WO2022241926A1 - 动静态海缆及其制造方法 - Google Patents

动静态海缆及其制造方法 Download PDF

Info

Publication number
WO2022241926A1
WO2022241926A1 PCT/CN2021/105165 CN2021105165W WO2022241926A1 WO 2022241926 A1 WO2022241926 A1 WO 2022241926A1 CN 2021105165 W CN2021105165 W CN 2021105165W WO 2022241926 A1 WO2022241926 A1 WO 2022241926A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
dynamic
static
armor layer
layer
Prior art date
Application number
PCT/CN2021/105165
Other languages
English (en)
French (fr)
Inventor
刘磊
赵囿林
胡明
王丽媛
李叶青
刘利刚
杜强
缪星星
陈孟
韦雪锋
陈步圣
金星宇
缪扣华
花炜
Original Assignee
中天科技海缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技海缆股份有限公司 filed Critical 中天科技海缆股份有限公司
Priority to EP21940375.5A priority Critical patent/EP4207216A4/en
Publication of WO2022241926A1 publication Critical patent/WO2022241926A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/22Cables including at least one electrical conductor together with optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/26Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping
    • H01B13/2606Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping by braiding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1875Multi-layer sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/228Metal braid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/24Devices affording localised protection against mechanical force or pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/005Power cables including optical transmission elements

