WO2022239781A1 - 含フッ素ポリエーテル化合物 - Google Patents

含フッ素ポリエーテル化合物 Download PDF

Info

Publication number
WO2022239781A1
WO2022239781A1 PCT/JP2022/019868 JP2022019868W WO2022239781A1 WO 2022239781 A1 WO2022239781 A1 WO 2022239781A1 JP 2022019868 W JP2022019868 W JP 2022019868W WO 2022239781 A1 WO2022239781 A1 WO 2022239781A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
fluorine
formula
containing polyether
polyether compound
Prior art date
Application number
PCT/JP2022/019868
Other languages
English (en)
French (fr)
Inventor
好行 大石
剛 野口
Original Assignee
ダイキン工業株式会社
国立大学法人岩手大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, 国立大学法人岩手大学 filed Critical ダイキン工業株式会社
Priority to EP22807480.3A priority Critical patent/EP4339226A1/en
Priority to JP2023521211A priority patent/JPWO2022239781A1/ja
Priority to CN202280033656.6A priority patent/CN117295780A/zh
Publication of WO2022239781A1 publication Critical patent/WO2022239781A1/ja
Priority to US18/505,260 priority patent/US20240092971A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4006(I) or (II) containing elements other than carbon, oxygen, hydrogen or halogen as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers

