WO2022239863A1 - アンチセンスオリゴマー - Google Patents

アンチセンスオリゴマー Download PDF

Info

Publication number
WO2022239863A1
WO2022239863A1 PCT/JP2022/020224 JP2022020224W WO2022239863A1 WO 2022239863 A1 WO2022239863 A1 WO 2022239863A1 JP 2022020224 W JP2022020224 W JP 2022020224W WO 2022239863 A1 WO2022239863 A1 WO 2022239863A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide sequence
seq
antisense oligomer
bases
exon
Prior art date
Application number
PCT/JP2022/020224
Other languages
English (en)
French (fr)
Inventor
幸太郎 横手
靖夫 大内
尚也 加藤
浩之 江藤
善朗 前澤
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to CN202280034517.5A priority Critical patent/CN117321205A/zh
Priority to EP22807561.0A priority patent/EP4342498A1/en
Priority to JP2023521264A priority patent/JPWO2022239863A1/ja
Priority to US18/290,183 priority patent/US20240287511A1/en
Publication of WO2022239863A1 publication Critical patent/WO2022239863A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3233Morpholino-type ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/04Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; involved in cellular and subcellular movement (3.6.4)
    • C12Y306/04012DNA helicase (3.6.4.12)

Definitions

  • the present invention relates to antisense oligomers or pharmaceutically acceptable salts thereof, viral vectors and pharmaceutical compositions.
  • Werner's syndrome is an autosomal recessive (recessive) hereditary rare disease, the cause of which is believed to be an abnormality in the human WRN gene encoding DNA helicase (see, for example, Non-Patent Documents 1 and 2). .
  • Werner's syndrome is an intractable disease for which there is no cure other than repairing the WRN gene mutation in the patient.
  • expectations have been placed on the development of techniques for repairing genetic mutations, such as genome editing techniques.
  • it is difficult to clinically apply current techniques to repair WRN gene mutations in the whole body or at lesion sites.
  • An object of the present invention is to provide a means for treating Werner's syndrome without direct repair of the mutated gene.
  • an antisense oligomer consisting of a specific base sequence enables skipping of the 27th exon of the human WRN gene, and that Werner's syndrome can be treated without direct repair of the mutated gene. rice field.
  • the present invention includes the following aspects. [1] An antisense oligomer comprising a nucleotide sequence complementary to the nucleotide sequence of (i) or (ii) below and capable of skipping the 27th exon of the human WRN gene, or a pharmaceutically acceptable antisense oligomer thereof salt.
  • the continuous nucleotide sequence comprises at least one of the nucleotide sequence shown in SEQ ID NO: 2 and the nucleotide sequence shown in SEQ ID NO: 3.
  • the continuous base sequence includes at least one of the base sequence shown in SEQ ID NO: 4 and the base sequence shown in SEQ ID NO: 5.
  • the continuous base sequence consists of the base sequence shown in any one of SEQ ID NOs: 6 to 15.
  • an oligomer or a pharmaceutically acceptable salt thereof [7] The antisense oligomer or a pharmaceutically acceptable salt thereof according to any one of [1] to [5] above, wherein the antisense oligomer is a morpholino oligomer. [8] The antisense oligomer of [7] above, wherein the morpholino oligomer is a phosphorodiamidate morpholino oligomer, or a pharmaceutically acceptable salt thereof.
  • oligonucleotide is an oligonucleotide containing one or more selected from the group consisting of bridging nucleic acid (BNA) nucleotides, or a pharmaceutically acceptable salt.
  • BNA bridging nucleic acid
  • (ii) deletion of one or more bases in the continuous nucleotide sequence of 15 or more bases in the nucleotide sequence shown in SEQ ID NO: 1 the substituted or inserted nucleotide sequence
  • the viral vector of [11] above, wherein the continuous nucleotide sequence in the nucleotide sequence (i) or the nucleotide sequence (ii) comprises the nucleotide sequence shown in SEQ ID NO:16.
  • the present invention provides an antisense oligomer or a pharmaceutically acceptable salt thereof that enables skipping of the 27th exon of the human WRN gene and can treat Werner's syndrome without direct repair of the mutated gene. be.
  • FIG. 1 shows the results of RT-PCR analysis.
  • FIG. 2 shows quantitative results of exon skipping efficiency.
  • FIG. 3 shows the results of Western blotting analysis.
  • FIG. 4 shows the results of cell growth curve analysis.
  • FIG. 5 shows the results of PDL analysis.
  • FIG. 6 shows the results of cell morphology observation.
  • FIG. 7 shows the results of SA- ⁇ -Gal staining analysis.
  • FIG. 8 shows the results of quantitative analysis of SA- ⁇ -Gal staining.
  • FIG. 9 shows the results of telomere length analysis.
  • FIG. 10 shows the results of gene expression analysis.
  • FIG. 11 shows the results of RT-PCR analysis.
  • FIG. 12 shows quantitative results of exon skipping efficiency.
  • the antisense oligomer of the present invention or a pharmaceutically acceptable salt thereof comprises a nucleotide sequence complementary to the nucleotide sequence of (i) or (ii) below, and is capable of skipping the 27th exon of the human WRN gene. is an antisense oligomer or a pharmaceutically acceptable salt thereof. (i) a continuous nucleotide sequence of 15 or more bases in the nucleotide sequence shown in SEQ ID NO: 1 (ii) deletion of one or more bases in the continuous nucleotide sequence of 15 or more bases in the nucleotide sequence shown in SEQ ID NO: 1 , a substituted or inserted base sequence
  • the antisense oligomer of the present invention or a pharmaceutically acceptable salt thereof enables skipping of the 27th exon (hereinafter also referred to as "exon 27") of the human WRN gene.
  • “antisense oligomer or a pharmaceutically acceptable salt thereof” may be simply referred to as “antisense oligomer”.
  • the human WRN gene is a gene that encodes a DNA helicase, and it is believed that Werner's syndrome is caused by abnormal gene function due to mutation of this gene.
  • the genomic base sequence, cDNA base sequence and amino acid sequence of the encoded protein of the human WRN gene region are known.
  • the major mature transcript (mature mRNA) of the human WRN gene consists of 35 exons. 70.7% of Werner's syndrome patients reported in Japan have c. It has a 3139-1G>C mutation, that is, a mutation from a guanine (G) base to cytosine (C) in the intron one base immediately before the 3139th base counted from the translation initiation codon in the cDNA base sequence.
  • the mutation is a mutation in the splicing acceptor sequence of the 26th exon (hereinafter also referred to as "exon 26") of the WRN gene, which induces skipping of exon 26 and a translation stop codon by a frame shift in exon 27. occurs.
  • exon 26 the splicing acceptor sequence of the 26th exon
  • the antisense oligomers of the present invention target the mature mRNA of the human WRN gene and also allow skipping of exon 27, resulting in c.
  • exon 26 is skipped due to the 3139-1G>C mutation, a mature mRNA is produced in which the 25th exon and the 28th exon are linked.
  • the mature mRNA in which exon 27 in addition to exon 26 has been removed by skipping is a mutant type capable of protein translation up to the wild-type translation termination codon due to further frame shift caused by the removal of exon 27. It encodes the WRN protein.
  • the mutant WRN protein encodes a protein consisting of 1375 amino acid residues containing a nuclear localization signal present at the C-terminus, and is 3.9% (57 amino acid residues) of the wild-type WRN protein consisting of 1432 amino acid residues. base) is missing. Surprisingly, however, the mutant WRN protein c. It shows functional restoration of at least part of the gene dysfunction caused by the 3139-1G>C mutation.
  • Skipping of exon 27 of the human WRN gene occurs, for example, by using a primer pair set upstream and downstream of the skipped exon 27 region in the mRNA of the human WRN gene, as shown in Examples below. It can be confirmed by RT-PCR-amplifying a region including exon 27 and following and subjecting the PCR amplified product to PCR amplification or sequence analysis.
  • the antisense oligomer of the present invention comprises a base sequence complementary to the base sequence (i) or (ii) below. (i) a continuous nucleotide sequence of 15 or more bases in the nucleotide sequence shown in SEQ ID NO: 1 (ii) deletion of one or more bases in the continuous nucleotide sequence of 15 or more bases in the nucleotide sequence shown in SEQ ID NO: 1 , a substituted or inserted base sequence
  • the base sequence of the antisense oligomer of the present invention is 15 bases or more, preferably 20 bases or more, more preferably 23 bases or more, still more preferably 25 bases or more, from the viewpoint of efficiency of exon skipping. It is the same 116 bases as the base sequence shown in No. 1 or less, preferably 80 bases or less, more preferably 60 bases or less, still more preferably 40 bases or less. In particular, from the viewpoint of the balance between exon skipping efficiency and economy, it is preferably 20 to 40 bases, more preferably 23 to 38 bases, even more preferably 25 to 35 bases.
  • bases constituting the base sequence of the antisense oligomer include adenine (A), guanine (G), cytosine (C), thymine (T), uracil (U) and hypoxanthine (I). Including naturally occurring bases and their non-naturally occurring modified bases. There are no particular restrictions on the ratio and number of modified bases contained in the antisense oligomer.
  • Modified bases include modified adenines such as 1-methyladenine, 2-methyladenine, N6-methyladenine, 2-methylthio-N6-isopentenyl adenine; 2,2-dimethylguanine, 2-methylguanine, 7- modified guanine such as methylguanine; modified cytosine such as 5-methylcytosine, 4-acetylcytosine, 3-methylcytosine, 2-thiocytosine; uracil-5-oxyacetic acid, pseudouracil, 3-methyluracil, dihydrouracil, 5-ethyluracil, 5-bromouracil, 6-methyluracil, 2-thiouracil, 4-thiouracil, 5-(carboxyhydroxymethyl)uracil, 5′-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethylaminomethyl Modified uracils such as uracil, 5-methoxyaminomethyl-2-thiouracil, 5-methylaminomethyluracil, 5-
  • Complementary base sequence means a target base sequence and a Watson-Crick base pair selected from the group consisting of adenine-thymine, adenine-uracil and guanine-cytosine, and a base pair corresponding thereto. means a base sequence.
  • Watson-Crick base pairing hydrogen bonds are formed between base pairs.
  • the "corresponding base pair” means adenine-thymine, adenine-uracil or guanine-cytosine formed by using the modified bases described above, for example, instead of adenine, thymine, uracil, guanine or cytosine.
  • wobble base pairs such as guanine-uracil, inosine-uracil, inosine-adenine, and inosine-cytosine.
  • the target sequence of the antisense oligomer is a continuous nucleotide sequence of 15 or more nucleotides in the nucleotide sequence shown in SEQ ID NO:1.
  • the base sequence shown in SEQ ID NO: 1 consists of the 20-base sequence on the 3' side of intron 26, the entire base sequence of exon 27, and the 20-base sequence on the 5' side of intron 27 of the human WRN gene.
  • the target sequence of the antisense oligomer preferably includes at least one of the nucleotide sequence of the border region between intron 26 and exon 27 and the nucleotide sequence of the border region between exon 27 and intron 27 . More specifically, it preferably contains at least one of the nucleotide sequence shown in SEQ ID NO:2 and the nucleotide sequence shown in SEQ ID NO:3.
  • SEQ ID NO: 2 is the base sequence of the boundary region between intron 26 and exon 27, which consists of 1 base on the 3' side of intron 26 and 8 bases on the 5' side of exon 27.
  • SEQ ID NO: 3 is the base sequence of the boundary region between exon 27 and intron 27, which consists of 8 bases on the 3' side of exon 27 and 1 base on the 5' side of intron 27.
  • SEQ ID NO: 2 gTTCGAAAA
  • SEQ ID NO: 3 AGAAGAAGg
  • the target sequence of the antisense oligomer more preferably contains at least one of the nucleotide sequence shown in SEQ ID NO:4 and the nucleotide sequence shown in SEQ ID NO:5.
  • SEQ ID NO: 4 is the base sequence of the boundary region between intron 26 and exon 27, consisting of 4 bases on the 3' side of intron 26 and 17 bases on the 5' side of exon 27.
  • SEQ ID NO: 5 is the base sequence of the boundary region between exon 27 and intron 27, which consists of 17 bases on the 3' side of exon 27 and 4 bases on the 5' side of intron 27.
  • SEQ ID NO: 4 ttagTTCGAAAACTGTATCTT
  • Another preferred embodiment of the continuous nucleotide sequence of 15 or more bases in the nucleotide sequence shown in SEQ ID NO: 1 includes the following nucleotide sequences (a) to (c).
  • the nucleotide sequence (a) above includes a boundary region between intron 26 and exon 27.
  • the nucleotide sequence (b) above includes a boundary region between exon 27 and intron 27.
  • the base sequence (c) includes the boundary region between intron 26 and exon 27, the entire region of exon 27, and the boundary region between exon 27 and intron 27.
  • the target sequence of the antisense oligomer is preferably the nucleotide sequence (a) or the nucleotide sequence (b) from the viewpoint of economy.
  • target sequences for antisense oligomers include the following nucleotide sequences.
  • SEQ ID NOS: 6-10 are nucleotide sequences targeting the boundary region between intron 26 and exon 27, and SEQ ID NOS: 11-15 are nucleotide sequences targeting the boundary region between exon 27 and intron 27.
  • the base sequence (ii) one or more bases are deleted, substituted or inserted in a continuous base sequence of 15 or more bases in the base sequence shown in SEQ ID NO:1.
  • the number of deleted, substituted or inserted bases is not limited as long as the effect of the present invention is not impaired. For example, it is 1 or more and preferably 5 or less, more preferably 3 or less, even more preferably 2 or less. That is, the number of deleted, substituted or inserted bases is preferably 1, 2, 3, 4 or 5, more preferably 1, 2 or 3, still more preferably 1 or 2, still more preferably 1. be.
  • a base sequence in which one or more bases are deleted, substituted or inserted in a certain base sequence is defined as a base sequence in which any number (for example, 1 or more and 5 or less) of bases are deleted, substituted or inserted. and a sequence capable of hybridizing sufficiently specifically and highly efficiently with a complementary sequence of the base sequence under stringent conditions.
  • stringent conditions refers to conditions under which only specific hybridization occurs and non-specific hybridization does not occur. Any condition can be selected. Among deletions, substitutions or insertions, substitutions are preferred from the viewpoint of exon skipping efficiency.
  • Patients with Werner's syndrome to be treated may have a nucleotide polymorphism in the reference nucleotide sequence.
  • One preferred example of the deletion, substitution or insertion in (ii) above is deletion, substitution or insertion for matching the sequence of the antisense oligomer with the polymorphism possessed by Werner's syndrome patients.