Definitions

  • the invention relates to the technical field of submarine cables, in particular to a dynamic and static submarine cable and a manufacturing method thereof.
  • Dynamic and static submarine cables usually include connected dynamic cables and static cables.
  • the dynamic cables are set in seawater and will continue to move under the influence of environmental factors such as wind, waves and currents.
  • the static cables are buried on the seabed and are less affected by environmental factors. There is no sustained motion.
  • offshore platforms such as offshore oil and gas platforms, offshore wind turbines, wave energy generators, and tidal energy generators are gradually increasing, and the demand for dynamic and static submarine cables is also gradually increasing.
  • the structure of the dynamic cable and the static cable are different.
  • the armor layer usually the impact and wear of the dynamic cable are greater than that of the static cable, so that the number of armor layers of the dynamic cable is more than that of the static cable.
  • the number of armor layers of the cable In related technologies, the dynamic cable and the static cable are generally produced separately, and then a maintenance joint box is used to connect the dynamic cable and the static cable to form a dynamic and static submarine cable.
  • embodiments of the present invention provide a dynamic and static submarine cable and a manufacturing method thereof, which are used to shorten the production cycle of the dynamic and static submarine cable.
  • An embodiment of the present invention provides a dynamic and static submarine cable, which includes: a cable core, a first armor layer, a transition device and a second armor layer, the cable core includes a dynamic section, a static section, and a cable connecting the dynamic section and the The transition section of the static section, and the dynamic section, the static section, and the transition section are of an integrated structure; the first armor layer is sheathed on the outside of the dynamic section, the static section, and the transition section; The transition device is sleeved on the outside of the first armor layer corresponding to the transition section; the second armor layer is sleeved on the outside of the first armor layer corresponding to the dynamic section, and the first armor layer The first end of the second armor layer covers part of the transition device, and the first end of the second armor layer is welded on the outer peripheral surface of the transition device.
  • the first armor layer is sheathed on the outside of the dynamic section, the static section, and the transition section of the cable core, and the first armor layer corresponding to the transition section is provided with a transition device.
  • the second armor layer is sheathed outside the first armor layer corresponding to the dynamic section, and the first section of the second armor layer is welded on the outer peripheral surface of the transition device.
  • the embodiment of the present invention also provides a method for manufacturing a dynamic and static submarine cable, which includes:
  • a cable core includes a dynamic section, a static section, and a transition section connecting the dynamic section and the static section, and the dynamic section, the static section, and the transition section are integrally structured;
  • the cable core is continuously produced, and the cable core is divided into a dynamic section, a static section and a transition section by setting a segmentation point, and the first armor layer is stranded in the dynamic section.
  • the outer peripheral surface, the outer peripheral surface of the static section and the outer peripheral surface of the transition section form a heat transfer unit formed on the outer peripheral surface of the first armor layer corresponding to the transition section, and the welding unit is sleeved on the outer peripheral surface of the heat transfer unit; the first armor corresponding to the dynamic section Stranding the second armor layer on the outer peripheral surface of the second armor layer, and making the first end of the second armor layer cover part of the welding unit; the first end of the second armor layer is welded on the outer peripheral surface of the welding unit.
  • the transition between the dynamic section armor layer and the static section armor layer can be realized through the connection of the welding unit and the second armor layer, and the dynamic and static submarine cables can be produced continuously without the need to separate the dynamic cable from the static cable, thereby The production cycle is shortened.
  • Fig. 1 is a cross-sectional view of a dynamic and static submarine cable provided by an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a dynamic and static submarine cable transition provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a dynamic and static submarine cable provided by an embodiment of the present invention.
  • Fig. 4 is the structural representation of the cable core in the embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of an electric unit in an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical unit in an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the outer layer structure of the dynamic section in the embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the outer layer structure of the static section in the embodiment of the present invention.
  • Fig. 9 is a schematic structural diagram of a half-ring part in an embodiment of the present invention.
  • Fig. 10 is a schematic axial cross-sectional view of a half-ring part in an embodiment of the present invention.
  • Fig. 11 is a schematic axial cross-sectional view of another half ring part in the embodiment of the present invention.
  • 113 insulating layer
  • 114 outer semi-conductive shielding layer
  • 125 light unit armor layer
  • 126 water blocking tape
  • 60 third sheath layer
  • 70 transition device
  • Dynamic and static submarine cables usually include connected dynamic cables and static cables.
  • Both dynamic cables and static cables include a cable core and an armored layer covering the cable core. Since the dynamic cable is set in seawater, the static cable is buried in the seabed. , so that the impact and wear of the static cable is less than that of the dynamic cable, so the number of armor layers of the static cable is usually less than that of the dynamic cable, making the structure of the dynamic cable different from that of the static cable.
  • the dynamic cable and the static cable are generally produced separately, and then the maintenance joint box is used to connect the core and armor layer of the dynamic cable and the static cable to realize the transition between the dynamic cable and the static cable to form a dynamic and static submarine cable. .
  • the dynamic and static submarine cable provided by the embodiment of the present invention includes a continuous cable core, a first armor layer is provided outside the cable core, and a transition device is provided on the first armor layer corresponding to the transition section of the cable core, and the second One end of the second armor layer is welded on the transition device, thereby completing the transition from the double armor layer to the first armor layer, thereby ensuring the continuity of the dynamic and static submarine cable production process.
  • the dynamic section and the static section can be in the same cable core, so that the dynamic and static submarine cables can be produced continuously without separate production, and then there is no need to connect the dynamic cable core and the static cable core, thereby shortening the production cycle and reducing the cost. The transmission loss of the cable core is reduced.
  • the embodiment of the present invention provides a dynamic and static submarine cable, including a cable core 10, a first armor layer 20, a transition device 70 and a second armor layer 40, the cable core 10 includes a dynamic segment 15, a static
  • the segment 16 and the transition segment 17 connecting the dynamic segment 15 and the static segment 16, and the dynamic segment 15, the static segment 16 and the transition segment 17 are integrally structured.
  • the first armor layer 20 is sleeved on the outside of the dynamic section 15, the static section 16 and the transition section 17; the transition device 70 is sleeved on the outside of the first armor layer 20 corresponding to the transition section 17.
