WO2022239760A1 - 輸液バッグの酸素濃度測定方法および輸液バッグ - Google Patents

輸液バッグの酸素濃度測定方法および輸液バッグ Download PDF

Info

Publication number
WO2022239760A1
WO2022239760A1 PCT/JP2022/019764 JP2022019764W WO2022239760A1 WO 2022239760 A1 WO2022239760 A1 WO 2022239760A1 JP 2022019764 W JP2022019764 W JP 2022019764W WO 2022239760 A1 WO2022239760 A1 WO 2022239760A1
Authority
WO
WIPO (PCT)
Prior art keywords
infusion bag
oxygen concentration
laser
infusion
gas
Prior art date
Application number
PCT/JP2022/019764
Other languages
English (en)
French (fr)
Inventor
雅志 大島
祐樹 宮部
Original Assignee
ゼネラルパッカー株式会社
雅志 大島
祐樹 宮部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼネラルパッカー株式会社, 雅志 大島, 祐樹 宮部 filed Critical ゼネラルパッカー株式会社
Publication of WO2022239760A1 publication Critical patent/WO2022239760A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to an infusion bag oxygen concentration measuring method for measuring the oxygen concentration in an infusion bag filled with a medical infusion solution, and an infusion bag used for the oxygen concentration measuring method.
  • Medical infusions are packed in bag-like containers such as infusion bags for transportation and storage.
  • Gas replacement packaging is used to remove the gas and fill with an inert gas such as nitrogen or carbon dioxide.
  • a measurement method using a laser gas concentration measuring device is used as a method for measuring the oxygen concentration remaining in an infusion bag filled with medical infusion solutions.
  • the measurement method using this laser type gas concentration measuring device utilizes the property that most gas molecules absorb light of a specific wavelength. This is a method of measuring the amount of transmitted light to measure the oxygen concentration (Japanese Patent Application Laid-Open No. 2010-38846).
  • an object of the present invention is to provide a method for measuring the oxygen concentration of an infusion bag that can secure a necessary detection space in the gas phase portion of the infusion bag and improve the measurement accuracy, and an infusion solution used in the method for measuring the oxygen concentration. It is to provide a bag.
  • a method for measuring the oxygen concentration of an infusion bag filled with a medical infusion, replaced with gas, and packaged to measure the oxygen concentration in the infusion bag The lower part has shoulders that rise obliquely upward toward the center, a port provided in the center of the shoulders, and a gas phase part provided below the shoulders, and directly below the ports.
  • a tip of a laser generator that emits a laser beam of a specific wavelength and a tip of a laser receiver that receives a laser beam oscillated from the laser generator are arranged opposite to each other on both sides of the gas phase part of
  • a method for measuring oxygen concentration in an infusion bag, characterized by measuring the oxygen concentration in the infusion bag (claim 1).
  • a method for measuring the oxygen concentration of an infusion bag filled with a medical infusion, replaced with gas, and packaged to measure the oxygen concentration in the infusion bag wherein a laser beam of a specific wavelength is irradiated.
  • the tip of the laser generating part and the tip of the laser receiving part for receiving the laser beam oscillated from the laser generating part are provided in the gas phase part of the infusion bag so that the gas in the gas phase part can enter.
  • the oxygen concentration measurement method for an infusion bag is characterized in that the medical infusion solution is placed facing each other on both sides of a detection space that is impenetrably partitioned, and the oxygen concentration in the infusion bag is measured. 2).
  • a medical infusion solution is provided in a gas phase part in an infusion bag filled with a medical infusion solution to replace the gas and packaged, and the gas in the gas phase part can enter and the medical infusion solution can enter.
  • An infusion bag characterized by having an impossibly partitioned detection space (Claim 3).
  • An infusion bag (Claim 4).
  • the tip of the laser generator and the tip of the laser receiver have a suction mechanism that allows the infusion bag to be sucked (claim 6).
  • the detection space is provided in the gas phase portion of the infusion bag and is partitioned so that the gas in the gas phase portion can enter and the medical infusion solution cannot enter.
  • the necessary detection space can be secured and the measurement accuracy can be improved.
  • an infusion bag that can be used for the oxygen concentration measuring method of the infusion bag of claim 2 can be constructed.
  • an infusion bag that can be used for the oxygen concentration measuring method of the infusion bag of claim 2 or 3 can be easily manufactured.
