WO2022244640A1 - アクチュエータ駆動装置、及び、それを備えるステアリングシステム - Google Patents

アクチュエータ駆動装置、及び、それを備えるステアリングシステム Download PDF

Info

Publication number
WO2022244640A1
WO2022244640A1 PCT/JP2022/019686 JP2022019686W WO2022244640A1 WO 2022244640 A1 WO2022244640 A1 WO 2022244640A1 JP 2022019686 W JP2022019686 W JP 2022019686W WO 2022244640 A1 WO2022244640 A1 WO 2022244640A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
actuator
relay
power
inverter
Prior art date
Application number
PCT/JP2022/019686
Other languages
English (en)
French (fr)
Inventor
弘貴 富澤
信頼 中島
朋晃 吉見
豊大 林
洋介 山下
晋太郎 高山
祐太 梶澤
祐志 藤田
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社, 株式会社ジェイテクト filed Critical 株式会社デンソー
Priority to EP22804553.0A priority Critical patent/EP4344052A1/en
Priority to CN202280035088.3A priority patent/CN117296244A/zh
Publication of WO2022244640A1 publication Critical patent/WO2022244640A1/ja
Priority to US18/511,618 priority patent/US20240088814A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • B62D5/006Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback power actuated
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle

Definitions

  • the present disclosure relates to an actuator driving device and a steering system including the same.
  • a device for controlling the drive of an actuator in a steering system of a vehicle in the event of a power failure For example, a vehicle control device disclosed in Patent Document 1 supplies electric power from a backup power supply when a main power supply fails in a steer-by-wire vehicle, stops control of a reaction force actuator, and turns a steering actuator. Continue rudder control.
  • actuator drives for steering systems including steer-by-wire systems and electric power steering systems
  • power is supplied by turning off the power relay installed in the power supply line to prevent overcurrent and erroneous output when the main power supply fails.
  • This phenomenon occurs not only when switching from the main power supply to the backup power supply, but also when the main power supply temporarily fails and the inverter input voltage drops, and then returns after a while. Assuming that the control when the power supply is normal is "normal control”, the above phenomenon is "when the power supply fails and normal control stops, and then the power is restored, if the power relay is turned off, normal control will be resumed. cannot be restarted properly.”
  • An object of the present disclosure is to provide an actuator drive device that appropriately determines resumption of normal control after a power failure.
  • the present disclosure is an actuator drive device that converts power from a DC power supply with an inverter and supplies the converted power to an actuator, and includes an inverter, an input voltage detector, a power relay, and a control unit.
  • a voltage is applied to the inverter from the DC power supply via the power supply line.
  • the power relay is provided in the middle of the power supply line, and cuts off the current from the DC power supply side to the inverter side when the power supply is turned off.
  • the input voltage detector detects an inverter input voltage applied to the inverter.
  • the control unit controls the operation of the inverter, detects failure and restoration of the DC power supply based on the reduction and restoration of the inverter input voltage, and operates the power relay.
  • control unit executes "power supply failure recovery processing" to determine whether to resume normal control, which is the control when the DC power supply is normal.
  • the control unit performs the following control in the power failure recovery process.
  • the control unit When one power relay OFF period and one power relay ON period have passed without the inverter input voltage returning, the control unit turns off the power relay for the second time and stops driving the actuator. Alternatively, the control unit turns off the power relay for the (N+1)th time and turns off the actuator when the inverter input voltage is not restored for N power relay OFF periods and N power relay ON periods that are repeated two or more times. Stop driving.
  • the control unit of the present disclosure alternately repeats a period in which the power relay is turned on and a period in which it is turned off after a failure of the DC power supply, thereby quickly resuming normal control and implementing safety measures when the inverter input voltage returns. can be compatible.
  • the control unit stops driving the actuator, thereby reducing the possibility of recovery. To avoid unnecessary continuation of processing when it is not expected.
  • the present disclosure provides a steering assist actuator that outputs a steering assist force, a reaction force actuator that outputs a reaction force with respect to steering by a driver, or a steering actuator that outputs a steering force for steering a tire, and the above actuator drive.
  • a device is provided as a steering system comprising: The actuator driving device drives at least one of a steering assist actuator, a reaction force actuator, and a steering actuator as an actuator.
  • FIG. 1 is a schematic configuration diagram of an electric power steering system
  • FIG. 2 is a schematic configuration diagram of the steer-by-wire system
  • FIG. 3 is a power supply configuration diagram of a system including a main power supply, a backup power supply and an actuator drive
  • FIG. 4 is a diagram showing the switching process from the main power supply to the backup power supply
  • FIG. 5 is a time chart showing power failure recovery processing (Case 1) of the first embodiment
  • FIG. 6 is a time chart showing power failure recovery processing (Case 2) of the first embodiment
  • FIG. 1 is a schematic configuration diagram of an electric power steering system
  • FIG. 2 is a schematic configuration diagram of the steer-by-wire system
  • FIG. 3 is a power supply configuration diagram of a system including a main power supply, a backup power supply and an actuator drive
  • FIG. 4 is a diagram showing the switching process from the main power supply to the backup power supply
  • FIG. 5 is a time chart showing power failure recovery processing (Case 1) of the first
  • FIG. 7 is a time chart showing power failure recovery processing (Case 3) of the first embodiment
  • FIG. 8 is a time chart showing power failure recovery processing (Case 4) of the first embodiment
  • FIG. 9 is a diagram showing actuator output limits in power failure recovery processing
  • FIG. 10 is a flow chart of inverter drive stop etc. in the control during abnormality detection
  • FIG. 11 is a time chart showing the power failure recovery process of the second embodiment
  • FIG. 12 is a time chart showing power failure recovery processing according to the third embodiment.
  • Actuator driving devices will be described below with reference to the drawings.
  • the actuator drive device of each embodiment is applied to a steering system of a vehicle, and drives a steering assist actuator, a reaction force actuator, and a steering actuator.
  • the following first to third embodiments will be collectively referred to as "this embodiment".
  • the actuator drive device of this embodiment drives a motor as a typical actuator.
  • Steps 1 and 2 schematic configurations of an electric power steering system (hereafter referred to as "EPS system”) and a steer-by-wire system (hereafter referred to as “SBW system”) will be described as steering systems.
  • EPS system electric power steering system
  • SBW system steer-by-wire system
  • FIGS. 1 and 2 the tire 99 on only one side is illustrated, and the illustration of the tire on the opposite side is omitted.
  • actuator is abbreviated as “Act” in some places. 1 and 2, the same reference numerals are given to substantially the same configurations, and the description thereof will be omitted.
  • FIG. 1 shows the overall configuration of an EPS system 901 in which the steering mechanism and the steering mechanism are mechanically coupled.
  • FIG. 1 shows a rack-assist type EPS system
  • the column-assist type EPS system is similar.
  • steering shaft 92 and rack 97 are connected by intermediate shaft 95 .
  • the EPS system 901 includes a steering torque sensor 94, an actuator driving device 300, a steering assist actuator 801, and the like.
  • a steering torque sensor 94 is provided in the middle of the steering shaft 92 and detects the steering torque of the driver.
  • Actuator driving device 300 supplies power to steering assist actuator 801 so as to output a desired steering assist force calculated based on steering torque and the like.
  • a steering assist force output by the steering assist actuator 801 is transmitted to the rack 97 via the reduction gear 89 .
  • the main power source 10 and the backup power source device 200 are connected to the actuator driving device 300 .
  • thick solid lines indicate power power lines
  • thin solid lines indicate control power lines.
  • power supply means power supply via a power supply line unless otherwise specified.
  • the main power supply 10 is normal, the DC power of the main power supply 10 is supplied to the actuator drive device 300 via the backup power supply device 200 .
  • the power supply configuration when the main power supply 10 fails will be described later with reference to FIG.
  • Fig. 2 shows the overall configuration of the SBW system 902 in which the steering mechanism and the steering mechanism are mechanically separated.
  • SBW system 902 steering shaft 92 and rack 97 are separate.
  • a reaction force actuator 802 is provided on the steering shaft 92 side to output a reaction force to steering by the driver.
  • the reaction force output by reaction force actuator 802 is transmitted to steering shaft 92 via reduction gear 79 .
  • a steering actuator 803 is provided on the rack 97 side to steer the tires 99 by linearly moving the rack 97 .
  • the steering force output by the steering actuator 803 is transmitted to the tire 99 via the reduction gear 89 .
  • the actuator drive device 300 of the SBW system 902 includes a reaction force actuator drive device 302 that supplies power to the reaction force actuator 802 and a steering actuator drive device 303 that supplies power to the steering actuator 803 .
  • the reaction force actuator drive device 302 and the steering actuator drive device 303 communicate with each other to operate the reaction force actuator 802 and the steering actuator 803 in cooperation.
  • the actuator driving device 300 is connected to the main power source 10 and the backup power source device 200, which are "DC power sources.”