  • the second armor layer 40 is sleeved outside the first armor layer 20 corresponding to the dynamic section 15, and the first end of the second armor layer 40 covers part of the transition device 70, and the first end of the second armor layer 40 is welded on the outer peripheral surface of the transition device 70 .
  • the first end of the second armor layer 40 is an end of the second armor layer 40 close to the static section 16, and the dynamic and static submarine cable section corresponding to the static section 16 can be understood as a static cable, as shown in Fig. 2 and Fig. 3 Section C; the dynamic and static submarine cable section corresponding to the dynamic section 15 can be understood as a dynamic cable, as shown in Figure 2 and section A in Figure 3; the dynamic and static submarine cable section corresponding to the transition section 17 can be understood as a transition cable, as shown in Figure 2 and Figure 3 Section B in Figure 3.
  • the transition device 70 may be ring-shaped, and the ring-shaped transition device 70 is sleeved on the outside of the first armor layer 20 corresponding to the transition section 17 .
  • the dynamic and static submarine cable provided by the embodiment of the present invention has a cable core 10, the dynamic section 15, the static section 16 and the transition section 17 in the cable core 10 are of an integrated structure, the cable core 10 is provided with a first armor layer 20, and through A transition device 70 is set at the first armor layer 20 corresponding to the transition section 17, and one end of the second armor layer 40 is welded on the transition device 70, so that the transition from the dynamic cable armor layer to the static cable armor layer can be completed, and then The continuity of the dynamic and static submarine cable production process is guaranteed.
  • the dynamic section and the static section can be in the same cable core, so that the dynamic and static submarine cables can be produced continuously without separate production, and there is no need to connect the dynamic cable core and the static cable core, thereby shortening the production cycle and reducing The transmission loss of the cable core 10 is reduced.
  • the dynamic and static submarine cable provided by the embodiment of the present invention includes a cable core 10 , the cable core 10 includes multiple electrical units 11 and multiple optical units 12 , and the multiple electrical units 11 and multiple optical units 12 are twisted.
  • the electrical unit 11 can be used to conduct electricity and transmit signals, and the number of the electrical unit 11 can be 1, 2, 3, etc. In this embodiment, the number of the electrical unit 11 is 3, and the number of the optical unit 12 can be 1 1, 2, 3, etc. In this embodiment, the number of light units 12 is 2.
  • each electric unit 11 includes an electric unit core, an inner semiconductive shielding layer 112, an insulating layer 113, an outer semiconductive shielding layer 114, a semiconductive shielding layer, Conductive water resistance layer 115 , metal shielding layer 116 and phase-splitting sheath layer 117 , wherein the electric unit core includes a plurality of twisted conductors 111 .
  • the conductor 111 may be a copper conductor, an aluminum conductor, or the like.
  • the inner semi-conductive shielding layer 112 covers the outer peripheral surface of the electric unit core, and can be used to avoid partial discharge from the conductor 111 and the insulating layer 113 .
  • the insulating layer 113 covers the outer peripheral surface of the inner semi-conductive shielding layer 112, and can be used to insulate the electric unit core from the external environment or adjacent electric unit cores, so as to ensure the electrical performance of the dynamic and static submarine cable.
  • the insulating layer 113 may be formed by extrusion.
  • the outer semiconductive shielding layer 114 covers the outer peripheral surface of the insulating layer 113 and can be used to prevent partial discharge between the insulating layer 113 and the metal shielding layer 116 due to defects such as cracks on the surface of the insulating layer 113 .
  • the semiconductive resistive water layer 115 wraps the outer peripheral surface of the outer semiconductive shielding layer 114 and can play a role of water resistance.
  • the metal shielding layer 116 wraps the outer peripheral surface of the semiconducting resistance water layer 115, and the metal shielding layer 116 can be copper tape shielding, steel tape shielding, aluminum-plastic composite tape shielding and other composite tape shielding, and the metal shielding layer 116 can shield electromagnetic interference.
  • the phase-splitting sheath layer 117 covers the outer peripheral surface of the metal shielding layer 116, which can avoid direct contact of the non-metallic shielding layers 116 of multiple electric units, thereby avoiding abrasion between the non-metallic shielding layers 116 of multiple electric units, and plays a role To the role of waterproof and water-blocking; in this embodiment, the phase-separated sheath layer 117 is an extruded sheath layer.
  • the optical unit 12 provided by the embodiment of the present invention includes an optical fiber 121 and a protective layer covering the outer peripheral surface of the optical fiber 121, and the optical unit can be used to transmit signals.
  • the optical unit includes an outer sleeve 123 and a plurality of optical fibers 121 arranged inside the outer sleeve.
  • the outer sleeve may be a stainless steel tube.
  • the outer peripheral surface of the outer sleeve 123 is covered with a semiconductive inner sheath 124 , an optical unit armor layer 125 ; a water blocking tape 126 ; and a semiconductive outer sheath 127 .
  • the cable core 10 further includes a central strength member, and the plurality of optical units 11 and the plurality of electrical units 12 are twisted around the central strength member.
  • the central reinforcing member can be metal wire or non-metallic wire, and the tension resistance and balance of the cable core 10 can be enhanced by setting the central reinforcing member.
  • the cable core 10 also includes fillers 13 filled in the twisted gaps between the plurality of optical units 12 and the plurality of electrical units 11 , and the fillers 13 may be filler strips, filler ropes and the like.
  • the cable core 10 further includes a first sheath layer 14 , and the first sheath layer 14 covers the outside of the stranded electrical unit 11 and optical unit 12 . Setting the first sheath layer 14 can ensure the water resistance performance of the cable core 10 .
  • the first jacket layer 14 is an extruded jacket layer.
  • the cable core 10 provided by the embodiment of the present invention axially includes a dynamic section 15, a static section 16 and a transition section 17 connecting the dynamic section 15 and the static section 16, and the dynamic section 15, the static section 16 and the transition section 17 integrated structure.
  • the dynamic section 15 corresponds to the dynamic cable
  • the static section 16 corresponds to the static cable.
  • a first armor layer 20 is sheathed outside the dynamic section 15 , the static section 16 and the transition section 17 , and the first armor layer 20 is continuous. Both the first armor layer 20 and the second armor layer 40 can be formed by twisting or braiding metal wires such as steel wires. In this way, in the manufacturing process, the first armor layer 20 of the dynamic and static submarine cables can be continuously produced without separate manufacturing, thereby shortening the production cycle.
  • the dynamic and static submarine cable provided by the embodiment of the present invention also includes a transition device 70 and a second armor layer 40, and the transition device 70 is sleeved on the first armor layer 20 corresponding to the transition section 17
  • the second armor layer 40 is sleeved outside the first armor layer 20 corresponding to the dynamic section 15, and the first end of the second armor layer 40 covers part of the transition device 70, and the first end of the second armor layer 40 The ends are welded to the outer peripheral surface of the transition device 70.
  • Such setting can realize the transition between the armor layer of the dynamic cable and the armor layer of the static cable.
  • the inner cushion layer 30 can also be set between the second armor layer 40 and the first armor layer 20, so that the direct contact between the second armor layer 40 and the first armor layer 20 can be avoided, thereby avoiding the second armor layer 40 and the first armor layer 20.
  • the second armor layer 40 and the first armor layer 20 wear each other.
  • the outer peripheral surface of the second armor layer 40 is also coated with a second sheath layer 50, the second sheath layer 50 can be an extruded sheath layer, and the second sheath layer