  • the lower portion of the infusion bag is pressed from both outsides by the pressing portions, thereby increasing the thickness of the gas phase portion of the infusion bag and providing a necessary detection space. It can ensure and improve the measurement accuracy.
  • the front and back surfaces of the infusion bag are adsorbed by the adsorption mechanism, thereby securing a sufficient detection space in the infusion bag and making the distance of the detection space uniform. can improve measurement accuracy.
  • FIG. 1 is a schematic perspective view for explaining an embodiment of a method for measuring the oxygen concentration of an infusion bag according to the present invention
  • (a) is a front view for explaining an embodiment of an infusion bag
  • (b) is a plan view thereof.
  • 1 is a side view of an embodiment of an oxygen concentration measuring device that implements the method for measuring the oxygen concentration of an infusion bag according to the present invention
  • FIG. FIG. 4 is a schematic perspective view for explaining another embodiment of the method for measuring the oxygen concentration of an infusion bag according to the present invention
  • FIG. 5 is a front view of an embodiment of the infusion bag of the present invention used in the method for measuring the oxygen concentration of the infusion bag shown in FIG. 4
  • FIG. 4 is a schematic perspective view for explaining another embodiment of the method for measuring the oxygen concentration of an infusion bag according to the present invention
  • the infusion bag H has a shoulder portion 12 in which both lower side portions 11a and 11b rise obliquely upward toward the center, a port 13 provided in the center of the shoulder portion 12, and a port 13 provided in the center of the shoulder portion 12.
  • a tip portion 16 of a laser generating portion 15 and a tip portion 18 of a laser receiving portion 17 are arranged opposite to each other on both outer sides of the gas phase portion 14 immediately below the port 13 to deliver an infusion solution.
  • FIG. 1 A method for measuring the oxygen concentration of an infusion bag according to the present invention will be described with reference to an embodiment shown in FIGS. 1 to 3.
  • FIG. 2 The oxygen concentration measurement method for an infusion bag of this embodiment is a method for measuring the oxygen concentration in an infusion bag H filled with a medical infusion solution S, replaced with gas, and packaged.
  • H as shown in FIG. 2, includes a shoulder portion 12 in which both lower side portions 11a and 11b rise obliquely upward toward the center in a front view, a port 13 provided in the center of the shoulder portion 12, and a shoulder portion. 12 and a gas phase portion 14 provided below the port 12, and as shown in FIG. 1 or FIG.
  • the end portion 16 of the portion 15 and the end portion 18 of the laser light receiving portion 17 for receiving the laser light L emitted from the laser generating portion 15 are arranged opposite to each other to measure the oxygen concentration in the infusion bag H.
  • the concentration of oxygen which is a specific gas in the infusion bag H packaged after gas replacement with an inert gas such as nitrogen or carbon dioxide, is measured by a laser gas densitometer. It is used as a measurement method for a single gas concentration measuring device, or used in the inspection process in various packaging machines such as rotary packaging machines, truck packaging machines, and bag making packaging machines. It is used in the conveyor-type inspection process provided in the outline of various packaging machines such as packaging machines, truck-type packaging machines, and bag-making and packaging machines.
  • An infusion bag is a bag-like container for medical infusion such as a drip, made of a soft material such as polyolefin. It is a thing.
  • Specific forms of the infusion bag H include, for example, a double upper and lower series as shown in FIG. 1, a single series as shown in FIG. 2, and a multiple series other than two series.
  • the infusion bag H of this embodiment has a shoulder portion 12 in which both lower side portions 11a and 11b rise obliquely upward toward the center when viewed from the front, A port 13 provided at the center of the shoulder 12, and a gas phase portion provided at the bottom of the shoulder 12 (a space in which the medical infusion solution S does not exist in the infusion bag H and is replaced with an inert gas). 14, a front surface portion 19a, and a back surface portion 19b.
  • the method for measuring the oxygen concentration of the infusion bag H of this embodiment is a method for measuring the oxygen concentration in the infusion bag H filled with the medical infusion solution S, replaced with gas, and packaged, as shown in FIG. , the measurement is performed by a gas concentration measuring device G equipped with a laser type gas concentration meter 20. As shown in FIG.
  • the laser type gas concentration meter 20 has a laser generator 15 having a transmitter that emits laser light L of a specific wavelength, and a receiver that receives the laser light L emitted from the transmitter.
