
JP2017089916A (ja) * 2015-11-04 2017-05-25 Jfeエンジニアリング株式会社 廃棄物焼却及び水素製造装置並びに方法
JP2020525638A (ja) * 2017-06-29 2020-08-27 赫普能源▲環▼境科技股▲ふぇん▼有限公司Hepu Energy Environmenial Technology Co., Ltd. 燃料製造用反応システム、発電所ピーク調整システム及び発電所
JP2019216501A (ja) * 2018-06-11 2019-12-19 Jfeエンジニアリング株式会社 廃棄物焼却によるエネルギーの貯蔵供給装置
JP2020056358A (ja) * 2018-10-02 2020-04-09 清水建設株式会社 発電システム

Also Published As

Publication number Publication date
JP6940713B1 (ja) 2021-09-29
JP6940715B1 (ja) 2021-09-29
JP2022177505A (ja) 2022-12-01
TW202308750A (zh) 2023-03-01
KR20230166127A (ko) 2023-12-06
TWI822008B (zh) 2023-11-11
JP2022177773A (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
US11685893B2 (en) System and method for biomass growth and processing
JP2013511386A (ja) 水熱分解と資源再生の方法による廃棄物からエネルギーへの変換
US20110127778A1 (en) Method and apparatus for extracting energy from biomass
KR101527931B1 (ko) 바이오매스를 이용한 가스화 열병합발전 시스템
US20080166273A1 (en) Method And System For The Transformation Of Molecules, This Process Being Used To Transform Harmful And Useless Waste Into Useful Substances And Energy
WO2022244659A1 (ja) 水素製造システム
KR100817622B1 (ko) 하수 처리 시스템과 열병합 발전 시스템을 연계하는 통합에너지 순환 이용 시스템
KR101507956B1 (ko) 유기성 폐기물을 이용한 열병합 발전 통합 에너지화 시스템 및 방법
Blanco et al. Achieving energy self-sufficiency in wastewater treatment plants by integrating municipal solid waste treatment: A process design study in Spain
JP5036608B2 (ja) ガス化発電装置
CN116283490A (zh) 一种垃圾发电与光伏发电制气耦合实现co2回收并生产甲醇的方法和装置
CN207552243U (zh) 一种生活垃圾资源化的系统
CN109233913A (zh) 一种利用垃圾制备液态燃料和化工产品的工艺及垃圾催化热解系统
Chegenizadeh et al. The significant role of waste to energy on decarbonization
CN210176453U (zh) 一种火电厂热解制氢系统
KR20210138821A (ko) 바이오매스를 저온열분해에 의한 연료용 수성가스 제조방법
CN205045965U (zh) 一种污泥制气发电系统
CN219621111U (zh) 一种垃圾发电与光伏发电制气耦合实现co2回收并生产甲醇的装置
Quan et al. Current state and the application of energy conversion of sewage sludge treatment in Malaysia
JP2010083731A (ja) 排ガス中の二酸化炭素の回収方法
KR20100111347A (ko) 바이오 연료를 이용한 열병합 발전 시스템
Prasad et al. 11 Circular Utilization Economy of Wastewater on
Kovbasyuk et al. Thermal Utilization of Wet Organic Waste
CN104449874A (zh) 生物质颗粒气化发电的工艺方法
JP2023104820A (ja) 廃棄物を利用したエネルギー創出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237038220

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038220

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12023553109

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202308343W

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 22804572

Country of ref document: EP

Kind code of ref document: A1