  • the material of 50 can be PE material.
  • the outer peripheral surface of the first armor layer 20 corresponding to the static section 16 is also covered with a third sheath layer 60, the third sheath layer 60 can be a wrapping sheath layer, and the material of the third sheath layer 60 can be PP winding rope.
  • the transition device 70 includes a heat transfer unit and a welding unit 71, the heat transfer unit is covered on the outside of the first armor layer 20 corresponding to the transition section 17, and the welding unit 71 is an annular structure , and the welding unit 71 is sleeved on the outside of the heat transfer unit, and the first end of the second armor layer 40 is welded on the outer peripheral surface of the welding unit 71 .
  • the heat transfer unit can release the heat of the welding process, and at the same time act as an isolation buffer layer to ensure the welding quality.
  • the heat transfer unit is a metal strip wrapped around the outer peripheral surface of the first armor layer 20 corresponding to the transition section 17,
  • both the inner peripheral surface and the outer peripheral surface of the welding unit 71 are provided with an anti-corrosion coating.
  • an anti-corrosion coating By providing an anti-corrosion coating, the corrosion resistance of the welding unit 71 can be improved, thereby increasing the service life of the welding unit 71 .
  • the material of the anti-corrosion coating is a composite material with good stability, which can maintain good anti-corrosion performance in both high temperature and low temperature environments.
  • the welding unit 71 is a Haval type, including two half-ring parts 711, the two half-ring parts 711 are split structures, the inner ring surfaces of the two half-ring parts 711 are opposite, and one Two ends of the half-ring portion 711 along the circumferential direction are connected to two ends of the other half-ring portion 711 along the circumferential direction in a one-to-one correspondence.
  • the connection method of the two half-ring parts 711 is welding.
  • the welding unit 71 can be directly placed on the outside of the heat transfer unit, without inserting the welding unit 71 from one end of the dynamic and static submarine cable and moving to the outside of the heat transfer unit along the axis of the dynamic and static submarine cable, and the operation is more convenient.
  • each half-ring portion 711 includes a welding fixing area 712 and two smooth transition areas 713 respectively connected to two ends of the welding fixing area 712 .
  • the thickness of the welding fixing area 712 is greater than the thickness of the smooth transition area 713 , and the first end of the second armor layer 40 is welded on the outer peripheral surface of the welding fixing area 712 .
  • Such setting can better transfer the heat generated during the welding process of the first end of the second armor layer 40 .
  • the thickness of the half-ring portion 711 changes continuously, that is, the thickness at the junction of the smooth transition region 713 and the welding fixing region 712 does not change abruptly.
  • the thickness of the smooth transition region 713 decreases linearly along the direction away from the welding fixing region 712 .
  • Such setting can make the wire at the first end of the second armor layer 40 fit the welding unit 71 better, and improve the strength and stability of the welding.
  • the thickness of the welding fixing area does not change.
  • the minimum thickness of the smooth transition region 713 is 20% of the thickness of the welding fixing region 712 .
  • the axial cross section is the cross section of the shaft passing through the half ring portion 711 .
  • the minimum thickness of the smooth transition region 713 is located at the end of the smooth transition region 713 away from the welding fixing region 712 .
  • the middle part of the semi-annular portion 711 protrudes outwards in a circular arch shape, and along the axial direction of the semi-annular portion 711, the thickness of the arched structure located at the edge of the semi-annular portion is equal to that of the semi-annular portion. 20% of the thickness of the circular arched structure in the middle.
  • the welding point between the first end of the second armor layer 40 and the welding fixing area 712 is also coated with an anti-corrosion coating, so as to improve the anti-corrosion performance at the welding point, and the material of the anti-corrosion coating can refer to the above description .
  • the thickness of the welding fixing zone 712 and the thickness of the smooth transition zone 713 are all constant, and the thickness of the smooth transition zone 713 is equal to that of the welding fixing zone 712. 20% of the thickness, and a transition portion is also provided between the welding fixed area 712 and the smooth transition area 713 .
  • the embodiment of the present invention also provides a method for making a dynamic and static submarine cable, including:
  • the cable core is provided, and the cable core includes a dynamic section, a static section, and a transition section connecting the dynamic section and the static section, and the dynamic section, the static section, and the transition section are in one structure; since the dynamic section, the static section, and the transition section are in one structure, so The cable core can be produced continuously;
  • the metal strip is evenly wound on the outer peripheral surface of the first armor layer corresponding to the transition section;
  • the first end of the second armor layer is welded on the outer peripheral surface of the welding unit.
  • the manufacturing method of the dynamic and static submarine cable provided by the embodiment of the present invention does not need to separately produce the dynamic cable and the static cable, and does not need to connect the dynamic cable core and the static cable core, thereby shortening the production cycle and reducing the transmission of the cable core. loss.
  • the structures and materials of the cable core and the welding unit in the above-mentioned method embodiments can refer to the above-mentioned product embodiments, and will not be repeated here.
  • the welding unit in the step of sheathing the welding unit on the outer peripheral surface of the heat transfer unit, includes two half-ring parts, the two half-ring parts are split structures, and the inner parts of the two half-ring parts The annular surfaces are opposite, and the two ends of one half-annular part along the circumferential direction are connected with the two ends of the other half-annular part along the circumferential direction in one-to-one correspondence.
  • a spot welding machine may be used to weld the two half-ring parts, so as to fix the position of the welding unit.
  • the first end of the second armor layer is welded on the welding fixing area of the welding unit, and the welding points are evenly distributed, and the welding During the process, the metal wire at the first end of the second armor layer is close to the smooth transition area to ensure a reliable and stable welding process. Further, before welding, it also includes the reservation confirmation of the position of the second armor layer. The welding position is located in the middle of the welding fixing area. After the welding is completed, an anti-corrosion coating can be applied to the outside of the welding point.
  • the step of welding the first end of the second armor layer on the outer peripheral surface of the welding unit it also includes:
  • the outer peripheral surface of the first armor layer corresponding to the static section is coated with the third sheath layer.
  • the structure of the second sheath layer and the third sheath layer can refer to the above-mentioned product embodiments, and details are not repeated here.
  • the armor layer of the dynamic and static submarine cable not only includes the first armor layer and the second armor layer, but also includes the third armor layer, the fourth armor layer and so on. At this time, after the step of welding the first end of the second armor layer to the outer peripheral surface of the welding unit, it also includes:
  • a transition device is sleeved outside the second armor layer.
  • the transition device can be sleeved at any position outside the second armor layer.
  • the structure of the transition device can refer to the above-mentioned product examples, and will not be repeated here.
  • the armor layer includes more armor layers such as the fourth armor layer and the fifth armor layer, the above steps can be repeated.