Definitions

  • the present disclosure relates to fluorine-containing polyether compounds.
  • Non-Patent Document 1 discloses poly(perfluoroalkylene aryl ether) having a specific structure by polymerizing 1,6-bis(4-fluorophenyl)perfluorohexane with bisphenol AF, bisphenol A or resorcinol. It is stated that the obtained
  • Non-Patent Document 1 The highest glass transition temperature of the poly(perfluoroalkylene aryl ether) disclosed in Non-Patent Document 1 is only 95°C. Therefore, a fluorine-containing polyether compound with higher heat resistance is desired.
  • An object of the present disclosure is to provide a fluorine-containing polyether compound that exhibits sufficiently low dielectric constant and dielectric loss tangent, and has both a very high glass transition temperature and high solubility.
  • a fluorine-containing polyether compound having a repeating unit represented by formula (1) is provided.
  • n is an integer of 1 to 8
  • Ph is a phenylene group
  • X 1 represents a heterocyclic ring or a hydrocarbon ring.
  • One or both of the two phenylene groups represented by Ph, and X 1 The represented heterocycle or hydrocarbon ring may be condensed with each other, and the phenylene group, heterocycle and hydrocarbon ring may have a substituent.
  • X 1 is an optionally substituted aromatic heterocyclic ring, an optionally substituted aromatic hydrocarbon ring, or an optionally substituted It preferably represents an aliphatic hydrocarbon ring.
  • X 1 preferably represents at least one selected from the group consisting of rings represented by the following formulas.
  • the average degree of polymerization of the repeating unit represented by formula (1) is preferably 2-300.
  • a fluorine-containing polyether compound having a repeating unit represented by formula (2) is provided.
  • Formula (2) (In formula ( 2 ), n is an integer of 1 to 8, and X2 represents a polycyclic aromatic hydrocarbon ring which may have a substituent.)
  • the polycyclic aromatic hydrocarbon ring is at least one selected from the group consisting of biphenyl ring, terphenyl ring, quarterphenyl ring, naphthalene ring, anthracene ring, tetracene ring and pentacene ring. is preferred.
  • the average degree of polymerization of the repeating unit represented by formula (2) is preferably 2-300.
  • a low dielectric substance containing the fluorine-containing polyether compound is provided.
  • a semiconductor package substrate, flexible printed circuit board or rigid printed circuit board containing the fluorine-containing polyether compound is provided.
  • the fluorinated polyether compound of the present disclosure has a repeating unit represented by formula (1).
  • n is an integer of 1 to 8
  • Ph is a phenylene group
  • X 1 represents a heterocyclic ring or a hydrocarbon ring.
  • One or both of the two phenylene groups represented by Ph, and X 1 The represented heterocycle or hydrocarbon ring may be condensed with each other, and the phenylene group, heterocycle and hydrocarbon ring may have a substituent.
  • n represents an integer from 1 to 8. n is preferably an integer of 4 to 8, more preferably 4, 6 or 8.
  • Ph represents a phenylene group.
  • a phenylene group may or may not have a substituent.
  • substituents include halogen atoms such as fluorine atoms, alkyl groups such as methyl groups, and halogenated alkyl groups such as trifluoromethyl groups.
  • X 1 represents a heterocyclic ring or a hydrocarbon ring.
  • the heterocycle or hydrocarbon ring represented by X 1 is a ring having at least two bonds that bond to two phenylene groups, at least one bond that bonds to one of the two phenylene groups and two phenylene groups. It may be a ring having at least one carbon-carbon bond shared with another or a ring having at least two carbon-carbon bonds shared with two phenylene groups.
  • the heterocycle or hydrocarbon ring represented by X 1 is a ring having at least two bonds that bond to two phenylene groups, or at least one bond that bonds to one of two phenylene groups and two Rings having at least one carbon-carbon bond shared with the other of the phenylene groups are preferred.
  • the structure represented by -Ph-X 1 -Ph- is represented by Ph
  • a condensed ring formed by condensing at least one of the phenylene groups represented by X 1 with the heterocyclic ring or hydrocarbon ring represented by X 1 is included. Therefore, in the present disclosure, the phenylene group represented by Ph includes not only the residue resulting from removing two hydrogen atoms from benzene, but also removing one hydrogen atom and condensing with another ring Also included are residues derived from benzene forming part of a polycycle. Structures containing such condensed rings (structures represented by —Ph—X 1 —Ph—) include, for example, the following structures.
  • the heterocyclic ring is preferably a ring formed by carbon atoms and atoms other than carbon atoms. Atoms other than carbon atoms are preferably nitrogen atoms, oxygen atoms or sulfur atoms, and more preferably nitrogen atoms. That is, the heterocyclic ring is preferably a nitrogen-containing heterocyclic ring.
  • the number of atoms other than carbon atoms in the ring is preferably 1-3, more preferably 3.
  • the heterocycle may be an aliphatic heterocycle or an aromatic heterocycle.
  • an aromatic heterocycle is preferred.
  • heterocycles may be monocyclic or polycyclic.
  • the heterocyclic ring is preferably a monocyclic ring, more preferably a monocyclic aromatic heterocyclic ring, and even more preferably a monocyclic nitrogen-containing aromatic heterocyclic ring.
  • the number of ring members of the heterocyclic ring is not particularly limited, but is preferably 3 to 12, more preferably 5 or more, more preferably 9 or less, still more preferably 6 or less.
  • Heterocyclic rings include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, 1,2,3-oxadiazole ring, 1,2,4 -oxadiazole ring, 1,3,4-oxadiazole ring, furazane ring, 1,2,3-thiadiazole ring, 1,2,4-thiadiazole ring, 1,3,4-thiadiazole ring, 1,2 ,3-triazole ring, 1,2,4-triazole ring, tetrazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring and the like.
  • 1,3,5-triazine ring is particularly preferable.
  • a heterocyclic ring may or may not have a substituent.
  • substituents include halogen atoms such as a fluorine atom, alkyl groups such as a methyl group, halogenated alkyl groups such as a trifluoromethyl group, and aryl groups such as a phenyl group.
  • the hydrocarbon ring may be an aliphatic hydrocarbon ring or an aromatic hydrocarbon ring.
  • An aliphatic hydrocarbon ring may be a saturated or unsaturated hydrocarbon ring having no aromatic character.
  • Hydrocarbon rings may be monocyclic or polycyclic.
  • the polycyclic hydrocarbon ring may be a condensed ring.
  • the number of carbon atoms in the hydrocarbon ring is preferably 3 to 30, more preferably 5 or more, still more preferably 6 or more, more preferably 20 or less, still more preferably 14 or less.
  • hydrocarbon ring monocyclic saturated hydrocarbon rings such as cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring; monocyclic non-aromatic unsaturated hydrocarbon rings such as cyclopropene ring, cyclobutene ring, cyclopropene ring, cyclohexene ring, cycloheptene ring, cyclooctene ring; Polycyclic non-aromatic hydrocarbon rings such as norbornene ring, norbornadiene ring, decahydronaphthalene ring, bicycloundecane ring, and spirobicyclopentane ring; Benzene ring
  • the hydrocarbon ring may or may not have a substituent.
  • substituents include halogen atoms such as a fluorine atom, alkyl groups such as a methyl group, halogenated alkyl groups such as a trifluoromethyl group, and aryl groups such as a phenyl group.
  • heterocyclic ring or hydrocarbon ring represented by X 1 at least one selected from the group consisting of rings represented by the following formulas is preferable.
  • the wavy line represents the bonding position with the phenylene group represented by Ph
  • the dashed line represents the carbon-carbon bond shared with the phenylene group represented by Ph.
  • the glass transition temperature of the fluorine-containing polyether compound having a repeating unit represented by formula (1) is preferably 100 to 400°C, more preferably 110°C or higher, still more preferably 120°C or higher. It is preferably 300° C. or lower, more preferably 250° C. or lower.
  • the glass transition temperature is a value measured by thermomechanical analysis (TMA), differential scanning calorimetry (DSC) or dynamic viscoelasticity measurement (DMA).
  • the average degree of polymerization of the repeating unit represented by formula (1) is preferably 500 or less, more preferably 400 or less, and further It is preferably 300 or less, may be 2 or more, or may be 3 or more.
  • the average degree of polymerization is obtained by calculation from the number average molecular weight of the fluorine-containing polyether compound of the present disclosure.
  • the number average molecular weight (Mn) of the fluorine-containing polyether compound having the repeating unit represented by formula (1) is preferably 2,000 or more, more preferably 1, in terms of standard polystyrene by gel permeation chromatography (GPC). 10,000 or more, preferably 500,000 or less, and more preferably 300,000 or less.
  • the molecular weight distribution (Mw/Mn) of the fluorine-containing polyether compound having the repeating unit represented by formula (1) is preferably 2 or more and preferably 5 or less in terms of standard polystyrene by gel permeation chromatography (GPC). and more preferably 4 or less.
  • the logarithmic viscosity ⁇ inh of the fluorine-containing polyether compound having repeating units represented by formula (1) is preferably 0.3 dL/g or more, more preferably 0.5 dL/g or more.
  • the logarithmic viscosity ⁇ inh is obtained by dissolving a fluorine-containing polyether compound in N-methyl-2-pyrrolidone (NMP) or the like as a solvent to prepare a solution having a solution concentration of 0.5 g/dL. It can be calculated by measuring the solution viscosity at 30° C. and using the following formula.
  • Logarithmic viscosity ⁇ inh ln (solution viscosity/solvent viscosity)/solution concentration
  • a fluorine-containing polyether compound having a repeating unit represented by formula (1) is obtained by polymerizing a dihydroxy compound (11) represented by formula (11) and an active aromatic compound (12) represented by formula (12). It can be suitably produced by
  • Formula (12) (In formula (12), n is the same as formula (1), and Z is a halogen atom or a nitro group.)
  • Polymerization of the dihydroxy compound (11) and the active aromatic compound (12) can be carried out in the presence of a base.
  • the base include carbonates such as sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, cesium carbonate, and cesium hydrogencarbonate; hydroxides such as sodium hydroxide, potassium hydroxide, and cesium hydroxide; sodium fluoride; Examples include fluoride compounds such as potassium fluoride and cesium fluoride.
  • Solvents include N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), tetramethylurea (TMU), 1,3-dimethyl-2- imidazolidone (DMI), N,N'-dimethylpropyleneurea (DMPU), dimethylsulfoxide (DMSO), sulfolane, dimethylsulfone, diphenylsulfone, cyclopentanone, cyclohexanone, tetrahydrofuran (THF), 1,4-dioxane, etc. be done.
  • DMF N,N-dimethylformamide
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • TMU tetramethylurea
  • DI 1,3-dimethyl-2- imidazolidone
  • DMPU N,N'-dimethylpropyleneurea
  • An azeotropic solvent such as toluene, o-xylene, m-xylene and p-xylene is used to remove water generated by polymerization of the dihydroxy compound (11) and the active aromatic compound (12) in the presence of a base.
  • the polymerization temperature is preferably 50-250°C, more preferably 150-220°C.
  • the polymerization time is preferably 0.1 to 50 hours, more preferably 1 to 36 hours.
  • the average degree of polymerization of the repeating unit represented by formula (1) is adjusted by changing the molar ratio of the dihydroxy compound (11) and the active aromatic compound (12), the polymerization temperature, the polymerization time, the concentration of the polymerization solution, and the like. can do.
  • the fluorine-containing polyether compound of the present disclosure has a repeating unit represented by formula (2).
  • Formula (2) (In formula ( 2 ), n is an integer of 1 to 8, and X2 represents a polycyclic aromatic hydrocarbon ring which may have a substituent.)
  • n represents an integer from 1 to 8. n is preferably an integer of 4 to 8, more preferably 4, 6 or 8.
  • X2 represents a polycyclic aromatic hydrocarbon ring.
  • the polycyclic aromatic hydrocarbon ring represented by X 2 is a ring formed by removing two hydrogen atoms from a polycyclic aromatic hydrocarbon in which two or more aromatic rings are condensed, or two or more aromatic It is a ring formed by removing two hydrogen atoms from a polycyclic aromatic hydrocarbon in which rings are linked by single bonds.
  • the polycyclic aromatic hydrocarbon ring is directly bonded to two adjacent oxygen atoms.
  • the number of carbon atoms in the polycyclic aromatic hydrocarbon ring is preferably 8 to 30, more preferably 10 or more, more preferably 26 or less, still more preferably 22 or less.
  • the number of rings in the polycyclic aromatic hydrocarbon ring is preferably 2 to 8, more preferably 6 or less, still more preferably 5 or less.
  • Polycyclic aromatic hydrocarbon rings include biphenyl ring, terphenyl ring, quarterphenyl ring, naphthalene ring, phenanthrene ring, anthracene ring, fluorene ring, tetracene ring, chrysene ring, pyrene ring, triphenylene ring, pentacene ring, and benzopyrene. rings, perylene rings, and the like.
  • the polycyclic aromatic hydrocarbon ring is preferably at least one selected from the group consisting of biphenyl ring, terphenyl ring, quarterphenyl ring, naphthalene ring, anthracene ring, tetracene ring and pentacene ring.
  • the polycyclic aromatic hydrocarbon ring may or may not have a substituent.
  • substituents include halogen atoms such as a fluorine atom, alkyl groups such as a methyl group, halogenated alkyl groups such as a trifluoromethyl group, and aryl groups such as a phenyl group.
  • the glass transition temperature of the fluorine-containing polyether compound having a repeating unit represented by formula (2) is preferably 96 to 400°C, more preferably 100°C or higher, preferably 300°C or lower, and more preferably. is below 250°C.
  • the glass transition temperature is a value measured by thermomechanical analysis (TMA), differential scanning calorimetry (DSC) or dynamic viscoelasticity measurement (DMA).
  • the average degree of polymerization of the repeating unit represented by formula (2) is preferably 500 or less, more preferably 400 or less, and further It is preferably 300 or less, may be 2 or more, or may be 3 or more.
  • the average degree of polymerization is obtained by calculation from the number average molecular weight of the fluorine-containing polyether compound of the present disclosure.
  • the number average molecular weight (Mn) of the fluorine-containing polyether compound having the repeating unit represented by formula (2) is preferably 2,000 or more, more preferably 1, in terms of standard polystyrene by gel permeation chromatography (GPC). 10,000 or more, preferably 500,000 or less, and more preferably 300,000 or less.
  • the molecular weight distribution (Mw/Mn) of the fluorine-containing polyether compound having the repeating unit represented by formula (2) is preferably 2 or more and preferably 5 or less in terms of standard polystyrene by gel permeation chromatography (GPC). and more preferably 4 or less.
  • the logarithmic viscosity ⁇ inh of the fluorine-containing polyether compound having repeating units represented by formula (2) is preferably 0.3 dL/g or more, more preferably 0.5 dL/g or more.
  • the logarithmic viscosity ⁇ inh is obtained by dissolving a fluorine-containing polyether compound in N-methyl-2-pyrrolidone (NMP) or the like as a solvent to prepare a solution having a solution concentration of 0.5 g/dL. It can be calculated by measuring the solution viscosity at 30° C. and using the following formula.
  • Logarithmic viscosity ⁇ inh ln (solution viscosity/solvent viscosity)/solution concentration
  • a fluorine-containing polyether compound having a repeating unit represented by formula (2) is obtained by polymerizing a dihydroxy compound (21) represented by formula (21) and an active aromatic compound (22) represented by formula (22). It can be suitably produced by
  • Formula (22) (In formula (22), n is the same as formula (2), and Z is a halogen atom or a nitro group.)
  • Polymerization of the dihydroxy compound (21) and the active aromatic compound (22) can be carried out in the presence of a base.
  • the base include carbonates such as sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, cesium carbonate, and cesium hydrogencarbonate; hydroxides such as sodium hydroxide, potassium hydroxide, and cesium hydroxide; sodium fluoride; Examples include fluoride compounds such as potassium fluoride and cesium fluoride.
  • Solvents include N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), tetramethylurea (TMU), 1,3-dimethyl-2- imidazolidone (DMI), N,N'-dimethylpropyleneurea (DMPU), dimethylsulfoxide (DMSO), sulfolane, dimethylsulfone, diphenylsulfone, cyclopentanone, cyclohexanone, tetrahydrofuran (THF), 1,4-dioxane, etc. be done.
  • DMF N,N-dimethylformamide
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • TMU tetramethylurea
  • DI 1,3-dimethyl-2- imidazolidone
  • DMPU N,N'-dimethylpropyleneurea
  • An azeotropic solvent such as toluene, o-xylene, m-xylene and p-xylene is used to remove water generated by polymerization of the dihydroxy compound (21) and the active aromatic compound (22) in the presence of a base.
  • the polymerization temperature is preferably 50-250°C, more preferably 150-220°C.
  • the polymerization time is preferably 0.1 to 50 hours, more preferably 1 to 36 hours.
  • the average degree of polymerization of the repeating unit represented by formula (2) can be adjusted by changing the molar ratio of the dihydroxy compound (21) and the active aromatic compound (22), the polymerization temperature, the polymerization time, the concentration of the polymerization solution, etc. can be adjusted.
  • the fluorinated polyether compound of the present disclosure exhibits sufficiently low dielectric constant and dielectric loss tangent, and has both a very high glass transition temperature and high solubility, so it can be suitably used as a low dielectric substance.
  • the fluorine-containing polyether compound of the present disclosure exhibits sufficiently low dielectric constant and dielectric loss tangent, and has both a very high glass transition temperature and high solubility, so substrates such as semiconductor package substrates, flexible printed substrates, and rigid printed substrates can be suitably used as
  • the fluorine-containing polyether compound of the present disclosure exhibits a sufficiently low dielectric constant and dielectric loss tangent, and has both a very high glass transition temperature and high solubility.
  • TAB tape, COF tape, metal wiring, etc., metal wiring, cover base materials such as chip members such as IC chips, liquid crystal displays, organic electroluminescence displays, electronic paper, interlayer insulating films such as solar cells, bases It can be suitably used as a material for electronic components and electronic equipment such as base materials, adhesive sheets, prepregs and primers.
  • the fluorine-containing polyether compound of the present disclosure has a particularly low dielectric constant and a low dielectric loss at high frequencies, so it is suitable as a material for electronic components and electronic devices that use high frequencies, especially microwaves of 3 to 30 GHz.
  • it can be suitably used as a material for insulating plates of high-frequency circuits, insulating materials for connection parts, printed circuit boards, bases and antenna covers for high-frequency vacuum tubes, coaxial cables, coated wires such as LAN cables, and the like.
  • it can be suitably used as a material for devices such as satellite communication devices and mobile phone base stations that use microwaves of 3 to 30 GHz.
  • the printed circuit board is not particularly limited, but examples include printed wiring boards for electronic circuits such as mobile phones, various computers, and communication equipment.
  • the coaxial cable is not particularly limited, for example, one having a structure in which an inner conductor, an insulating coating layer, an outer conductor layer and a protective coating layer are laminated in order from the core to the outer periphery can be mentioned.
  • the fluorine-containing polyether compound of the present disclosure has a low dielectric constant and a low dielectric loss, and is excellent in heat resistance, solvent solubility, electrical insulation, colorless transparency and flexibility, and can be easily formed into a thin film. Therefore, it can be suitably used for interlayer insulating films, films, adhesive sheets, prepregs, primers, resist materials, and the like. Among others, it is suitable for interlayer insulating films and films.
  • the film can be produced by molding the fluorinated polyether compound of the present disclosure by a known film molding method such as an extrusion molding method, a calender molding method, or a solution casting method. Furthermore, the film may be subjected to sandblasting, corona treatment, plasma treatment, etching treatment, or the like.
  • GPC Tosoh Corporation high-speed GPC system HLC-8220GPC (column: Tosoh TSKgel ( ⁇ -M), column temperature: 45 ° C., detector: UV-8020, wavelength 254 nm, eluent: N-methyl- 2-pyrrolidone (NMP) (containing 0.01 mol/L lithium bromide), calibration curve: standard polystyrene, column flow rate: 0.2 mL/min)
  • FT-IR Infrared spectrum
  • FT/IR-4200 FT/IR-4200 manufactured by JASCO Corporation
  • Nuclear magnetic resonance spectrum (NMR): BRUKER AC400P (4) Thermogravimetric measurement (TGA): TG/DTA7300 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 10 ° C./min
  • DSC Differential scanning calorimetry
  • DSC DSC7000 manufactured by Hitachi High-Tech Science Co., Ltd., heating rate 20 ° C./min
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature.
  • the polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification.
  • the polymer was vacuum dried at room temperature for 10 hours.
  • the mixture was stirred at 170° C. for 24 hours.
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature.
  • the polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification.
  • the polymer was vacuum dried at room temperature for 10 hours.
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature. The polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification. The polymer was vacuum dried at room temperature for 10 hours.
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature.
  • the polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification.
  • the polymer was vacuum dried at room temperature for 10 hours.
  • the mixture was stirred at 170° C. for 24 hours.
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature.
  • the polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification.
  • the polymer was vacuum dried at room temperature for 10 hours.
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature.
  • the polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification.
  • the polymer was vacuum dried at room temperature for 10 hours.
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature.
  • the polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification.
  • the polymer was vacuum dried at room temperature for 10 hours.
  • the polymer After allowing to cool to room temperature, the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature. The polymer was dissolved in tetrahydrofuran (THF) and poured into a large amount of methanol for reprecipitation purification. The polymer was vacuum dried at room temperature for 10 hours. Yield of polymer: 0.93 g (yield: 69%) Logarithmic viscosity ( ⁇ inh ): 0.85 dL/g (NMP solution with a concentration of 0.5 g/dL, measured at 30°C) This polymer was dissolved in THF, cast on a glass plate, and dried under reduced pressure at room temperature for 6 hours, 50° C.
  • THF tetrahydrofuran
  • Example 10 Synthesis of fluorine-containing polyether (FPPFH-TMPBP) Instead of 4,4-dihydroxybiphenyl (BP) in Example 8, 4,4'-dihydroxy-2,2',3,3',5,5'- A polyether was synthesized by polymerizing at 190° C. for 24 hours using hexamethylbiphenyl (TMPBP).
  • FPPFH-TMPBP fluorine-containing polyether
  • BP 4,4-dihydroxybiphenyl
  • TMPBP hexamethylbiphenyl
  • Example 11 Synthesis of fluorine-containing polyether (FPPFH-BisTPM) Instead of 4,4-dihydroxybiphenyl (BP) in Example 8, 4,4-dihydroxytetraphenylmethane (BisTPM) was used and polymerized at 170°C for 12 hours. to synthesize polyethers.
  • FPPFH-BisTPM fluorine-containing polyether
  • BP 4,4-dihydroxybiphenyl
  • BisTPM 4,4-dihydroxytetraphenylmethane
  • Example 12 Synthesis of fluorinated polyether (FPPFH-TBISRX) Instead of 9,9-bis(4-hydroxyphenyl)fluorene (BPFL) in Example 6, spiro[fluorene-9,9′-xanthene]-3′,6 Using '-diol (TBISRX), polymerization was carried out at 190° C. for 4 hours to synthesize a polyether.
  • FPPFH-TBISRX fluorinated polyether
  • BPFL 9,9-bis(4-hydroxyphenyl)fluorene
  • TBISRX 9,9-bis(4-hydroxyphenyl)fluorene
  • FPPFB-BisA fluorine-containing polyether
  • FPPFB 1,4-bis(4-fluorophenyl)perfluorobutane
  • FPPFB-BisAF fluorine-containing polyether
  • FPPFB 1,4-bis(4-fluorophenyl)perfluorobutane
  • Example 15 Synthesis of fluorine-containing polyether (FPPFB-BPFL) Instead of FPPFH in Example 6, 1,4-bis(4-fluorophenyl)perfluorobutane (FPPFB) was used and polymerized at 190 ° C. for 6 hours to obtain a polyether. Ether was synthesized.
  • Example 16 Synthesis of fluorine-containing polyether (FPPFB-TBISRX) Instead of FPPFH in Example 12, 1,4-bis(4-fluorophenyl)perfluorobutane (FPPFB) was used to polymerize at 190 ° C. for 4 hours to obtain a polyether. Ether was synthesized.
  • Example 17 Synthesis of fluorine-containing polyether (FPPFB-BisPCDE) Instead of FPPFH in Example 4, 1,4-bis(4-fluorophenyl)perfluorobutane (FPPFB) was used and polymerized at 190 ° C. for 5 hours to obtain a polyether. Ether was synthesized.
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature.
  • the polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification.
  • the polymer was vacuum dried at room temperature for 10 hours.
  • the polymer was recovered with methanol, heated and washed with methanol, and dried under reduced pressure at room temperature. The polymer was dissolved in chloroform and poured into a large amount of methanol for reprecipitation purification. The polymer was vacuum dried at room temperature for 10 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyethers (AREA)