  • a laser receiving portion 17 is provided, and the tip portion 16 of the laser generating portion 15 and the tip portion 18 of the laser receiving portion 17 are positioned on both sides of the infusion bag H (outside the surface portion 19a and outside the back portion 19b). They are arranged to face each other.
  • the laser oximeter 20 utilizes infrared absorption spectroscopy using a semiconductor laser as a light source.
  • the oxygen concentration is displayed by measuring the
  • the laser beam L emitted from the transmitter of the laser generator 15 passes through the tip 16 of the laser generator 15, enters the infusion bag H, and reaches the receiver of the laser receiver 17. configured to receive light.
  • the laser light L with a specific wavelength oscillated from the oscillator is selected from the wavelength (natural frequency) range of 760 to 770 nm.
  • the laser light received by the receiver of the laser light receiving unit 17 absorbs light into the infusion bag H based on the absorbance of the laser light.
  • the oxygen concentration of the remaining oxygen gas is configured to be measured.
  • the laser generator 17 has a controller that sets the wavelength of the laser light L emitted from the transmitter to a specific wavelength and adjusts the light intensity to a predetermined level.
  • the controller adjusts the wavelength of the laser light L output from the semiconductor laser element to a specific wavelength specific to the specific gas to be measured, and controls amplification so that the laser light L is emitted with a predetermined incident light intensity.
  • the laser light receiving unit 17 has a receiver that receives the laser light L that has passed through the infusion bag H, and a measurement unit that measures the oxygen concentration based on the received light signal from the receiver.
  • the receiver has an element such as a photodiode that converts the transmitted light intensity of the laser light L transmitted through the infusion bag H into an electrical transmitted light signal.
  • an element such as a photodiode that converts the transmitted light intensity of the laser light L transmitted through the infusion bag H into an electrical transmitted light signal.
  • the measuring unit calculates the transmittance based on the transmitted light signal related to the transmitted light intensity and the incident light signal related to the incident light intensity of the laser light L emitted from the oscillator, and calculates the laser light intensity based on the calculated transmittance.
  • the absorbance of oxygen gas is obtained, and the concentration of oxygen gas in the infusion bag H is measured based on the absorbance.
  • the gas concentration measuring device G has a suction mechanism that enables the surface portion 19a and the back surface portion 19b of the infusion bag H to be suctioned to both the tip portion 16 of the laser generating portion 15 and the tip portion 18 of the laser receiving portion 17. ing.
  • the contact between the tip 16 of the laser generator 15, the tip 18 of the laser receiver 17, and the object to be measured (infusion bag H) can be secured, and a sufficient detection space can be secured in the infusion bag H. can improve measurement accuracy.
  • the distal end portion 16 of the laser generating portion 15 and the distal end portion 18 of the laser receiving portion 17 are attached with a vacuum source such as a vacuum pump via a flow control valve and a pressure gauge in a communication passage having a suction hole.
  • a vacuum source such as a vacuum pump
  • a flow control valve and a pressure gauge in a communication passage having a suction hole.
  • Each has a suction mechanism that can be sucked by
  • the communication passage and the laser path are communicated with each other, and the inside of the laser path of the laser emitting unit 15 and the laser receiving unit 17 is also in a vacuum atmosphere due to suction by the adsorption mechanism. is configured as As a result, the residual oxygen rate in the laser path can be set to approximately 0%, and the measurement accuracy can be further improved.
  • the gas concentration measuring device G also has a reciprocating mechanism 21, as shown in FIG.
  • the reciprocating mechanism 21 reciprocates the distal end portion 16 of the laser generating portion 15 and the distal end portion 18 of the laser receiving portion 17 in and out of the infusion bag H suspended by the grip pair g. is.
  • the distance between the tip 16 of the laser generator 15 and the tip 18 of the laser receiver 17 can be adjusted according to the size of the infusion bag H, and the distance between the tip 16 of the laser emitter 15 and the laser receiver 17 can be adjusted. can ensure close contact between the distal end portion 18 and the object to be measured (infusion bag H).
  • the reciprocating mechanism 21 of this embodiment includes a first reciprocating part 22 to which the laser generating part 15 is fixed, a second reciprocating part 23 to which the laser light receiving part 17 is fixed, and a first reciprocating part 22 and a second reciprocating portion 23, respectively, and a rotary drive portion 25 such as a servomotor for rotating the feed screw mechanism 24 forward and backward.