  • DC power supplied from the main power supply 10 and the backup power supply device 200 is distributed to the reaction force actuator drive device 302 and the steering actuator drive device 303 .
  • two backup power supply devices 200 may be separately provided for the reaction force actuator drive device 302 and the steering actuator drive device 303 .
  • a three-phase brushless motor is typically used for each of the steering assist actuator 801 of the EPS system 901 and the reaction force actuator 802 and steering actuator 803 of the SBW system 902 . If the "actuator" is replaced with a “motor”, the steering assist motor 801 outputs steering assist torque, the reaction force motor 802 outputs reaction force torque, and the steering motor 803 outputs steering torque. Since this specification does not refer to motor-specific configuration or control, it is basically referred to as an "actuator.”
  • the backup power supply device 200 includes a backup power supply 20 , diodes 21 and 22 and a power changeover switch 25 .
  • the main power supply 10 is a DC power supply with a relatively large capacity.
  • the backup power supply 20 is a DC power supply with a relatively small capacity, and is an emergency sub-battery used when the main power supply 10 fails.
  • "power supply” basically means a DC power supply.
  • the main power supply 10 and the backup power supply 20 are connected in parallel to the junction 23 of the IG lines that supply control power to the microcomputer 41 of the control unit 40 .
  • Diodes 21 and 22 are provided between the main power supply 10 and the junction 23 and between the backup power supply 20 and the junction 23, respectively, to prevent reverse current flow from the junction 23 to the power supplies 10 and 20. ing. Since only a low current flows through the IG line, power can be supplied from the backup power supply 20 without switching paths even when the main power supply 10 fails.
  • the power switch 25 is provided on the power supply line (so-called PIG line) and consists of a first switch 251 connected to the main power supply 10 and a second switch 252 connected to the backup power supply 20 . Either one of the first switch 251 and the second switch 252 is turned on, or both are turned off. In order to prevent current from flowing from the main power supply 10 to the backup power supply 20 side and causing a short circuit, both switches 251 and 252 are operated so as not to be turned on at the same time.
  • PIG line power supply line
  • the first switch 251 is turned on and the second switch 252 is turned off.
  • the second switch 252 is turned on and the backup power supply 20 is used. Therefore, there is a time lag associated with the switching of the power supply.
  • the actuator drive device 300 converts the power of the main power supply 10 or the backup power supply 20, which is a "DC power supply", by the inverter 50 and supplies it to the actuator 80.
  • the "actuator 80" to be driven encompasses the actuators 801, 802 and 803 shown in FIGS.
  • the actuator drive device 300 includes an inverter 50 , a power relay 31 , an input voltage detector 34 , an inverter relay 35 , an actuator relay 38 and a controller 40 .
  • a voltage is applied to the inverter 50 from the main power supply 10 or the backup power supply 20, which is a "DC power supply", via a power supply line (so-called PIG line).
  • PIG line power supply line
  • the power supply line is indicated by a thick solid line.
  • the inverter 50 is composed of a plurality of bridge-connected three-phase upper and lower arm switching elements 51 to 56 , converts the input DC power into AC power, and supplies the AC power to the actuator 80 .
  • the switching elements 51, 52 and 53 are U-phase, V-phase and W-phase upper arm elements, respectively
  • the switching elements 54, 55 and 56 are U-phase, V-phase and W-phase lower arm elements respectively.
  • MOSFETs are used as the switching elements 51-56. Illustration of a smoothing capacitor provided at the input portion of the inverter 50 is omitted.
  • a shunt resistor for detecting each phase current may be provided, for example, between the lower arm elements 54, 55, 56 and the ground.
  • the power relay 31 is provided in the middle of the power supply line, that is, between the power supplies 10 and 20 and the inverter 50, and cuts off the current from the power supplies 10 and 20 to the inverter 50 when turned off.
  • the power relay 31 is composed of a MOSFET as in the example of FIG. 3, even if the power relay 31 is off, a current may flow from the inverter 50 side to the power supplies 10 and 20 through the parasitic diode.
  • the input voltage detector 34 is provided between the power relay 31 and the inverter 50, and detects the inverter input voltage Vinv applied to the inverter 50 via the power supply line.
  • the inverter input voltage Vinv detected here serves as judgment information for performing power failure recovery processing, which will be described later.
  • Voltage recovery in the following description means that the inverter input voltage Vinv, which has once dropped, recovers to its normal value.
  • the inverter relay 35 and the actuator relay 38 are optional components in this embodiment. Although it is preferable that at least one of them is provided within the scope of the functions of this embodiment, it is not essential as a minimum configuration.
  • the inverter relay 35 is provided between the power supply relay 31 and the inverter 50 in the power supply line, and cuts off the current from the inverter 50 side to the power supplies 10 and 20 when the power supply is off. Even if the back electromotive voltage of the actuator 80 is input via the inverter 50 in a state where the voltage on the power supply 10, 20 side is lowered, regenerative current is prevented from flowing to the power supply 10, 20 side.
  • the power supply relay 31 and the inverter 50 are used as a "reverse connection protection relay” for preventing a reverse current from flowing through the circuit when the positive electrode and the negative electrode of the battery are connected in reverse.
  • a reverse connection protection relay for preventing a reverse current from flowing through the circuit when the positive electrode and the negative electrode of the battery are connected in reverse.
  • this relay is referred to as an "inverter relay” instead of the "reverse connection protection relay" which has no purpose.
  • the actuator relay 38 is provided between the inverter 50 and the actuator 80, and cuts off current from the actuator 80 side to the inverter 50 side when turned off.
  • the three motor relays provided in each phase current path of the three-phase motor are collectively referred to as "actuator relays 38".
  • By turning off the actuator relay 38 reverse input of the back electromotive force generated by the actuator 80 to the inverter 50 is prevented. If an actuator relay 38 were provided and turned off at the appropriate time, the above function of the inverter relay 35 would not be necessary. However, both inverter relay 35 and actuator relay 38 may be provided as a redundant fail-safe configuration.
  • the control unit 40 controls the operation of the inverter 50 by operating the switching elements 51 to 56 of the inverter 50 .
  • control when the DC power supply is normal is referred to as "normal control”.
  • Normal control includes both control when main power supply 10 is normal and control after completion of switching to backup power supply 20 .
  • the actuator 80 is a three-phase brushless motor
  • the control unit 40 performs current feedback control by vector control based on the phase current detection value and the motor rotation angle detection value, and generates a drive signal for the inverter 50 . Since this point is a well-known motor control technique, the explanation is omitted.
  • control unit 40 detects "failure and recovery of the DC power supply” based on the decrease and recovery of the inverter input voltage Vinv obtained from the input voltage detector 34 .
  • "failure of the DC power supply” means failure of the main power supply 10
  • "recovery of the DC power supply” means that connection switching to the backup power supply 20 is completed and the power relay 31 is turned on.
  • the control unit 40 operates the power supply relay 31, the inverter relay 35, and the actuator relay 38 to perform on/off control. Inputs and outputs related to the functions of these control units 40 are indicated by solid line arrows.
  • control unit 40 detects the current Ibt flowing in the power line as indicated by the dashed arrow, and turns off the power relay 31 to protect the circuit when the current Ibt exceeds a predetermined overcurrent threshold.
  • this overcurrent monitoring itself is not the main function of this embodiment, it is related to the background of the problem. That is, in the configuration of this embodiment, when the main power supply 10 fails, an overcurrent abnormality in the power supply line is detected, and the power supply relay 31 is turned off as a safety measure. Therefore, after switching the connection of the power switch 25 from the main power supply 10 to the backup power supply 20 in the backup power supply device 200, it is necessary to turn on the power supply relay 31 at an appropriate timing. The technical significance of running occurs.
  • the control unit 40 of this embodiment includes a microcomputer 41 and a custom IC 42.
  • the control unit 40 includes a CPU, a ROM, a RAM, an I/O (not shown), and a bus line connecting these components, and performs software processing by executing a pre-stored program on the CPU, and a dedicated electronic Control is performed by hardware processing by the circuit.
  • the microcomputer 41 mainly performs control calculations for inverter drive signals in normal control.
  • the microcomputer 41 also communicates with other devices in the vehicle via the in-vehicle network.
  • the control power supply for the microcomputer 41 is input from the main power supply 10 or the backup power supply 20 via the IG line provided with the diodes 21 and 22 for preventing backflow.
  • the custom IC 42 acquires the inverter input voltage Vinv, detects failure and restoration of the main power supply 10, and operates the power relay 31 and the like based on the detection result and overcurrent abnormality monitoring.
  • the power failure restoration process unique to this embodiment is mainly executed by the custom IC 42 .
  • the control unit 40 executes a "power failure recovery process" for determining whether to resume normal control.
  • power failure restoration processing executed by the control unit 40 when the main power supply 10 fails and the DC power supply connected to the power supply line is switched from the main power supply 10 to the backup power supply 20 will be described.