  • a nucleotide polymorphism possessed by a Werner's syndrome patient to be treated can be obtained by analyzing the genome sequence of the patient. Further, the nucleotide polymorphism in exon 27 can be confirmed by referring to a published database (eg, URL: https://ensembl.org).
  • the antisense oligomer of the present invention is not limited as long as it has the above specific base sequence and enables skipping of exon 27 of the human WRN gene.
  • the antisense oligomer of the present invention is not limited as long as it has the above specific base sequence and enables skipping of exon 27 of the human WRN gene.
  • either oligonucleotides, morpholino oligomers, peptide nucleic acid (PNA) oligomers, or glycol nucleic acid (GNA) oligomers are examples of oligomers.
  • Oligonucleotides are oligomers in which nucleotides having base moieties, sugar moieties and phosphate moieties are linked by phosphate bonds as a basic skeleton. Nucleotides may be either natural nucleotides or non-natural nucleotides. Natural nucleotides include deoxyribonucleotides in which the sugar moiety is deoxyribose and ribonucleotides in which the sugar moiety is ribose, and the respective oligomers are naturally occurring DNA and RNA. In DNA and RNA, the phosphate bonds between nucleotides are phosphodiester bonds.
  • antisense oligomers of the invention can include at least one base modification, and/or at least one sugar modification, and/or at least one phosphate moiety (backbone) modification.
  • Non-natural modified bases are as described above.
  • Non-natural sugar moieties include bridged nucleic acid (BNA) (e.g., linked nucleic acid (LNA), amide bridged nucleic acid (AmNA), guanidine bridged nucleic acid (GuNA), spirocyclopropylene bridged nucleic acid (scpBNA), etc.), cyclohexene nucleic acid (CeNA), 1,5-anhydrohexitol nucleic acid (HNA), 2′-O,4′-C-ethylene bridged nucleic acid (ENA), constrained ethyl bridged nucleic acid (cEtBNA) threose nucleic acid (TNA), fluoro- ⁇ -arabinonucleic acid (FNA), tricycloDNA (tcDNA), 2'-F modified ribonucleic acid (2'-F-RNA), 2'-O-methyl modified ribonucleic acid (2'-O-Me-RNA), 2'-O-methoxyethyl
  • natural phosphodiester linkages are partially or wholly phosphorothioate linkages (S), phosphorodithioate linkages, alkylphosphonate linkages, phosphoramidate linkages, phospho Examples include those substituted with non-natural phosphate bonds selected from rhodiamidate bonds and boranophosphate bonds.
  • the morpholino oligomer is preferably an oligomer (phosphorodiamidate morpholino oligomer (PMO)) to which groups represented by the following formula (I) are linked.
  • PMO phosphorodiamidate morpholino oligomer
  • R 2 and R 3 are the same or different, and are a hydrogen atom, a linear or branched alkyl having 1 to 6 carbon atoms, a cycloalkyl having 5 to 12 carbon atoms, or Represents 6 or more and 10 or less aryl.
  • Alkyl is preferably linear or branched alkyl having 1 to 6 carbon atoms. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, n-hexyl and isohexyl. be done. Alkyl may have 1 or more and 3 or less substituents. Cycloalkyl is preferably cycloalkyl having 5 or more and 12 or less carbon atoms.
  • Aryl is preferably an aryl having 6 or more and 10 or less carbon atoms. Specific examples include phenyl, ⁇ -naphthyl, and ⁇ -naphthyl. Phenyl is particularly preferred.
  • Aryl may have 1 or more and 3 or less substituents. Examples of the substituents include halogen atoms, alkoxy, cyano groups, and nitro groups. Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • Alkoxy includes linear or branched alkoxy having 1 to 6 carbon atoms, such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n -pentyloxy, isopentyloxy, n-hexyloxy, isohexyloxy and the like. Among them, alkoxy having 1 to 3 carbon atoms is preferable.
  • a morpholino oligomer can be produced, for example, according to International Publication No. 1991/009033 or International Publication No. 2009/064471.
  • PMO can be manufactured according to the method described in WO2009/064471 or manufactured according to the method described in WO2013/100190.
  • 5'-terminal and/or 3'-terminal modification groups include ⁇ -tocopherol group, polyethylene glycol (PEG) group, N-acetylglucosamine (O-GlcNAc) group, methoxy (O-Me) group, cholesterol group, amino groups, peptide groups (eg, cell-permeable peptides described below), derivatives thereof, and the like.
  • the modifying group can be attached to the 5' or 3' end of the oligomer either directly or via a linker.
  • the linking portion is not particularly limited as long as it can covalently link the desired modification group to the 5' end or 3' end of the oligonucleotide, and includes -O-, -CO-, -NH-, -.
  • Linking groups used in the technical field such as CONH- and -NHCO- can be used.
  • One embodiment of the 5' end of the oligonucleotide of the present invention includes, for example, the following groups (1) or (2).
  • the modification to the 5' end is the group of structure (6) below.
  • W is S or O, preferably O
  • X is NR A1 R A2 (R A1 and R A2 are each independently a hydrogen atom or lower alkyl such as methyl) or OR A3 (R A3 is a hydrogen atom or lower alkyl such as methyl).
  • Y is O or NR A4 (R A4 is a hydrogen atom or lower alkyl, such as methyl); Ra is any modifying group (eg, PEG group, cholesterol group, amino group, peptide group or derivatives thereof).
  • the group having the structure (6) above is preferably a group having the structure (6-1) below.
  • Ra is, for example, a group represented by (3), (4), (5), or (7) below.
  • *-L1-peptide group (7) [In the formula, * indicates a bond to the structure (6) or (6′) above, and L1 indicates a single bond or a linker. ]
  • the linker represented by L1 is not particularly limited as long as it can connect the group of the structure (6) or (6′) with the peptide via the linker.
  • a group represented by any one of 3) can be mentioned.
  • the peptide portion of the peptide group includes cell-penetrating peptides (CPP).
  • CPPs include cationic CPPs such as TAT, R8, DPV3, DPV6, Penetratin and R9-TAT; amphipathic CPPs such as pVEC, ARF (19-31), MPG, MAP and Transportan; Hydrophobic CPPs such as Bip4, C105Y, Melittin and gH625 are included.
  • CPPs can be appropriately designed by those skilled in the art based on literature (Xie J, et al., Front Pharmacol. 2020 May 20; 11:697, etc.).
  • One embodiment of the 3' end includes, for example, groups (2'), (4'), and (9) below.
  • #-L2-peptide group (9) [In the formula, # indicates a bond to the 3′ end of the oligonucleotide, and L2 indicates a single bond or a linker. ]
  • the linker represented by L2 is not particularly limited as long as it can link the 3' terminal sugar of the oligonucleotide and the peptide via the linker. can be mentioned.
  • Vivo-Morpholinos As one embodiment of the oligomer of the present invention, a modified morpholino oligomer, Vivo-Morpholinos (manufactured by Gene Tools, LLC) can be used. Vivo-Morpholinos has the modification group (1) above at the 5' end and the modification group (octa-guanidine dendrimer) (4) above at the 3' end.
  • the various antisense oligomers described above can be produced by a known technique or a novel technique based on the base sequence information.
  • Antisense oligomers can also be produced by outsourcing to a third party.
  • antisense oligomers may be pharmaceutically acceptable salts.
  • Salts include acid addition salts and base addition salts.
  • the acid addition salt may be either an inorganic acid salt or an organic acid salt.
  • inorganic acid salts include hydrochloride, hydrobromide, sulfate, hydroiodide, nitrate and phosphate.
  • organic acid salts include citrate, oxalate, acetate, formate, propionate, benzoate, trifluoroacetate, maleate, tartrate, methanesulfonate, and benzenesulfonic acid. salts, p-toluenesulfonate.
  • the base addition salt may be either an inorganic base salt or an organic base salt.
  • Inorganic base salts include, for example, sodium salts, potassium salts, calcium salts, magnesium salts and ammonium salts.
  • Organic base salts include, for example, triethylammonium salts, triethanolammonium salts, pyridinium salts, and diisopropylammonium salts.
  • the compounds of the present invention may be solvates such as hydrates.
  • the solvent is not particularly limited as long as it is a pharmaceutically acceptable solvent.
  • the viral vector of the present invention is a viral vector that expresses RNA that has a nucleotide sequence complementary to the nucleotide sequence (i) or (ii) below and that enables skipping of exon 27 of the human WRN gene. (i) a continuous nucleotide sequence of 15 or more bases in the nucleotide sequence shown in SEQ ID NO: 1 (ii) deletion of one or more bases in the continuous nucleotide sequence of 15 or more bases in the nucleotide sequence shown in SEQ ID NO: 1 , Substituted or Inserted Base Sequences The base sequences are the same as those for the antisense oligomer.
  • the base length of the RNA expressed by the viral vector is 15 bases or more, preferably 20 bases or more, more preferably 40 bases or more, still more preferably 60 bases or more from the viewpoint of exon skipping efficiency, and , the number of bases is the same as or less than that of the base sequence shown in SEQ ID NO:1.
  • the target sequence of the viral vector preferably includes the nucleotide sequence of the border region between intron 26 and exon 27, the full length of exon 27, and the nucleotide sequence of the border region between exon 27 and intron 27. More specifically, the target sequence of the viral vector preferably contains the base sequence shown in SEQ ID NO:16.
  • SEQ ID NO: 16 is a base sequence consisting of 1 base on the 3' side of intron 26, the full length of exon 27 and 8 bases on the 5' side of exon 27.
  • the target sequence of the viral vector is preferably the above nucleotide sequence (c ).
  • Viral vectors can express one or more RNAs.
  • the RNA When one type of RNA is expressed, the RNA preferably contains the nucleotide sequence of the boundary region between intron 26 and exon 27, the entire region of exon 27, and the nucleotide sequence of the boundary region between exon 27 and intron 27.
  • the RNA When expressing two or more types of RNA, at least one type of RNA having a nucleotide sequence at the boundary region between intron 26 and exon 27 and at least one type of RNA having a nucleotide sequence at the boundary region between exon 27 and intron 27 are expressed. is preferred.
  • the type of viral vector is not limited.
  • Adeno-associated virus serotypes include AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV-PHP. B, AAV-PHP. eB, AAV-DJ, AAV-DJ/8 and the like.
  • a viral vector carrying a desired sequence can be produced by appropriately referring to methods known in the art.
  • the present invention provides a pharmaceutical composition containing the above antisense oligomer or virus vector as an active ingredient.
  • the pharmaceutical composition in one of its preferred embodiments, is a pharmaceutical composition for treating Werner's syndrome.
  • Another preferred aspect of the pharmaceutical composition is a pharmaceutical composition for inducing exon 27 skipping of the human WRN gene.
  • a pharmaceutical composition contains the above antisense oligomer or the above virus vector as an active ingredient. It can contain one or more of the above antisense oligomers or virus vectors as active ingredients.
  • compositions are provided as pharmaceutical compositions containing one or more pharmaceutically acceptable carriers, if desired.
  • Carriers include lipid nanoparticles (LNPs).
  • Lipids that make up the lipid nanoparticles include cationic lipids, positively or negatively charged phospholipids, sterols, saturated or unsaturated fatty acids, and combinations thereof.
  • the carrier is a lipid nanoparticle, the active ingredient, antisense oligomer or virus vector, is preferably encapsulated in the lipid nanoparticle.
  • Further carriers include aqueous buffers, pH adjusters such as acids and bases, stabilizers such as ascorbic acid and p-aminobenzoic acid, excipients such as D-mannitol, tonicity agents, and preservatives. etc. can be exemplified.
  • the dosage form is not particularly limited, and examples thereof include various injections, oral preparations, infusions, inhalants, ointments, lotions, sprays, and the like.
  • the pharmaceutical composition can be provided in the form of an aqueous solution, a frozen solution, or a lyophilized product.
  • the content of the active ingredient in the pharmaceutical composition is not particularly limited. It can be appropriately set according to the type of active ingredient, application, dosage form, and type of carrier.
  • the content of the active ingredient in the pharmaceutical composition is, for example, 0.0001% by mass or more, preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and 100% by mass or less, preferably is 90% by mass or less, more preferably 50% by mass or less.
  • the pharmaceutical composition is intended for administration to Werner's syndrome patients and carriers.
  • Werner's syndrome patients and carriers who are homozygous or heterozygous for the 3139-1G>C mutation are targeted for administration.
  • the race, sex, and age of the administration subject are not particularly limited.
  • About 60% of the Werner's syndrome patients reported worldwide are Japanese.
  • 70.7% of Werner's syndrome patients reported in Japan have c. It has a 3139-1G>C mutation.
  • Patients with Werner's syndrome, for example, have premature hair changes (white hair, baldness, etc.), cataracts (both sides), skin atrophy/hardening (corns, calluses, etc.), intractable ulceration, soft tissue calcification (Achilles tendon, etc.). ), glucose and lipid metabolism disorders, and early-onset arteriosclerosis (angina pectoris, myocardial infarction, etc.).
  • the subject of administration may be a patient exhibiting such symptoms, or a patient or carrier in which symptoms have not yet appeared.
  • administration routes of the pharmaceutical composition include parenteral administration such as transdermal administration, subcutaneous administration, intramuscular administration, intravenous administration, and intraarterial administration, and oral administration.
  • the route of administration can be selected according to the symptoms, for example, a route of administration suitable for areas where signs of aging have appeared.
  • transdermal administration can be carried out using ointments, lotions, sprays, and the like.
  • the dosage can be appropriately set by those skilled in the art.
  • the dosage of the antisense oligomer is preferably 0.1 mg/kg or more, more preferably 1 mg/kg or more, still more preferably 10 mg/kg or more, and preferably 1000 mg. /kg or less, more preferably 500 mg/kg or less, still more preferably 100 mg/kg or less.
  • it is preferably 0.01 ⁇ g or more, more preferably 1 ⁇ g or more, and preferably 1000 ⁇ g or less, more preferably 100 ⁇ g or less.
  • the active ingredient is preferably 0.1 mg/kg or more, more preferably 1 mg/kg or more, and preferably 500 mg/kg or less, more preferably 100 mg/kg or less.