  • a rotary drive portion 25 such as a servomotor for rotating the feed screw mechanism 24 forward and backward.
  • the oxygen concentration in the infusion bag H is determined by arranging a tip portion 16 of a laser generating portion 15 for irradiating a laser beam and a tip portion 18 of a laser receiving portion 17 for receiving a laser beam L emitted from the laser generating portion 15 so as to face each other. is characterized by measuring As a result, the oxygen concentration of the infusion bag H can be measured directly below the port 13 where it is easier to secure a detection space, and the required detection space can be secured to improve the measurement accuracy.
  • the oxygen concentration measurement method for an infusion bag of this embodiment is a method for measuring the oxygen concentration in an infusion bag H1 filled with a medical infusion solution S, replaced with gas, and packaged.
  • the tip portion 16 of the laser generating portion 15 that irradiates the laser beam L and the tip portion 18 of the laser receiving portion 17 that receives the laser beam L emitted from the laser generating portion 15 are placed in the gas phase portion 14 of the infusion bag H1.
  • the detection space Q provided in the gas phase portion 14 can enter and the medical infusion solution S cannot enter, and the infusion solution
  • This is a method for measuring the oxygen concentration of an infusion bag, characterized by measuring the oxygen concentration in the bag H1.
  • the infusion bag H1 used in the method for measuring the oxygen concentration of the infusion bag of this embodiment is filled with the medical infusion solution S, gas replaced, and packaged.
  • the infusion bag is characterized in that it has a detection space Q which is provided in the phase portion 14 and which is partitioned so that the gas in the gas phase portion 14 can enter and the medical infusion solution S cannot enter.
  • This infusion bag H1 will also be described, but the same components as those of the above-described infusion bag H will be given the same reference numerals and their description will be omitted.
  • the detection space Q includes a partition wall portion R connecting the inner surfaces of the front surface portion 19a and the back surface portion 19b of the infusion bag H1, and a gas intrusion detection space Q provided above the partition wall portion R. It is formed by the part T.
  • the detection space Q is formed by the partition wall portion R and the gas entry portion T, thereby forming the detection space Q that is partitioned so that the gas can enter the gas phase portion 14 and the medical infusion solution S cannot enter. be done.
  • the infusion bag H1 of this embodiment has one side wall portion c in the width direction of the infusion bag H1 and a partition wall portion R1 extending horizontally from the one side wall portion c. and a partition wall portion R2 extending in the vertical direction from the other end of the partition wall portion R1.
  • the detection space Q provided in the gas phase portion 14 is configured so that the gas can enter and the medical infusion solution S cannot enter.
  • the size of the gap forming the gas entry portion T can be changed in design depending on the viscosity of the medical infusion solution S or the like.
  • the method for measuring the oxygen concentration of an infusion bag in this embodiment includes a tip portion 16 of a laser generator 15 for irradiating a laser beam L of a specific wavelength and a laser beam oscillated from the laser generator 15.
  • a tip portion 18 of a laser light receiving portion 17 for receiving L is provided in the gas phase portion 14 of the infusion bag H1, and is partitioned so that the gas in the gas phase portion 14 can enter and the medical infusion solution S cannot enter. They are characterized in that they are arranged opposite to each other on both outer sides of the detection space Q (outer sides of the surface portion 19a and the back portion 19) to measure the oxygen concentration in the infusion bag H1.
  • the oxygen concentration of the infusion bag H1 is detected in the detection space Q which is provided in the gas phase portion 14 of the infusion bag H1 and which is partitioned so that the gas in the gas phase portion 14 can enter and the medical infusion solution S cannot enter. Measurement can be performed, and the necessary detection space Q can be secured to improve the measurement accuracy.
  • the oxygen concentration measurement method for an infusion bag of this embodiment is a method for measuring the oxygen concentration in an infusion bag H1 filled with a medical infusion solution S, replaced with gas, and packaged.
  • the tip portion 16 of the laser generating portion 15 that irradiates the laser beam L and the tip portion 18 of the laser receiving portion 17 that receives the laser beam L emitted from the laser generating portion 15 are connected to the gas phase portion 14 of the infusion bag H.
  • the lower part of the infusion bag H is pressed from both outsides (outsides of the surface portion 19a and the back surface portion 19) by the pressing portions 30a and 30b.