  • the power failure recovery process may be applied when the main power supply 10 temporarily fails and then recovers after a while.
  • the vertical axis of the figure shows five items: "main power supply state”, “backup power supply state”, “power relay”, “inverter input voltage Vinv”, and “actuator control”.
  • “supply state of the main power supply” and the “supply state of the backup power supply” the state in which the power is supplied to the actuator driving device 300 is valid, and the state in which the power is not supplied is invalid. It does not indicate the detected voltage at a specific location.
  • the main power supply 10 fails, the "supply status of main power supply” changes from valid to invalid.
  • the connection switching to the backup power supply 20 is completed, the "backup power supply status” changes from invalid to valid.
  • FIGS. 5 to 8 show t0 at the time of power failure, t1 at the first turn-off, t2 at the first turn-on, and t3 at the second turn-off.
  • t2 and t3, which do not occur in Case 1 and t3, which does not occur in Case 2 are indicated in parentheses, and the corresponding vertical lines are indicated by dashed lines.
  • the main power supply 10 fails at power failure time t0, the "supply state of the main power supply" becomes invalid, and the inverter input voltage Vinv drops to zero. Also, the normal control by the main power supply 10 ends, and the abnormality detection control starts.
  • the period from the power failure time t0 to the first turn-off time t1 is defined as "waiting period Twt”.
  • a period from the first turn-off time t1 to the first turn-on time t2 is defined as “first power supply relay-off period Toff_1”.
  • a period from the first turn-on time t2 to the second turn-off time t3 is defined as "first power relay-on period Ton_1".
  • the standby period Twt and the power relay ON period Ton_1 are set to have the same length. Thereby, the functions of the custom IC 42 can be used effectively.
  • the control unit 40 turns off the power relay 31 at the first turn-off time t1 when the standby period Twt elapses.
  • the control unit 40 turns on the power relay 31 again.
  • the voltage is restored at t2 at the time of the first turn-on.
  • the control unit 40 resumes the normal control of the backup power supply 20 at the same time as the voltage recovery.
  • the control unit 40 turns off the power relay 31 at the second turn-off time t3 when the first power relay-on period Ton_1 elapses. is turned off for the second time.
  • the control unit 40 turns off the power relay 31 for the second time and stops driving the actuator 80 . In this way, the abnormality detection control ends at the second turn-off time t3, and the stop control starts.
  • the control unit 40 limits the output of the actuator 80 to a predetermined output limit value Plim or less during the period from the time t0 when the power supply fails to the time when the inverter input voltage Vinv recovers.
  • the controller 40 may set the output of the actuator 80 to zero.
  • the timing for lowering the output limit value is not limited to completing the limit before the first turn-off time t1, as indicated by the solid line.
  • the limitation may be completed before the first turn-on time t2.
  • the control unit 40 releases the output limitation of the actuator 80 . This suppresses the sudden generation of the output of the actuator 80 when the normal control is resumed.
  • the control unit 40 changes the output limit value, the change should be gradual, avoiding sudden changes.
  • the control unit 40 limits the output of the actuator 80 compared to normal control with the main power supply 10 . Since the backup power supply 20 has a smaller capacity than the main power supply 10, it is possible to extend the continuation time of control by limiting the output.
  • the actuator 80 output limit value may be set according to the amount of charge in the backup power supply 20 .
  • S1 the main power supply 10 fails at time t0, and the control unit 40 shifts from normal control to abnormality detection control.
  • the control unit 40 stops driving the inverter 50 and turns off at least one of the inverter relay 35 and the actuator relay 38 .
  • “Stop driving the inverter 50” means to turn off all phase upper and lower arm elements 51-56. This state continues until it is determined in S3 that the voltage has recovered.
  • control unit 40 cancels the driving stop of the inverter 50 and turns on the inverter relay 35 and the actuator relay 38 . Note that the power relay 31 has already been turned on when it is determined that the voltage has been restored.
  • control unit 40 terminates the control during abnormality detection and resumes the normal control.
  • control unit 40 prevents the voltage generated by the inverter 50 from being applied to the power supplies 10 and 20 by stopping the driving of the inverter 50 from the time t0 when the power fails until the voltage is restored.
  • the control unit 40 also turns off at least one of the inverter relay 35 and the actuator relay 38 to prevent regenerative current from flowing from the inverter 50 side to the power sources 10 and 20 due to reverse input from the actuator 80 side.
  • the control unit 40 of the first embodiment alternately repeats the period in which the power supply relay 31 is turned on and the period in which it is turned off after the failure of the main power supply 10, thereby quickly restoring the inverter input voltage Vinv. It is possible to achieve both the resumption of normal control and the implementation of safety measures. On the other hand, when the power relay-off period Toff_1 and the power relay-on period Ton_1 have passed once without the voltage being restored, the control unit 40 stops driving the actuator 80, thereby avoiding unnecessary processing when the possibility of restoration cannot be expected. Avoid continuations. Thus, in this embodiment, it is possible to appropriately determine whether to resume normal control after a power failure.
  • the power failure recovery process of this embodiment is performed in a system including the main power supply 10 and the backup power supply 20 , when the main power supply 10 fails and the DC power supply connected to the power supply line is switched from the main power supply 10 to the backup power supply 20 . Executed when switching. As a result, the normal control after switching from the main power supply 10 to the backup power supply 20 is efficiently and safely resumed. It is particularly suitable for EPS systems and SBW systems that require high reliability.
  • FIG. 11 shows control according to Case 3 (FIG. 7) of the first embodiment as a representative.
  • the control unit 40 intermittently turns on and off the power relay 31 instead of always turning it on during the standby period Twt and the power relay-on period Ton_1 from the power failure time t0 to the restoration of the inverter input voltage Vinv.
  • the duty ratio of the intermittent operation may be a fixed value, or may be variably set according to the current detection value or the like.
  • FIG. 12 shows control according to Case 4 (FIG. 8) of the first embodiment as a representative.
  • the operation up to the second turn-off time t3 is the same as in the first embodiment, but the timing of stopping the drive of the actuator 80, in other words, the timing of shifting from the control during abnormality detection to the stop control is different. different.
  • the "backup power supply state" continues to be in an invalid state from the time t0 when the power fails until the final transition to stop control.
  • the control unit 40 turns off the power relay 31 and shifts to the second power relay-off period Toff_2.
  • the control unit 40 turns on the power relay 31 and shifts to the second power-relay on period Ton_2.
  • the power relay-off period and the power relay-on period Ton are repeated N times (N ⁇ 2).
  • the controller 40 turns off the power relay 31 at t(2N ⁇ 1) at the N-th turn-off time, and shifts to the N-th power relay-off period Toff_N.
  • the control unit 40 turns on the power relay 31, and transitions to the N-th power relay-on period Ton_N.
  • the control unit 40 turns off the power relay 31 for the (N+1)th time and stops driving the actuator 80. That is, when the power relay-off period and the power relay-on period, which are repeated two or more times, have passed without voltage recovery, the control unit 40 turns off the power relay 31 for the (N+1)th time and turns off the actuator 80. Stop driving.
  • the chance of resuming normal control can be secured for as long as possible before finally shifting to stop control.
  • the total time until transition to stop control is set to be the same as in the first embodiment, by repeating the power relay OFF period and the power relay ON period many times in a short cycle, from the switching completion timing in Case 2 to the resumption of normal control time lag can be shortened.
  • the actuator 80 driven by the actuator driving device 300 may be an electric linear actuator or the like that outputs a linear force, other than a motor that outputs torque by rotation.
  • the "inverter” may be construed to include an H-bridge circuit that converts the direction of the input DC power, and the actuator may include a DC actuator such as a DC motor.
  • One or both of the inverter relay 35 and the actuator relay 38 may not be provided. In that case, non-existing relay OFF items are excluded from the processing in the control during abnormality detection in FIG. 10 .
  • Fig. 3 shows semiconductor switching elements as the power supply relay 31, the inverter relay 35, and the actuator relay 38, but this is not the only option, and each relay may be a mechanical relay.
  • the power failure restoration process is not limited to switching to the backup power supply 20 when the main power supply 10 fails, but may be executed when the power supply temporarily fails and then returns after a while. .
  • the present disclosure is applicable not only to systems with main power supply 10 and backup power supply 20, but also to systems with only one DC power supply. In this case, when normal control is resumed and the actuator output restriction is lifted, the actuator output may be set to the same level as before the power failure.
  • the present disclosure is not limited to EPS and SBW steering systems, and may be applied to any actuator drive system that converts power from a DC power supply with an inverter and supplies the power to an actuator.
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