  • the active ingredient is an antisense oligomer, it can be administered once to several times a day, or at intervals of one day or several days.
  • the dosage of the viral vector is preferably 1 ⁇ 10 12 vg/kg or more, more preferably 1 ⁇ 10 13 vg/kg or more, still more preferably 2 ⁇ 10 13 vg/kg or more.
  • the active ingredient when it is a viral vector, it can be administered once or multiple times.
  • the present invention also provides a method for treating Werner's syndrome, comprising administering an effective amount of the antisense oligomer or the viral vector to Werner's syndrome patients and carriers.
  • Specific active ingredients, administration subjects, dosages, etc. are as described above.
  • Production Example 1 Preparation of morpholino antisense oligomer (1) Morpholino antisense oligomers having the sequences shown in Table 1 below were synthesized. Synthesis was outsourced to a custom synthesis service provided by Gene Tools, LLC.
  • Production Example 2 Production and Culturing Method of WS-iPS Cell Line Intron 25 of human WRN gene c.
  • Peripheral blood mononuclear cells were collected from Werner patients with 3139-1G>C homozygous mutation, and iPS cell lines were established according to the description in Non-Patent Document 2 to obtain WS-iPS cell lines.
  • iPS/ES cell growth medium “StemFit AK02N” (manufactured by Ajinomoto Healthy Supply Co., Ltd.), culture substrate “iMatrix-511” (manufactured by Nippi Co., Ltd.), and ROCK inhibitor Y-27632 (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was used.
  • Production Example 3 Production of WS-WRN gene corrected iPS cell line
  • CRISPR/Cas9 Homology Directed Repair (HDR) genome editing technology is applied according to the description of Non-Patent Document 2.
  • HDR Homology Directed Repair
  • Production Example 4 Production of WS-iMSC Cell Line
  • the WS-iPS cell line obtained in Production Example 2 was allowed to form embryoid bodies, and then cultured on a 60 mm culture dish (manufactured by Corning) coated with type IV collagen. It was cultured for 5 days using a leaf stem cell differentiation medium. Thereafter, culturing was continued using a culture medium on a 100 mm culture dish coated with collagen I (manufactured by Nitta Gelatin Co., Ltd.) to obtain a WS-iMSC cell line, iPS cell-derived mesenchymal stem cells.
  • the compositions of the mesenchymal stem cell differentiation medium and culture medium used are as follows.
  • Production Example 5 Preparation of antisense oligo-expressing lentiviral vector plasmid An oligo DNA having the sequence shown in Table 2 below was synthesized, and an equivalent mixture of the obtained oligo DNA was heated at 99°C for 15 minutes, and then heated for 2 hours. After cooling to room temperature, the oligo-DNA was annealed to obtain a double-stranded DNA. The obtained double-stranded DNA was terminally phosphorylated using T4 Polynucleotide Kinase (manufactured by NEB) and digested with restriction enzymes AgeI and EcoRI to obtain lentiviral vector pLKO. 1 puro) was ligated. The lentiviral vector pLKO.
  • E. coli strain DH5 ⁇ was transformed, the plasmid was purified from the obtained E. coli strain using NucleoBond Midi (manufactured by Takara Bio Inc.), and an antisense oligo-expressing lentiviral vector plasmid (pLenti-anti-WRN-Ex27) was obtained. Obtained.
  • Production Example 6 Preparation of antisense oligo-expressing lentiviral vector HEK293 cells were cultured using 10% FBS and DMEM medium, and pCMV-VSV-G, psPAX2, and pCMV-VSV-G, psPAX2, and The three plasmids pLenti-anti-WRN-Ex27 obtained in Production Example 5 were introduced. After 24 hours, the medium was replaced, and the culture supernatant was collected 48 hours after gene introduction. The resulting virus solution was transferred to Amicon Ultra centrifugal filters (manufactured by Millipore Sigma) and centrifuged at 5000 rpm for 30 minutes to obtain a concentrated virus solution.
  • Amicon Ultra centrifugal filters manufactured by Millipore Sigma
  • HEK293 was infected with an antisense oligo-expressing lentiviral vector, and the infectivity of the concentrated virus solution was confirmed and the titer was calculated to confirm that the produced virus vector had sufficient infectivity. It was confirmed.
  • Production Example 7 Preparation of morpholino antisense oligomer (2) Morpholino antisense oligomers having the sequences shown in Table 3 below were synthesized. Synthesis was outsourced to a custom synthesis service provided by Gene Tools, LLC. ASO15 and ASO16 are Vivo-Morpholinos.
  • Example 1 Exon skipping in iPS cells (1) (morpholino antisense oligomer)
  • the WS-iPS cells obtained in Production Example 2 and the WS-gene corrected iPS cells obtained in Production Example 3 were seeded in a 24-well plate, and after 24 hours, these cells were treated with Endo-Porter reagent (GeneTools, LLC ASO1, ASO2, ASO3 and ASO4 obtained in Production Example 1 were added at a concentration of 10 ⁇ M each. After that, culture was performed for 24 hours.
  • Endo-Porter reagent GeneTools, LLC ASO1, ASO2, ASO3 and ASO4 obtained in Production Example 1 were added at a concentration of 10 ⁇ M each. After that, culture was performed for 24 hours.
  • Test Example 1-1 RT-PCR Analysis Cells were collected, and total RNA was purified using "PureLink RNA Mini Kit” (manufactured by Thermo Fisher). Using the total RNA as a template, a reverse transcription reaction was performed using a SuperScript III reagent (manufactured by Thermo Fisher) to synthesize cDNA. Further, polymerase chain reaction (PCR) was performed using the resulting cDNA as a template and the primer pairs shown in Table 4 below. Primer 1 is for exon 25 and primer 2 is for exon 28.
  • PCR polymerase chain reaction
  • the resulting PCR amplification products were analyzed by 1% agarose gel electrophoresis. The results are shown in FIG. As shown in FIG. 1, a 258 bp mutant band lacking exon 26 was observed in WS-iPS cells to which ASO4 was added (Control). On the other hand, in WS-iPS cells to which ASO1, ASO2 or ASO3 was added, a shortened 182 bp band was observed due to lack of exon 26 and exon 27 of the human WRN gene due to exon skipping. The above results indicate that addition of ASO1 and ASO2, respectively, can induce exon skipping of exon 27 of the human WRN gene. In the WS-WRN gene corrected iPS cells, no band change was observed between the addition of ASO1 or ASO2 and the control ASO4.
  • Test Example 1-2 Western Blotting Analysis Cells were collected and the expression of human WRN protein was confirmed by Western blotting. The results are shown in FIG. Anti-WRN antibody (Abcam, ab66606), anti-GAPDH antibody (Cell Signaling Technology, #5174) and secondary antibodies (GE Healthcare, #NA931, #NA934) were used for detection. As shown in FIG. 3, in ASO2-added WS-iPS cells, significant expression of a protein with a molecular weight smaller than that of the wild-type WRN protein was observed. In addition, in ASO1-added WS-iPS cells, faint expression of a protein with a similar molecular weight was observed. The above results indicate that the addition of ASO1 and ASO2 respectively induces exon skipping of exon 27 of the human WRN gene, albeit to different degrees, and induces the expression of the corresponding mutant proteins.
  • Example 2 Exon Skipping in iMSC Cells (1) (Morpholino Antisense Oligomers) WS-iMSC cells obtained in Production Example 4 were seeded in a 24-well plate. Every 72 hours from that point, ASO3 and ASO4 obtained in Production Example 1 were added to these cells at a concentration of 10 ⁇ M using Endo-Porter reagent (manufactured by GeneTools, LLC).
  • Test Example 2-1 PDL Cell Growth Curve Analysis PDL cell growth curve analysis was performed on WS-iMSC cells to which ASO3 and ASO4 were respectively added. The results are shown in FIGS. 4 and 5.
  • FIG. 4 As shown in FIG. 4, in the control WS-iMSC cells to which ASO4 was added, cell growth arrest was observed after 1 month of culture. On the other hand, it was observed that the WS-iMSC cells to which ASO3 was added significantly sustained cell proliferation.
  • Test Example 2-2 Observation of Cell Morphology WS-iMSC cells added with ASO3 and ASO4 were observed under an optical microscope for cell morphology. The results are shown in FIG. As shown in FIG. 6, in WS-iMSC cells to which ASO4 was added, an increase in cells exhibiting cell flattening, changes in nuclear structure, etc., which are typical phenotypes of cell senescence, was observed. On the other hand, in ASO3-supplemented WS-iMSC cells, no increase in cells exhibiting a senescent phenotype was observed.
  • Test Example 2-3 SA- ⁇ -Gal Staining WS-iMSC cells to which ASO3 and ASO4 were added were subjected to SA- ⁇ -Gal staining. The results are shown in FIGS. 7 and 8.
  • FIG. SA- ⁇ -Gal is overexpressed in senescent cells and is an indicator of cellular senescence.
  • FIG. 7 a marked increase in SA- ⁇ -Gal-positive cells was observed in the ASO4-added WS-iMSC cells, indicating early cell senescence.
  • no increase in SA- ⁇ -Gal positive cells was observed in WS-iMSC cells to which ASO3 was added.
  • Test Example 2-4 Analysis of Telomere Length WS-iMSC cells added with ASO3 and ASO4 were analyzed for telomere length by quantitative PCR (qPCR). It is known that somatic cells derived from Werner's syndrome patients show accelerated shortening of telomere length as cellular senescence progresses compared to healthy subjects. This is probably because the protein encoded by the WRN gene is a telomere binding protein. Therefore, telomere length serves as an index of the functional activity of the WRN gene.
  • genomic DNA was extracted from a cell pellet with a cell doubling number (PDL) of 20 using a DNeasy Blood & Tissue Kit (manufactured by QIAGEN). 20 ng of genomic DNA as a template, 0.1 mM each of the teloF and teloR primer pair or the 36B4F and 36B4R primer pair shown in Table 5 below, and 2 ⁇ SYBR Green PCR Master Mix (manufactured by Thermo Fisher) were added to a 96-well plate. did.
  • PCR amplification reaction was carried out according to the following cycle: after priming at 95°C for 10 minutes, 40 cycles of 95°C for 15 seconds and 60°C for 1 minute.
  • the telomere length was determined as a relative value by the delta-delta Ct method using the PCR amplification product of the primer pair of 36B4F and 36B4R as an internal control (Relative telomere length in the figure).
  • the results are shown in FIG.
  • the WS-iMSC cells supplemented with ASO3 had significantly longer telomere length than the control WS-iMSC cells supplemented with ASO4.
  • Test Example 2-4 Gene Expression Analysis WS-iMSC cells added with ASO3 and ASO4 were subjected to gene expression analysis by RNA sequencing.
  • Total RNA was purified from the PDL8 cell pellet using "PureLink RNA Mini Kit” (manufactured by Thermo Fisher).
  • PureLink RNA Mini Kit manufactured by Thermo Fisher
  • a cDNA library was synthesized using NEBNext Ultra RNA Library Prep Kit (manufactured by New England BioLabs, catalog number: E7370S). Sequencing was performed with a 60 bp single read using HiSeq1500 (Illumina). Mapping of RNA-seq reads to the reference genome UCSC/hg19 was performed using TopHat.
  • FIG. 10 shows a comparison of expression levels.
  • somatic cells derived from Werner's syndrome patients it is known that the expression level of senescence-related inflammatory genes is enhanced.
  • the expression levels of IL1B, IL6 and CXCL8, which are senescence-related inflammatory genes were lower than in the control ASO4-added WS-iMSC cells. significantly less.
  • the above results indicate that the phenotype of progression of cellular senescence exhibited by somatic cells derived from Werner's syndrome patients is suppressed by the addition of ASO3.
  • Example 3 Exon skipping (2) in iPS cells (antisense oligomer-expressing lentivirus)
  • the WS-iPS cells obtained in Production Example 2 and the WS-gene corrected iPS cells obtained in Production Example 3 were infected with the antisense oligo-expressing lentivirus using the concentrated virus solution obtained in Production Example 6, as shown below.
  • Experiments confirm that exon skipping of exon 27 can be achieved with antisense oligo-expressing lentiviruses as well as with morpholino antisense oligomers.
  • RT-PCR analysis is performed in the same manner as in Test Example 1-1 to confirm that exon skipping of exon 27 of the human WRN gene can be induced by infection with an antisense oligo-expressing lentivirus.
  • Example 4 Exon skipping (2) in iMSC cells (antisense oligomer expressing lentivirus)
  • the WS-iMSC cells obtained in Production Example 4 were infected with the antisense oligo-expressing lentivirus using the concentrated virus solution obtained in Production Example 6, and the following experiment was conducted to confirm the use of morpholino antisense oligomers.
  • the effect of exon skipping of exon 27 can be confirmed even when antisense oligo-expressing lentivirus is used.
  • PDL cell growth curve analysis, cell morphology observation, and SA- ⁇ -Gal staining are performed in the same manner as in Test Examples 2-1 to 2-3.
  • Example 5 Exon skipping (3) in iPS cells (morpholino antisense oligomers)
  • the WS-iPS cells obtained in Production Example 2 were seeded in a 24-well plate, and after 24 hours, these cells were treated with Endo-Porter reagent (manufactured by GeneTools, LLC) to obtain ASO4 obtained in Production Example 1.
  • Endo-Porter reagent manufactured by GeneTools, LLC
  • ASO5, ASO6, ASO7, ASO8, ASO9, ASO10, ASO11, ASO12, ASO13, ASO14, ASO15 and ASO16 obtained in Production Example 1 were each added at a concentration of 10 ⁇ M (in the figure, "Endo-Porter ( +)”).
  • ASO15 and ASO16 were added at a concentration of 10 ⁇ M each in the same manner except that the Endo-Porter reagent was not used ("Endo-Porter(-)" in the figure). After that, culture was performed for 24 hours.
  • Test Example 5-1 RT-PCR Analysis RT-PCR analysis was performed in the same manner as in Test Example 1-1 above. The results are shown in FIG. As shown in FIG. 11, in control WS-iPS cells to which ASO4 and ASO15 were added, a 258 bp mutant band lacking exon 26 was observed. On the other hand, in WS-iPS cells to which ASO5, ASO6, ASO7, ASO8, ASO9, ASO10, ASO11, ASO3, ASO12, ASO13, ASO14, or ASO16 was added, exon 27 in addition to exon 26 of the human WRN gene was deleted by exon skipping. A missing and truncated 182 bp band was observed.
  • the antisense oligomer of the present invention enables the skipping of the 27th exon of the human WRN gene and induces the expression of a mutant protein in which the function of the protein is at least partially restored. . That is, the antisense oligomer of the present invention can be used as an active ingredient of a drug capable of suppressing symptoms of premature aging in Werner's syndrome.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、ウェルナー症候群を直接的な変異遺伝子の修復を介さず治療できるアンチセンスオリゴマー又はその薬学的に許容される塩を提供することを課題とする。 本発明は、下記(i)又は(ii)の塩基配列に相補的な塩基配列からなり、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを可能とする、アンチセンスオリゴマー又はその薬学的に許容される塩を提供する。 (i)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列 (ii)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列