Abstract

式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物を提供する。式(1)中、nは1~8の整数、Phはフェニレン基、Xは複素環または炭化水素環を表す。Phで表される2つのフェニレン基の一方または両方と、Xで表される複素環または炭化水素環とはお互いに縮合していてもよい。フェニレン基、複素環および炭化水素環は、置換基を有していてもよい。)

Description

含フッ素ポリエーテル化合物
 本開示は、含フッ素ポリエーテル化合物に関する。
 非特許文献1には、1,6-ビス(4-フルオロフェニル)パーフルオロヘキサンと、ビスフェノールAF、ビスフェノールAまたはレゾルシノールとを重合することにより、特定の構造を有するポリ(パーフルオロアルキレンアリールエーテル)を得たことが記載されている。
Jeff W. Labadie、外1名、「Perfluoroalkylene-Activated Poly(aryl ether) Synthesis」、Macromolecules、American Chemical Society、1990、Vol.23、No.26、5371-5373
 非特許文献1に開示されるポリ(パーフルオロアルキレンアリールエーテル)のガラス転移温度は、最も高いものでも95℃にすぎない。したがって、より耐熱性の高い含フッ素ポリエーテル化合物が求められている。
 本開示では、十分に低い誘電率および誘電正接を示し、非常に高いガラス転移温度と高い溶解性を併せ持つ含フッ素ポリエーテル化合物を提供することを目的とする。
 本開示によれば、式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物が提供される。
 式(1):
Figure JPOXMLDOC01-appb-C000004
(式(1)中、nは1~8の整数、Phはフェニレン基、Xは複素環または炭化水素環を表す。Phで表される2つのフェニレン基の一方または両方と、Xで表される複素環または炭化水素環とはお互いに縮合していてもよい。フェニレン基、複素環および炭化水素環は、置換基を有していてもよい。)
 式(1)において、Xが、置換基を有していてもよい芳香族複素環、置換基を有していてもよい芳香族炭化水素環、または、置換基を有していてもよい脂肪族炭化水素環を表すことが好ましい。
 式(1)において、Xが、以下の式で表される環からなる群より選択される少なくとも1種を表すことが好ましい。
Figure JPOXMLDOC01-appb-C000005
(各式中、波線はPhで表されるフェニレン基との結合位置を表し、破線はPhで表されるフェニレン基と共有される炭素-炭素結合を表す。)
  式(1)で示される繰り返し単位の平均重合度が2~300であることが好ましい。
 また、本開示によれば、式(2)で示される繰り返し単位を有する含フッ素ポリエーテル化合物が提供される。
 式(2):
Figure JPOXMLDOC01-appb-C000006
(式(2)中、nは1~8の整数、Xは、置換基を有していてもよい多環芳香族炭化水素環を表す。)
 式(2)において、多環芳香族炭化水素環が、ビフェニル環、ターフェニル環、クオターフェニル環、ナフタレン環、アントラセン環、テトラセン環およびペンタセン環からなる群より選択される少なくとも1種であることが好ましい。
 式(2)で示される繰り返し単位の平均重合度が2~300であることが好ましい。
 また、本開示によれば、上記の含フッ素ポリエーテル化合物を含有する低誘電体が提供される。
 また、本開示によれば、上記の含フッ素ポリエーテル化合物を含有する半導体パッケージ基板、フレキシブルプリント基板またはリジッドプリント基板が提供される。
 本開示によれば、十分に低い誘電率および誘電正接を示し、非常に高いガラス転移温度と高い溶解性を併せ持つ含フッ素ポリエーテル化合物を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示の含フッ素ポリエーテル化合物は、式(1)で示される繰り返し単位を有する。
 式(1):
Figure JPOXMLDOC01-appb-C000007
(式(1)中、nは1~8の整数、Phはフェニレン基、Xは複素環または炭化水素環を表す。Phで表される2つのフェニレン基の一方または両方と、Xで表される複素環または炭化水素環とはお互いに縮合していてもよい。フェニレン基、複素環および炭化水素環は、置換基を有していてもよい。)
 nは1~8の整数を表す。nとしては、4~8の整数が好ましく、4、6または8がより好ましい。
 Phは、フェニレン基を表す。フェニレン基は、置換基を有していてもよいし、有していなくてもよい。置換基としては、フッ素原子などのハロゲン原子、メチル基などのアルキル基、トリフルオロメチル基などのハロゲン化アルキル基などが挙げられる。
 Xは、複素環または炭化水素環を表す。Xで表される複素環または炭化水素環は、2つのフェニレン基に結合する少なくとも2つの結合部を有する環、2つのフェニレン基の一方に結合する少なくとも1つの結合部および2つのフェニレン基のもう一方と共有する少なくとも1つの炭素-炭素結合を有する環、または、2つのフェニレン基と共有する少なくとも2つの炭素-炭素結合を有する環であってよい。Xで表される複素環または炭化水素環としては、2つのフェニレン基に結合する少なくとも2つの結合部を有する環、または、2つのフェニレン基の一方に結合する少なくとも1つの結合部および2つのフェニレン基のもう一方と共有する少なくとも1つの炭素-炭素結合を有する環が好ましい。
 Phで表されるフェニレン基とXで表される環とが、少なくとも1つの炭素-炭素結合を共有している場合、-Ph-X-Ph-で表される構造は、Phで表されるフェニレン基の少なくとも一方と、Xで表される複素環または炭化水素環とが、縮合することにより形成される縮合環を含むことになる。したがって、本開示において、Phで表されるフェニレン基には、ベンゼンから2つの水素原子を除去することにより生じる残基だけでなく、1つの水素原子を除去するとともに、他の環と縮合して多環の一部を構成しているベンゼンから誘導される残基も含まれる。このような縮合環を含む構造(-Ph-X-Ph-で表される構造)としては、たとえば、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式中、波線は酸素原子との結合位置を表す。)
 Xで表される環のうち、複素環としては、炭素原子と炭素原子以外の原子により形成される環が好ましい。炭素原子以外の原子としては、窒素原子、酸素原子または硫黄原子が好ましく、窒素原子がより好ましい。すなわち、複素環としては、含窒素複素環が好ましい。環中の炭素原子以外の原子の数は、好ましくは1~3であり、より好ましくは3である。
 複素環は、脂肪族複素環または芳香族複素環であってよい。複素環としては、芳香族複素環が好ましい。また、複素環は、単環または多環であってよい。複素環としては、単環が好ましく、単環の芳香族複素環がより好ましく、単環の含窒素芳香族複素環がさらに好ましい。
 複素環の環員数は、特に限定されず、好ましくは3~12であり、より好ましくは5以上であり、より好ましくは9以下であり、さらに好ましくは6以下である。
 複素環としては、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、1,2,3-オキサジアゾール環、1,2,4-オキサジアゾール環、1,3,4-オキサジアゾール環、フラザン環、1,2,3-チアジアゾール環、1,2,4-チアジアゾール環、1,3,4-チアジアゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環などが挙げられる。複素環としては、なかでも、1,3,5-トリアジン環が好ましい。
 複素環は、置換基を有していてもよいし、有していなくてもよい。置換基としては、フッ素原子などのハロゲン原子、メチル基などのアルキル基、トリフルオロメチル基などのハロゲン化アルキル基、フェニル基などのアリール基などが挙げられる。
 Xで表される環のうち、炭化水素環は、脂肪族炭化水素環または芳香族炭化水素環であってよい。脂肪族炭化水素環は、芳香族性を有しない飽和または不飽和の炭化水素環であってよい。炭化水素環は、単環または多環であってよい。多環の炭化水素環は、縮合環であってもよい。
 炭化水素環の炭素数は、好ましくは3~30であり、より好ましくは5以上であり、さらに好ましくは6以上であり、より好ましくは20以下であり、さらに好ましくは14以下である。
 炭化水素環としては、
 シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環などの単環の飽和炭化水素環;
 シクロプロペン環、シクロブテン環、シクロプロペン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環などの単環の非芳香族不飽和炭化水素環;
 ノルボルネン環、ノルボルナジエン環、デカヒドロナフタレン環、ビシクロウンデカン環、スピロビシクロペンタン環などの多環の非芳香族炭化水素環;
 ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、フルオレン環、テトラセン環、クリセン環、ピレン環、ペンタセン環、ベンゾピレン環、トリフェニレン環、ビフェニル環、ジフェニルメタン環、ジフェニルエーテル環、ジフェニルスルホン環、ジフェニルケトン環などの芳香族炭化水素環;
などが挙げられる。
 炭化水素環は、置換基を有していてもよいし、有していなくてもよい。置換基としては、フッ素原子などのハロゲン原子、メチル基などのアルキル基、トリフルオロメチル基などのハロゲン化アルキル基、フェニル基などのアリール基などが挙げられる。
 Xで表される複素環または炭化水素環としては、以下の式で表される環からなる群より選択される少なくとも1種が好ましい。
Figure JPOXMLDOC01-appb-C000009
(各式中、波線はPhで表されるフェニレン基との結合位置を表し、破線はPhで表されるフェニレン基と共有される炭素-炭素結合を表す。)
 式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物のガラス転移温度は、好ましくは100~400℃であり、より好ましくは110℃以上であり、さらに好ましくは120℃以上であり、より好ましくは300℃以下であり、さらに好ましくは250℃以下である。ガラス転移温度は、熱機械分析法(TMA)、示差走査熱量測定法(DSC)または動的粘弾性測定法(DMA)により、測定する値である。
 式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物において、式(1)で示される繰り返し単位の平均重合度としては、好ましくは500以下であり、より好ましくは400以下であり、さらに好ましくは300以下であり、2以上であってよく、3以上であってもよい。平均重合度は、本開示の含フッ素ポリエーテル化合物の数平均分子量から計算により求められる。
 式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物の数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(GPC)による標準ポリスチレン換算で、好ましくは2千以上であり、より好ましくは1万以上であり、好ましくは50万以下であり、より好ましくは30万以下である。
 式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物の分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフィー(GPC)による標準ポリスチレン換算で、好ましくは2以上であり、好ましくは5以下であり、より好ましくは4以下である。
 式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物の対数粘度ηinhは、好ましくは0.3dL/g以上であり、より好ましくは0.5dL/g以上である。対数粘度ηinhは、溶媒としてのN-メチル-2-ピロリドン(NMP)などに含フッ素ポリエーテル化合物を溶解させることにより、溶液濃度0.5g/dLの溶液を調製し、得られた溶液の30℃での溶液粘度を測定し、以下の式により算出できる。
   対数粘度ηinh=ln(溶液粘度/溶媒粘度)/溶液濃度
 式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物は、式(11)で示されるジヒドロキシ化合物(11)と、式(12)で示される活性な芳香族化合物(12)とを重合させることにより、好適に製造することができる。
 式(11):
HO-Ph-X-Ph-OH
(式(11)中、PhおよびXは、式(1)と同様である。)
 式(12):
Figure JPOXMLDOC01-appb-C000010
(式(12)中、nは式(1)と同様であり、Zはハロゲン原子又はニトロ基である。)
 ジヒドロキシ化合物(11)と活性な芳香族化合物(12)との重合は、塩基の存在下に行うことができる。塩基としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸セシウム、炭素水素セシウムなどの炭酸塩、水酸化ナトリウム、水酸化カリウム、水酸化セシウムなどの水酸化物、フッ化ナトリウム、フッ化カリウム、フッ化セシウムなどのフッ化化合物が挙げられる。
 重合は、溶媒中で行うことができる。溶媒としては、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、1,3-ジメチル-2-イミダゾリドン(DMI)、N,N’-ジメチルプロピレン尿素(DMPU)、ジメチルスルホキシド(DMSO)、スルホラン、ジメチルスルホン、ジフェニルスルホン、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、1,4-ジオキサンなどがあげられる。
 ジヒドロキシ化合物(11)と活性な芳香族化合物(12)の塩基存在下での重合により生じる水を除去するために、トルエン、o-キシレン、m-キシレン、p-キシレンなどの共沸溶媒を用いてもよい。
 重合温度としては、50~250℃が好ましく、150~220℃がより好ましい。重合時間としては、0.1~50時間が好ましく、1~36時間がより好ましい。
 式(1)で示される繰り返し単位の平均重合度は、ジヒドロキシ化合物(11)と活性な芳香族化合物(12)とのモル比、重合温度、重合時間、重合溶液濃度などを変化させることによって調整することができる。
 また、本開示の含フッ素ポリエーテル化合物は、式(2)で示される繰り返し単位を有する。
 式(2):
Figure JPOXMLDOC01-appb-C000011
(式(2)中、nは1~8の整数、Xは、置換基を有していてもよい多環芳香族炭化水素環を表す。)
 nは1~8の整数を表す。nとしては、4~8の整数が好ましく、4、6または8がより好ましい。
 Xは、多環芳香族炭化水素環を表す。Xで表される多環芳香族炭化水素環は、2以上の芳香環が縮合した多環芳香族炭化水素から2つの水素原子を除去することにより形成される環、または、2以上の芳香環が単結合で結ばれた多環芳香族炭化水素から2つの水素原子を除去することにより形成される環である。式(2)において、多環芳香族炭化水素環は、隣接する2つの酸素原子に直接結合している。
 多環芳香族炭化水素環の炭素数は、好ましくは8~30であり、より好ましくは10以上であり、より好ましくは26以下であり、さらに好ましくは22以下である。
 多環芳香族炭化水素環の環数は、好ましくは2~8であり、より好ましくは6以下であり、さらに好ましくは5以下である。
 多環芳香族炭化水素環としては、ビフェニル環、ターフェニル環、クオターフェニル環、ナフタレン環、フェナントレン環、アントラセン環、フルオレン環、テトラセン環、クリセン環、ピレン環、トリフェニレン環、ペンタセン環、ベンゾピレン環、ペリレン環などが挙げられる。
 多環芳香族炭化水素環としては、なかでも、ビフェニル環、ターフェニル環、クオターフェニル環、ナフタレン環、アントラセン環、テトラセン環およびペンタセン環からなる群より選択される少なくとも1種が好ましい。
 多環芳香族炭化水素環は、置換基を有していてもよいし、有していなくてもよい。置換基としては、フッ素原子などのハロゲン原子、メチル基などのアルキル基、トリフルオロメチル基などのハロゲン化アルキル基、フェニル基などのアリール基などが挙げられる。
 式(2)で示される繰り返し単位を有する含フッ素ポリエーテル化合物のガラス転移温度は、好ましくは96~400℃であり、より好ましくは100℃以上であり、好ましくは300℃以下であり、より好ましくは250℃以下である。ガラス転移温度は、熱機械分析法(TMA)、示差走査熱量測定法(DSC)または動的粘弾性測定法(DMA)により、測定する値である。
 式(2)で示される繰り返し単位を有する含フッ素ポリエーテル化合物において、式(2)で示される繰り返し単位の平均重合度としては、好ましくは500以下であり、より好ましくは400以下であり、さらに好ましくは300以下であり、2以上であってよく、3以上であってもよい。平均重合度は、本開示の含フッ素ポリエーテル化合物の数平均分子量から計算により求められる。
 式(2)で示される繰り返し単位を有する含フッ素ポリエーテル化合物の数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(GPC)による標準ポリスチレン換算で、好ましくは2千以上であり、より好ましくは1万以上であり、好ましくは50万以下であり、より好ましくは30万以下である。
 式(2)で示される繰り返し単位を有する含フッ素ポリエーテル化合物の分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフィー(GPC)による標準ポリスチレン換算で、好ましくは2以上であり、好ましくは5以下であり、より好ましくは4以下である。
 式(2)で示される繰り返し単位を有する含フッ素ポリエーテル化合物の対数粘度ηinhは、好ましくは0.3dL/g以上であり、より好ましくは0.5dL/g以上である。対数粘度ηinhは、溶媒としてのN-メチル-2-ピロリドン(NMP)などに含フッ素ポリエーテル化合物を溶解させることにより、溶液濃度0.5g/dLの溶液を調製し、得られた溶液の30℃での溶液粘度を測定し、以下の式により算出できる。
   対数粘度ηinh=ln(溶液粘度/溶媒粘度)/溶液濃度