制御部(40)は、直流電源が失陥したとき、直流電源の正常時における制御である通常制御の再開を判定する電源失陥復帰処理において、以下の制御を行う。[1]電源失陥時から待機期間が経過するまでにインバータ入力電圧が復帰した場合、通常制御を再開する。電圧復帰しないまま待機期間が経過した時、電源リレー(31)をオフする。[2]ターンオフ時から電源リレーオフ期間が経過した時、電源リレー(31)を再オンする。ターンオン時にインバータ入力電圧が復帰した場合、通常制御を再開する。[3]ターンオン時から電源リレーオン期間が経過するまでにインバータ入力電圧が復帰した場合、通常制御を再開する。電圧復帰しないまま電源リレーオン期間が経過した時、電源リレー(31)をオフし、アクチュエータ(80)の駆動を停止する。

Description

アクチュエータ駆動装置、及び、それを備えるステアリングシステム 関連出願の相互参照
 本出願は、2021年5月20日に出願された日本出願番号2021-085320号に基づくものであり、ここにその記載内容を援用する。
 本開示は、アクチュエータ駆動装置、及び、それを備えるステアリングシステムに関する。
 従来、車両のステアリングシステムにおける電源の失陥時にアクチュエータの駆動を制御する装置が知られている。例えば特許文献1に開示された車両の制御装置は、ステアバイワイヤ方式の車両において、主電源の失陥時にバックアップ電源から電力を供給し、反力アクチュエータの制御を停止するとともに、転舵アクチュエータによる転舵制御を継続する。
特開2020-138554号公報
 ステアバイワイヤシステムや電動パワーステアリングシステムを含むステアリングシステムのアクチュエータの駆動装置では、主電源の故障時に過電流の懸念や誤出力防止の観点から、電源ラインに設けられた電源リレーをオフして電力供給を遮断する安全機能がある。主電源失陥後にバックアップ電源側に電力経路を切り替えるとき、一旦両方のスイッチをオフする必要がある。そのタイムラグの間に安全処置により電源リレーがオフされると、バックアップ電源に切り替わっても電源リレーをオンしなければ電力が供給されないという事象が発生する。
 この事象は、主電源からバックアップ電源に切り替える場合に限らず、主電源が一時的に失陥してインバータ入力電圧が低下した後、暫くしてから復帰する場合にも発生する。電源の正常時における制御を「通常制御」とすると、上記の事象は、「電源が失陥して通常制御が停止した後に電源が復帰した場合、電源リレーがオフされていると、通常制御を適切に再開することができない。」というように表すことができる。
 本開示の目的は、電源失陥後の通常制御の再開を適切に判定するアクチュエータ駆動装置を提供することにある。
 本開示は、直流電源の電力をインバータにより変換してアクチュエータに供給するアクチュエータ駆動装置であって、インバータと、入力電圧検出器と、電源リレーと、制御部と、を備える。
 インバータは、直流電源から電源ラインを経由して電圧が印加される。電源リレーは、電源ラインの途中に設けられ、オフ時に直流電源側からインバータ側への電流を遮断する。入力電圧検出器は、インバータに印加されるインバータ入力電圧を検出する。制御部は、インバータの動作を制御し、インバータ入力電圧の低下及び復帰に基づき直流電源の失陥及び復帰を検知し、且つ、電源リレーを操作する。
 制御部は、直流電源が失陥したとき、直流電源の正常時における制御である通常制御の再開を判定する「電源失陥復帰処理」を実行するものである。制御部は、電源失陥復帰処理において以下の制御を行う。
 [1]直流電源が失陥した電源失陥時から待機期間が経過するまでにインバータ入力電圧が復帰した場合、通常制御を再開する。インバータ入力電圧が復帰しないまま待機期間が経過した時である1回目のターンオフ時、電源リレーをオフする。
 [2]ターンオフ時から電源リレーオフ期間が経過した時であるターンオン時、電源リレーを再オンする。ターンオン時にインバータ入力電圧が復帰した場合、通常制御を再開する。
 [3]ターンオン時から電源リレーオン期間が経過するまでにインバータ入力電圧が復帰した場合、通常制御を再開する。インバータ入力電圧が復帰しないまま電源リレーオン期間が経過した時である2回目のターンオフ時、電源リレーを2回目にオフする。
 制御部は、1回の電源リレーオフ期間と1回の電源リレーオン期間とがインバータ入力電圧が復帰しないまま経過した時、電源リレーを2回目にオフするとともにアクチュエータの駆動を停止する。又は、制御部は、2回以上繰り返されるN回の電源リレーオフ期間とN回の電源リレーオン期間とがインバータ入力電圧が復帰しないまま経過した時、電源リレーを(N+1)回目にオフするとともにアクチュエータの駆動を停止する。
 本開示の制御部は、直流電源の失陥後に電源リレーをオンする期間とオフする期間とを交互に繰り返すことで、インバータ入力電圧の復帰時における迅速な通常制御の再開と安全処置の実施とを両立することができる。
 一方、インバータ入力電圧が復帰しないまま電源リレーオフ期間及び電源リレーオン期間が各1回、又は各N回(N≧2)経過した場合、制御部はアクチュエータの駆動を停止することで、復帰の可能性が見込めない場合の無用な処理の継続を回避する。このように本開示では、電源失陥後の通常制御の再開を適切に判定することができる。
 また、本開示は、操舵アシスト力を出力する操舵アシストアクチュエータ、ドライバの操舵に対する反力を出力する反力アクチュエータ、又は、タイヤを転舵させる転舵力を出力する転舵アクチュエータと、上記アクチュエータ駆動装置と、を備えるステアリングシステムとして提供される。アクチュエータ駆動装置は、アクチュエータとして、操舵アシストアクチュエータ、反力アクチュエータ又は転舵アクチュエータのうち少なくとも一つを駆動する。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、電動パワーステアリングシステムの概略構成図であり、 図2は、ステアバイワイヤシステムの概略構成図であり、 図3は、主電源、バックアップ電源装置及びアクチュエータ駆動装置を含むシステムの電力供給構成図であり、 図4は、主電源からバックアップ電源への切替過程を示す図であり、 図5は、第1実施形態の電源失陥復帰処理(Case1)を示すタイムチャートであり、 図6は、第1実施形態の電源失陥復帰処理(Case2)を示すタイムチャートであり、 図7は、第1実施形態の電源失陥復帰処理(Case3)を示すタイムチャートであり、 図8は、第1実施形態の電源失陥復帰処理(Case4)を示すタイムチャートであり、 図9は、電源失陥復帰処理におけるアクチュエータの出力制限を示す図であり、 図10は、異常検出中制御におけるインバータ駆動停止等のフローチャートであり、 図11は、第2実施形態の電源失陥復帰処理を示すタイムチャートであり、 図12は、第3実施形態の電源失陥復帰処理を示すタイムチャートである。
 以下、複数の実施形態によるアクチュエータ駆動装置を図面に基づいて説明する。各実施形態のアクチュエータ駆動装置は、車両のステアリングシステムに適用され、操舵アシストアクチュエータや反力アクチュエータや転舵アクチュエータを駆動する。以下の第1~第3実施形態を包括して「本実施形態」という。本実施形態のアクチュエータ駆動装置は、代表的なアクチュエータとしてモータを駆動する。
 [ステアリングシステム]
 図1、図2を参照し、ステアリングシステムとして、電動パワーステアリングシステム(以下「EPSシステム」)及びステアバイワイヤシステム(以下「SBWシステム」)の概略構成について説明する。図1、図2では片側のみのタイヤ99を図示し、反対側のタイヤの図示を省略する。また、スペースの都合上、一部の箇所で「アクチュエータ」を「Act」と省略して記載する。図1、図2で実質的に同一の構成には同一の符号を付して説明を省略する。
 図1に、操舵機構と転舵機構とが機械的に結合したEPSシステム901の全体構成を示す。なお、図1にはラックアシスト型のEPSシステムを示すが、コラムアシスト型のEPSシステムについても同様である。EPSシステム901では、ステアリングシャフト92とラック97とがインターミディエイトシャフト95により接続されている。
 ドライバがハンドル91を操作すると、ステアリングシャフト92の回転運動は、インターミディエイトシャフト95を介してピニオンギア96に伝達される。ピニオンギア96の回転運動はラック97の直線運動に変換され、ラック97の両端に設けられたタイロッド98がナックルアーム985を往復移動させることで、タイヤ99が転舵される。