Description

アンチセンスオリゴマー
 本発明は、アンチセンスオリゴマー又はその薬学的に許容される塩、ウイルスベクター及び医薬組成物に関する。
 ウェルナー症候群は、思春期を過ぎる頃より急速に老化が進行し、早老性毛髪変化(白髪、禿頭など)、白内障(両側)、皮膚の萎縮・硬化(鶏眼や胼胝等)、難治性潰瘍形成、軟部組織の石灰化(アキレス腱等)、糖、脂質代謝異常、早期に現れる動脈硬化(狭心症、心筋梗塞等)などの症状を示す、早老症の一つである。近年の研究により平均寿命は改善しつつあるものの、多くの患者が、難治性皮膚潰瘍に伴う下肢切断や悪性腫瘍、糖尿病のため、重篤な合併症に苦しんでいる。
 世界中で報告されているウェルナー症候群の患者のうち、約8割が日本人である。
 ウェルナー症候群は、常染色体潜性(劣性)の遺伝性希少疾患であり、その原因はDNAヘリカーゼをコードするヒトWRN遺伝子の異常であると考えられている(例えば、非特許文献1及び2参照)。
 近年、デュシェンヌ型筋ジストロフィー、脊髄性筋萎縮症などの一部の遺伝性疾患に対しては、エクソンスキッピングを利用した治療薬が提唱されている。例えば、特許文献1には、筋ジストロフィーを治療する手段として、特定のアンチセンス化合物を含むヒトジストロフィンのプレプロセスされたmRNAのプロセシングにおいてエクソン44のスキップを生じる際に使用するための組成物が開示されている。
国際公開第2010/048586号
Yokote K et al.,Hum Mutat.2017 January;38(1):7-15. Kato H, et al.,Stem Cell Research.Vol.53,May 2021,102360
 ウェルナー症候群は、患者におけるWRN遺伝子の変異を修復する以外に根治できる治療方策が考えられない難病である。近年、ゲノム編集技術など、遺伝子変異を修復する技術開発に期待が寄せられている。しかし、全身又は病変部位においてWRN遺伝子の変異を修復することは、現状の技術では臨床応用が困難である。
 ウェルナー症候群以外の疾患において、直接的な変異遺伝子の修復を介さない、アンチセンスオリゴマーを用いたエクソンスキッピングを利用した治療薬が提唱されている。しかし、ウェルナー症候群においてはそのような報告はない。
 本発明は、ウェルナー症候群を直接的な変異遺伝子の修復を介さず治療できる手段を提供することを目的とする。
 本発明者らは、特定の塩基配列からなるアンチセンスオリゴマーにより、ヒトWRN遺伝子の第27番目のエクソンのスキッピングが可能であり、ウェルナー症候群を直接的な変異遺伝子の修復を介さず治療できることを見出した。
 本発明は、以下の態様を包含する。
〔1〕 下記(i)又は(ii)の塩基配列に相補的な塩基配列からなり、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを可能とする、アンチセンスオリゴマー又はその薬学的に許容される塩。
(i)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列
(ii)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列
〔2〕 前記塩基配列(i)又は塩基配列(ii)において、前記連続した塩基配列の塩基長が20塩基以上40塩基以下である、上記〔1〕に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔3〕 前記塩基配列(i)又は塩基配列(ii)において、前記連続した塩基配列が、配列番号2に示す塩基配列及び配列番号3に示す塩基配列の少なくとも一方を含む、上記〔1〕又は〔2〕に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔4〕 前記塩基配列(i)又は塩基配列(ii)において、連続した塩基配列が配列番号4に示す塩基配列及び配列番号5に示す塩基配列の少なくとも一方を含む、上記〔3〕に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔5〕 前記塩基配列(i)又は塩基配列(ii)において、前記連続した塩基配列が、配列番号6~15のいずれかに示す塩基配列からなる、上記〔1〕~〔4〕のいずれか1項に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔6〕 前記アンチセンスオリゴマーが、オリゴヌクレオチド、モルホリノオリゴマー、ペプチド核酸(PNA)オリゴマー、又はグリコール核酸(GNA)オリゴマーである、上記〔1〕~〔5〕のいずれか1項に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔7〕 前記アンチセンスオリゴマーがモルホリノオリゴマーである、上記〔1〕~〔5〕のいずれか1項に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔8〕 前記モルホリノオリゴマーがホスホロジアミデートモルホリノオリゴマーである、上記〔7〕に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔9〕 前記オリゴヌクレオチドが、架橋型核酸(BNA)ヌクレオチドからなる群より選択される1種以上を含むオリゴヌクレオチドである、上記〔6〕に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔10〕 5’末端及び3’末端の少なくとも一方が修飾されている、上記〔1〕~〔9〕のいずれか1項に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
〔11〕 下記の(i)又は(ii)の塩基配列に相補的な塩基配列からなり、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを可能とするRNAを発現させるウイルスベクター。
(i)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列
(ii)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列
〔12〕前記塩基配列(i)又は塩基配列(ii)において、連続した塩基配列が配列番号16に示す塩基配列を含む、上記〔11〕に記載のウイルスベクター。
〔13〕 上記〔1〕~〔10〕のいずれか1項に記載のアンチセンスオリゴマー若しくはその薬学的に許容される塩、又は、上記〔11〕若しくは〔12〕に記載のウイルスベクターを有効成分とする、ウェルナー症候群治療用医薬組成物。
〔14〕 2種以上のアンチセンスオリゴマー又はその薬学的に許容される塩を有効成分とする、上記〔13〕に記載のウェルナー症候群治療用医薬組成物。
〔15〕 上記〔1〕~〔10〕のいずれか1項に記載のアンチセンスオリゴマー若しくはその薬学的に許容される塩、又は、上記〔11〕若しくは〔12〕に記載のウイルスベクターを有効成分とする、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを誘導するための医薬組成物。
 本発明により、ヒトWRN遺伝子の第27番目のエクソンのスキッピングが可能であり、ウェルナー症候群を直接的な変異遺伝子の修復を介さず治療できるアンチセンスオリゴマー又はその薬学的に許容される塩が提供される。
図1は、RT-PCR解析の結果を示す。 図2は、エクソンスキッピング効率の定量結果を示す。 図3は、ウェスタンブロッティング解析の結果を示す。 図4は、細胞増殖曲線解析の結果を示す。 図5は、PDL解析の結果を示す。 図6は、細胞形態観察の結果を示す。 図7は、SA-β-Gal染色解析の結果を示す。 図8は、SA-β-Gal染色の定量解析結果を示す。 図9は、テロメア長解析の結果を示す。 図10は、遺伝子発現量解析の結果を示す。 図11は、RT-PCR解析の結果を示す。 図12は、エクソンスキッピング効率の定量結果を示す。
[アンチセンスオリゴマー]
 本発明のアンチセンスオリゴマー又はその薬学的に許容される塩は、下記(i)又は(ii)の塩基配列に相補的な塩基配列からなり、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを可能とする、アンチセンスオリゴマー又はその薬学的に許容される塩である。
(i)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列
(ii)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列
 本発明のアンチセンスオリゴマー又はその薬学的に許容される塩は、ヒトWRN遺伝子の第27番目のエクソン(以下、「エクソン27」ともいう。)のスキッピングを可能とする。
 以下、「アンチセンスオリゴマー又はその薬学的に許容される塩」を単に「アンチセンスオリゴマー」と記載する場合がある。
<ヒトWRN遺伝子>
 ヒトWRN遺伝子は、DNAヘリカーゼをコードする遺伝子であり、該遺伝子の変異による遺伝子機能の異常が、ウェルナー症候群の原因であると考えられている。
 ヒトWRN遺伝子領域のゲノム塩基配列、cDNAの塩基配列及びコードされるタンパク質のアミノ酸配列は公知である。ヒトゲノム計画により得られた基準となるヒトWRN遺伝子の塩基配列は、米国生物工学情報センター(NCBI; National Center for Biotechnology Information)が提供するGenBankに、下記のアクセッション番号で登録されている(複数のリビジョン(revision)が登録されている場合、最新のリビジョンを指すと理解される。):
 ヒトWRN遺伝子:NM_000553
<第27番目のエクソンのスキッピング>
 ヒトWRN遺伝子の主要な成熟転写産物(成熟mRNA)は、35個のエクソンからなる。
 日本国内で報告されているウェルナー症候群患者の70.7%は、ヒトWRN遺伝子におけるc.3139-1G>C変異、すなわちcDNA塩基配列中の翻訳開始コドンから数えて第3139番目の塩基の1塩基直前のイントロンにおけるグアニン(G)塩基からシトシン(C)への変異を有する。当該変異は、WRN遺伝子の第26番目のエクソン(以下、「エクソン26」ともいう。)のスプライシングアクセプター配列の変異であり、エクソン26のスキッピングが誘発され、エクソン27におけるフレームシフトにより翻訳終止コドンが生じる。その結果、C末端に存在する核内移行シグナルを含んだ主要なWRNタンパク質の機能ドメインが欠損し、WRN遺伝子の機能が大きく損なわれ、ウェルナー症候群の原因となると考えられる。
 本発明のアンチセンスオリゴマーは、ヒトWRN遺伝子の成熟mRNAを標的とし、エクソン27のスキッピングをも可能とし、その結果、c.3139-1G>C変異によるエクソン26のスキッピングが起こっている場合には、第25番目のエクソンと第28番目のエクソンが連結した成熟mRNAが生じる。
 本発明においては、エクソン26に加えエクソン27がスキッピングにより除去された成熟mRNAは、エクソン27が除去されることにより更なるフレームシフトが生じ、野生型の翻訳終止コドンまでタンパク質翻訳が可能な変異型WRNタンパク質をコードする。当該変異型WRNタンパク質はC末端に存在する核内移行シグナルを含んだ1375アミノ酸残基からなるタンパク質をコードし、1432アミノ酸残基からなる野生型WRNタンパク質に対して3.9%(57アミノ酸残基)が欠失している。しかし、驚くべきことに、変異型WRNタンパク質は、後述の実施例で示す通り、c.3139-1G>C変異により生じた遺伝子機能異常の少なくとも一部の機能回復を示す。
 ヒトWRN遺伝子のエクソン27のスキッピングが生じることは、例えば、後述の実施例で示すように、ヒトWRN遺伝子のmRNAにおいて、スキッピングされたエクソン27領域の上流及び下流に設定したプライマー対を用いて、エクソン27の前後を含む領域をRT-PCR増幅し、該PCR増幅産物に対してPCR増幅又はシークエンス解析を行うことにより確認することができる。
<塩基配列>
 本発明のアンチセンスオリゴマーは、下記(i)又は(ii)の塩基配列に相補的な塩基配列からなる。
(i)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列
(ii)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列
(塩基長)
 本発明のアンチセンスオリゴマーの塩基配列は、15塩基以上であり、エクソンスキッピングの効率の観点から、好ましくは20塩基以上、より好ましくは23塩基以上、更に好ましくは25塩基以上であり、そして、配列番号1に示す塩基配列と同じ116塩基若しくはそれ未満であり、好ましくは80塩基以下、より好ましくは60塩基以下、更に好ましくは40塩基以下である。特に、エクソンスキッピングの効率と経済性のバランスの観点から、好ましくは20塩基以上40塩基以下、より好ましくは23塩基以上38塩基以下、更に好ましくは25塩基以上35塩基以下である。
(塩基)
 アンチセンスオリゴマーの塩基配列を構成する塩基(核酸塩基ともいう。)は、アデニン(A)、グアニン(G)、シトシン(C)、チミン(T)、ウラシル(U)及びヒポキサンチン(I)の天然型の塩基及びそれらの非天然型の修飾型塩基を含む。アンチセンスオリゴマーに含まれる修飾型塩基の割合及び数は特に制限がない。
 修飾型塩基としては、1-メチルアデニン、2-メチルアデニン、N6-メチルアデニン、2-メチルチオ-N6-イソペンテニルアデニン等の修飾型アデニン;2,2-ジメチルグアニン、2-メチルグアニン、7-メチルグアニン等の修飾型グアニン;5-メチルシトシン、4-アセチルシトシン、3-メチルシトシン、2-チオシトシン等の修飾型シトシン;ウラシル-5-オキシ酢酸、シュードウラシル、3-メチルウラシル、ジヒドロウラシル、5-エチルウラシル、5-ブロモウラシル、6-メチルウラシル、2-チオウラシル、4-チオウラシル、5-(カルボキシヒドロキシメチル)ウラシル、5’-カルボキシメチルアミノメチル-2-チオウラシル、5-カルボキシメチルアミノメチルウラシル、5-メトキシアミノメチル-2-チオウラシル、5-メチルアミノメチルウラシル、5-メチルカルボニルメチルウラシル、5-メチルオキシウラシル、5-メチル-2-チオウラシル等の修飾型ウラシル;1-メチルヒポキサンチン等の修飾型ヒポキサンチン;その他6-アザピリミジン、プリン、2,6-ジアミノプリン、2-アミノプリン、インドール、イミダゾール、キサンチン等を挙げることができる。
(相補的な塩基配列)
 「相補的な塩基配列」とは、対象となる塩基配列と、アデニン-チミン、アデニン-ウラシル及びグアニン-シトシンからなる群より選択されるワトソン-クリック型塩基対及びそれに相当する塩基対を形成する塩基配列を意味する。ワトソン-クリック型塩基対において、塩基対の間で水素結合が形成される。ここで、「それに相当する塩基対」とは、アデニン、チミン、ウラシル、グアニン又はシトシンの代わりに例えば上記の修飾型塩基を用いることにより形成される、アデニン-チミン、アデニン-ウラシル又はグアニン-シトシンに相当する塩基対;グアニン-ウラシル、イノシン-ウラシル、イノシン-アデニン、イノシン-シトシン等の揺らぎ塩基対(Wobble base pair)等を意味する。
(配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列)
 上記塩基配列(i)において、アンチセンスオリゴマーの標的配列は、配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列である。配列番号1に示す塩基配列は、ヒトWRN遺伝子のイントロン26の3’側20塩基配列、エクソン27の全塩基配列及びイントロン27の5’側20塩基配列からなる。
 配列番号1:ttaattttattattttttagTTCGAAAACTGTATCTTCGGGCACCAAAGAGCATTGTTATAATCAAGTACCAGTTGAATTAAGTACAGAGAAGAAGgtttgttttaaagaaattgt
 アンチセンスオリゴマーの標的配列は、好ましくは、イントロン26とエクソン27との境界領域の塩基配列及びエクソン27とイントロン27との境界領域の塩基配列の少なくとも一方を含む。