  • a method for measuring the oxygen concentration of an infusion bag characterized in that the oxygen concentration in the infusion bag H is measured by
  • the same components as those described in the above-described oxygen concentration measuring method for an infusion bag are denoted by the same reference numerals, and the description thereof will be omitted.
  • the method for measuring the oxygen concentration of an infusion bag includes an infusion bag in which a tip portion 16 of a laser generating section 15 and a tip portion 18 of a laser light receiving section 17 are supported in a suspended manner by grip pairs g.
  • the gas phase portion 14 of H is arranged opposite to each other (outside of the surface portion 19a and the back surface portion 19), and the lower part of the infusion bag H is placed from both outsides (outside of the surface portion 19a and the back surface portion 19).
  • Compression section reciprocating mechanisms 31 and 32 are used to move and compress the compression sections (compression plates in this embodiment) 30a and 30b. Such compression increases the thickness of the gas phase portion 14 of the infusion bag, ensuring a necessary detection space and improving the measurement accuracy.
  • the distal end portion 16 of the laser generating portion 15 and the distal end portion 18 of the laser receiving portion 17 have suction mechanisms 33 and 34 that allow the infusion bag H to be suctioned.
  • suction mechanisms 33 and 34 that allow the infusion bag H to be suctioned.
  • the suction mechanisms 33 and 34 are configured so that a vacuum source such as a vacuum pump can be attached to a communicating passage having a suction hole via a flow rate control valve and a pressure gauge so that suction can be performed.
  • G1 G2 Oxygen concentration measuring device H, H1 Infusion bag g Grip pair 11a, 11b Both lower side portions 12 Shoulder portion 13 Port 14 Gas phase portion 15 Laser generating portion 16 Tip portion of laser generating portion 17 Laser receiving portion 18 Laser receiving portion Tip part 19a Surface part 19b Back part 20 Laser type gas concentration meter 21 Reciprocating mechanism 22 First reciprocating part 23 Second reciprocating part 24 Feed screw mechanism 25 Rotation drive parts 30a, 30b Compressing parts 31, 32 Compressing part reciprocating mechanism 33, 34 Adsorption mechanism R Partition wall part T Gas entry part Q detection space

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hematology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