 EPSシステム901は、操舵トルクセンサ94、アクチュエータ駆動装置300、操舵アシストアクチュエータ801等を含む。操舵トルクセンサ94は、ステアリングシャフト92の途中に設けられ、ドライバの操舵トルクを検出する。アクチュエータ駆動装置300は、操舵トルク等に基づき演算された所望の操舵アシスト力を出力させるように、操舵アシストアクチュエータ801に電力供給する。操舵アシストアクチュエータ801が出力した操舵アシスト力は、減速ギア89を介してラック97に伝達される。
 アクチュエータ駆動装置300には、主電源10及びバックアップ電源装置200が接続されている。主電源10とアクチュエータ駆動装置300とを結ぶ線のうち太い実線はパワー電源線を示し、細い実線は制御電源線を示す。以下、特に断らない限り、電力供給とはパワー電源線を介した電力供給を意味する。主電源10が正常のとき、主電源10の直流電力は、バックアップ電源装置200を経由してアクチュエータ駆動装置300に供給される。一方、主電源10が失陥したときの電力供給構成については図3を参照して後述する。
 図2に、操舵機構と転舵機構とが機械的に分離したSBWシステム902の全体構成を示す。SBWシステム902では、ステアリングシャフト92とラック97とが分離している。ステアリングシャフト92側には、ドライバの操舵に対する反力を出力する反力アクチュエータ802が設けられている。反力アクチュエータ802が出力した反力は、減速ギア79を介してステアリングシャフト92に伝達される。ラック97側には、ラック97を直線運動させてタイヤ99を転舵させる転舵アクチュエータ803が設けられている。転舵アクチュエータ803が出力した転舵力は、減速ギア89を介してタイヤ99に伝達される。
 SBWシステム902のアクチュエータ駆動装置300は、反力アクチュエータ802に電力供給する反力アクチュエータ駆動装置302、及び、転舵アクチュエータ803に電力供給する転舵アクチュエータ駆動装置303を含む。反力アクチュエータ駆動装置302と転舵アクチュエータ駆動装置303とは相互に通信し、反力アクチュエータ802と転舵アクチュエータ803とを協調して動作させる。
 図1と同様に、図2においても、アクチュエータ駆動装置300には、「直流電源」である主電源10及びバックアップ電源装置200が接続されている。例えば主電源10及びバックアップ電源装置200から供給された直流電力は、反力アクチュエータ駆動装置302及び転舵アクチュエータ駆動装置303に分配される。或いは、反力アクチュエータ駆動装置302及び転舵アクチュエータ駆動装置303に対し二つのバックアップ電源装置200が個別に設けられてもよい。
 EPSシステム901の操舵アシストアクチュエータ801、SBWシステム902の反力アクチュエータ802及び転舵アクチュエータ803のいずれも、代表的には3相ブラシレスモータが用いられる。「アクチュエータ」を「モータ」に言い換えると、操舵アシストモータ801は操舵アシストトルク、反力モータ802は反力トルク、転舵モータ803は転舵トルクをそれぞれ出力する。本明細書ではモータ特有の構成や制御に言及しないため、基本的に「アクチュエータ」と称する。
 [システムの電力供給構成]
 次に図3、図4を参照し、主電源10、バックアップ電源装置200及びアクチュエータ駆動装置300を含むシステムの電力供給構成について説明する。バックアップ電源装置200は、バックアップ電源20、ダイオード21、22及び電源切替スイッチ25を含む。主電源10は、相対的に容量の大きい直流電源である。バックアップ電源20は、相対的に容量の小さい直流電源であり、主電源10の失陥時に用いられる非常用サブバッテリである。本実施形態では、「電源」とは基本的に直流電源を意味する。
 制御部40のマイコン41に制御電源を供給するIGラインの合流点23には、主電源10及びバックアップ電源20が並列に接続されている。主電源10と合流点23との間、及び、バックアップ電源20と合流点23との間には、それぞれ、合流点23から電源10、20への電流の逆流を防ぐダイオード21、22が設けられている。IGラインには低電流しか流れないため、主電源10の失陥時にも経路の切替なしにバックアップ電源20の電源供給が可能である。
 電源切替スイッチ25は、電源ライン(いわゆるPIGライン)に設けられており、主電源10に接続された第1スイッチ251、及び、バックアップ電源20に接続された第2スイッチ252から構成されている。第1スイッチ251及び第2スイッチ252は、いずれか一方がオン、又は両方がオフされる。主電源10からバックアップ電源20側に電流が流れ込みショートすることを防ぐため、両方のスイッチ251、252が同時にオンしないように操作される。
 図4に示すように、主電源10の使用時には第1スイッチ251がオン、第2スイッチ252がオフされる。主電源10からバックアップ電源20に切り替えるとき、一旦両方のスイッチ251、252がオフされてから、第2スイッチ252がオンされ、バックアップ電源20が使用される。そのため、電源の切替に伴うタイムラグが生じる。
 アクチュエータ駆動装置300は、「直流電源」である主電源10又はバックアップ電源20の電力をインバータ50により変換してアクチュエータ80に供給する。駆動対象である「アクチュエータ80」は、図1、図2に示す各アクチュエータ801、802、803を包括する。
 アクチュエータ駆動装置300は、インバータ50、電源リレー31、入力電圧検出器34、インバータリレー35、アクチュエータリレー38、及び、制御部40を備える。インバータ50は、「直流電源」である主電源10又はバックアップ電源20から、電源ライン(いわゆるPIGライン)を経由して電圧が印加される。図中、電源ラインを太い実線で示す。
 インバータ50は、ブリッジ接続された3相上下アームの複数のスイッチング素子51-56から構成され、入力された直流電力を交流電力に変換してアクチュエータ80に供給する。詳しくは、スイッチング素子51、52、53は、それぞれU相、V相、W相の上アーム素子であり、スイッチング素子54、55、56は、それぞれU相、V相、W相の下アーム素子である。スイッチング素子51-56として例えばMOSFETが用いられる。インバータ50の入力部に設けられる平滑コンデンサの図示を省略する。また、各相電流を検出するシャント抵抗が、例えば下アーム素子54、55、56とグランドとの間に設けられてもよい。
 電源リレー31は、電源ラインの途中、すなわち電源10、20とインバータ50との間に設けられ、オフ時に電源10、20側からインバータ50側への電流を遮断する。ただし図3の例のように電源リレー31がMOSFETで構成される場合、電源リレー31がオフでも、インバータ50側から電源10、20側へは寄生ダイオードを通って電流が流れる可能性がある。
 入力電圧検出器34は、電源リレー31とインバータ50との間に設けられ、電源ラインを経由してインバータ50に印加されるインバータ入力電圧Vinvを検出する。ここで検出されるインバータ入力電圧Vinvが後述する電源失陥復帰処理を行う上での判断情報となる。以下の説明における「電圧復帰」とは、一旦低下したインバータ入力電圧Vinvが通常値に復帰することを意味する。
 インバータリレー35及びアクチュエータリレー38は、本実施形態でのオプション構成である。本実施形態の機能の範囲では少なくとも一方が設けられることが好ましいが、最小限の構成として必須ではない。インバータリレー35は、電源ラインにおける電源リレー31とインバータ50との間に設けられ、オフ時にインバータ50側から電源10、20側への電流を遮断する。仮に電源10、20側の電圧が低下した状態でアクチュエータ80の逆起電圧がインバータ50を経由して逆入力されても、電源10、20側へ回生電流が流れることが防止される。
 一般にEPSシステムやSBWシステムのアクチュエータ駆動装置では、バッテリの正極と負極との逆接続時に回路に逆方向の電流が流れることを防止するための「逆接続保護リレー」として、電源リレー31とインバータ50との間に同種のリレーが設けられる。ただし本実施形態では、主電源10の失陥時に代用されるはずのバックアップ電源20が逆接続されているという事態まで想定しない。そのため、目的と異なる「逆接続保護リレー」に代えて、このリレーを「インバータリレー」と称する。
 アクチュエータリレー38は、インバータ50とアクチュエータ80との間に設けられ、オフ時にアクチュエータ80側からインバータ50側への電流を遮断する。図3の例では、3相モータの各相電流経路に設けられた3個のモータリレーをまとめて「アクチュエータリレー38」と記す。アクチュエータリレー38をオフすることで、アクチュエータ80で発生した逆起電圧がインバータ50に逆入力されることが防止される。アクチュエータリレー38が設けられ、且つ適切なタイミングでオフされる場合、インバータリレー35の上記機能は必要ないとも考えられる。ただし、冗長的なフェールセーフ構成としてインバータリレー35及びアクチュエータリレー38の両方が設けられてもよい。