Landscapes

  • Insulated Conductors (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明提供一种动静态海缆及其制造方法,涉及海缆技术领域,用于解决动静态海缆的生产周期较长的技术问题。该动静态海缆包括:连续的缆芯,缆芯包括动态段、静态段以及连接动态段和静态段的过渡段;第一铠装层,第一铠装层套设在动态段、静态段以及过渡段外侧;过渡装置,过渡装置套设在过渡段对应的第一铠装层外侧;第二铠装层,第二铠装层套设在动态段对应的第一铠装层外,且第二铠装层的第一端覆盖部分过渡装置,第二铠装层的第一端焊接在过渡装置的外周面。本发明提供的动静态海缆用于导电和通讯。

Description

动静态海缆及其制造方法 技术领域
本发明涉及海缆技术领域,尤其涉及一种动静态海缆及其制造方法。
背景技术
动静态海缆通常包括相连接的动态缆和静态缆,动态缆设置在海水中,受到风浪流等环境因素的影响会产生持续的运动;静态缆埋设于海底,受环境因素的影响较小,不会产生持续运动。随着海洋资源的开发与利用,诸如海洋油气平台、海上风机、波浪能发电机、潮汐能发电机等海上平台逐渐增多,对于动静态海缆的需求也逐渐增大。
由于所处工况的不同导致了动态缆与静态缆结构的差异,以铠装层为例,通常动态缆受到的冲击与磨损较静态缆大,使得动态缆的铠装层层数多于静态缆的铠装层层数。相关技术中,一般将动态缆与静态缆分开生产,然后采用维修接头盒接续动态缆与静态缆,形成动静态海缆。
然而,上述动静态海缆的生产周期较长。
发明内容
鉴于上述问题,本发明实施例提供一种动静态海缆及其制造方法,用于缩短动静态海缆的生产周期。
为了实现上述目的,本发明实施例提供如下技术方案:
本发明实施例提供一种动静态海缆,其包括:缆芯、第一铠装层、过渡装置和第二铠装层,所述缆芯包括动态段、静态段以及连接所述动态段和所述静态段的过渡段,且所述动态段、静态段和过渡段为一体结构;所述第一铠装层套设在所述动态段、所述静态段以及所述过渡段外侧;所述过渡装置套设在所述过渡段对应的所述第一铠装层外侧;所述第二铠装层套设在所述动态段对应的所述第一铠装层外,且所述第二铠装层的第一端覆盖部分所述过渡装置,所述第二铠装层的第一端焊接在所述过渡装置的外周面。
本发明实施例提供的动静态海缆具有如下优点:
本发明实施例提供的动静态海缆中,第一铠装层套设在缆芯的动态段、静态段以及过渡段外侧,且过渡段对应的第一铠装层外套设有过渡装置,第二铠装层套设在动态段对应的第一铠装层外,且第二铠装层的第一段焊接在过渡装置的外周面。这样设置,通过过渡装置与第二铠装层的连接即可实现动态段铠装层与静态段铠装层的过渡,进而保证动静态海缆生产过程的连续性,在生产动静态海缆时无需将动态缆与静态缆分开生产,从而缩短了生产周期。
本发明实施例还提供了一种动静态海缆的制造方法,其包括:
提供缆芯,所述缆芯包括动态段、静态段以及连接所述动态段和所述静态段的过渡段,且所述动态段、静态段和过渡段为一体结构;
在所述缆芯外周面标记动态段、静态段以及过渡段的分段点;
在所述动态段外周面、所述静态段外周面以及所述过渡段外周面绞合第一铠装层;
将金属带缠绕在过渡段对应的所述第一铠装层外周面,形成热量传递单元;
将焊接单元套设在热量传递单元外周面;
在所述动态段对应的所述第一铠装层外周面绞合第二铠装层,并使所述第二铠装层的第一端覆盖部分所述焊接单元;
将所述第二铠装层的第一端焊接在所述焊接单元的外周面。
本发明实施例提供的动静态海缆的制造方法具有如下优点:
本发明实施例提供的动静态海缆的制造方法中,缆芯连续生产,并通过设置分段点将缆芯分为动态段、静态段以及过渡段,第一铠装层绞合在动态段外周面、静态段外周面以及过渡段外周面,形成热量传递单元形成在过渡段对应的第一铠装层外周面,焊接单元套设在热量传递单元外周面;动态段对应的第一铠装层外周面绞合第二铠装层,并使第二铠装层的第一端覆盖部分焊接单元;第二铠装层的第一端焊接在焊接单元的外周面。这样设置,通过焊接单元与第二铠装层的连接即可实现动态段铠装层与静态段铠装层的过渡,动静态海缆可以连续生产,无需将动态缆与静态缆分开生产,从而缩短了生产周期。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的动静态海缆的剖视图;
图2为本发明实施例提供的动静态海缆过渡处的结构示意图;
图3为本发明实施例提供的动静态海缆的结构示意图;
图4为本发明实施例中的缆芯的结构示意图;
图5为本发明实施例中的电单元的结构示意图;
图6为本发明实施例中的光单元的结构示意图;
图7为本发明实施例中动态段外层结构的示意图;
图8为本发明实施例中静态段外层结构的示意图;
图9为本发明实施例中半环部的结构示意图;
图10为本发明实施例中一种半环部的轴截面示意图;
图11为本发明实施例中另一种半环部的轴截面示意图。
附图标记说明:
10:缆芯;                     11:电单元;
111:导体;                    112:内半导电屏蔽层;
113:绝缘层;                  114:外半导电屏蔽层;
115:半导电阻水层;            116:金属屏蔽层;
117:分相护套层;              12:光单元;
121:光纤;                    122:阻水填充;
123:外套管;                  124:半导电内护套;
125:光单元铠装层;            126:阻水带;
127:半导电外护套;            13:填充件;
14:第一护套层;               15:动态段;
16:静态段;                   17:过渡段;
20:第一铠装层;               30:内垫层;
40:第二铠装层;               50:第二护套层;
60:第三护套层;               70:过渡装置;
71:焊接单元;                 711:半环部;
712:焊接固定区;              713:平滑过渡区。
具体实施方式
动静态海缆通常包括相连接的动态缆和静态缆,动态缆与静态缆均包括缆芯与包覆在缆芯外的铠装层,由于动态缆设置在海水中,而静态缆埋设于海底,使得静态缆受到的冲击与磨损小于动态缆受到的冲击与磨损,因此静态缆的铠装层层数通常小于动态缆的铠装层层数,使得动态缆与静态缆的结构不同。相关技术中,一般将动态缆与静态缆分开生产,然后采用维修接头盒接续动态缆与静态缆的缆芯和铠装层等结构,以实现动态缆与静态缆的过渡,形成动静态海缆。然而,分开生产动态缆与静态缆会增长生产周期,且接续缆芯和铠装层的过程耗时较多,进一步增长了生产周期。此外,采用维修接头盒接续动态缆缆芯和静态缆缆芯,会增大缆芯的传输损耗。
针对上述问题,本发明实施例提供的动静态海缆包括连续的缆芯,缆芯外设置第一铠装层,且在缆芯的过渡段对应的第一铠装层设置过渡装置,将第二铠装层的一端焊接在过渡装置上,从而完成了双层铠装层向一层铠装层的过渡,进而保证动静态海缆生产过程的连续性。另外,动态段和静态段可以在同一缆芯中,使得动静态海缆可以连续生产,无需分开生产,进而也无需进行动态缆缆芯和静态缆缆芯的接续,从而缩短了生产周期,减小了缆芯的传输损耗。
为了使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本发明保护的范围。
如图1所示,本发明实施例提供一种动静态海缆,包括缆芯10、第一铠装层20、过渡装置70以及第二铠装层40,缆芯10包括动态段15、静态段16以及连接动态段15和静态段16的过渡段17,且动态段15、静态段16和过渡段17为一体结构。第一铠装层20套设在动态段15、静态段16以及过 渡段17外侧;过渡装置70套设在过渡段17对应的第一铠装层20外侧。第二铠装层40套设在动态段15对应的第一铠装层20外,且第二铠装层40的第一端覆盖部分过渡装置70,第二铠装层40的第一端焊接在过渡装置70的外周面。