 より具体的には、好ましくは配列番号2に示す塩基配列及び配列番号3に示す塩基配列の少なくとも一方を含む。配列番号2はイントロン26の3’側1塩基及びエクソン27の5’側8塩基からなる、イントロン26とエクソン27との境界領域の塩基配列である。また、配列番号3は、エクソン27の3’側8塩基及びイントロン27の5’側1塩基からなる、エクソン27とイントロン27との境界領域の塩基配列である。
 配列番号2:gTTCGAAAA
 配列番号3:AGAAGAAGg
 アンチセンスオリゴマーの標的配列は、より好ましくは配列番号4に示す塩基配列及び配列番号5に示す塩基配列の少なくとも一方を含む。配列番号4はイントロン26の3’側4塩基及びエクソン27の5’側17塩基からなる、イントロン26とエクソン27との境界領域の塩基配列である。また、配列番号5は、エクソン27の3’側17塩基及びイントロン27の5’側4塩基及びからなる、エクソン27とイントロン27との境界領域の塩基配列である。
 配列番号4:ttagTTCGAAAACTGTATCTT
 配列番号5:TAAGTACAGAGAAGAAGgttt
 配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列の別の好ましい態様として、下記(a)~(c)の塩基配列が挙げられる。
(a)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列であって、配列番号1に示す塩基配列中の1番目、2番目、3番目、4番目、5番目、6番目、7番目、8番目、9番目、10番目、11番目、12番目、13番目、14番目、15番目、16番目、17番目、18番目、19番目又は20番目のいずれかの塩基を5’側の始点とし、21番目、22番目、23番目、24番目、25番目、26番目、27番目、28番目、29番目、30番目、31番目、32番目、33番目、34番目、35番目、36番目、37番目、38番目、39番目、40番目、41番目、42番目、43番目、44番目、45番目、46番目、47番目、48番目、49番目、50番目、51番目、52番目、53番目、54番目、55番目、56番目、57番目、58番目、59番目又は60番目のいずれかの塩基を3’側の終点とする塩基配列、
(b)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列であって、配列番号1に示す塩基配列中の57番目、58番目、59番目、60番目、61番目、62番目、63番目、64番目、65番目、66番目、67番目、68番目、69番目、70番目、71番目、72番目、73番目、74番目、75番目、76番目、77番目、78番目、79番目、80番目、81番目、82番目、83番目、84番目、85番目、86番目、87番目、88番目、89番目、90番目、91番目、92番目、93番目、94番目、95番目又は96番目のいずれかを5’側の始点とし、97番目、98番目、99番目、100番目、101番目、102番目、103番目、104番目、105番目、106番目、107番目、108番目、109番目、110番目、111番目、112番目、113番目、114番目、115番目又は116番目のいずれかを3’側の終点とする塩基配列、及び
(c)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列であって、配列番号1に示す塩基配列中の1番目、2番目、3番目、4番目、5番目、6番目、7番目、8番目、9番目、10番目、11番目、12番目、13番目、14番目、15番目、16番目、17番目、18番目、19番目又は20番目のいずれかの塩基を5’側の始点とし、97番目、98番目、99番目、100番目、101番目、102番目、103番目、104番目、105番目、106番目、107番目、108番目、109番目、110番目、111番目、112番目、113番目、114番目、115番目又は116番目のいずれかを3’側の終点とする塩基配列が挙げられる。
 上記塩基配列(a)は、イントロン26とエクソン27との境界領域を含む。上記塩基配列(b)は、エクソン27とイントロン27との境界領域を含む。上記塩基配列(c)は、イントロン26とエクソン27との境界領域、エクソン27の全領域及びエクソン27とイントロン27との境界領域を含む。
 アンチセンスオリゴマーの標的配列としては、経済性の観点から、好ましくは上記塩基配列(a)又は上記塩基配列(b)である。
 アンチセンスオリゴマーの標的配列の具体例としては、以下の塩基配列が挙げられる。なお、配列番号6~10はイントロン26とエクソン27との境界領域を標的とする塩基配列であり、配列番号11~15はエクソン27とイントロン27との境界領域を標的とする塩基配列である。
配列番号6:TTTTTTAGTTCGAAAACTGTATCTTCGGGC
配列番号7:TTTTTAGTTCGAAAACTGTATCTTCGGGCA
配列番号8:TTTTAGTTCGAAAACTGTATCTTCGGGCAC
配列番号9:TTTAGTTCGAAAACTGTATCTTCGGGCACC
配列番号10:TTAGTTCGAAAACTGTATCTTCGGGCACCA
配列番号11:TGAATTAAGTACAGAGAAGAAGGTTTGTTT
配列番号12:TTGAATTAAGTACAGAGAAGAAGGTTTGTT
配列番号13:GTTGAATTAAGTACAGAGAAGAAGGTTTGT
配列番号14:AGTTGAATTAAGTACAGAGAAGAAGGTTTG
配列番号15:CAGTTGAATTAAGTACAGAGAAGAAGGTTT
配列番号41:TGAATTAAGTACAGAGAAGAAGGTTTGT
(欠失、置換又は挿入)
 上記塩基配列(ii)において、配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入されている。
 欠失、置換又は挿入されている塩基の数は、本発明の効果を損なわない範囲で限定されない。例えば、1以上であり、そして好ましくは5以下、より好ましくは3以下、更に好ましくは2以下である。すなわち、欠失、置換又は挿入されている塩基の数は、好ましくは1、2、3、4若しくは5、より好ましくは1、2若しくは3、更に好ましくは1若しくは2、より更に好ましくは1である。
 ある塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列は、当該塩基配列において、任意の数(例えば1以上5以下)の塩基の欠失、置換又は挿入が存在し、かつ、ストリンジェントな条件下で、当該塩基配列の相補配列と、十分に特異的かつ高効率にハイブリダイゼーション可能である配列を含む。ただし、これに限定されない。「ストリンジェントな条件」とは、特異的なハイブリダイゼーションのみが起き、非特異的なハイブリダイゼーションが起きないような条件をいい、対象とする塩基の長さに応じて、当該技術分野において通常用いられる条件を任意に選択できる。欠失、置換又は挿入の中、エクソンスキッピングの効率の観点から、好ましくは置換である。
 治療対象とするウェルナー症候群患者が、基準となる塩基配列に対して塩基多型を有する場合がある。上記(ii)における欠失、置換又は挿入の好ましい例の1つは、ウェルナー症候群患者が有する多型とアンチセンスオリゴマーの配列とを一致させるための欠失、置換又は挿入である。治療対象とするウェルナー症候群患者が有する塩基多型は、当該患者のゲノム配列を解析することで得られる。また、エクソン27における塩基多型は、公開されているデータベース(例えば、URL:https://ensembl.org)を参照して確認できる。
<アンチセンスオリゴマー>
 本発明のアンチセンスオリゴマーは、上記特定の塩基配列を有し、ヒトWRN遺伝子のエクソン27のスキッピングを可能とするものであれば限定されない。例えば、オリゴヌクレオチド、モルホリノオリゴマー、ペプチド核酸(PNA)オリゴマー、又はグリコール核酸(GNA)オリゴマーのいずれかである。
(オリゴヌクレオチド)
 オリゴヌクレオチドは、基本骨格として、塩基部分、糖部分及びリン酸部分を有するヌクレオチドが、リン酸結合により連結したオリゴマーである。ヌクレオチドは天然型ヌクレオチド及び非天然型ヌクレオチドのいずれであってもよい。
 天然型ヌクレオチドとしては、糖部分がデオキシリボースであるデオキシリボヌクレオチド及び糖部分がリボースであるリボヌクレオチドが挙げられ、それぞれのオリゴマーは天然型のDNA及びRNAである。DNA及びRNAにおいて、ヌクレオチド間のリン酸結合は、ホスホジエステル結合である。
 非天然型ヌクレオチドにおいて、塩基部分、糖部分及びリン酸部分の1つ以上が非天然型の修飾を有する。よって、本発明のアンチセンスオリゴマーは、少なくとも1つの塩基修飾、及び/又は少なくとも1つの糖修飾、及び/又は少なくとも1つのリン酸部分(骨格)修飾を含みうる。
 非天然型の修飾塩基は、上述の通りである。
 非天然型の糖部分としては、架橋型核酸(Bridged Nucleic Acid、BNA)(例えば、Linked Nucleic Acid(LNA)、アミド架橋型核酸(AmNA)、グアニジン架橋型核酸(GuNA)、スピロシクロプロピレン架橋型核酸(scpBNA)等)、シクロヘキセン核酸(CeNA)、1,5-アンヒドロヘキシトール核酸(HNA)、2’-O,4’-C-エチレン架橋型核酸(ENA)、constrained ethyl架橋型核酸(cEtBNA)トレオース核酸(TNA)、フルオロ-β-アラビノ核酸(FNA)、トリシクロDNA(tcDNA)、2’-F修飾リボ核酸(2’-F-RNA)、2’-O-メチル修飾リボ核酸(2’-O-Me-RNA)、2’-O-メトキシエチル修飾リボ核酸(2’-O-MEO-RNA)、4’-チオ修飾リボ核酸(4’-S-RNA又は4’-S-DNA)等が挙げられる。
 非天然型のリン酸結合を有するオリゴヌクレオチドとして、天然型のホスホジエステル結合が、一部又は全部、ホスホロチオエート結合(S化)、ホスホロジチオエート結合、アルキルホスホネート結合、ホスホロアミデート結合、ホスホロジアミデート結合及びボラノフォスフェート結合から選択される非天然型のリン酸結合に置換されたものが挙げられる。
(モルホリノオリゴマー)
 モルホリノオリゴマーは、好ましくは、下記式(I)で表わされる基が連結したオリゴマー(ホスホロジアミデートモルホリノオリゴマー(PMO))である。
Figure JPOXMLDOC01-appb-C000001
[式中、R及びRは、同一又は異なって、水素原子、直鎖状又は分枝鎖状の炭素数1以上6以下アルキル、炭素数5以上12以下のシクロアルキル、又は、炭素数6以上10以下のアリールを示す。]
 アルキルとしては、好ましくは、直鎖状又は分枝鎖状の炭素数1以上6以下のアルキルである。具体的には、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、tert-ペンチル、n-ヘキシル、イソヘキシルが挙げられる。アルキルは、1個以上3個以下の置換基を有していてもよい。
 シクロアルキルとしては、好ましくは、炭素数5以上12以下のシクロアルキルである。具体的には、例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロデシル、シクロドデシル等が挙げられる。
 アリールとしては、好ましくは、炭素数6以上10以下のアリールである。具体的には、例えば、フェニル、α-ナフチル、β-ナフチルを挙げることができる。とりわけフェニルが好ましい。アリールは1個以上3個以下の置換基を有していてもよい。
 上記置換基としては、ハロゲン原子、アルコキシ、シアノ基、ニトロ基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルコキシとしては、直鎖状又は分枝鎖状の炭素数1以上6以下のアルコキシ、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペンチルオキシ、イソペンチルオキシ、n-ヘキシルオキシ、イソヘキシルオキシ等を挙げることができる。中でも、好ましくは炭素数1以上3以下のアルコキシである。
 モルホリノオリゴマーは、例えば、国際公開第1991/009033号、又は国際公開第2009/064471号に従って製造することができる。特に、PMOは、国際公開第2009/064471号に記載の方法に従って製造するか、又は国際公開第2013/100190号に記載の方法に従って製造することができる。
(5’末端及び3’末端の修飾)
 本発明のオリゴマーは、5’末端及び3’末端の少なくとも一方が修飾されていてもよい。一つの態様においては、5’末端及び3’末端の両方が修飾されていてもよい。
 5’末端及び/又は3’末端の修飾基としては、α-トコフェロール基、ポリエチレングリコール(PEG)基、N-アセチルグルコサミン(O-GlcNAc)基、メトキシ(O-Me)基、コレステロール基、アミノ基、ペプチド基(例えば、後述する細胞透過性ペプチド)及びそれらの誘導体等が挙げられる。修飾基は、オリゴマーの5’末端又は3’末端に、直接または連結部を介して結合させることができる。
 連結部としては、所望の修飾基とオリゴヌクレオチドの5’末端又は3’末端とを共有結合的に連結できるものであれば特に制限がなく、-O-、-CO-、-NH-、-CONH-、-NHCO-等の当該技術分野において用いられる連結基を用いることができる。
 本発明のオリゴヌクレオチドの5’末端の態様の一つとしては、例えば下記の(1)又は(2)の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000002
[式中、波線は、オリゴヌクレオチドの5’末端への結合を示す。]
 別の態様において、5’末端への修飾は、下記(6)の構造の基である。
Figure JPOXMLDOC01-appb-C000003
[式中、
波線は、オリゴヌクレオチドの5’末端への結合を示し、
Wは、S又はO、好ましくはOであり、
Xは、NRA1A2(RA1及びRA2はそれぞれ独立して、水素原子又は低級アルキル、例えばメチルである。)又はORA3(RA3は、水素原子又は低級アルキル、例えばメチルである。)であり、
Yは、O又はNRA4(RA4は、水素原子または低級アルキル、例えばメチルである。)であり、
Raは、任意の修飾基(例えば、PEG基、コレステロール基、アミノ基、ペプチド基又はそれらの誘導体)である。]
 上記(6)の構造を有する基は、好ましくは下記(6-1)の構造を有する基である。
Figure JPOXMLDOC01-appb-C000004
 Raは、例えば下記の(3)、(4)、(5)、又は(7)で表される基である。
Figure JPOXMLDOC01-appb-C000005
*-L1-ペプチド基  (7)
[式中、*は上記(6)又は(6’)の構造への結合を示し、L1は単結合又はリンカーを示す。]
 L1が示すリンカーは、該リンカーを介して上記(6)又は(6’)の構造の基とペプチドを連結できるものであれば特に制限はなく、例えば、下記(8-1)~(8-3)のいずれかで表される基を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
[式中、*は前記と同じであり、**はペプチドへの結合を表し、nは2~6の整数を示し、mは2~6の整数を示す。]
 上記ペプチド基のペプチド部分としては、細胞透過性ペプチド(Cell-Penetrating Peptides;CPP)が挙げられる。CPPの具体例としては、TAT、R8、DPV3、DPV6、Penetratin、R9-TAT等のカチオン性CPP;pVEC、ARF(19-31)、MPG、MAP、Transportan等の両親媒性(Amphipatic)CPP;Bip4、C105Y、Melittin、gH625等の疎水性(Hydrophobic)CPPが挙げられる。CPPは、文献に基づいて当業者が適宜設計することができる(Xie J, et al.,Front Pharmacol. 2020 May 20;11:697等)。
 3’末端の態様の一つとしては、例えば下記(2’)、(4’)、又は下記(9)の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
#-L2-ペプチド基  (9)
[式中、#は、オリゴヌクレオチドの3’末端への結合を示し、L2は単結合又はリンカーを示す。]
 L2が示すリンカーは、該リンカーを介してオリゴヌクレオチドの3’末端の糖とペプチドを連結できるものであれば特に制限はなく、例えば、下記(10-1)~(10-3)の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000008