 制御部40は、インバータ50のスイッチング素子51-56を操作してインバータ50の動作を制御する。以下、直流電源の正常時における制御を「通常制御」という。通常制御には、主電源10が正常時の制御と、バックアップ電源20への切替完了後の制御との両方が含まれる。アクチュエータ80が3相ブラシレスモータの場合、制御部40は、相電流検出値やモータ回転角検出値に基づきベクトル制御で電流フィードバック制御を行い、インバータ50の駆動信号を生成する。この点は周知のモータ制御技術であるため、説明を省略する。
 また制御部40は、入力電圧検出器34から取得したインバータ入力電圧Vinvの低下及び復帰に基づき、「直流電源の失陥及び復帰」を検知する。本実施形態では「直流電源の失陥」は主電源10の失陥を意味し、「直流電源の復帰」はバックアップ電源20への接続切替が完了し、且つ、電源リレー31がオンされたことを意味する。さらに制御部40は、電源リレー31、インバータリレー35、アクチュエータリレー38を操作してオン/オフ制御する。これらの制御部40の機能に関する入出力を実線矢印で示す。
 加えて制御部40は、破線矢印で示すように電源ラインに流れる電流Ibtを検出し、電流Ibtが所定の過電流閾値を超えたとき電源リレー31をオフして回路を保護する。この過電流監視自体は本実施形態の主要機能ではないが、課題の背景として関係がある。すなわち、本実施形態の構成では主電源10が失陥したとき、電源ラインの過電流異常が検出され、安全処置として電源リレー31がオフされる。したがって、バックアップ電源装置200において電源切替スイッチ25の接続を主電源10からバックアップ電源20に切り替えた後、適切なタイミングで電源リレー31をオンする必要があり、そのために「電源失陥復帰処理」を実行する技術的意義が発生する。
 本実施形態の制御部40は、マイコン41及びカスタムIC42を含む。制御部40は、図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備え、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理による制御を実行する。
 マイコン41は、主に通常制御におけるインバータ駆動信号の制御演算を行う。また、マイコン41は、車内ネットワークを経由して車両の他の機器との通信を行う。上述の通り、マイコン41の制御電源は、主電源10又はバックアップ電源20から、逆流防止用ダイオード21、22が設けられたIGラインを経由して入力される。
 カスタムIC42は、インバータ入力電圧Vinvを取得して主電源10の失陥及び復帰を検知し、その検知結果や過電流異常の監視に基づき電源リレー31等の操作を行う。つまり、本実施形態に特有の電源失陥復帰処理は、主にカスタムIC42により実行される。専用のカスタムIC42を用いて電源失陥復帰処理を行うことで、高速に処置が可能となり、安全性がより向上する。
 [電源失陥復帰処理]
 制御部40は、主電源10が失陥したとき、通常制御の再開を判定する「電源失陥復帰処理」を実行する。本実施形態では、主電源10が失陥し、電源ラインに接続される直流電源が主電源10からバックアップ電源20に切り替わるときに制御部40が実行する電源失陥復帰処理について説明する。なお、「その他の実施形態」の欄に記載するように、主電源10が一時的に失陥した後、暫くしてから復帰する場合に電源失陥復帰処理が適用されてもよい。
 (第1実施形態)
 図5~図8のタイムチャートを参照し、第1実施形態の電源失陥復帰処理について、インバータ入力電圧Vinvの復帰タイミングによりCase1~Case4に場合分けして説明する。以下、「インバータ入力電圧Vinvの復帰」を適宜省略して「電圧復帰」という。
 図の縦軸には、「主電源の供給状態」、「バックアップ電源の供給状態」、「電源リレー」、「インバータ入力電圧Vinv」、「アクチュエータ制御」の5項目を示す。「主電源の供給状態」及び「バックアップ電源の供給状態」については、アクチュエータ駆動装置300へ電源が供給されている状態を有効とし、電源が供給されていない状態を無効とする。具体的な箇所での検出電圧を示すものではない。主電源10が失陥すると、「主電源の供給状態」は有効から無効になる。バックアップ電源20への接続切替が完了すると、「バックアップ電源の供給状態」は無効から有効になる。
 図5~図8の横軸には、電源失陥時t0、1回目のターンオフ時t1、1回目のターンオン時t2、2回目のターンオフ時t3を示す。ただし、Case1で発生しないt2、t3、及び、Case2で発生しないt3を括弧内に記し、対応する縦線を破線で記す。Case1~Case4で共通に、電源失陥時t0に主電源10が失陥し、「主電源の供給状態」が無効になり、インバータ入力電圧Vinvが0に低下する。また、主電源10での通常制御が終了し、異常検出中制御が開始する。
 電源失陥時t0から1回目のターンオフ時t1までの期間を「待機期間Twt」と定義する。1回目のターンオフ時t1から1回目のターンオン時t2までの期間を「1回目の電源リレーオフ期間Toff_1」と定義する。1回目のターンオン時t2から2回目のターンオフ時t3までの期間を「1回目の電源リレーオン期間Ton_1」と定義する。
 ここで、待機期間Twtと電源リレーオン期間Ton_1とは同等の長さに設定されている。これにより、カスタムIC42の機能を効果的に使用することができる。後述の第3実施形態においても、2回目以後の電源リレーオン期間Ton_2・・・Ton_Nは、待機期間Twt及び1回目の電源リレーオン期間Ton_1と同等の長さに設定されることが好ましい。
 図5に示すCase1では、1回目のターンオフ時t1まで、すなわち待機期間Twtが経過するまでにバックアップ電源20への切替が完了し、「バックアップ電源の供給状態」が有効になる。この時点で電源リレー31はオンであるため、「バックアップ電源の供給状態」が有効になると同時に電圧復帰する。制御部40は、電圧復帰と同時にバックアップ電源20での通常制御を再開する。
 図6~図8に示すように、電圧復帰しないまま待機期間Twtが経過すると、待機期間Twtが経過した時である1回目のターンオフ時t1、制御部40は、電源リレー31をオフする。
 図6に示すCase2では、1回目のターンオフ時t1から1回目のターンオン時t2まで、すなわち1回目の電源リレーオフ期間Toff_1が経過するまでにバックアップ電源20への切替が完了し、「バックアップ電源の供給状態」が有効になる。この時点では電源リレー31がオフしているため電圧復帰しない。
 1回目のターンオフ時t1から1回目の電源リレーオフ期間Toff_1が経過した時である1回目のターンオン時t2、制御部40は、電源リレー31を再オンする。Case2では1回目のターンオン時t2に電圧復帰する。この場合、制御部40は、電圧復帰と同時にバックアップ電源20での通常制御を再開する。
 図7に示すCase3では、1回目のターンオン時t2から2回目のターンオフ時t3まで、すなわち1回目の電源リレーオン期間Ton_1が経過するまでにバックアップ電源20への切替が完了し、「バックアップ電源の供給状態」が有効になる。この時点で電源リレー31はオンであるため、「バックアップ電源の供給状態」が有効になると同時に電圧復帰する。制御部40は、電圧復帰と同時にバックアップ電源20での通常制御を再開する。
 図8に示すように、電圧復帰しないまま1回目の電源リレーオン期間Ton_1が経過すると、1回目の電源リレーオン期間Ton_1が経過した時である2回目のターンオフ時t3、制御部40は、電源リレー31を2回目にオフする。
 図8に示すCase4では、2回目のターンオフ時t3以後にバックアップ電源20への切替が完了するか、又は、恒久的にバックアップ電源20への切替が完了しない。例えばバックアップ電源装置200のバックアップ電源20や電源切替スイッチ25が異常の場合が想定される。そこで第1実施形態では、2回目のターンオフ時t3に達するとタイムアップとみなす。
 つまり制御部40は、1回の電源リレーオフ期間Toff_1と1回の電源リレーオン期間Ton_1とが電圧復帰しないまま経過した時、電源リレー31を2回目にオフするとともにアクチュエータ80の駆動を停止する。こうして、2回目のターンオフ時t3に異常検出中制御が終了し、停止制御が開始する。