其中,第二铠装层40的第一端为第二铠装层40靠近静态段16的一端,静态段16对应的动静态海缆段可以理解为静态缆,如图2和图3中的C段;动态段15对应的动静态海缆段可以理解为动态缆,如图2和图3中的A段;过渡段17对应的动静态海缆段可以理解为过渡缆,如图2和图3中的B段。过渡装置70可以为环状,且环状的过渡装置70套设在过渡段17对应的第一铠装层20外侧。
本发明实施例提供的动静态海缆具有缆芯10,缆芯10中的动态段15、静态段16和过渡段17为一体结构,缆芯10外设有第一铠装层20,且通过在过渡段17对应的第一铠装层20设置过渡装置70,将第二铠装层40的一端焊接在过渡装置70上,可以完成动态缆铠装层向静态缆铠装层的过渡,进而保证了动静态海缆生产过程的连续性。这样设置,动态段和静态段可以在同一缆芯中,使得动静态海缆可以连续生产,无需分开生产,也无需进行动态缆缆芯和静态缆缆芯的接续,从而缩短了生产周期,减小了缆芯10的传输损耗。
参照图4,本发明实施例提供的动静态海缆包括缆芯10,缆芯10包括多根电单元11与多根光单元12,多根电单元11与多根光单元12绞合。
电单元11可用于导电和传输信号,电单元11的数量可以为1个、2个、3个等,在本实施例中,电单元11的数量为3个,光单元12的数量可以为1个、2个、3个等,在本实施例中,光单元12的数量为2个。
参照图5,在一种具体的实施例中,每根电单元11沿径向由内至外依次包括电单元芯、内半导电屏蔽层112、绝缘层113、外半导电屏蔽层114、半导电阻水层115、金属屏蔽层116和分相护套层117,其中,电单元芯包括多根相绞合的导体111。导体111可以为铜导体、铝导体等。
内半导电屏蔽层112包覆电单元芯的外周面,可用于避免导体111和绝缘层113发生局部放电。绝缘层113包覆内半导电屏蔽层112的外周面,可用于使电单元芯与外界环境或相邻的电单元芯绝缘,保障动静态海缆的电气 性能。示例性的,绝缘层113可采用挤包的方式形成。
外半导电屏蔽层114包覆绝缘层113的外周面,可用于防止因绝缘层113表面裂纹等缺陷而与金属屏蔽层116之间发生局部放电。半导电阻水层115包覆外半导电屏蔽层114的外周面,可以起到阻水的作用。金属屏蔽层116包覆半导电阻水层115的外周面,金属屏蔽层116可以为铜带屏蔽、钢带屏蔽以及铝塑复合带屏蔽等其他复合带屏蔽,金属屏蔽层116可以屏蔽电磁干扰。分相护套层117包覆金属屏蔽层116的外周面,可以避免多根电单元的非金属屏蔽层116直接接触,从而避免多根电单元的非金属屏蔽层116之间的磨损,并起到防水阻水的作用;在本实施例中,分相护套层117为挤出护套层。
本发明实施例提供的光单元12包括光纤121以及包覆光纤121外周面的保护层,光单元可用于传输信号。示例性的,参照图6,光单元包括外套管123与数根设置在外套管内部的多根光纤121,外套管可以为不锈钢管,外套管123的多根光纤121之间还设置有阻水填充122。沿外套管123的径向,在外套管123的外周面依次包覆有半导电内护套124、光单元铠装层125;阻水带126;半导电外护套127。
在一些实施例中,缆芯10还包括中心加强件,多根光单元11与多根电单元12绕中心加强件绞合。中心加强件可以为金属丝或非金属丝,通过设置中心加强件,可以加强缆芯10的抗拉性和平衡性。
进一步的,缆芯10还包括填充于多根光单元12与多根电单元11的绞合缝隙内的填充件13,填充件13可以为填充条、填充绳等。
参照图4,在一些具体的实施例中,缆芯10还包括第一护套层14,第一护套层14包覆于绞合后的电单元11与光单元12外侧。设置第一护套层14可以保证缆芯10的阻水性能。在本实施例中,第一护套层14为挤出护套层。
参照图1,本发明实施例提供的缆芯10沿轴向包括动态段15、静态段16以及连接动态段15与静态段16的过渡段17,且动态段15、静态段16和过渡段17为一体结构。其中,动态段15对应动态缆,静态段16对应静态缆,这样设置,在生产制造过程中,可以连续生产动态缆与静态缆的缆芯,无需分开制造,从而缩短了生产周期。也无需进行动态缆缆芯和静态缆缆芯的接续,从而减小了缆芯10的传输损耗,提高了缆芯10的性能稳定性。
在动态段15、静态段16以及过渡段17外侧套设有第一铠装层20,第一铠装层20连续。第一铠装层20与第二铠装层40的均可以由钢丝等金属丝绞合或编织形成。这样设置,在生产制造过程中,可以连续生产动静态海缆的第一铠装层20,无需分开制造,从而缩短了生产周期。
参照图1、图7和图8,本发明实施例提供的动静态海缆还包括过渡装置70和第二铠装层40,过渡装置70套设在过渡段17对应的第一铠装层20外侧,第二铠装层40套设在动态段15对应的第一铠装层20外,且第二铠装层40的第一端覆盖部分过渡装置70,第二铠装层40的第一端焊接在过渡装置70的外周面。这样设置,可实现动态缆的铠装层与静态缆的铠装层之间的过渡。
进一步的,第二铠装层40与第一铠装层20之间还可以设置内垫层30,这样设置,可以避免第二铠装层40与第一铠装层20直接接触,从而避免第二铠装层40与第一铠装层20相互磨损。
参照图7,在一些实施方式中,第二铠装层40的外周面还包覆有第二护套层50,第二护套层50可以为挤包护套层,且第二护套层50的材料可以为PE材料。静态段16对应的第一铠装层20的外周面还包覆有第三护套层60,第三护套层60可以为绕包护套层,且第三护套层60的材料可以为PP缠绕绳。
在一种具体的实施例中,参照图9,过渡装置70包括热量传递单元和焊接单元71,热量传递单元包覆在过渡段17对应的第一铠装层20外侧,焊接单元71为环形结构,且焊接单元71套设在热量传递单元外侧,第二铠装层40的第一端焊接在焊接单元71的外周面。热量传递单元可以释放焊接过程的热量,同时充当隔离缓冲层,保证焊接质量。其中,热量传递单元为绕包在过渡段17对应的第一铠装层20外周面的金属带,
在一些可能的实施例中,焊接单元71的内周面与外周面均设置有防腐涂层。通过设置防腐涂层,可以提高焊接单元71的抗腐蚀性,从而提高焊接单元71的寿命。示例性的,防腐涂层的材质为一种稳定性较好的复合材料,在高温与低温环境下均能保持较好的抗腐性能。
参照图9,在一些实施方式中,焊接单元71为哈弗式,包括两个半环部711,两个半环部711为分体结构,两个半环部711的内环面相对,且一个半环部711沿周向的两端与另一个半环部711沿周向的两端一一对应连接。示 例性的,两个半环部711的连接方式为焊接。这样设置,可以直接将焊接单元71套设在热量传递单元外侧,无需将焊接单元71从动静态海缆的一端套入并沿动静态海缆轴线移动至热量传递单元外侧,操作更为便捷。
进一步的,沿每个半环部711的轴向,每个半环部711包括焊接固定区712以及分别与焊接固定区712两端连接的两个平滑过渡区713。焊接固定区712的厚度大于平滑过渡区713的厚度,第二铠装层40的第一端焊接在焊接固定区712的外周面。这样设置,可以更好的传递第二铠装层40的第一端焊接过程中产生的热量。
参照图10,在一些具体的实施例中,沿半环部711的轴向,半环部711的厚度连续变化,即平滑过渡区713与焊接固定区712的连接处的厚度不会发生突变。
进一步的,参照图10,在半环部711的轴截面上,且沿远离焊接固定区712的方向,平滑过渡区713的厚度线性减小。这样设置,可以使第二铠装层40第一端的金属丝更好的贴合焊接单元71,提高焊接的强度稳定性。
进一步的,沿半环部711的轴向,焊接固定区的厚度不变。在半环部711的轴截面上,平滑过渡区713的厚度最小值为焊接固定区712厚度的20%。其中,轴截面为过半环部711的轴的截面。参照图10,此时平滑过渡区713的厚度最小处位于平滑过渡区713远离焊接固定区712的端部。这样设置,既可以使第二铠装层40第一端的金属丝更好的贴合焊接单元71,又能使将焊接热量快速传导降低,避免破坏缆芯10的结构。