[式中、#は前記と同じであり、##はペプチド基への結合を示し、nは2~6の整数を示し、mは2~6の整数を示す。]
で表される基を挙げることができる。
 上記ペプチド基のペプチド部分は、上記5’末端への修飾と同じものを用いることができる。
 本発明のオリゴマーの態様の一つとして、修飾されたモルホリノオリゴマーであるVivo-Morpholinos(Gene Tools,LLC社製)を使用することができる。Vivo-Morpholinosは、5’末端が上記(1)の修飾基を有し、3’末端が上記(4)の修飾基(octa-guanidine dendrimer)を有する。
(各種アンチセンスオリゴマーの製造方法)
 上記の各種アンチセンスオリゴマーは、塩基配列情報に基づいて、公知の手法又はそれを応用した新規な手法により製造することができる。アンチセンスオリゴマーは、第三者機関に委託して製造することもできる。
<薬学的に許容される塩>
 本発明において、アンチセンスオリゴマーは、薬学的に許容される塩であってもよい。
 塩としては、酸付加塩、塩基付加塩が挙げられる。
 酸付加塩としては、無機酸塩、有機酸塩のいずれであってもよい。無機酸塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、ヨウ化水素酸塩、硝酸塩、リン酸塩が挙げられる。有機酸塩としては、例えば、クエン酸塩、シュウ酸塩、酢酸塩、ギ酸塩、プロピオン酸塩、安息香酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩が挙げられる。
 塩基付加塩としては、無機塩基塩、有機塩基塩のいずれであってもよい。無機塩基塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩が挙げられる。有機塩基塩としては、例えば、トリエチルアンモニウム塩、トリエタノールアンモニウム塩、ピリジニウム塩、ジイソプロピルアンモニウム塩が挙げられる。
 本発明の化合物は、水和物等の溶媒和物であってもよい。溶媒は、薬学的に許容される溶媒であれば特に限定されない。
[ウイルスベクター]
 本発明のウイルスベクターは、下記の(i)又は(ii)の塩基配列に相補的な塩基配列からなり、ヒトWRN遺伝子のエクソン27のスキッピングを可能とするRNAを発現させるウイルスベクターである。
(i)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列
(ii)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列
 塩基配列については、上記アンチセンスオリゴマーと同様である。
 ただし、ウイルスベクターが発現させるRNAの塩基長は、15塩基以上であり、エクソンスキッピングの効率の観点から、好ましくは20塩基以上、より好ましくは40塩基以上、更に好ましくは60塩基以上であり、そして、配列番号1に示す塩基配列と同じ塩基数若しくはそれ以下である。
 ウイルスベクターの標的配列は、好ましくは、イントロン26とエクソン27との境界領域の塩基配列、エクソン27の全長及びエクソン27とイントロン27との境界領域の塩基配列を含む。
 より具体的には、ウイルスベクターの標的配列は、好ましくは配列番号16に示す塩基配列を含む。配列番号16はイントロン26の3’側1塩基、エクソン27の全長及びエクソン27の5’側8塩基からなる塩基配列である。
配列番号16:gTTCGAAAACTGTATCTTCGGGCACCAAAGAGCATTGTTATAATCAAGTACCAGTTGAATTAAGTACAGAGAAGAAGg
 ウイルスベクターの標的配列としては、エクソンスキッピングの効率の観点から、好ましくはイントロン26とエクソン27との境界領域、エクソン27の全領域及びエクソン27とイントロン27との境界領域を含む上記塩基配列(c)である。
 ウイルスベクターは、1種又は2種以上のRNAを発現させることができる。1種のRNAを発現させる場合、該RNAは、イントロン26とエクソン27との境界領域の塩基配列、エクソン27の全領域及びエクソン27とイントロン27との境界領域の塩基配列を含むことが好ましい。2種以上のRNAを発現させる場合、1種以上のイントロン26とエクソン27との境界領域の塩基配列のRNA及び1種以上のエクソン27とイントロン27との境界領域の塩基配列のRNAを発現させることが好ましい。2種類以上のRNAを発現させる場合は、アンチセンスオリゴマーを別々に発現させるカセットをそれぞれもつ2種類以上のウイルスベクターを組み合わせて用いるのが好ましい。
 ウイルスベクターの種類は限定されない。例えば、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス等が挙げられる。アデノ随伴ウイルスの血清型(セロタイプ)としては、AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV-PHP.B、AAV-PHP.eB、AAV-DJ、AAV-DJ/8等が挙げられる。
 所望の配列を搭載したウイルスベクターの製造は、当該技術分野で公知の方法を適宜参照して行うことができる。
[医薬組成物]
 本発明は、上記アンチセンスオリゴマー、又は、上記ウイルスベクターを有効成分とする医薬組成物を提供する。
 医薬組成物は、好ましい態様の1つにおいて、ウェルナー症候群治療用の医薬組成物である。医薬組成物の別の好ましい態様において、ヒトWRN遺伝子のエクソン27のスキッピングを誘導するための医薬組成物である。
<有効成分>
 医薬組成物は、有効成分として、上記アンチセンスオリゴマー、又は、上記ウイルスベクターを含む。
 有効成分として上記アンチセンスオリゴマー、又は、上記ウイルスベクターを、1種又は2種以上含むことができる。
<担体>
 医薬組成物は、必要に応じて、1種類又は2種類以上の薬学的に許容される担体を含む医薬組成物として提供される。
 担体として、脂質ナノ粒子(LNP)が挙げられる。脂質ナノ粒子を構成する脂質としては、カチオン性脂質、正又は負に帯電したリン脂質、ステロール、飽和若しくは不飽和の脂肪酸等及びこれらの組み合わせが挙げられる。担体が脂質ナノ粒子である場合、有効成分であるアンチセンスオリゴマー又はウイルスベクターは、脂質ナノ粒子に内包されていることが好ましい。
 担体として、更に、水性緩衝液、酸、及び塩基等のpH調節剤、アスコルビン酸やp-アミノ安息香酸等の安定化剤、D-マンニトール等の賦形剤、等張化剤、並びに保存剤等を例示できる。
<剤形>
 剤型としては、特に制限されないが、例えば、各種注射剤、経口剤、点滴剤、吸入剤、軟膏剤、ローション剤、スプレー剤等を挙げることができる。
 また、医薬組成物は、水溶液の形態、凍結溶液の形態、及び凍結乾燥品のいずれでも提供が可能である。
<有効成分の含有量>
 有効成分の医薬組成物中の含有量は特に限定されない。有効成分の種類、用途、剤形、担体の種類に応じて適宜設定することができる。有効成分の医薬組成物中の含有量は、例えば、0.0001質量%以上、好ましくは0.001質量%以上、より好ましくは0.01質量%以上であり、そして、100質量%以下、好ましくは90質量%以下、より好ましくは50質量%以下である。
<投与対象>
 医薬組成物は、ウェルナー症候群の患者及びキャリアを投与対象とする。具体的には、ヒトWRN遺伝子においてc.3139-1G>C変異をホモ接合体又はヘテロ接合体で有する、ウェルナー症候群の患者及びキャリアを投与対象とする。
 投与対象の人種、性別、年齢は特に限定されない。
 なお、世界中で報告されているウェルナー症候群の患者のうち、約6割が日本人である。また、日本国内で報告されているウェルナー症候群患者の70.7%は、ヒトWRN遺伝子におけるc.3139-1G>C変異を有する。
 ウェルナー症候群の患者は、例えば、早老性毛髪変化(白髪、禿頭など)、白内障(両側)、皮膚の萎縮・硬化(鶏眼や胼胝等)、難治性潰瘍形成、軟部組織の石灰化(アキレス腱等)、糖、脂質代謝異常、早期に現れる動脈硬化(狭心症、心筋梗塞等)等の症状を呈する。投与対象は、このような症状を呈する患者であっても、症状がまだ顕れていない患者又はキャリアであってもよい。
<投与経路>
 医薬組成物の投与経路としては、例えば、経皮投与、皮下投与、筋肉内投与、静脈内投与、動脈内投与等の非経口投与、経口投与が挙げられる。投与経路は、症状に応じて、例えば、老化兆候が顕われた箇所に適した投与経路とすることができる。
 例えば、潰瘍形成の症状を有する患者において、軟膏剤、ローション剤、スプレー剤等による経皮投与とすることができる。
<投与量>
 投与量は、当業者が適宜設定することができる。
 有効成分がアンチセンスオリゴマーである場合、アンチセンスオリゴマーの投与量は、好ましくは0.1mg/kg以上、より好ましくは1mg/kg以上、更に好ましくは10mg/kg以上であり、そして、好ましくは1000mg/kg以下、より好ましくは500mg/kg以下、更に好ましくは100mg/kg以下である。局所投与の場合は、好ましくは0.01μg以上、より好ましくは1μg以上であり、そして、好ましくは1000μg以下、より好ましくは100μg以下である。また、全身投与の場合は、好ましくは0.1mg/kg以上、より好ましくは1mg/kg以上であり、そして、好ましくは500mg/kg以下、より好ましくは100mg/kg以下である。
 また、有効成分がアンチセンスオリゴマーである場合、1日1回から数回の投与、又は、投与間隔を1日間若しくは数日間として投与することができる。
 有効成分がウイルスベクターである場合、ウイルスベクターの投与量は、好ましくは1×1012vg/kg以上、より好ましくは1×1013vg/kg以上、更に好ましくは2×1013vg/kg以上であり、そして、好ましくは1×1016vg/kg以下、より好ましくは1×1015vg/kg以下、更に好ましくは5×1014vg/kg以下である。
 また、有効成分がウイルスベクターである場合、1回の投与、又は、複数回の投与とすることができる。
[治療方法]
 本発明は、ウェルナー症候群の患者及びキャリアに、有効量の上記アンチセンスオリゴマー、又は、上記ウイルスベクターを投与する工程を含む、ウェルナー症候群の治療法をも提供する。
 具体的な有効成分、投与対象、投与量等については、上記の記載の通りである。
 以下、実施例によって本発明を具体的に説明する。
 実施例における細胞培養は、37℃、5%二酸化炭素の湿潤環境下で行った。
製造例1:モルホリノアンチセンスオリゴマーの作製(1)
 下記表1に示す配列のモルホリノアンチセンスオリゴマーを合成した。合成は、Gene Tools,LLC社の提供する受託合成サービスへ委託した。
Figure JPOXMLDOC01-appb-T000009
製造例2:WS-iPS細胞株の作製および培養方法
 ヒトWRN遺伝子のイントロン25にc.3139-1G>Cホモ接合変異を有するウェルナー患者より末梢血単核球細胞を採取し非特許文献2の記載に準じて、iPS細胞株を樹立し、WS-iPS細胞株を得た。iPS細胞株の培養には、iPS/ES細胞増殖用培地「StemFit AK02N」(味の素ヘルシーサプライ株式会社製)、培養用基質「iMatrix-511」(株式会社ニッピ製)、及びROCK阻害剤Y-27632(富士フイルム和光純薬株式会社製)を用いた。
製造例3:WS-WRN gene corrected iPS細胞株の作製
 製造例2で得たWS-iPS細胞株において、非特許文献2の記載に準じて、CRISPR/Cas9 Homology Directed Repair(HDR)ゲノム編集技術を用いて、ヒトWRN遺伝子のイントロン25のc.3139-1G>C変異を野生型へと修復した細胞株を樹立し、WS-WRN gene corrected iPS細胞株を得た。
製造例4:WS-iMSC細胞株の作製
 製造例2で得たWS-iPS細胞株において、胚葉体を形成させた後、IV型コラーゲンでコートされた60mm培養皿(Corning社製)上で間葉系幹細胞分化メディウムを用いて5日間培養した。その後コラーゲンI(新田ゼラチン株式会社製)でコートされた100mm培養皿上で培養メディウムを用いて培養を継続し、iPS細胞由来の間葉系幹細胞であるWS-iMSC細胞株を得た。
 使用した間葉系幹細胞分化メディウム及び培養メディウムの組成は以下の通りである。
〔間葉系幹細胞分化メディウム〕
 α-MEM(Thermo Fisher社製)
 10% FBS(ウシ胎児血清、Thermo Fisher社製)
 100nM デキサメタゾン(Merck社製)
 50μM L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate(Merck社製)
〔培養メディウム〕
 α-MEM
 10% FBS(ウシ胎児血清、Thermo Fisher社製)
 0.1mM Non-Essential Amino Acid(Thermo Fisher社製)
製造例5:アンチセンスオリゴ発現レンチウイルスベクタープラスミドの作製
 下記表2に示す配列のオリゴDNAを合成し、得られたオリゴDNAの当量混合液を99℃で15分間加熱した後、2時間かけて室温に冷却し、オリゴDNAをアニーリングし二本鎖DNAを得た。得られた二本鎖DNAを、T4 Polynucleotide Kinase(NEB社製)を用いて末端のリン酸化を行い、制限酵素AgeI及びEcoRIで消化したレンチウイルスベクターpLKO.1 puro)にライゲーションを行った。レンチウイルスベクターpLKO.1 puroは、非営利のプラスミドレポジトリであるAddgeneから入手した。大腸菌株DH5αへ形質転換させて、得られた大腸菌株からNucleoBond Midi(タカラバイオ株式会社製)を用いてプラスミドを精製し、アンチセンスオリゴ発現レンチウイルスベクタープラスミド(pLenti-anti-WRN-Ex27)を得た。
Figure JPOXMLDOC01-appb-T000010
製造例6:アンチセンスオリゴ発現レンチウイルスベクターの作製
 HEK293細胞を10%FBS、DMEM培地を用いて培養し、Lipofectamine 2000試薬(Thermo Fisher Scientific社製)を用いてpCMV-VSV-G、psPAX2、及び製造例5で得たpLenti-anti-WRN-Ex27の3種のプラスミドを遺伝子導入した。24時間後、培地交換を行い、遺伝子導入後48時間に培養上清を回収した。得られたウイルス溶液をAmicon Ultra centrifugal Filters(Millipore sigma社製)に移し、5000rpm 30分にて遠心を行うことで濃縮ウイルス溶液を得た。得られた濃縮ウイルス溶液を用いてアンチセンスオリゴ発現レンチウイルスベクターをHEK293に感染させて、濃縮ウイルス溶液の感染能力の確認及びタイターの計算を行い、製造したウイルスベクターが十分な感染能力を持つことを確認した。
製造例7:モルホリノアンチセンスオリゴマーの作製(2)
 下記表3に示す配列のモルホリノアンチセンスオリゴマーを合成した。合成は、Gene Tools,LLC社の提供する受託合成サービスへ委託した。
 ASO15及びASO16は、Vivo-Morpholinosである。
Figure JPOXMLDOC01-appb-T000011
実施例1:iPS細胞におけるエクソンスキッピング(1)(モルホリノアンチセンスオリゴマー)
 製造例2で得たWS-iPS細胞及び製造例3で得たWS-gene corrected iPS細胞を、24穴プレートに播種し、24時間後、これらの細胞に対してEndo-Porter試薬(GeneTools,LLC社製)を用いて製造例1で得たASO1、ASO2、ASO3及びASO4を、それぞれ10μMの濃度で添加した。