 次に図9を参照し、電源失陥復帰処理におけるアクチュエータ80の出力制限について説明する。制御部40は、電源失陥時t0からインバータ入力電圧Vinvの復帰時までの間にアクチュエータ80の出力を所定の出力制限値Plim以下に制限する。例えば制御部40はアクチュエータ80の出力を0にしてもよい。
 出力制限値を低下させるタイミングは、実線で示すように1回目のターンオフ時t1の前に制限を完了させる場合に限らない。例えばCase2、Case3の場合、破線で示すように、1回目のターンオン時t2の前までに制限が完了すればよい。そして制御部40は、電圧復帰後、アクチュエータ80の出力制限を解除する。これにより、通常制御の再開時にアクチュエータ80の出力が急に発生することが抑制される。好ましくは、制御部40が出力制限値を変更するとき、急変を避けて徐変する。
 また制御部40は、バックアップ電源20で通常制御を再開する場合、主電源10での通常制御に比べアクチュエータ80の出力を制限する。バックアップ電源20は主電源10に比べ容量が小さいため、出力を制限することで、制御の続行時間を延ばすことができる。例えばバックアップ電源20の充電量に応じてアクチュエータ80出力制限値が設定されてもよい。
 図10のフローチャートを参照し、異常検出中制御における処理について説明する。フローチャートの説明で記号「S」はステップを示す。S1では時刻t0に主電源10が失陥し、制御部40は通常制御から異常検出中制御に移行する。S2で制御部40は、インバータ50の駆動を停止し、インバータリレー35又はアクチュエータリレー38の少なくとも一方をオフする。「インバータ50の駆動を停止する」とは、全相上下アーム素子51-56をオフすることを意味する。この状態は、S3で電圧復帰したと判断されるまで継続される。
 S3で電圧復帰したと判断されると、S4で制御部40は、インバータ50の駆動停止を解除し、インバータリレー35及びアクチュエータリレー38をオンする。なお、電圧復帰したと判断された時点で、既に電源リレー31はオンされている。また、S4と同時にS5で、制御部40は異常検出中制御を終了して通常制御を再開する。
 このように制御部40は、電源失陥時t0から電圧復帰時までインバータ50の駆動を停止することで、インバータ50による生成電圧が電源10、20側に印加されることを防止する。また制御部40は、インバータリレー35又はアクチュエータリレー38の少なくとも一方をオフすることで、アクチュエータ80側からの逆入力により、インバータ50側から電源10、20側に回生電流が流れることを防止する。
 以上のように第1実施形態の制御部40は、主電源10の失陥後に電源リレー31をオンする期間とオフする期間とを交互に繰り返すことで、インバータ入力電圧Vinvの復帰時における迅速な通常制御の再開と安全処置の実施とを両立することができる。一方、電圧復帰しないまま電源リレーオフ期間Toff_1及び電源リレーオン期間Ton_1が各1回経過した場合、制御部40はアクチュエータ80の駆動を停止することで、復帰の可能性が見込めない場合の無用な処理の継続を回避する。このように本実施形態では、電源失陥後の通常制御の再開を適切に判定することができる。
 特に本実施形態の電源失陥復帰処理は、主電源10とバックアップ電源20とを備えるシステムにおいて、主電源10が失陥し、電源ラインに接続される直流電源が主電源10からバックアップ電源20に切り替わるときに実行される。これにより、主電源10からバックアップ電源20への切替後の通常制御が効率良く安全に再開される。高い信頼性が要求されるEPSシステムやSBWシステムでは特に好適である。
 (第2実施形態)
 図11を参照し、第2実施形態の電源失陥復帰処理について説明する。図11には、第1実施形態のCase3(図7)に準ずる制御を代表として示す。制御部40は、電源失陥時t0からインバータ入力電圧Vinvの復帰時までの待機期間Twt及び電源リレーオン期間Ton_1において、電源リレー31を常時オンするのでなく、間欠的にオンオフする。
 異常検出中制御で電源リレー31を常時オンすると、過電流時の発熱によりインバータ素子51-56等が破壊するおそれがある。そこで、異常検出中制御では電源リレー31を間欠的にオンオフすることで、過電流による発熱を抑制することができる。間欠動作のDuty比は固定値としてもよく、電流検出値等に応じて可変に設定されてもよい。
 (第3実施形態)
 図12を参照し、第3実施形態の電源失陥復帰処理について説明する。図12には、第1実施形態のCase4(図8)に準ずる制御を代表として示す。第3実施形態は第1実施形態に対し、2回目のターンオフ時t3までの動作は同じであるが、アクチュエータ80の駆動を停止するタイミング、言い換えれば異常検出中制御から停止制御に移行するタイミングが異なる。
 図12において「バックアップ電源の供給状態」は、電源失陥時t0から最終的に停止制御に移行するまで無効状態が継続する。2回目のターンオフ時t3に制御部40は電源リレー31をオフし、2回目の電源リレーオフ期間Toff_2に移行する。次に2回目のターンオン時t4に電源リレーオフ期間Toff_2が経過すると、制御部40は電源リレー31をオンし、2回目の電源リレーオン期間Ton_2に移行する。
 仮に2回目の電源リレーオフ期間Toff_2中にバックアップ電源20への切替が完了した場合、第1実施形態のCase2に準じ、2回目のターンオン時t4に通常制御が再開される。仮に2回目の電源リレーオン期間Ton_2中にバックアップ電源20への切替が完了した場合、第1実施形態のCase3に準じ、電圧復帰と同時に通常制御が再開される。
 以後、N回(N≧2)の電源リレーオフ期間と電源リレーオン期間Tonとが繰り返される。N回目のターンオフ時t(2N-1)に制御部40は電源リレー31をオフし、N回目の電源リレーオフ期間Toff_Nに移行する。N回目のターンオン時t(2N)に制御部40は電源リレー31をオンし、N回目の電源リレーオン期間Ton_Nに移行する。
 その後、N回目の電源リレーオン期間Ton_Nが経過した(N+1)回目のターンオフ時t(2N+1)、制御部40は電源リレー31を(N+1)回目にオフするとともにアクチュエータ80の駆動を停止する。つまり制御部40は、2回以上繰り返されるN回の電源リレーオフ期間とN回の前記電源リレーオン期間とが電圧復帰しないまま経過した時、電源リレー31を(N+1)回目にオフするとともにアクチュエータ80の駆動を停止する。
 第3実施形態では、最終的に停止制御に移行するまでに通常制御を再開するチャンスをできるだけ長く確保することができる。或いは、停止制御に移行するまでのトータル時間を第1実施形態と同等に設定した場合、電源リレーオフ期間及び電源リレーオン期間を短周期で多数回繰り返すことで、Case2における切替完了タイミングから通常制御再開までのタイムラグを短縮することができる。
 (その他の実施形態)
 (a)アクチュエータ駆動装置300により駆動されるアクチュエータ80は、回転によりトルクを出力するモータ以外に、直進力を出力する電動リニアアクチュエータ等であってもよい。また、「インバータ」は、入力された直流電力の電流方向を変換するHブリッジ回路を含むものと解釈し、アクチュエータにはDCモータ等のDCアクチュエータが含まれてもよい。
 (b)インバータリレー35又はアクチュエータリレー38の一方又は両方が設けられなくてもよい。その場合、図10の異常検出中制御における処理から、存在しないリレーのオフの項目が除外される。
 (c)図3には電源リレー31、インバータリレー35、アクチュエータリレー38として半導体スイッチング素子を図示しているが、これに限らず、各リレーは機械式リレーで構成されてもよい。
 (d)電源失陥復帰処理は、主電源10の失陥時にバックアップ電源20に切り替える場合に限らず、電源が一時的に失陥した後、暫くしてから復帰する場合に実行されてもよい。つまり本開示は、主電源10及びバックアップ電源20を備えたシステムに限らず、一つの直流電源のみを備えたシステムにも適用可能である。この場合、通常制御を再開してアクチュエータ出力制限を解除するとき、アクチュエータ出力を電源失陥前と同程度に設定してもよい。
 (e)本開示は、EPSやSBWのステアリングシステムに限らず、直流電源の電力をインバータにより変換してアクチュエータに供給するどのようなアクチュエータ駆動システムに適用されてもよい。
 以上、本開示はこのような実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の形態で実施することができる。
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。