在一些实施例中,半环部711的中部向外凸出,呈圆拱形,且沿半环部711的轴向,位于半环部边缘处的圆拱形结构的厚度为位于半环部中部的圆拱形结构厚度的20%。
示例性的,第二铠装层40的第一端与焊接固定区712的焊接点外还涂覆有防腐涂层,从而提高焊接点处的防腐性能,防腐涂层的材料可以参照上文描述。
再另一些具体的实施例中,参照图11,沿半环部711的轴向,焊接固定区712的厚度与平滑过渡区713的厚度均不变,平滑过渡区713的厚度为焊接固定区712的厚度的20%,且焊接固定区712与平滑过渡区713之间还设置有过渡部。
本发明实施例还提供了一种动静态海缆的制作方法,包括:
提供缆芯,缆芯包括动态段、静态段以及连接动态段和静态段的过渡段,且动态段、静态段和过渡段为一体结构;由于动态段、静态段和过渡段为一体结构,因此缆芯可连续生产;
在动态段外周面、静态段外周面以及过渡段外周面标记动态段、静态段以及过渡段的分段点;
在缆芯外周面绞合第一铠装层;
将金属带缠绕在过渡段对应的第一铠装层外周面,形成热量传递单元;示例性的,金属带均匀缠绕在过渡段对应的第一铠装层外周面;
将焊接单元套设在热量传递单元外周面;
在动态段对应的第一铠装层外周面绞合第二铠装层,并使第二铠装层的第一端覆盖部分焊接单元;
将第二铠装层的第一端焊接在焊接单元的外周面。
本发明实施例提供的动静态海缆的制作方法无需分开生产动态缆与静态缆,也无需进行动态缆缆芯和静态缆缆芯的接续,从而缩短了生产周期,减小了缆芯的传输损耗。
示例性地,上述方法实施例中缆芯、焊接单元等结构与材料均可以参见上述产品实施例,此处不再赘述。
在一些可能的实施方式中,将焊接单元套设在热量传递单元外周面的步骤中,焊接单元包括两个半环部,两个半环部为分体结构,且两个半环部的内环面相对,且一个半环部沿周向的两端与另一个半环部沿周向的两端一一对应连接。示例性的,可以采用点焊机焊接两个半环部,从而固定焊接单元的位置。
示例性的,在将第二铠装层的第一端焊接在焊接单元的外周面的步骤中,第二铠装层第一端焊接在焊接单元的焊接固定区,且焊接点均匀分布,焊接过程中第二铠装层第一端的金属丝紧贴平滑过渡区,以保证焊接过程牢靠稳定。进一步的,焊接前还包括第二铠装层位置预留确认,焊接位置位于焊接固定区中间位置,焊接完成后还可在焊接点外涂覆防腐涂层。
在将第二铠装层的第一端焊接在焊接单元的外周面的步骤之后,还包括:
在第二铠装层的外周面包覆第二护套层;
在静态段对应的第一铠装层外周面包覆第三护套层。
示例性的,第二护套层与第三护套层的结构可参考上述产品实施例,此处不做赘述。
在一些实施例中,动静态海缆的铠装层不仅仅只包括第一铠装层与第二铠装层,还包括第三铠装层、第四铠装层等。此时,在将第二铠装层的第一端焊接在焊接单元的外周面的步骤之后,还包括:
在第二铠装层外再套设一个过渡装置,过渡装置可以套设在第二铠装层外任意位置,过渡装置的结构可以参考上述产品实施例,此处不再赘述。然后在第二铠装层外周面绞合第三铠装层,并使第三铠装层的第一端焊接在该最外层焊接单元的外周面,使第三铠装层的第二端与第二铠装层的一端对齐。同理,当铠装层包括第四铠装层、第五铠装层等更多层数的铠装层时,可重复上述步骤。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的系统或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
在本说明书的描述中,参考术“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种动静态海缆,其特征在于,包括:
    缆芯,所述缆芯包括动态段、静态段以及连接所述动态段和所述静态段的过渡段,且所述动态段、静态段和过渡段为一体结构;
    第一铠装层,所述第一铠装层套设在所述动态段、所述静态段以及所述过渡段外侧;
    过渡装置,所述过渡装置套设在所述过渡段对应的所述第一铠装层外侧;
    第二铠装层,所述第二铠装层套设在所述动态段对应的所述第一铠装层外,且所述第二铠装层的第一端覆盖部分所述过渡装置,所述第二铠装层的第一端焊接在所述过渡装置的外周面。
  2. 根据权利要求1所述的动静态海缆,其特征在于,所述过渡装置包括热量传递单元和焊接单元,所述热量传递单元包覆在所述过渡段对应的所述第一铠装层外侧;
    所述焊接单元为环形结构,所述焊接单元套设在所述热量传递单元外侧;
    所述第二铠装层的第一端焊接在所述焊接单元的外周面。
  3. 根据权利要求2所述的动静态海缆,其特征在于,所述焊接单元的内周面与外周面均设置有防腐涂层。
  4. 根据权利要求2或3任一项所述的动静态海缆,其特征在于,所述焊接单元包括两个半环部,沿所述半环部的轴向,所述半环部包括焊接固定区以及分别与所述焊接固定区两端连接的两个平滑过渡区;
    所述焊接固定区的厚度大于所述平滑过渡区的厚度,第二铠装层的第一端焊接在所述焊接固定区的外周面。
  5. 根据权利要求4所述的动静态海缆,其特征在于,在所述半环部的轴截面上,沿远离所述焊接固定区的方向,所述平滑过渡区的厚度线性减小。
  6. 根据权利要求5所述的动静态海缆,其特征在于,所述平滑过渡区的厚度最小值为所述焊接固定区厚度的20%。
  7. 根据权利要求1-6任一项所述的动静态海缆,其特征在于,所述缆芯包括多根电单元与多根光单元,多根所述电单元与多根所述光单元绞合;
    所述电单元沿径向由内至外依次包括电单元芯、内半导电屏蔽层、绝缘层、外半导电屏蔽层、半导电阻水层、金属屏蔽层和分相护套层,其中,所 述电单元芯包括多根相绞合的导体;
    所述光单元包括光纤以及包覆在所述光纤外周面的保护层。
  8. 根据权利要求7所述的动静态海缆,其特征在于,所述缆芯还包括第一护套层,所述第一护套层包覆于绞合后的所述电单元与所述光单元外侧。
  9. 一种动静态海缆的制造方法,其特征在于,包括:
    提供缆芯,所述缆芯包括动态段、静态段以及连接所述动态段和所述静态段的过渡段,且所述动态段、静态段和过渡段为一体结构;
    在所述缆芯外周面标记动态段、静态段以及过渡段的分段点;
    在所述动态段外周面、所述静态段外周面以及所述过渡段外周面绞合第一铠装层;
    将金属带缠绕在过渡段对应的所述第一铠装层外周面,形成热量传递单元;
    将焊接单元套设在热量传递单元外周面;
    在所述动态段对应的所述第一铠装层外周面绞合第二铠装层,并使所述第二铠装层的第一端覆盖部分所述焊接单元;
    将所述第二铠装层的第一端焊接在所述焊接单元的外周面。
  10. 根据权利要求9所述的动静态海缆的制造方法,其特征在于,
    在将所述第二铠装层的第一端焊接在焊接单元上的步骤之后,还包括:
    在所述第二铠装层的外周面包覆第二护套层;
    在所述静态段对应的所述第一铠装层外周面包覆第三护套层。
PCT/CN2021/105165 2021-05-21 2021-07-08 动静态海缆及其制造方法 WO2022241926A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21940375.5A EP4207216A4 (en) 2021-05-21 2021-07-08 DYNAMIC AND STATIC UNDERWATER CABLE AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110559909.0A CN113299431B (zh) 2021-05-21 2021-05-21 动静态海缆及其制造方法
CN202110559909.0 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022241926A1 true WO2022241926A1 (zh) 2022-11-24