 式(2)で示される繰り返し単位を有する含フッ素ポリエーテル化合物は、式(21)で示されるジヒドロキシ化合物(21)と、式(22)で示される活性な芳香族化合物(22)とを重合させることにより、好適に製造することができる。
 式(21):
HO-X-OH
(式(21)中、Xは式(2)と同様である。)
 式(22):
Figure JPOXMLDOC01-appb-C000012
(式(22)中、nは式(2)と同様であり、Zはハロゲン原子又はニトロ基である。)
 ジヒドロキシ化合物(21)と活性な芳香族化合物(22)との重合は、塩基の存在下に行うことができる。塩基としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸セシウム、炭素水素セシウムなどの炭酸塩、水酸化ナトリウム、水酸化カリウム、水酸化セシウムなどの水酸化物、フッ化ナトリウム、フッ化カリウム、フッ化セシウムなどのフッ化化合物が挙げられる。
 重合は、溶媒中で行うことができる。溶媒としては、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、1,3-ジメチル-2-イミダゾリドン(DMI)、N,N’-ジメチルプロピレン尿素(DMPU)、ジメチルスルホキシド(DMSO)、スルホラン、ジメチルスルホン、ジフェニルスルホン、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、1,4-ジオキサンなどがあげられる。
 ジヒドロキシ化合物(21)と活性な芳香族化合物(22)の塩基存在下での重合により生じる水を除去するために、トルエン、o-キシレン、m-キシレン、p-キシレンなどの共沸溶媒を用いてもよい。
 重合温度としては、50~250℃が好ましく、150~220℃がより好ましい。重合時間としては、0.1~50時間が好ましく、1~36時間がより好ましい。
 式(2)で示される繰り返し単位の平均重合度は、ジヒドロキシ化合物(21)と活性な芳香族化合物(22)とのモル比、重合温度、重合時間、重合溶液濃度などを変化させることによって、調整することができる。
 本開示の含フッ素ポリエーテル化合物は、十分に低い誘電率および誘電正接を示し、非常に高いガラス転移温度と高い溶解性を併せ持つことから、低誘電体として好適に使用できる。
 本開示の含フッ素ポリエーテル化合物は、十分に低い誘電率および誘電正接を示し、非常に高いガラス転移温度と高い溶解性を併せ持つことから、半導体パッケージ基板、フレキシブルプリント基板、リジッドプリント基板などの基板として好適に使用できる。
 本開示の含フッ素ポリエーテル化合物は、十分に低い誘電率および誘電正接を示し、非常に高いガラス転移温度と高い溶解性を併せ持つことから、半導体パッケージ配線板、フレキシブルプリント配線板、リジッドプリント配線板、TAB用テープ、COF用テープあるいは金属配線など、また、金属配線、ICチップなどのチップ部材などのカバー基材、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレー、電子ペーパー、太陽電池などの層間絶縁膜、ベース基材、接着シート、プリプレグ、プライマーなどの電子部品や電子機器類の素材として好適に使用できる。
 本開示の含フッ素ポリエーテル化合物は、特に、高周波における誘電率が低く、かつ、誘電損失が低いことから、高周波、特に3~30GHzのマイクロ波を利用する電子部品や電子機器類の素材として好適に使用できる。たとえば、高周波回路の絶縁板、接続部品の絶縁材、プリント基板、高周波用真空管のベースやアンテナカバー、同軸ケーブル、LANケーブル等の被覆電線などの素材として好適に使用できる。また、3~30GHzのマイクロ波を利用する、衛星通信機器、携帯電話基地局などの機器の素材として、好適に使用することができる。
 プリント基板としては特に限定されないが、たとえば、携帯電話、各種コンピューター、通信機器等の電子回路のプリント配線基板が挙げられる。
 同軸ケーブルとしては特に限定されないが、たとえば、内部導体、絶縁被覆層、外部導体層及び保護被覆層が芯部より外周部に順に積層することからなる構造を有するものが挙げられる。
 本開示の含フッ素ポリエーテル化合物は、誘電率が低く、かつ、誘電損失が低いとともに、耐熱性、溶剤溶解性、電気絶縁性、無色透明性及び柔軟性にも優れ、薄膜化が容易であることから、層間絶縁膜、フィルム、接着シート、プリプレグ、プライマー、レジスト材料等に好適に利用できる。なかでも、層間絶縁膜、フィルムに好適である。
 上記フィルムは、本開示の含フッ素ポリエーテル化合物を、押出成形法、カレンダー成形法、溶液キャスト法等の公知のフィルム成形法により成形することにより製造することができる。さらに、フィルムに対して、サンドブラスト処理、コロナ処理、プラズマ処理、エッチング処理などを行ってもよい。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
 実施例の各数値は以下の方法により測定した。
(1)GPC:東ソー(株)製高速GPCシステムHLC-8220GPC(カラム:東ソーTSKgel(α-M)、カラム温度:45℃、検出器:UV-8020、波長254nm、溶離液:N-メチル-2-ピロリドン(NMP)(0.01mol/L臭化リチウムを含む。)、検量線:標準ポリスチレン、カラム流速:0.2mL/min)
(2)赤外スペクトル(FT-IR):日本分光(株)製FT/IR-4200
(3)核磁気共鳴スペクトル(NMR):BRUKER製AC400P
(4)熱重量測定(TGA):(株)日立ハイテクサイエンス製TG/DTA7300、昇温速度10℃/min
(5)示差走査熱量測定(DSC):(株)日立ハイテクサイエンス製DSC7000、昇温速度20℃/min
(6)熱機械分析(TMA):(株)日立ハイテクサイエンス製TMA7000、昇温速度10℃/min
(7)動的粘弾性測定(DMA):(株)日立ハイテクサイエンス製DMA7100、昇温速度2℃/min
(8)引張り試験:(株)島津製作所製オートグラフAGS-D型、引張り速度1.0mm/min
(9)紫外可視分光光度計:(株)島津製作所UV-1800
(10)屈折率測定:Metricon Model 2010/M PRISM COUPLER
(11)誘電率測定:AET製誘電率・誘電正接測定装置(空洞共振器タイプ、10GHz、20GHz)
<合成例1>
1,6-ビス(4-フルオロフェニル)パーフルオロヘキサン(FPPFH)の合成
 攪拌子、ジムロート冷却管、窒素導入管を備えたナス型フラスコ(100mL)に、1-フルオロ-4-ヨードベンゼン(1.25mL,10.8mmol)、ジメチルスルホキシド(DMSO,15mL)、1,6-ジヨードパーフルオロヘキサン(3.00g,5.42mmol)を加え、溶解した。その後、銅粉(1.56g,24.4mmol)を加え、窒素ガス雰囲気で段階的に120℃まで昇温し、48時間撹拌した。室温まで放冷した後に、吸引ろ過で銅粉を除去し、減圧蒸留にてDMSOを留去した。残留物をジエチルエーテルに溶解させ、吸引ろ過をした後に、ろ液を蒸留水で洗浄した。有機層を取り出し、無水硫酸ナトリウムを加えて脱水した。その後、ろ過により得られたろ液からジエチルエーテルを留去し粗生成物を得た。粗収率は1.73gで粗収率は65%であった。減圧蒸留(100℃/0.17Torr)にて精製し、白色結晶の生成物(収量1.69g,収率64%)を得た。
融点:40~41℃
FT-IR(KBr,cm-1):1515(C=C),1243(C-F)
H-NMR(DMSO-d,ppm):7.73(4H),7.41(4H)
13C-NMR(DMSO-d,ppm):165.5,163.5,129.6,129.5,123.8,116.6,116.4
19F-NMR(DMSO-d,ppm):-107.3,-109.4,-121.5,-122.0
元素分析:計算値 C,44.10%;H,1.65%
     実測値 C,43.98%;H,1.72%
<合成例2>
1,4-ビス(4-フルオロフェニル)パーフルオロブタン(FPPFB)の合成
 攪拌子、ジムロート冷却管、窒素導入管を備えたナス型フラスコ(100mL)に、1-フルオロ-4-ヨードベンゼン(1.25mL,10.8mmol)、ジメチルスルホキシド(DMSO,15mL)、1,4-ジヨードパーフルオロブタン(2.46g,5.42mmol)を加え、溶解した。その後、銅粉(1.56g,24.4mmol)を加え、窒素ガス雰囲気で段階的に120℃まで昇温し、48時間撹拌した。室温まで放冷した後に、吸引ろ過で銅粉を除去し、減圧蒸留にてDMSOを留去した。残留物をジエチルエーテルに溶解させ、吸引ろ過をした後に、ろ液を蒸留水で洗浄した。有機層を取り出し、無水硫酸ナトリウムを加えて脱水した。その後、ろ過により得られたろ液からジエチルエーテルを留去し粗生成物を得た。粗収率は0.95gで粗収率は45%であった。減圧蒸留(100℃/0.17Torr)にて精製し、白色結晶の生成物(収量0.93g,収率44%)を得た。
融点:63~64℃
H-NMR(DMSO-d,ppm):7.69(4H),7.43(4H)
13C-NMR(DMSO-d,ppm):165.4,163.4,129.5,124.4,116.5,116.3
19F-NMR(DMSO-d,ppm):-107.7,-109.3,-121.4
元素分析:計算値 C,49.24%;H,2.07%
     実測値 C,48.89%;H,1.93%
<合成例3>
1,6-ビス(4-クロロフェニル)パーフルオロヘキサン(CPPFH)の合成
 攪拌子、ジムロート冷却管、窒素導入管を備えたナス型フラスコ(100mL)に、1-クロロ-4-ヨードベンゼン(4.77g,20mmol)、ジメチルスルホキシド(DMSO,15mL)、1,6-ジヨードパーフルオロヘキサン(5.54g,10mmol)を加え、溶解した。その後、銅粉(3.18g,50mmol)を加え、窒素ガス雰囲気で段階的に120℃まで昇温し、12時間撹拌した。室温まで放冷した後に、吸引ろ過で銅粉を除去し、減圧蒸留にてDMSOを留去した。残留物をt-ブチルメチルエーテルに溶解させ、吸引ろ過をした後に、ろ液を蒸留水で洗浄した。有機層を取り出し、無水硫酸ナトリウムを加えて脱水した。その後、ろ過により得られたろ液からt-ブチルメチルエーテルを留去し粗生成物を得た。粗生成物を昇華(80℃/0.2Torr)により精製し、白色粉末結晶の生成物(収量4.55g,収率87%)を得た。
融点:87~88℃
H-NMR(CDCl,ppm):7.53(4H),7.47(4H)
13C-NMR(CDCl,ppm):138.6,129.1,128.5,128.4
19F-NMR(CDCl,ppm):-111.8,-122.4,-123.0
FT-IR(KBr,cm-1):1604(C=C),1216~1132(C-F),1092(C-Cl)
元素分析(C1812Cl):計算値 C,41.32%;H,1.54%
               実測値 C,41.41%;H,1.68%
<合成例4>
1,6-ビス(4-ニトロフェニル)パーフルオロヘキサン(NPPFH)の合成
 攪拌子、ジムロート冷却管、窒素導入管を備えたナス型フラスコ(100mL)に、1-ヨード-4-ニトロベンゼン(4.98g,20mmol)、ジメチルスルホキシド(DMSO,15mL)、1,6-ジヨードパーフルオロヘキサン(5.54g,10mmol)を加え、溶解した。その後、銅粉(3.18g,50mmol)を加え、窒素ガス雰囲気で段階的に120℃まで昇温し、12時間撹拌した。室温まで放冷した後に、吸引ろ過で銅粉を除去し、減圧蒸留にてDMSOを留去した。残留物をt-ブチルメチルエーテルに溶解させ、吸引ろ過をした後に、ろ液を蒸留水で洗浄した。有機層を取り出し、無水硫酸ナトリウムを加えて脱水した。その後、ろ過により得られたろ液からt-ブチルメチルエーテルを留去し粗生成物を得た。粗生成物を昇華精製(160℃/0.17Torr)した後に、THF/ヘキサンの混合溶媒で再結晶を行った。100℃で12時間減圧乾燥することで淡黄色針状結晶の生成物(収量2.78g,収率51%)を得た。
融点:168~169℃
H-NMR(CDCl,ppm):8.39(4H),7.82(4H)
13C-NMR(CDCl,ppm):150.3,135.1,128.6,124.0
19F-NMR(CDCl,ppm):-112.0,-122.0,-122.4
FT-IR(KBr,cm-1):1550(NO),1291(NO),1215~1132(C-F)
元素分析(C1812):
 計算値 C,39.72%;H,1.48%;N,5.15%
 実測値 C,39.46%;H,1.55%;N,5.12%
<実施例1>
含フッ素ポリエーテル(FPPFH-BisZ)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、4,4’-(シクロヘキシリデン)ビスフェノール (BisZ,0.537g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で12時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:1.09g(収率:72%)
対数粘度(ηinh):1.26dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):200,000、分子量分布(Mw/Mn):2.4
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、100℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚35μm)を作製した。
FT-IR(film,cm-1):2937(C-H),2862(C-H),1600(C=C),1504(C=C),1292-1143(C-F)
溶解性:NMP、DMAc、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに室温で溶解
5%重量減少温度:387℃(空気中)、492℃(窒素中)
10%重量減少温度:404℃(空気中)、504℃(窒素中)
炭化収率:42%(窒素中、800℃)
ガラス転移温度(Tg):112℃(DSC)、113℃(TMA)、109℃(DMA)
熱膨張係数(CTE):88ppm/℃(50℃~80℃)
引張破断強度:45MPa
破断伸び:5.2%
引張弾性率:1.4GPa
カットオフ波長:290nm
500nmでの透過率:83%,
平均屈折率(nave):1.538(d線)
複屈折(Δn):0.001(d線)
屈折率から算出される誘電率(ε):2.37(ε=nave
誘電率(Dk):2.44(TEモード,10GHz),2.38(TEモード,20GHz)
誘電正接(Df):0.0021(TEモード,10GHz)、0.0022(TEモード,20GHz)
<実施例2>
含フッ素ポリエーテル(FPPFH-BisP3MZ)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、4,4’-(3-メチルシクロヘキシリデン)ビスフェノール(BisP3MZ,0.565g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で24時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:1.19g(収率:77%)
対数粘度(ηinh):0.76dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):98,000、分子量分布(Mw/Mn):2.7
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、120℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚50μm)を作製した。
FT-IR(film,cm-1):2937(C-H),2862(C-H),1600(C=C),1504(C=C),1292-1143(C-F)
H-NMR(CDCl,ppm):7.51(d,4H),7.37(d,2H),7.18(d,2H),7.02(q,6H),6.91(d,2H),2.62(q,2H),1.82(t,1H),1.71(d,2H),1.52(q,3H),0.96(d,4H)
13C-NMR(CDCl,ppm):160.9,153.4,148.0,141.9,129.7,128.8,127.9,123.1,119.9,117.8,46.3,37.0,35.2,28.8,23.1
19F-NMR(CDCl,ppm):-111.1,-122.6,-123.2
溶解性:NMP、DMAc、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに室温で溶解
5%重量減少温度:379℃(空気中)、479℃(窒素中)
10%重量減少温度:393℃(空気中)、490℃(窒素中)
炭化収率:46%(窒素中、800℃)
ガラス転移温度(Tg):132℃(DSC)、132℃(TMA)、128℃(DMA)
熱膨張係数(CTE):88ppm/℃(50℃~80℃)
引張破断強度:53MPa
破断伸び:4.3%
引張弾性率:1.4GPa
カットオフ波長:292nm
500nmでの透過率:80%,
平均屈折率(nave):1.531(d線)
複屈折(Δn):0.004(d線)
屈折率から算出される誘電率(ε):2.34(ε=nave
誘電率(Dk):2.43(TEモード,10GHz),2.37(TEモード,20GHz)
誘電正接(Df):0.0015(TEモード,10GHz)、0.0016(TEモード,20GHz)
<実施例3>
含フッ素ポリエーテル(FPPFH-BisPHTG)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビスフェノール(BisPHTG,0.621g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で24時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:1.33g(収率:83%)
対数粘度(ηinh):0.45dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):43,000、分子量分布(Mw/Mn):2.2
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、120℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚51μm)を作製した。