 その後、24時間培養を行った。
試験例1-1:RT-PCR解析
 細胞を回収し、「PureLink RNA Miniキット」(Thermo Fisher社製)を用いて、Total RNAを精製した。Total RNAを鋳型として、SuperScript III試薬(Thermo Fisher社製)を用いた逆転写反応を行い、cDNAを合成した。更に、得られたcDNAを鋳型として、下記表4に示すプライマー対を用いて、Polymerase chain reaction(PCR)を行った。プライマー1は、エクソン25に対するプライマーであり、プライマー2はエクソン28に対するプライマーである。
Figure JPOXMLDOC01-appb-T000012
 得られたPCR増幅産物を1%アガロースゲル電気泳動により解析した。結果を図1に示す。
 図1に示すように、対照(Control)であるASO4を添加したWS-iPS細胞においては、エクソン26が欠損した258bpの変異体のバンドが観察された。
 一方、ASO1、ASO2又はASO3を添加したWS-iPS細胞において、エクソンスキッピングによってヒトWRN遺伝子のエクソン26に加えてエクソン27が欠損して短縮した182bpのバンドが観察された。
 以上の結果は、ASO1及びASO2をそれぞれ添加することで、ヒトWRN遺伝子のエクソン27のエクソンスキッピングが誘発できることを示している。
 なお、WS-WRN gene corrected iPS細胞においては、ASO1又はASO2を添加した場合と、対照であるASO4を添加した場合とで、バンドの変化は観察されなかった。
 得られたPCR増幅産物の1%アガロースゲル電気泳動結果をImage J画像解析ソフトウエア(米国国立衛生研究所(NIH)製)で解析し、エクソンスキッピングの効率の定量を行なった。結果を図2に示す。
 バンド輝度に基づき定量したASO1、ASO2及びASO3のエクソンスキッピングの効率は、それぞれ、27.9±0.7%、43.0±2.1%及び49.7±0.8%であった。以上の結果は、ASO1、ASO2又はASO3をそれぞれ添加することで、ヒトWS患者のWRN遺伝子のスプライシングにおいて、エクソン27のエクソンスキッピングが誘発され、結果として、エクソン27において生じた終止コドンが機能しなくなり、正常なWRN遺伝子の終止コドンにいたるmRNAの遺伝子発現が誘導できることを示している。また、アンチセンスオリゴマーを用いエクソン27をスキッピングした場合、WRN遺伝子の終止コドンにいたる短くなったmRNAの発現レベルは、ウェルナー症候群を発症しないヘテロ変異の場合(正常に比べ半分の発現量)と、ほぼ同等のレベルで発現することが確認された。
試験例1-2:ウェスタンブロッティング解析
 細胞を回収し、ウェスタンブロッティング法によりヒトWRNタンパク質の発現を確認した。結果を図3に示す。検出には抗WRN抗体(Abcam社製、ab66606)、抗GAPDH抗体(Cell Signaling Technology社製、#5174)、二次抗体(GE Healthcare社製、 #NA931、#NA934)をそれぞれ用いた。
 図3に示すように、ASO2を添加したWS-iPS細胞において、野生型WRNタンパク質よりも分子量の小さいタンパク質の顕著な発現が観察された。また、ASO1を添加したWS-iPS細胞において、同程度の分子量のタンパク質の微かな発現が観察された。
 以上の結果は、ASO1及びASO2のそれぞれの添加により、ヒトWRN遺伝子のエクソン27のエクソンスキッピングが程度は異なるものの各々誘発され、対応する変異型タンパク質の発現が誘導されることを示している。
実施例2:iMSC細胞におけるエクソンスキッピング(1)(モルホリノアンチセンスオリゴマー)
 製造例4で得たWS-iMSC細胞を、24穴プレートに播種した。その時点から72時間毎に、これらの細胞に対してEndo-Porter試薬(GeneTools,LLC社製)を用いて製造例1で得たASO3及びASO4を、それぞれ10μMの濃度で添加した。
 試験例2-1:PDL細胞増殖曲線解析
 ASO3及びASO4をそれぞれ添加したWS-iMSC細胞について、PDL細胞増殖曲線解析を行った。結果を図4及び図5に示す。
 図4に示すように、対照であるASO4を添加したWS-iMSC細胞では、培養1ヶ月後の時点で細胞増殖停止が観察された。一方、ASO3を添加したWS-iMSC細胞では、細胞増殖が有意に持続して行われることが観察された。
 図5に示すように、継代30日後における1週間での細胞増殖能すなわち細胞倍化回数(PDL、Population Doubling Level)の変化値はASO4を添加サンプルでは0.67±0.20(n=4)であった。これに対して、ASO3を添加サンプルではPDLの変化値は2.8±0.26(n=4、p値<0.006)であり、顕著な細胞増殖能の回復が観察された。
 試験例2-2:細胞形態の観察
 ASO3及びASO4をそれぞれ添加したWS-iMSC細胞について、光学顕微鏡下での細胞形態観察を行った。結果を図6に示す。
 図6に示すように、ASO4を添加したWS-iMSC細胞では、細胞老化の典型的な表現型である細胞の扁平肥大化、核の構造の変化等を示す細胞の増加が観察された。一方、ASO3を添加したWS-iMSC細胞では、細胞老化の表現型を示す細胞の増加は観察されなかった。
 試験例2-3:SA-β-Gal染色
 ASO3及びASO4をそれぞれ添加したWS-iMSC細胞について、SA-β-Gal染色を行った。結果を図7及び図8に示す。なお、SA-β-Galは、老化細胞において過剰発現が認められ、細胞老化の指標である。
 図7に示すSA-β-Gal染色像において、ASO4を添加したWS-iMSC細胞では、顕著なSA-β-Gal陽性細胞の増加が観察され、早期細胞老化を示す。一方、ASO3を添加したWS-iMSC細胞では、SA-β-Gal陽性細胞の増加は観察されなかった。
 図8に示すSA-β-Gal染色陽性細胞の定量解析結果において、ASO4を添加したWS-iMSC細胞では、顕著なSA-β-Gal陽性細胞が確認され、早期細胞老化を示す。一方、ASO3を添加したWS-iMSC細胞では、SA-β-Gal陽性細胞数が有意に抑制されたことが観察された。
 ウェルナー症候群患者は、全身で早期老化の徴候を示す。ウェルナー症候群患者由来の体細胞は、in vitro培養条件下においても早期老化の表現型を示す。一方、細胞分化を初期化した細胞では、老化の表現型は示さない。
 以上の結果は、ウェルナー症候群患者由来の体細胞が示す細胞老化進行の表現型が、ASO3の添加により抑制されていることを示している。
 試験例2-4:テロメア長解析
 ASO3及びASO4をそれぞれ添加したWS-iMSC細胞について、テロメア長を定量PCR法(qPCR)により解析した。
 ウェルナー症候群患者由来の体細胞は、細胞老化の進行に伴いテロメア長の短縮が健常者と比べて亢進することが知られている。これは、WRN遺伝子がコードするタンパク質はテロメア結合蛋白質であるためと考えられる。そのため、テロメア長はWRN遺伝子の機能活性の指標となる。
 具体的には、細胞倍化回数(PDL)20の細胞ペレットからDNeasy Blood&Tissue Kit(QIAGEN社製)を用いてゲノムDNAを抽出した。
 鋳型としてゲノムDNA20ng、下記表5に示すteloF及びteloRのプライマー対、又は、36B4F及び36B4Rのプライマー対0.1mMずつ、並びに2×SYBR Green PCR Master Mix(Thermo Fisher社製)を96穴プレートに添加した。CFX Connect Real-Time System(Bio-Rad Laboratories社製)を用いて、以下サイクルによりPCR増幅反応を行った:95℃10分でプライミング後、95℃15秒、60℃1分を40サイクル。
Figure JPOXMLDOC01-appb-T000013
 36B4F及び36B4Rのプライマー対のPCR増幅産物を内部コントロールとして、デルタ・デルタCt法によりテロメア長を相対値により求めた(図中、Relative telomere length)。結果を図9に示す。
 図9に示すように、ASO3を添加したWS-iMSC細胞において、対照のASO4を添加したWS-iMSC細胞に比して、テロメア長が有意に長かった。
 以上の結果は、ASO3を添加したWS-iMSC細胞で誘導される変異型タンパク質は、機能活性を保持していることを示している。
 試験例2-4:遺伝子発現解析
 ASO3及びASO4をそれぞれ添加したWS-iMSC細胞について、RNAシークエンス法により遺伝子発現解析を行った。
 PDL8の細胞ペレットに対して、「PureLink RNA Miniキット」(Thermo Fisher社製)を用いて、Total RNAを精製した。Total RNAを鋳型として、NEBNext Ultra RNA Library Prep Kit(New England BioLabs社製、カタログ番号:E7370S)を用いてcDNAライブラリーを合成した。HiSeq1500(Illumina社製)を使用して、60bpシングルリードで配列決定を行った。
 RNA-seqリードの参照ゲノムUCSC/hg19に対するマッピングを、TopHatを用いて実施した。アノテーションデータは、iGenomes(Illumina社製)より取得した。遺伝子発現量の定量にはiDEP(Ge SX, et al,BMC Bioinformatics.2018;19:534参照)を使用した。False discovery rate < 0.05、発現量2倍をカットオフとしてDEG(Differentially Expressed Genes)解析を行い、ASO3を添加したWS-iMSC細胞とASO4を添加したWS-iMSC細胞との間で発現量に有意差のある遺伝子を抽出した。
 発現量に有意差のある遺伝子として、老化関連炎症性遺伝子であるIL1B、IL6、CXCL8等が抽出された。図10に、発現量の比較を示す。
 ウェルナー症候群患者由来の体細胞において、老化関連炎症性遺伝子の発現量が亢進することが知られている。一方、図10に示すように、ASO3を添加したWS-iMSC細胞において、対照のASO4を添加したWS-iMSC細胞に比して、老化関連炎症性遺伝子であるIL1B、IL6及びCXCL8の発現量が有意に少なかった。
 以上の結果は、ウェルナー症候群患者由来の体細胞が示す細胞老化進行の表現型が、ASO3の添加により抑制されていることを示している。
実施例3:iPS細胞におけるエクソンスキッピング(2)(アンチセンスオリゴマー発現レンチウイルス)
 製造例2で得たWS-iPS細胞及び製造例3で得たWS-gene corrected iPS細胞に、製造例6で得た濃縮ウイルス溶液を用いてアンチセンスオリゴ発現レンチウイルスを感染させ、以下に示す実験により、モルホリノアンチセンスオリゴマーを用いた場合と同様に、アンチセンスオリゴ発現レンチウイルスを用いた場合でも、エクソン27のエクソンスキッピングが達成できることを確認できる。
 上記試験例1-1と同様にしてRT-PCR解析を行い、アンチセンスオリゴ発現レンチウイルスを感染させることにより、ヒトWRN遺伝子のエクソン27のエクソンスキッピングが誘発できることを確認する。
 また、上記試験例1-2と同様にしてウェスタンブロッティング解析を行い、アンチセンスオリゴ発現レンチウイルスを感染させることにより、ヒトWRN遺伝子のエクソン27のエクソンスキッピングが誘発され、対応する変異型タンパク質の発現が誘導されることを確認する。
実施例4:iMSC細胞におけるエクソンスキッピング(2)(アンチセンスオリゴマー発現レンチウイルス)
 製造例4で得たWS-iMSC細胞に、製造例6で得た濃縮ウイルス溶液を用いてアンチセンスオリゴ発現レンチウイルスを感染させ、以下の実験を行うことにより、モルホリノアンチセンスオリゴマーを用いた場合と同様に、アンチセンスオリゴ発現レンチウイルスを用いた場合でも、エクソン27のエクソンスキッピングの効果を確認できる。
 試験例2-1~試験例2-3と同様にして、PDL細胞増殖曲線解析、細胞形態の観察、及びSA-β-Gal染色を行う。
実施例5:iPS細胞におけるエクソンスキッピング(3)(モルホリノアンチセンスオリゴマー)
 製造例2で得たWS-iPS細胞を、24穴プレートに播種し、24時間後、これらの細胞に対してEndo-Porter試薬(GeneTools,LLC社製)を用いて製造例1で得たASO4、並びに、製造例1で得たASO5、ASO6、ASO7、ASO8、ASO9、ASO10、ASO11、ASO12、ASO13、ASO14、ASO15及びASO16を、それぞれ10μMの濃度で添加した(図中、「Endo-Porter(+)」)。
 また、Endo-Porter試薬を用いない以外は同様にして、ASO15及びASO16を、それぞれ10μMの濃度で添加した(図中、「Endo-Porter(-)」)。
 その後、24時間培養を行った。
試験例5-1:RT-PCR解析
 上記試験例1-1と同様にして、RT-PCR解析を行った。結果を図11に示す。
 図11に示すように、対照であるASO4及びASO15を添加したWS-iPS細胞においては、エクソン26が欠損した258bpの変異体のバンドが観察された。
 一方、ASO5、ASO6、ASO7、ASO8、ASO9、ASO10、ASO11、ASO3、ASO12、ASO13、ASO14、又はASO16を添加したWS-iPS細胞において、エクソンスキッピングによってヒトWRN遺伝子のエクソン26に加えてエクソン27が欠損して短縮した182bpのバンドが観察された。
 さらに、ペプチド結合モルフォリノであるASO16を添加したWS-iPS細胞においては、Endo-Porter試薬を用いない場合でも上記182bpのバンドが観察された。
 以上の結果は、ASO5、ASO6、ASO7、ASO8、ASO9、ASO10、ASO11、ASO3、ASO12、ASO13、ASO14、及びASO16をそれぞれ添加することで、ヒトWRN遺伝子のエクソン27のエクソンスキッピングが誘発できることを示している。
 更に、上記試験例1-2と同様にして、エクソンスキッピングの効率の定量を行なった。結果を図12及び表6に示す。
Figure JPOXMLDOC01-appb-T000014
 以上の結果は、ASO5、ASO6、ASO7、ASO8、ASO9、ASO10、ASO11、ASO3、ASO12、ASO13、ASO14、又はASO16をそれぞれ添加することで、ヒトWS患者のWRN遺伝子のスプライシングにおいて、エクソン27のエクソンスキッピングが誘発され、結果として、エクソン27において生じた終止コドンが機能しなくなり、正常なWRN遺伝子の終止コドンにいたるmRNAの遺伝子発現が誘導できることを示している。
 また、ペプチド結合モルフォリノであるASO16を、導入試薬を使用せずに添加した場合は、100%近いエクソンスキッピング効率を示すことも分かった。
 実施例の結果より、本発明のアンチセンスオリゴマーは、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを可能とし、タンパク質の機能が少なくとも部分的に回復した変異型タンパク質の発現を誘導することが分かる。すなわち、本発明のアンチセンスオリゴマーは、ウェルナー症候群における早期老化症状を抑制できる医薬の有効成分として使用することができる。