Family

ID=77323878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105165 WO2022241926A1 (zh) 2021-05-21 2021-07-08 动静态海缆及其制造方法

Country Status (3)

Country Link
EP (1) EP4207216A4 (zh)
CN (1) CN113299431B (zh)
WO (1) WO2022241926A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021131422A1 (de) * 2021-11-30 2023-06-01 Rwe Renewables Gmbh Seekabelsystem und Verfahren zum Verlegen eines Seekabelsystems
CN114530282B (zh) * 2021-12-20 2024-02-23 烽火海洋网络设备有限公司 一种海缆不同铠装结构的缆型过渡接头及其在线过渡方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206023162U (zh) * 2016-08-29 2017-03-15 中天海洋系统有限公司 一种连接海底动态电缆与海底静态电缆的接头装置
KR101805668B1 (ko) * 2016-09-29 2017-12-06 삼성중공업 주식회사 라이저 부력 조절장치
CN109727718A (zh) * 2018-12-24 2019-05-07 江苏亨通高压海缆有限公司 一种集束海底电缆及其动静态过渡技术
CN208849433U (zh) * 2018-09-06 2019-05-10 青岛汉缆股份有限公司 集束动态海缆用中间过渡段连接装置
CN111292889A (zh) * 2020-02-20 2020-06-16 中天科技海缆有限公司 动静态铠装缆及制造方法
CN111477393A (zh) * 2020-04-24 2020-07-31 中海石油(中国)有限公司 一种动态海缆与静态海缆过渡组件及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918202U (zh) * 2011-01-14 2011-08-03 宁波东方电缆股份有限公司 浮式平台用深水海缆
CN205283073U (zh) * 2015-12-07 2016-06-01 江苏亨通海洋光网系统有限公司 一种海缆的缆型过渡接头
DK3644326T3 (da) * 2018-10-26 2022-10-17 Nkt Hv Cables Ab Forstærket undersøisk kabel
EP3671771B1 (en) * 2018-12-21 2023-02-08 Nexans Cable sheathing of a pb-ca-sn alloy and method of manufacture thereof
CN111899927B (zh) * 2020-07-16 2021-11-23 中天科技海缆股份有限公司 一种线芯连续的动静态海缆及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206023162U (zh) * 2016-08-29 2017-03-15 中天海洋系统有限公司 一种连接海底动态电缆与海底静态电缆的接头装置
KR101805668B1 (ko) * 2016-09-29 2017-12-06 삼성중공업 주식회사 라이저 부력 조절장치
CN208849433U (zh) * 2018-09-06 2019-05-10 青岛汉缆股份有限公司 集束动态海缆用中间过渡段连接装置
CN109727718A (zh) * 2018-12-24 2019-05-07 江苏亨通高压海缆有限公司 一种集束海底电缆及其动静态过渡技术
CN111292889A (zh) * 2020-02-20 2020-06-16 中天科技海缆有限公司 动静态铠装缆及制造方法
CN111477393A (zh) * 2020-04-24 2020-07-31 中海石油(中国)有限公司 一种动态海缆与静态海缆过渡组件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207216A4 *

Also Published As

Publication number Publication date
CN113299431B (zh) 2022-04-15
EP4207216A4 (en) 2024-04-10
EP4207216A1 (en) 2023-07-05
CN113299431A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
JP5536798B2 (ja) ケーブル外装移行部を有する海底送電ケーブル
WO2022241926A1 (zh) 动静态海缆及其制造方法
AU2014405270B2 (en) Submarine electrical cable and submarine cable operation method
US9722406B2 (en) Undersea cable, undersea cable installation structure, and method for installing undersea cable
EP2641250B1 (en) Electric sector cable
CN210006533U (zh) 一种深海用直流海缆
GB2552370A (en) Insulated cable
CN108198662A (zh) 一种油井用光电复合光缆及其生产方法
CN113077926A (zh) 一种高载流抗腐蚀长寿命高压海缆
CN113782267A (zh) 一种光纤复合海底电缆及其制备方法
CN218181868U (zh) 一种双芯直流海底电缆
WO2023040020A1 (zh) 海底电缆
JP7162939B2 (ja) 電力ケーブル、その製造方法、およびその使用
CN213025453U (zh) 光电复合中压岸电电缆
CN209880223U (zh) 一种自承重电力电缆
CN207909534U (zh) 一种油井用光电复合光缆
WO2020050180A1 (ja) ラミネートテープ及びケーブル
CN215183254U (zh) 一种海上钻井平台游动电力电缆
CN215183207U (zh) 一种纵向水密复合电缆
CN216772894U (zh) 全屏蔽阻水抗拉耐腐蚀电缆
CN215770559U (zh) 一种海上钻井平台顶驱游动跳线综合电缆
CN114822982B (zh) 直流海底电缆
CN217157754U (zh) 一种悬浮模块用超大宽厚比耐热长寿命导线
CN220984208U (zh) 新型海上光伏发电电缆
CN217061517U (zh) 绝缘水底敷设电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021940375

Country of ref document: EP

Effective date: 20230329

NENP Non-entry into the national phase

Ref country code: DE