Claims (9)

  1.  直流電源の電力をインバータ(50)により変換してアクチュエータ(80)に供給するアクチュエータ駆動装置であって、
     前記直流電源から電源ラインを経由して電圧が印加されるインバータと、
     前記電源ラインの途中に設けられ、オフ時に前記直流電源側から前記インバータ側への電流を遮断する電源リレー(31)と、
     前記インバータに印加されるインバータ入力電圧(Vinv)を検出する入力電圧検出器(34)と、
     前記インバータの動作を制御し、前記インバータ入力電圧の低下及び復帰に基づき前記直流電源の失陥及び復帰を検知し、且つ、前記電源リレーを操作する制御部(40)と、
     を備え、
     前記制御部は、前記直流電源が失陥したとき、前記直流電源の正常時における制御である通常制御の再開を判定する電源失陥復帰処理を実行するものであり、前記電源失陥復帰処理において、
     前記直流電源が失陥した電源失陥時(t0)から待機期間(Twt)が経過するまでに前記インバータ入力電圧が復帰した場合、前記通常制御を再開し、
     前記インバータ入力電圧が復帰しないまま前記待機期間が経過した時である1回目のターンオフ時(t1)、前記電源リレーをオフし、
     前記ターンオフ時から電源リレーオフ期間(Toff)が経過した時であるターンオン時(t2)、前記電源リレーを再オンし、前記ターンオン時に前記インバータ入力電圧が復帰した場合、前記通常制御を再開し、
     前記ターンオン時から電源リレーオン期間(Ton)が経過するまでに前記インバータ入力電圧が復帰した場合、前記通常制御を再開し、
     前記インバータ入力電圧が復帰しないまま前記電源リレーオン期間が経過した時である2回目のターンオフ時(t3)、前記電源リレーを2回目にオフし、
     1回の前記電源リレーオフ期間と1回の前記電源リレーオン期間とが前記インバータ入力電圧が復帰しないまま経過した時、前記電源リレーを2回目にオフするとともに前記アクチュエータの駆動を停止するか、又は、
     2回以上繰り返されるN回の前記電源リレーオフ期間とN回の前記電源リレーオン期間とが前記インバータ入力電圧が復帰しないまま経過した時、前記電源リレーを(N+1)回目にオフするとともに前記アクチュエータの駆動を停止するアクチュエータ駆動装置。
  2.  相対的に容量の大きい直流電源である主電源(10)と、相対的に容量の小さい直流電源であり前記主電源の失陥時に用いられるバックアップ電源(20)とを備えるシステムにおいて、
     前記主電源が失陥し、前記電源ラインに接続される前記直流電源が前記主電源から前記バックアップ電源に切り替わるとき、前記制御部は前記電源失陥復帰処理を実行する請求項1に記載のアクチュエータ駆動装置。
  3.  前記制御部は、前記バックアップ電源で前記通常制御を再開する場合、前記主電源での前記通常制御に比べ前記アクチュエータの出力を制限する請求項2に記載のアクチュエータ駆動装置。
  4.  前記制御部は、前記電源失陥時から前記インバータ入力電圧の復帰時までの間に前記アクチュエータの出力を所定の出力制限値以下に制限し、前記インバータ入力電圧の復帰後、前記アクチュエータの出力制限を解除する請求項1~3のいずれか一項に記載のアクチュエータ駆動装置。
  5.  前記制御部は、前記電源失陥時から前記インバータ入力電圧の復帰時までの前記待機期間及び前記電源リレーオン期間において、前記電源リレーを間欠的にオンオフする請求項1~4のいずれか一項に記載のアクチュエータ駆動装置。
  6.  前記待機期間と前記電源リレーオン期間とは同等の長さに設定されている請求項1~5のいずれか一項に記載のアクチュエータ駆動装置。
  7.  前記制御部は、前記電源失陥時から前記インバータ入力電圧の復帰時まで、前記インバータの駆動を停止する請求項1~6のいずれか一項に記載のアクチュエータ駆動装置。
  8.  前記電源ラインにおける前記電源リレーと前記インバータとの間に設けられ、オフ時に前記インバータ側から前記直流電源側への電流を遮断するインバータリレー(35)、又は、前記インバータと前記アクチュエータとの間に設けられ、オフ時に前記アクチュエータ側から前記インバータ側への電流を遮断するアクチュエータリレー(38)、のうち少なくとも一方をさらに備え、
     前記制御部は、前記電源失陥時から前記インバータ入力電圧の復帰時まで、前記インバータリレー又は前記アクチュエータリレーをオフする請求項1~7のいずれか一項に記載のアクチュエータ駆動装置。
  9.  操舵アシスト力を出力する操舵アシストアクチュエータ(801)、ドライバの操舵に対する反力を出力する反力アクチュエータ(802)、又は、タイヤを転舵させる転舵力を出力する転舵アクチュエータ(803)と、
     前記アクチュエータとして、前記操舵アシストアクチュエータ、前記反力アクチュエータ又は前記転舵アクチュエータのうち少なくとも一つを駆動する請求項1~8のいずれか一項に記載のアクチュエータ駆動装置(300)と、
     を備えるステアリングシステム。
PCT/JP2022/019686 2021-05-20 2022-05-09 アクチュエータ駆動装置、及び、それを備えるステアリングシステム WO2022244640A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22804553.0A EP4344052A1 (en) 2021-05-20 2022-05-09 Actuator driving device and steering system provided with same
CN202280035088.3A CN117296244A (zh) 2021-05-20 2022-05-09 致动器驱动装置、以及具备该致动器驱动装置的转向系统
US18/511,618 US20240088814A1 (en) 2021-05-20 2023-11-16 Actuator driving device and steering system provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021085320A JP7557427B2 (ja) 2021-05-20 2021-05-20 アクチュエータ駆動装置、及び、それを備えるステアリングシステム
JP2021-085320 2021-05-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/511,618 Continuation US20240088814A1 (en) 2021-05-20 2023-11-16 Actuator driving device and steering system provided with the same

Publications (1)

Publication Number Publication Date
WO2022244640A1 true WO2022244640A1 (ja) 2022-11-24

Family

ID=84140675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019686 WO2022244640A1 (ja) 2021-05-20 2022-05-09 アクチュエータ駆動装置、及び、それを備えるステアリングシステム

Country Status (5)

Country Link
US (1) US20240088814A1 (ja)
EP (1) EP4344052A1 (ja)
JP (1) JP7557427B2 (ja)
CN (1) CN117296244A (ja)
WO (1) WO2022244640A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253156A (ja) * 2004-03-02 2005-09-15 Denso Corp 車両用モータ制御装置の故障検出装置
JP2010148274A (ja) * 2008-12-19 2010-07-01 Nsk Ltd モータ制御装置および電動パワーステアリング装置
JP2021052560A (ja) * 2019-09-26 2021-04-01 株式会社ジェイテクト 電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253156A (ja) * 2004-03-02 2005-09-15 Denso Corp 車両用モータ制御装置の故障検出装置
JP2010148274A (ja) * 2008-12-19 2010-07-01 Nsk Ltd モータ制御装置および電動パワーステアリング装置
JP2021052560A (ja) * 2019-09-26 2021-04-01 株式会社ジェイテクト 電源装置

Also Published As

Publication number Publication date
US20240088814A1 (en) 2024-03-14
JP2022178481A (ja) 2022-12-02
EP4344052A1 (en) 2024-03-27
JP7557427B2 (ja) 2024-09-27
CN117296244A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
JP5579495B2 (ja) モータ駆動装置
EP3340457B1 (en) Electronic control device and electric power steering device equipped with same
US10232874B2 (en) Motor drive device and electric power steering device
US11283389B2 (en) Motor system
JP5621598B2 (ja) モータ制御装置及び電動パワーステアリング装置
JP2010074915A (ja) モータ制御装置及び電動パワーステアリング装置
JP2007037301A (ja) ロボット制御装置
JP5900291B2 (ja) 電動パワーステアリング装置
JP6947184B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
CN114667252A (zh) 马达驱动系统
CN112236935A (zh) 电动助力转向装置
CN110194212B (zh) 转向操纵控制装置
JP5857941B2 (ja) 電動パワーステアリング装置
WO2022244640A1 (ja) アクチュエータ駆動装置、及び、それを備えるステアリングシステム
US11987298B2 (en) Motor control device and steering system having the same
JP7052801B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP5892042B2 (ja) 電動パワーステアリング装置
JP2021106448A (ja) 回路基板
JP2009046044A (ja) 電動パワーステアリング装置の制御装置
WO2019049449A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7420079B2 (ja) モータ制御装置
JP2009214608A (ja) 電動パワーステアリング装置
WO2023063253A1 (ja) 負荷駆動装置
WO2023079960A1 (ja) モータ駆動装置
JP4736648B2 (ja) 電動パワーステアリング装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035088.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022804553

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804553

Country of ref document: EP

Effective date: 20231220