Claims (15)

  1.  下記(i)又は(ii)の塩基配列に相補的な塩基配列からなり、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを可能とする、アンチセンスオリゴマー又はその薬学的に許容される塩。
    (i)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列
    (ii)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列
  2.  前記塩基配列(i)又は塩基配列(ii)において、前記連続した塩基配列の塩基長が20塩基以上40塩基以下である、請求項1に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  3.  前記塩基配列(i)又は塩基配列(ii)において、前記連続した塩基配列が、配列番号2に示す塩基配列及び配列番号3に示す塩基配列の少なくとも一方を含む、請求項1に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  4.  前記塩基配列(i)又は塩基配列(ii)において、連続した塩基配列が配列番号4に示す塩基配列及び配列番号5に示す塩基配列の少なくとも一方を含む、請求項3に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  5.  前記塩基配列(i)又は塩基配列(ii)において、前記連続した塩基配列が、配列番号6~15のいずれかに示す塩基配列からなる、請求項1に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  6.  前記アンチセンスオリゴマーが、オリゴヌクレオチド、モルホリノオリゴマー、ペプチド核酸(PNA)オリゴマー、又はグリコール核酸(GNA)オリゴマーである、請求項1に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  7.  前記アンチセンスオリゴマーがモルホリノオリゴマーである、請求項1に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  8.  前記モルホリノオリゴマーがホスホロジアミデートモルホリノオリゴマーである、請求項7に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  9.  前記オリゴヌクレオチドが、架橋型核酸(BNA)ヌクレオチドからなる群より選択される1種以上を含むオリゴヌクレオチドである、請求項6に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  10.  5’末端及び3’末端の少なくとも一方が修飾されている、請求項1に記載のアンチセンスオリゴマー又はその薬学的に許容される塩。
  11.  下記の(i)又は(ii)の塩基配列に相補的な塩基配列からなり、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを可能とするRNAを発現させるウイルスベクター。
    (i)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列
    (ii)配列番号1に示す塩基配列のうち15塩基以上の連続した塩基配列において、1又は複数の塩基が欠失、置換又は挿入された塩基配列
  12.  前記塩基配列(i)又は塩基配列(ii)において、連続した塩基配列が配列番号16に示す塩基配列を含む、請求項11に記載のウイルスベクター。
  13.  請求項1~10のいずれか1項に記載のアンチセンスオリゴマー若しくはその薬学的に許容される塩、又は、請求項11若しくは12に記載のウイルスベクターを有効成分とする、ウェルナー症候群治療用医薬組成物。
  14.  2種以上のアンチセンスオリゴマー又はその薬学的に許容される塩を有効成分とする、請求項13に記載のウェルナー症候群治療用医薬組成物。
  15.  請求項1~10のいずれか1項に記載のアンチセンスオリゴマー若しくはその薬学的に許容される塩、又は、請求項11若しくは12に記載のウイルスベクターを有効成分とする、ヒトWRN遺伝子の第27番目のエクソンのスキッピングを誘導するための医薬組成物。

     
PCT/JP2022/020224 2021-05-13 2022-05-13 アンチセンスオリゴマー WO2022239863A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280034517.5A CN117321205A (zh) 2021-05-13 2022-05-13 反义寡聚物
EP22807561.0A EP4342498A1 (en) 2021-05-13 2022-05-13 Antisense oligomer
JP2023521264A JPWO2022239863A1 (ja) 2021-05-13 2022-05-13
US18/290,183 US20240287511A1 (en) 2021-05-13 2022-05-13 Antisense Oligomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021081389 2021-05-13
JP2021-081389 2021-05-13

Publications (1)

Publication Number Publication Date
WO2022239863A1 true WO2022239863A1 (ja) 2022-11-17

Family

ID=84028383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020224 WO2022239863A1 (ja) 2021-05-13 2022-05-13 アンチセンスオリゴマー

Country Status (5)

Country Link
US (1) US20240287511A1 (ja)
EP (1) EP4342498A1 (ja)
JP (1) JPWO2022239863A1 (ja)
CN (1) CN117321205A (ja)
WO (1) WO2022239863A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009033A1 (en) 1989-12-20 1991-06-27 Anti-Gene Development Group Uncharged morpholino-based polymers having phosphorous-containing chiral intersubunit linkages
WO2009064471A1 (en) 2007-11-15 2009-05-22 Avi Biopharma, Inc. Method of synthesis of morpholino oligomers
WO2010048586A1 (en) 2008-10-24 2010-04-29 Avi Biopharma, Inc. Multiple exon skipping compositions for dmd
WO2013100190A1 (ja) 2011-12-28 2013-07-04 日本新薬株式会社 アンチセンス核酸

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009033A1 (en) 1989-12-20 1991-06-27 Anti-Gene Development Group Uncharged morpholino-based polymers having phosphorous-containing chiral intersubunit linkages
WO2009064471A1 (en) 2007-11-15 2009-05-22 Avi Biopharma, Inc. Method of synthesis of morpholino oligomers
WO2010048586A1 (en) 2008-10-24 2010-04-29 Avi Biopharma, Inc. Multiple exon skipping compositions for dmd
WO2013100190A1 (ja) 2011-12-28 2013-07-04 日本新薬株式会社 アンチセンス核酸

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AARTSMA-RUS ANNEMIEKE; VAN OMMEN GERT-JAN B: "Antisense-mediated exon skipping: A versatile tool with therapeutic and research applications", RNA, vol. 13, no. 10, 1 October 2007 (2007-10-01), US , pages 1609 - 1624, XP009144451, ISSN: 1355-8382 *
GE SX ET AL., BMC BIOINFORMATICS, vol. 19, 2018, pages 534
HARDING P L; FALL A M; HONEYMAN K; FLETCHER S; WILTON S D: "The influence of antisense oligonucleotide length on dystrophin exon skipping.", MOLECULAR THERAPY, vol. 15, no. 1, 1 January 2007 (2007-01-01), US , pages 157 - 166, XP009101408, ISSN: 1525-0016, DOI: 10.1038/sj.mt.6300006 *
KATO H ET AL., STEM CELL RESEARCH., vol. 53, May 2021 (2021-05-01), pages 102360
KATO HISAYA; MAEZAWA YOSHIRO; OUCHI YASUO; TAKAYAMA NAOYA; SONE MASAMITSU; SONE KANAKO; TAKADA-WATANABE AKI; TSUJIMURA KYOKO; KOSH: "Generation of disease-specific and CRISPR/Cas9-mediated gene-corrected iPS cells from a patient with adult progeria Werner syndrome", STEM CELL RESEARCH, vol. 53, 23 April 2021 (2021-04-23), NL , pages 1 - 5, XP086583333, ISSN: 1873-5061, DOI: 10.1016/j.scr.2021.102360 *
XIE J ET AL., FRONT PHARMACOL., vol. 11, 20 May 2020 (2020-05-20), pages 697
YOKOTE K ET AL., HUM MUTAT., vol. 38, no. 1, January 2017 (2017-01-01), pages 7 - 15
YOKOTE KOUTARO, CHANPRASERT SIRISAK, LEE LIN, EIRICH KATHARINA, TAKEMOTO MINORU, WATANABE AKI, KOIZUMI NAOKO, LESSEL DAVOR, MORI T: "WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects", HUMAN MUTATION, vol. 38, no. 1, 1 January 2017 (2017-01-01), US , pages 7 - 15, XP093003516, ISSN: 1059-7794, DOI: 10.1002/humu.23128 *

Also Published As

Publication number Publication date
EP4342498A1 (en) 2024-03-27
CN117321205A (zh) 2023-12-29
JPWO2022239863A1 (ja) 2022-11-17
US20240287511A1 (en) 2024-08-29

Similar Documents

Publication Publication Date Title
JP7041879B2 (ja) アンチセンス核酸
JP6647430B2 (ja) アンチセンス核酸
KR102368918B1 (ko) 레베르 선천성 흑암시 치료용 올리고뉴클레오타이드
KR102524543B1 (ko) 폼페병의 치료에 유용한 안티센스 올리고뉴클레오티드
JP2021536244A (ja) 遺伝子操作されたadarのリクルートを介したrna及びdna塩基の編集
KR102473431B1 (ko) 안티센스 핵산
CA2939948A1 (en) Antisense nucleic acids
CN118207212A (zh) 反义核酸
US20220333112A1 (en) Antisense nucleic acid that induces skipping of exon 50
US20230045557A1 (en) Antisense nucleic acid enabling exon skipping
WO2022239863A1 (ja) アンチセンスオリゴマー
CN117858949A (zh) 用于抑制粘蛋白5AC(MUC5AC)的表达的RNAi试剂、其组合物及其使用方法
WO2021084021A1 (en) Allele-specific silencing therapy for dfna9 using antisense oligonucleotides
RU2825834C2 (ru) Антисмысловые нуклеиновые кислоты
CN117940564A (zh) 反义低聚物的组合
TW202302848A (zh) 以crispr/sacas9治療第1型肌強直性營養不良之組合物及方法
KR20220139366A (ko) 안티센스 올리고뉴클레오티드 및 펜드리드 증후군 치료를 위한 이의 용도
WO2023112931A1 (ja) ATN1 mRNA又はpre-mRNAを標的とするアンチセンスオリゴヌクレオチド
NZ728103B2 (en) Antisense nucleic acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521264

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280034517.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022807561

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807561

Country of ref document: EP

Effective date: 20231213

ENP Entry into the national phase

Ref document number: 2022807561

Country of ref document: EP

Effective date: 20231213