FT-IR(film,cm-1):2937(C-H),2862(C-H),1600(C=C),1504(C=C),1292-1143(C-F)
H-NMR(CDCl,ppm):7.49(t,4H),7.38(d,2H),7.25(t,2H),6.99(q,6H),6.92(d,2H),2.72(d,1H),2.49(d,1H),2.04(s,1H),1.96(d,1H),1.44(d,1H),1.21(t,1H),1.01(d,6H),0.90(t,1H),0.41(s,3H)
13C-NMR(CDCl,ppm):160.9,153.1,148.8,143.3,129.3,128.8,127.6,123.1,119.8,117.6,48.8,48.4,46.3,45.4,35.0,32.4,26.9,25.7,22.8
19F-NMR(CDCl,ppm):-111.1,-122.6,-123.2
溶解性:NMP、DMAc、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノン、アセトンに室温で溶解
5%重量減少温度:458℃(空気中)、493℃(窒素中)
10%重量減少温度:482℃(空気中)、503℃(窒素中)
炭化収率:38%(窒素中、800℃)
ガラス転移温度(Tg):140℃(DSC)、136℃(TMA)、130℃(DMA)
熱膨張係数(CTE):96ppm/℃(50℃~80℃)
引張破断強度:53MPa
破断伸び:4.8%
引張弾性率:1.5GPa
カットオフ波長:293nm
500nmでの透過率:85%,
平均屈折率(nave):1.523(d線)
複屈折(Δn):0.002(d線)
屈折率から算出される誘電率(ε):2.32(ε=nave
誘電率(Dk):2.42(TEモード,10GHz),2.36(TEモード,20GHz)
誘電正接(Df):0.0033(TEモード,10GHz)、0.0036(TEモード,20GHz)
<実施例4>
含フッ素ポリエーテル(FPPFH-BisPCDE)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、4,4’-シクロドデシリデンビスフェノール(BisPCDE,0.705g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で24時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:1.28g(収率:76%)
対数粘度(ηinh):0.64dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):68,000、分子量分布(Mw/Mn):2.3
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、140℃で5時間減圧乾燥させて、無色透明なキャストフィルム(膜厚56μm)を作製した。
FT-IR(film,cm-1):2937(C-H),2862(C-H),1600(C=C),1504(C=C),1292-1143(C-F)
溶解性:NMP、DMAc、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに室温で溶解
5%重量減少温度:343℃(空気中)、423℃(窒素中)
10%重量減少温度:364℃(空気中)、441℃(窒素中)
炭化収率:36%(窒素中、800℃)
ガラス転移温度(Tg):155℃(DSC)、156℃(TMA)、151℃(DMA)
熱膨張係数(CTE):85ppm/℃(50℃~80℃)
引張破断強度:64MPa
破断伸び:6.1%
引張弾性率:1.7GPa
カットオフ波長:292nm
500nmでの透過率:78%,
平均屈折率(nave):1.527(d線)
複屈折(Δn):0.002(d線)
屈折率から算出される誘電率(ε):2.33(ε=nave
誘電率(Dk):2.42(TEモード,10GHz),2.37(TEモード,20GHz)
誘電正接(Df):0.0011(TEモード,10GHz)、0.0012(TEモード,20GHz)
<実施例5>
含フッ素ポリエーテル(FPPFH-BisPIND)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、3-(4-ヒドロキシフェニル)-1,1,3-トリメチル-5-インダノール(BisPIND,0.537g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で24時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:0.97g(収率:64%)
対数粘度(ηinh):0.91dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):116,000、分子量分布(Mw/Mn):2.7
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、110℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚58μm)を作製した。
FT-IR(film,cm-1):2937(C-H),2862(C-H),1600(C=C),1504(C=C),1292-1143(C-F)
H-NMR(CDCl,ppm):7.49(d,4H),7.19(t,3H),7.04-6.92(q,7H),6.84(d,1H),2.45(d,1H),2.27(d,1H),1.68(s,3H),1.37(s,3H),1.09(s,3H)
13C-NMR(CDCl,ppm):161.4,161.0,154.5,153.4,151.1,148.7,146.9,128.8,128.3,124.2,119.7,117.6,116.8,59.6,50.5,42.7,30.9
19F-NMR(CDCl,ppm):-111.1,-122.6,-123.1
溶解性:DMF、DMAc、NMP、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノン、アセトンに室温で溶解
5%重量減少温度:425℃(空気中)、493℃(窒素中)
10%重量減少温度:440℃(空気中)、501℃(窒素中)
炭化収率:51%(窒素中、800℃)
ガラス転移温度(Tg):123℃(DSC)、125℃(TMA)、121℃(DMA)
熱膨張係数(CTE):90ppm/℃(50℃~80℃)
引張破断強度:43MPa
破断伸び:3.6%
引張弾性率:1.1GPa
カットオフ波長:293nm
500nmでの透過率:84%,
平均屈折率(nave):1.527(d線)
複屈折(Δn):0.001(d線)
屈折率から算出される誘電率(ε):2.33(ε=nave
誘電率(Dk):2.43(TEモード,10GHz),2.36(TEモード,20GHz)
誘電正接(Df):0.0031(TEモード,10GHz)、0.0033(TEモード,20GHz)
<実施例6>
含フッ素ポリエーテル(FPPFH-BPFL)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL,0.701g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で24時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:1.28g(収率:76%)
対数粘度(ηinh):1.15dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):144,000、分子量分布(Mw/Mn):2.3
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、160℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚53μm)を作製した。
FT-IR(film,cm-1):2937(C-H),2862(C-H),1600(C=C),1504(C=C),1292-1143(C-F)
H-NMR(CDCl,ppm):7.78(d,2H),7.49(d,4H),7.41(d,4H),7.32(t,2H),7.23(d,4H),7.02(d,4H),6.90(d,4H)
13C-NMR(CDCl,ppm):160.6,154.6,151.1,142.0,140.2,129.8,128.8,127.9,126.2,123.4,120.5,119.7,117.9,64.6
19F-NMR(CDCl,ppm):-111.2,-122.7,-123.2
元素分析:計算値 C,64.50%;H,3.02%
     実測値 C,64.17%;H,3.14%
溶解性:DMF、DMAc、NMP、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに室温で溶解
5%重量減少温度:530℃(空気中)、546℃(窒素中)
10%重量減少温度:550℃(空気中)、562℃(窒素中)
炭化収率:57%(窒素中、800℃)
ガラス転移温度(Tg):172℃(DSC)、172℃(TMA)、171℃(DMA)
熱膨張係数(CTE):71ppm/℃(50℃~80℃)
引張破断強度:54MPa
破断伸び:4.8%
引張弾性率:1.6GPa
カットオフ波長:316nm
500nmでの透過率:80%,
平均屈折率(nave):1.572(d線)
複屈折(Δn):0.002(d線)
屈折率から算出される誘電率(ε):2.47(ε=nave
誘電率(Dk):2.46(TEモード,10GHz)、2.41(TEモード,20GHz)
誘電正接(Df):0.0019(TEモード,10GHz)、0.0020(TEモード,20GHz)
<実施例7>
含フッ素ポリエーテル(FPPFH-BMPFL)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BMPFL,0.757g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で24時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:1.41g(収率:81%)
対数粘度(ηinh):0.42dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):45,000、分子量分布(Mw/Mn):2.4
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、160℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚53μm)を作製した。
H-NMR(CDCl,ppm):7.81(d,2H),7.47(m,6H),7.40(t,2H),7.32(t,2H),7.11(d,4H),6.94(d,4H),6.85(d,2H),2.08(s,6H)
19F-NMR(CDCl,ppm):-110.9,-122.5,-123.0
溶解性:DMF、DMAc、NMP、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに室温で溶解
5%重量減少温度:426℃(空気中)、439℃(窒素中)
10%重量減少温度:452℃(空気中)、461℃(窒素中)
炭化収率:64%(窒素中、800℃)
ガラス転移温度(Tg):168℃(DSC)、169℃(TMA)、166℃(DMA)
熱膨張係数(CTE):81ppm/℃(50℃~80℃)
引張破断強度:61MPa
破断伸び:5.1%
引張弾性率:2.1GPa
カットオフ波長:316nm
500nmでの透過率:79%,
平均屈折率(nave):1.568(d線)
複屈折(Δn):0.002(d線)
屈折率から算出される誘電率(ε):2.46(ε=nave
誘電率(Dk):2.45(TEモード,10GHz)、2.40(TEモード,20GHz)
誘電正接(Df):0.0020(TEモード,10GHz)、0.0019(TEモード,20GHz)
<実施例8>
含フッ素ポリエーテル(FPPFH-BP)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、4,4-ジヒドロキシビフェニル(BP,0.372g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で12時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをテトラヒドロフラン(THF)に溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:0.93g(収率:69%)
対数粘度(ηinh):0.85dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
 このポリマーをTHFに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、90℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚42μm)を作製した。
FT-IR(film,cm-1):1600(C=C),1504(C=C),1292-1143(C-F)
溶解性:DMAc、NMP、TMU、DMI、THF、シクロペンタノンに室温で溶解
5%重量減少温度:507℃(空気中)、542℃(窒素中)
10%重量減少温度:531℃(空気中)、555℃(窒素中)
炭化収率:44%(窒素中、800℃)
ガラス転移温度(Tg):103℃(DSC)、105℃(TMA)、114℃(DMA)
熱膨張係数(CTE):94ppm/℃(50℃~80℃)
引張破断強度:27MPa
破断伸び:16.7%
引張弾性率:1.1GPa
カットオフ波長:308nm
500nmでの透過率:86%,
平均屈折率(nave):1.551(d線)
複屈折(Δn):0.011(d線)
屈折率から算出される誘電率(ε):2.41(ε=nave
誘電率(Dk):2.44(TEモード,10GHz)、2.40(TEモード,20GHz)
誘電正接(Df):0.0021(TEモード,10GHz)、0.0023(TEモード,20GHz)
<実施例9>
含フッ素ポリエーテル(FPPFH-NDO)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、2,6-ジヒドロキシナフタレン(NDO,0.320g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で24時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをテトラヒドロフラン(THF)に溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
対数粘度(ηinh):0.41dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
 このポリマーをTHFに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、90℃で3時間減圧乾燥させて、淡黄色透明なキャストフィルムを作製した。
溶解性:DMF、DMAc、NMP、TMU、DMI、THF、シクロペンタノンに室温で溶解
5%重量減少温度:438℃(空気中)、535℃(窒素中)
10%重量減少温度:484℃(空気中)、556℃(窒素中)
炭化収率:49%(窒素中、800℃)
ガラス転移温度(Tg):97℃(DSC)、98℃(TMA)、98℃(DMA)
熱膨張係数(CTE):99ppm/℃(50℃~80℃)
引張破断強度:28MPa
破断伸び:3.9%
引張弾性率:1.3GPa
カットオフ波長:348nm
500nmでの透過率:55%,
平均屈折率(nave):1.554(d線)
複屈折(Δn):0.002(d線)
屈折率から算出される誘電率(ε):2.41(ε=nave
誘電率(Dk):2.45(TEモード,10GHz)、2.42(TEモード,20GHz)
誘電正接(Df):0.0032(TEモード,10GHz)、0.0032(TEモード,20GHz)
<実施例10>
含フッ素ポリエーテル(FPPFH-TMPBP)の合成
 実施例8の4,4-ジヒドロキシビフェニル(BP)の代わりに、4,4’-ジヒドロキシ-2,2’,3,3’,5,5’-ヘキサメチルビフェニル(TMPBP)を用いて、190℃で24時間重合してポリエーテルを合成した。
ポリマーの収率:76%
対数粘度(ηinh):0.47dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):50,000、分子量分布(Mw/Mn):2.4
 このポリマーをTHFに溶解し、透明なキャストフィルム(膜厚60μm)を作製した。
FT-IR(film,cm-1):1600(C=C),1504(C=C),1292~1143(C-F)
元素分析(C362812):計算値 C,60.00%;H,3.92%
               実測値 C,60.22%;H,3.98%
溶解性:NMP、TMU、DMI、DMAc、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:415℃(空気中)、432℃(窒素中)
10%重量減少温度:439℃(空気中)、446℃(窒素中)
炭化収率:52%(窒素中、800℃)
ガラス転移温度(Tg):167℃(DSC)、169℃(TMA)、166℃(DMA)
熱膨張係数(CTE):82ppm/℃(50℃~80℃)
引張破断強度:48MPa
破断伸び:4.3%
引張弾性率:1.3GPa
カットオフ波長:308nm
500nmでの透過率:57%,
平均屈折率(nave):1.522(d線)
複屈折(Δn):0.006(d線)
屈折率から算出される誘電率(ε):2.32(ε=nave
誘電率(Dk):2.39(TEモード,10GHz)、2.33(TEモード,20GHz)
誘電正接(Df):0.0015(TEモード,10GHz)、0.0016(TEモード,20GHz)
<実施例11>
含フッ素ポリエーテル(FPPFH-BisTPM)の合成
 実施例8の4,4-ジヒドロキシビフェニル(BP)の代わりに、4,4-ジヒドロキシテトラフェニルメタン(BisTPM)を用いて、170℃で12時間重合してポリエーテルを合成した。
ポリマーの収率:80%
対数粘度(ηinh):0.65dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):61,000、分子量分布(Mw/Mn):2.8