【課題】輸液バッグ内の気相部に必要な検知空間を確保して測定精度を向上させることができる輸液バッグの酸素濃度測定方法およびその酸素濃度測定方法に使用される輸液バッグを提供する。 【解決手段】輸液バッグHは、両側下辺部11a,11bが中央に向かってそれぞれ斜め上方に上昇する肩部12と、肩部12の中央に設けられたポート13と、肩部12の下部に設けられた気相部14とを有し、ポート13の真下の気相部14の両外側に、レーザー発生部15の先端部16とレーザー受光部17の先端部18とを対向配置して輸液バッグH内の酸素濃度を測定する輸液バッグの酸素濃度測定方法である。

Description

輸液バッグの酸素濃度測定方法および輸液バッグ
 本発明は、医療用輸液を充填した輸液バッグ内の酸素濃度を測定するための輸液バッグの酸素濃度測定方法およびその酸素濃度測定方法に使用される輸液バッグに関する。
 医療用輸液は、輸液バッグなどの袋状容器内に充填されて輸送および保存されているが、この輸液バッグ内に充填した医療用輸液が酸素によって劣化しないように、輸液バッグ内に残留する空気を排除して窒素、二酸化炭素等の不活性ガスを充填するガス置換包装が行われている。
 そして、製品検査において、医療用輸液を充填した輸液バッグ内に残存する酸素濃度を計測する方法として、レーザー式ガス濃度測定装置による計測方法が行われている。
 このレーザー式ガス濃度測定装置による計測方法は、大半のガス分子が特定波長の光を吸収するという性質を利用するもので、レーザー光を輸液バッグ内の上部に存在する気相部に透過させてその透過光量を計測して酸素濃度を測定する方法である(特開2010-38846号公報)。
 しかし、輸液バッグ内の上部に存在する気相部は狭小であるため、計測が困難で測定精度も十分に確保できないという問題があった。
特開2010-38846号公報
 そこで、本発明の課題は、輸液バッグ内の気相部に必要な検知空間を確保して測定精度を向上させることができる輸液バッグの酸素濃度測定方法およびその酸素濃度測定方法に使用される輸液バッグを提供することにある。
 上記課題を解決するものは、医療用輸液を充填しガス置換して包装された輸液バッグ内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、前記輸液バッグは、正面視で両側下辺部が中央に向かってそれぞれ斜め上方に上昇する肩部と、該肩部の中央に設けられたポートと、前記肩部の下部に設けられた気相部とを有し、前記ポートの真下の前記気相部の両外側に、特定波長のレーザー光を照射するレーザー発生部の先端部と該レーザー発生部から発振されるレーザー光を受光するレーザー受光部の先端部とを対向配置して前記輸液バッグ内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法である(請求項1)。
 また、上記課題を解決するものは、医療用輸液を充填しガス置換して包装された輸液バッグ内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、特定波長のレーザー光を照射するレーザー発生部の先端部と該レーザー発生部から発振されるレーザー光を受光するレーザー受光部の先端部とを、前記輸液バッグの気相部内に設けられ前記気相部内のガスは侵入可能でかつ前記医療用輸液は侵入不能に区画された検知空間の両外側にそれぞれ対向配置して前記輸液バッグ内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法である(請求項2)。
 さらに、上記課題を解決するものは、医療用輸液を充填しガス置換して包装された輸液バッグ内の気相部内に設けられ前記気相部内のガスは侵入可能でかつ前記医療用輸液は侵入不能に区画された検知空間を有していることを特徴とする輸液バッグである(請求項3)。
 前記検知空間は、前記輸液バッグの表面部と裏面部との内面同士を連結した区画壁部と、該区画壁部の上部に設けられたガス侵入部により形成されている請求項3に記載の輸液バッグである(請求項4)。
 さらに、上記課題を有するものは、医療用輸液を充填しガス置換して包装された輸液バッグ内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、特定波長のレーザー光を照射するレーザー発生部の先端部と該レーザー発生部から発振されるレーザー光を受光するレーザー受光部の先端部とを、前記輸液バッグの気相部の両外側に対向配置すると共に、前記輸液バッグの下部を両外側から圧迫部により圧迫することにより前記輸液バッグ内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法である(請求項5)。
 前記レーザー発生部の先端部と前記レーザー受光部の先端部は、前記輸液バッグを吸着可能とする吸着機構を有していることが好ましい(請求項6)。
 請求項1に記載の輸液バッグの酸素濃度測定方法によれば、より検知空間を確保しやすいポートの真下で輸液バッグの酸素濃度を測定することで、必要な検知空間を確保して測定精度を向上させることができる。
 請求項2に記載の輸液バッグの酸素濃度測定方法によれば、輸液バッグの気相部内に設けられ気相部内のガスは侵入可能でかつ医療用輸液は侵入不能に区画された検知空間で輸液バッグの酸素濃度を測定することで、必要な検知空間を確保して測定精度を向上させることができる。
 請求項3に記載の輸液バッグによれば、上記請求項2に記載の輸液バッグの酸素濃度測定方法に使用可能な輸液バッグを構成できる。