 このポリマーをTHFに溶解し、無色透明なキャストフィルム(膜厚46μm)を作製した。
FT-IR(film,cm-1):1600(C=C),1504(C=C),1292~1143(C-F)
元素分析:計算値 C,64.34%;H,3.27%
     実測値 C,64.15%;H,3.35%
溶解性:NMP、TMU、DMI、DMAc、THFに可溶
5%重量減少温度:498℃(空気中)、508℃(窒素中)
10%重量減少温度:514℃(空気中)、520℃(窒素中)
炭化収率:57%(窒素中、800℃)
ガラス転移温度(Tg):133℃(DSC)、143℃(TMA)、135℃(DMA)
熱膨張係数(CTE):70ppm/℃(50℃~80℃)
引張破断強度:46MPa
破断伸び:3.2%
引張弾性率:1.5GPa
カットオフ波長:292nm
500nmでの透過率:79%,
平均屈折率(nave):1.566(d線)
複屈折(Δn):0.008(d線)
屈折率から算出される誘電率(ε):2.45(ε=nave
誘電率(Dk):2.45(TEモード,10GHz)、2.44(TEモード,20GHz)
誘電正接(Df):0.0036(TEモード,10GHz)、0.0038(TEモード,20GHz)
<実施例12>
含フッ素ポリエーテル(FPPFH-TBISRX)の合成
 実施例6の9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL)の代わりに、スピロ[フルオレン-9,9’-キサンテン]-3’,6’-ジオール(TBISRX)を用いて、190℃で4時間重合してポリエーテルを合成した。
ポリマーの収率:81%
対数粘度(ηinh):0.81dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):94,000、分子量分布(Mw/Mn):2.9
 このポリマーをクロロホルムに溶解し、無色透明なキャストフィルム(膜厚50μm)を作製した。
FT-IR(film,cm-1):1600(C=C),1504(C=C),1292~1143(C-F)
元素分析:計算値 C,63.40%;H,2.72%
     実測値 C,63.69%;H,2.89%
溶解性:NMP、TMU、DMI、DMAc、DMF、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:507℃(空気中)、545℃(窒素中)
10%重量減少温度:525℃(空気中)、561℃(窒素中)
炭化収率:60%(窒素中、800℃)
ガラス転移温度(Tg):190℃(DSC)、205℃(TMA)、189℃(DMA)
熱膨張係数(CTE):65ppm/℃(50℃~80℃)
引張破断強度:58MPa
破断伸び:5.8%
引張弾性率:1.2GPa
カットオフ波長:315nm
500nmでの透過率:86%,
平均屈折率(nave):1.579(d線)
複屈折(Δn):0.003(d線)
屈折率から算出される誘電率(ε):2.49(ε=nave
誘電率(Dk):2.46(TEモード,10GHz)、2.44(TEモード,20GHz)
誘電正接(Df):0.0014(TEモード,10GHz)、0.0015(TEモード,20GHz)
<実施例13>
含フッ素ポリエーテル(FPPFB-BisA)の合成
 比較例1のFPPFHの代わりに、1,4-ビス(4-フルオロフェニル)パーフルオロブタン(FPPFB)を用いて、190℃で3時間重合してポリエーテルを合成した。
ポリマーの収率:80%
対数粘度(ηinh):1.06dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):119,000、分子量分布(Mw/Mn):2.5
 このポリマーをクロロホルムに溶解し、無色透明なキャストフィルム(膜厚48μm)を作製した。
FT-IR(film,cm-1):1600(C=C),1502(C=C),1287~1139(C-F)
元素分析(C3122):計算値 C,64.36%;H,3.83%
               実測値 C,64.72%;H,3.87%
溶解性:NMP、TMU、DMI、DMAc、THF、クロロホルム、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:445℃(空気中)、495℃(窒素中)
10%重量減少温度:458℃(空気中)、503℃(窒素中)
炭化収率:60%(窒素中、800℃)
ガラス転移温度(Tg):113℃(DSC)、112℃(TMA)、111℃(DMA)
熱膨張係数(CTE):105ppm/℃(50℃~80℃)
引張破断強度:35MPa
破断伸び:3.7%
引張弾性率:1.3GPa
カットオフ波長:289nm
500nmでの透過率:87%,
平均屈折率(nave):1.556(d線)
複屈折(Δn):0.004(d線)
屈折率から算出される誘電率(ε):2.42(ε=nave
誘電率(Dk):2.44(TEモード,10GHz)、2.40(TEモード,20GHz)
誘電正接(Df):0.0016(TEモード,10GHz)、0.0017(TEモード,20GHz)
<実施例14>
含フッ素ポリエーテル(FPPFB-BisAF)の合成
 比較例2のFPPFHの代わりに、1,4-ビス(4-フルオロフェニル)パーフルオロブタン(FPPFB)を用いて、190℃で3時間重合してポリエーテルを合成した。
ポリマーの収率:76%
対数粘度(ηinh):0.80dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):86,000、分子量分布(Mw/Mn):2.6
 このポリマーをクロロホルムに溶解し、無色透明なキャストフィルム(膜厚40μm)を作製した。
FT-IR(film,cm-1):1603(C=C),1507(C=C),1251~1138(C-F),1103(C-O)
元素分析(C311614):計算値 C,54.24%;H,2.35%
               実測値 C,54.30%;H,2.41%
溶解性:NMP、TMU、DMI、DMF、THF、クロロホルム、アセトン、酢酸エチルに可溶
5%重量減少温度:483℃(空気中)、507℃(窒素中)
10%重量減少温度:500℃(空気中)、518℃(窒素中)
炭化収率:50%(窒素中、800℃)
ガラス転移温度(Tg):122℃(DSC)、122℃(TMA)、119℃(DMA)
熱膨張係数(CTE):84ppm/℃(50℃~80℃)
引張破断強度:36MPa
破断伸び:3.0%
引張弾性率:2.3GPa
カットオフ波長:281nm
500nmでの透過率:85%,
平均屈折率(nave):1.518(d線)
複屈折(Δn):0.003(d線)
屈折率から算出される誘電率(ε):2.30(ε=nave
誘電率(Dk):2.21(TEモード,10GHz)、2.18(TEモード,20GHz)
誘電正接(Df):0.0017(TEモード,10GHz)、0.0019(TEモード,20GHz)
<実施例15>
含フッ素ポリエーテル(FPPFB-BPFL)の合成
 実施例6のFPPFHの代わりに、1,4-ビス(4-フルオロフェニル)パーフルオロブタン(FPPFB)を用いて、190℃で6時間重合してポリエーテルを合成した。
ポリマーの収率:74%
対数粘度(ηinh):1.11dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):130,000、分子量分布(Mw/Mn):2.5
 このポリマーをクロロホルムに溶解し、無色透明なキャストフィルム(膜厚46μm)を作製した。
FT-IR(film,cm-1):1599(C=C),1500(C=C),1286~1139(C-F),1104(C-O)
元素分析(C4124):計算値 C,70.28%;H,3.45%
               実測値 C,70.47%;H,3.46%
溶解性:NMP、TMU、DMI、DMAc、DMF、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:507℃(空気中)、533℃(窒素中)
10%重量減少温度:518℃(空気中)、547℃(窒素中)
炭化収率:69%(窒素中、800℃)
ガラス転移温度(Tg):196℃(DSC)、194℃(TMA)、193℃(DMA)
熱膨張係数(CTE):72ppm/℃(50℃~80℃)
引張破断強度:60MPa
破断伸び:4.7%
引張弾性率:1.6GPa
カットオフ波長:319nm
500nmでの透過率:82%,
平均屈折率(nave):1.596(d線)
複屈折(Δn):0.003(d線)
屈折率から算出される誘電率(ε):2.55(ε=nave
誘電率(Dk):2.53(TEモード,10GHz)、2.49(TEモード,20GHz)
誘電正接(Df):0.0011(TEモード,10GHz)、0.0013(TEモード,20GHz)
<実施例16>
含フッ素ポリエーテル(FPPFB-TBISRX)の合成
 実施例12のFPPFHの代わりに、1,4-ビス(4-フルオロフェニル)パーフルオロブタン(FPPFB)を用いて、190℃で4時間重合してポリエーテルを合成した。
ポリマーの収率:79%
対数粘度(ηinh):0.92dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):89,000、分子量分布(Mw/Mn):2.4
 このポリマーをクロロホルムに溶解し、無色透明なキャストフィルム(膜厚42μm)を作製した。
FT-IR(film,cm-1):1602(C=C),1510(C=C),1284~1154(C-F),1104(C-O)
元素分析(C4122):計算値 C,68.91%;H,3.10%
              実測値 C,68.90%;H,3.15%
溶解性:NMP、TMU、DMI、DMAc、DMF、THF、クロロホルム、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:501℃(空気中)、546℃(窒素中)
10%重量減少温度:522℃(空気中)、563℃(窒素中)
炭化収率:64%(窒素中、800℃)
ガラス転移温度(Tg):211℃(DSC)、211℃(TMA)、210℃(DMA)
熱膨張係数(CTE):74ppm/℃(50℃~80℃)
引張破断強度:59MPa
破断伸び:4.5%
引張弾性率:2.4GPa
カットオフ波長:312nm
500nmでの透過率:83%,
平均屈折率(nave):1.601(d線)
複屈折(Δn):0.004(d線)
屈折率から算出される誘電率(ε):2.56(ε=nave
誘電率(Dk):2.54(TEモード,10GHz)、2.51(TEモード,20GHz)
誘電正接(Df):0.0010(TEモード,10GHz)、0.0012(TEモード,20GHz)
<実施例17>
含フッ素ポリエーテル(FPPFB-BisPCDE)の合成
 実施例4のFPPFHの代わりに、1,4-ビス(4-フルオロフェニル)パーフルオロブタン(FPPFB)を用いて、190℃で5時間重合してポリエーテルを合成した。
ポリマーの収率:80%
対数粘度(ηinh):0.86dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):85,000、分子量分布(Mw/Mn):2.4
 このポリマーをクロロホルムに溶解し、無色透明なキャストフィルム(膜厚44μm)を作製した。
FT-IR(film,cm-1):2938(C-H),2863(C-H),1600(C=C),1502(C=C),1286~1139(C-F),1103(C-O)
元素分析(C4038):計算値 C,68.36%;H,5.45%
               実測値 C,68.62%;H,5.47%
溶解性:NMP、TMU、DMI、THF、クロロホルム、シクロヘキサノン、シクロペンタノンに可溶
5%重量減少温度:323℃(空気中)、427℃(窒素中)
10%重量減少温度:337℃(空気中)、440℃(窒素中)
炭化収率:44%(窒素中、800℃)
ガラス転移温度(Tg):174℃(DSC)、172℃(TMA)、171℃(DMA)
熱膨張係数(CTE):84ppm/℃(50℃~80℃)
引張破断強度:60MPa
破断伸び:5.8%
引張弾性率:1.4GPa
カットオフ波長:292nm
500nmでの透過率:84%,
平均屈折率(nave):1.547(d線)
複屈折(Δn):0.004(d線)
屈折率から算出される誘電率(ε):2.39(ε=nave
誘電率(Dk):2.44(TEモード,10GHz)、2.38(TEモード,20GHz)
誘電正接(Df):0.0008(TEモード,10GHz)、0.0010(TEモード,20GHz)
<比較例1>
含フッ素ポリエーテル(FPPFH-BisA)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、2,2-ビス(4-ヒドロキシフェニル)プロパン(BisA,0.457g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で12時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:1.15g(収率:80%)
対数粘度(ηinh):0.71dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):75,000、分子量分布(Mw/Mn):2.5
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、85℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚52μm)を作製した。
FT-IR(film,cm-1):2937(C-H),2862(C-H),1600(C=C),1504(C=C),1292-1143(C-F)
H-NMR(CDCl,ppm):7.51(d,4H),7.26(d,4H),7.05(d,4H),6.98(d,4H),1.70(s,6H)
13C-NMR(CDCl,ppm):161.0,153.5,146.9,128.8,128.5,123.2,119.7,117.7,42.5,31.1
19F-NMR(CDCl,ppm):-111.0,-122.6,-123.1
元素分析:計算値 C,58.41%;H,3.27%
     実測値 C,57.90%;H,3.34%
溶解性:DMF、DMAc、NMP、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノンに室温で溶解
5%重量減少温度:443℃(空気中)、504℃(窒素中)
10%重量減少温度:458℃(空気中)、511℃(窒素中)
炭化収率:46%(窒素中、800℃)
ガラス転移温度(Tg):93℃(DSC)、96℃(TMA)、93℃(DMA)
熱膨張係数(CTE):94ppm/℃(50℃~80℃)
引張破断強度:35MPa
破断伸び:3.4%
引張弾性率:1.3GPa
カットオフ波長:290nm
500nmでの透過率:88%,
平均屈折率(nave):1.531(d線)
複屈折(Δn):0.001(d線)
屈折率から算出される誘電率(ε):2.34(ε=nave
誘電率(Dk):2.42(TEモード,10GHz),2.35(TEモード,20GHz)
誘電正接(Df):0.0025(TEモード,10GHz)、0.0027(TEモード,20GHz)
<比較例2>
含フッ素ポリエーテル(FPPFH-BisAF)の合成
 攪拌子、窒素導入管、ディーンスタークトラップ、ジムロート冷却管を備えた二口フラスコ(50mL)に、FPPFH(0.981g,2.0mmol)、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン(BisAF,0.673g,2.0mmol)を加え、蒸留1,3-ジメチル-2-イミダゾリドン(DMI,5.0mL)に溶解させた。その後、炭酸カリウム(0.332g,2.4mmol)、トルエン(20mL)を加えた。段階的に150℃まで昇温し、150℃で2時間撹拌して、共沸により水を除去した。その後、170℃で12時間撹拌した。室温まで放冷した後に、メタノールでポリマーを回収し、メタノールで加熱洗浄後に、室温で減圧乾燥した。ポリマーをクロロホルムに溶解し、大量のメタノールに注いで再沈殿精製を行なった。ポリマーを室温で10時間減圧乾燥させた。
ポリマーの収量:1.14 g(収率:69%)
対数粘度(ηinh):0.73dL/g(0.5g/dL濃度のNMP溶液、30℃測定)
数平均分子量(M):73,000、分子量分布(Mw/Mn):2.6
 このポリマーをクロロホルムに溶解しガラス板上に流延して、室温で6時間、50℃で3時間、85℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚57μm)を作製した。
FT-IR(film,cm-1):1600(C=C),1504(C=C),1292-1143(C-F)
H-NMR(CDCl,ppm):7.58(d,4H),7.41(d,4H),7.13(d,4H),7.04(d,4H)
13C-NMR(CDCl,ppm):159.6,156.8,132.1,129.1,129.0,124.4,124.3,119.0
19F-NMR(CDCl,ppm):-65.4,-111.2,-122.7,-123.3
元素分析:計算値 C,50.40%;H,2.05%
     実測値 C,50.37%;H,2.18%
溶解性:DMF、DMAc、NMP、TMU、DMI、THF、クロロホルム、酢酸エチル、シクロヘキサノン、シクロペンタノン、アセトンに室温で溶解
5%重量減少温度:505℃(空気中)、507℃(窒素中)
10%重量減少温度:524℃(空気中)、519℃(窒素中)
炭化収率:42%(窒素中、800℃)
ガラス転移温度(Tg):95℃(DSC)、105℃(TMA)、97℃(DMA)
熱膨張係数(CTE):105ppm/℃(50℃~80℃)
引張破断強度:34MPa
破断伸び:3.8%
引張弾性率:1.2GPa
カットオフ波長:282nm
500nmでの透過率:89%,
平均屈折率(nave):1.500(d線)
複屈折(Δn):0.004(d線)
屈折率から算出される誘電率(ε):2.25(ε=nave
誘電率(Dk):2.15(TEモード,10GHz),2.13(TEモード,20GHz)
誘電正接(Df):0.0042(TEモード,10GHz)、0.0043(TEモード,20GHz)

Claims (9)

  1.  式(1)で示される繰り返し単位を有する含フッ素ポリエーテル化合物。
     式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、nは1~8の整数、Phはフェニレン基、Xは複素環または炭化水素環を表す。Phで表される2つのフェニレン基の一方または両方と、Xで表される複素環または炭化水素環とはお互いに縮合していてもよい。フェニレン基、複素環および炭化水素環は、置換基を有していてもよい。)
  2.  Xが、置換基を有していてもよい芳香族複素環、置換基を有していてもよい芳香族炭化水素環、または、置換基を有していてもよい脂肪族炭化水素環を表す請求項1に記載の含フッ素ポリエーテル化合物。
  3.  Xが、以下の式で表される環からなる群より選択される少なくとも1種を表す請求項1または2に記載の含フッ素ポリエーテル化合物。
    Figure JPOXMLDOC01-appb-C000002
    (各式中、波線はPhで表されるフェニレン基との結合位置を表し、破線はPhで表されるフェニレン基と共有される炭素-炭素結合を表す。)
  4.  式(1)で示される繰り返し単位の平均重合度が2~300である請求項1~3のいずれかに記載の含フッ素ポリエーテル化合物。
  5.  式(2)で示される繰り返し単位を有する含フッ素ポリエーテル化合物。
     式(2):
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、nは1~8の整数、Xは、置換基を有していてもよい多環芳香族炭化水素環を表す。)
  6.  多環芳香族炭化水素環が、ビフェニル環、ターフェニル環、クオターフェニル環、ナフタレン環、アントラセン環、テトラセン環およびペンタセン環からなる群より選択される少なくとも1種である請求項5に記載の含フッ素ポリエーテル化合物。
  7.  式(2)で示される繰り返し単位の平均重合度が2~300である請求項5または6に記載の含フッ素ポリエーテル化合物。
  8.  請求項1~7のいずれかに記載の含フッ素ポリエーテル化合物を含有する低誘電体。
  9.  請求項1~7のいずれかに記載の含フッ素ポリエーテル化合物を含有する半導体パッケージ基板、フレキシブルプリント基板またはリジッドプリント基板。
PCT/JP2022/019868 2021-05-10 2022-05-10 含フッ素ポリエーテル化合物 WO2022239781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22807480.3A EP4339226A1 (en) 2021-05-10 2022-05-10 Fluorine-containing polyether compound
JP2023521211A JPWO2022239781A1 (ja) 2021-05-10 2022-05-10
CN202280033656.6A CN117295780A (zh) 2021-05-10 2022-05-10 含氟聚醚化合物
US18/505,260 US20240092971A1 (en) 2021-05-10 2023-11-09 Fluorine-containing polyether compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079793 2021-05-10
JP2021079793 2021-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/505,260 Continuation US20240092971A1 (en) 2021-05-10 2023-11-09 Fluorine-containing polyether compound

Publications (1)

Publication Number Publication Date
WO2022239781A1 true WO2022239781A1 (ja) 2022-11-17

Family

ID=84029679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019868 WO2022239781A1 (ja) 2021-05-10 2022-05-10 含フッ素ポリエーテル化合物

Country Status (5)

Country Link
US (1) US20240092971A1 (ja)
EP (1) EP4339226A1 (ja)
JP (1) JPWO2022239781A1 (ja)
CN (1) CN117295780A (ja)
WO (1) WO2022239781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265102B1 (ja) 2022-03-22 2023-04-25 シントロニクス インコーポレイテッド プリント回路基板用材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118382A (ja) * 1993-10-21 1995-05-09 Res Dev Corp Of Japan ポリエ−テル樹脂及びその製造方法
JP2006045512A (ja) * 2004-06-29 2006-02-16 Sumitomo Chemical Co Ltd 高分子電解質膜及びそれを用いた燃料電池
CN106816617A (zh) * 2015-11-30 2017-06-09 东丽先端材料研究开发(中国)有限公司 一种聚合物复合电解质膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118382A (ja) * 1993-10-21 1995-05-09 Res Dev Corp Of Japan ポリエ−テル樹脂及びその製造方法
JP2006045512A (ja) * 2004-06-29 2006-02-16 Sumitomo Chemical Co Ltd 高分子電解質膜及びそれを用いた燃料電池
CN106816617A (zh) * 2015-11-30 2017-06-09 东丽先端材料研究开发(中国)有限公司 一种聚合物复合电解质膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEFF W. LABADIE ET AL.: "Macromolecules", vol. 23, 1990, AMERICAN CHEMICAL SOCIETY, article "Perfluoroalkylene-Activated Poly(aryl ether) Synthesis", pages: 5371 - 5373

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265102B1 (ja) 2022-03-22 2023-04-25 シントロニクス インコーポレイテッド プリント回路基板用材料
JP2023140309A (ja) * 2022-03-22 2023-10-04 シントロニクス インコーポレイテッド プリント回路基板用材料
US11930596B2 (en) 2022-03-22 2024-03-12 Thintronics, Inc. Materials for printed circuit boards

Also Published As

Publication number Publication date
EP4339226A1 (en) 2024-03-20
CN117295780A (zh) 2023-12-26
JPWO2022239781A1 (ja) 2022-11-17
US20240092971A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
Liu et al. Poly (aryl ether ketone) s with (3‐methyl) phenyl and (3‐trifluoromethyl) phenyl side groups
KR101208314B1 (ko) 투명성과 고내열성을 갖는 폴리아릴렌에테르계 중합체 및 그 제조 방법
US9410055B2 (en) Polybenzoxazole resin and precursor thereof
Zhong et al. Organosoluble polyimides with low dielectric constant prepared from an asymmetric diamine containing bulky m-trifluoromethyl phenyl group
KR102669487B1 (ko) 경화성 화합물
WO2018107453A1 (zh) 固化性化合物
CN112313284B (zh) 固化性组合物
US20230099704A1 (en) Fluorinated amide compound, compound containing fluorinated nitrogen-containing heterocyclic ring, and fluorinated compound
US20240092971A1 (en) Fluorine-containing polyether compound
Zhang et al. Polyimides with low dielectric constants and dissipation factors at high frequency derived from novel aromatic diamines with bistrifluoromethyl pendant groups
Lee et al. High Thermally Stable Anthracene-Based Polyimides with Low Dielectric Constants and Dissipation Factors
JPWO2019054471A1 (ja) ポリベンゾイミダゾール、その前駆体ポリアミド及びそれらの製造方法
JP2021178955A (ja) アミド化合物、含窒素複素環含有化合物および架橋物
Huang et al. Fluorinated intrinsic low-k materials at high frequency with good dielectric performance and excellent hydrophobicity
US20130245167A1 (en) Resin composition, insulating film, film forming method, and electronic part
Cheng et al. Modular synthesis and dielectric properties of high-performance fluorinated poly (arylene ether-1, 3, 4-oxadiazole) s
JP4176074B2 (ja) ビスフェニル−2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェニルホスフィンオキシド誘導体およびその製造方法
WO2023219085A1 (ja) フッ素化ポリアミド化合物、フッ素化ポリイミド化合物、低誘電材料および高周波エレクトロニクス部品
JP2006290933A (ja) 樹脂組成物及びそれを用いた硬化物
WO2023022123A1 (ja) 含フッ素ポリアミド化合物および含フッ素ポリベンゾオキサゾール
JP2005179542A (ja) 架橋ポリエーテルケトン樹脂
WO2012165436A1 (ja) 含フッ素重合性単量体およびそれを用いた高分子化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521211

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280033656.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022807480

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807480

Country of ref document: EP

Effective date: 20231211