 請求項4に記載の輸液バッグによれば、上記請求項2または3に記載の輸液バッグの酸素濃度測定方法に使用可能な輸液バッグを容易に作製できる。
 請求項5に記載の輸液バッグの酸素濃度測定方法によれば、輸液バッグの下部を両外側から圧迫部により圧迫することにより、輸液バッグの気相部の厚みを増大させて必要な検知空間を確保し測定精度を向上させることができる。
 請求項6に記載の輸液バッグの酸素濃度測定方法によれば、吸着機構により輸液バッグの表裏面を吸着することで、輸液バッグ内により十分な検知空間を確保すると共に検知空間の距離を均一にして測定精度を向上させることができる。
本発明の輸液バッグの酸素濃度測定方法の一実施例を説明するための斜視概略図である。 (a)は輸液バッグの一実施例を説明するための正面図であり、(b)はその平面図である。 本発明の輸液バッグの酸素濃度測定方法を実施する酸素濃度測定装置の一実施例の側面図である。 本発明の輸液バッグの酸素濃度測定方法の他の実施例を説明するための斜視概略図である。 図4に示した輸液バッグの酸素濃度測定方法に使用する本発明の輸液バッグの一実施例の正面図である。 本発明の輸液バッグの酸素濃度測定方法の他の実施例を説明するための斜視概略図である。
 本発明では、輸液バッグHが、両側下辺部11a,11bが中央に向かってそれぞれ斜め上方に上昇する肩部12と、肩部12の中央に設けられたポート13と、肩部12の下部に設けられた気相部14とを有し、ポート13の真下の気相部14の両外側にそれぞれレーザー発生部15の先端部16とレーザー受光部17の先端部18とを対向配置して輸液バッグH内の酸素濃度を測定することで、より検知空間を確保しやすいポート13の真下で輸液バッグの酸素濃度を測定して測定精度を向上させることができる輸液バッグの酸素濃度測定方法を実現した。
 本発明の輸液バッグの酸素濃度測定方法を図1ないし図3に示した一実施例を用いて説明する。
 この実施例の輸液バッグの酸素濃度測定方法は、医療用輸液Sを充填しガス置換して包装された輸液バッグH内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、輸液バッグHは、図2に示すように、正面視で両側下辺部11a,11bが中央に向かってそれぞれ斜め上方に上昇する肩部12と、肩部12の中央に設けられたポート13と、肩部12の下部に設けられた気相部14とを有し、図1または図3に示すように、ポート13の真下の気相部14の両外側に、特定波長のレーザー光を照射するレーザー発生部15の先端部16とレーザー発生部15から発振されるレーザー光Lを受光するレーザー受光部17の先端部18とを対向配置して輸液バッグH内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法である。以下、詳述する。
 本発明の輸液バッグの酸素濃度測定方法は、窒素、二酸化炭素等の不活性ガスによりガス置換をして包装された輸液バッグH内の特定ガスである酸素濃度をレーザー式ガス濃度計によって測定するものであり、単独のガス濃度測定装置の測定方法として使用され、または、ロータリー式包装機、トラック式包装機、製袋包装機等の各種包装機内の検査工程にて使用され、さらに、ロータリー式包装機、トラック式包装機、製袋包装機等の各種包装機のアウトラインに設けられたコンベア式検査工程にて使用される。
 輸液バッグは、例えば点滴などの医療用輸液をポリオレフィンなどの軟質材料にて袋状容器としたものであり、医療用輸液が充填されると共に、上部中央にポート(口部)にて封止されたものである。具体的な輸液バッグHの形態としては、例えば図1に示すような上下2連のものや図2に示した単体のもの、あるいは2連以外の多連のものなどが含まれる。
 より具体的には、この実施例の輸液バッグHは、図1または図2に示すように、正面視で両側下辺部11a,11bが中央に向かってそれぞれ斜め上方に上昇する肩部12と、肩部12の中央に設けられたポート13と、肩部12の下部に設けられた気相部(輸液バッグH内において医療用輸液Sが存在せず、不活性ガスで置換されている空間)14と、表面部19aと、裏面部19bとを有している。
 この実施例の輸液バッグHの酸素濃度測定方法は、医療用輸液Sを充填しガス置換して包装された輸液バッグH内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であり、図3に示すように、レーザー式ガス濃度計20を備えたガス濃度測定装置Gにより実施される。
 レーザー式ガス濃度計20は、図3に示すように、特定波長のレーザー光Lを照射する発信器を有するレーザー発生部15と、発信器から発振されるレーザー光Lを受光する受信器を有するレーザー受光部17とを備えており、レーザー発生部15の先端部16とレーザー受光部17の先端部18とが、輸液バッグHの両外側(表面部19aの外側と裏面部19bの外側)にそれぞれ対向して配されるよう構成されている。
 レーザー式酸素濃度計20は、半導体レーザーを光源とする赤外線吸収分光法を利用するもので、測定対象の分子(測定ガス:酸素ガス)に固有周波数の光を与えると光エネルギーを吸収し、それを測定することにより酸素濃度の表示を行なうものである。
 具体的には、レーザー発生部15の発信器から発振されるレーザー光Lは、レーザー発生部15の先端部16内を通過して輸液バッグH内に侵入し、レーザー受光部17の受信器に受光されるように構成されている。発信器から発振される特定波長のレーザー光Lは、酸素ガスの場合、波長(固有周波数)760~770nmの範囲から選択される。そして、特定波長のレーザー光Lが、輸液バッグH内に残留している酸素ガスによって吸収されると、レーザー受光部17の受信器に受光されたレーザー光の吸光度に基づいて輸液バッグH内に残留している酸素ガスの酸素濃度が測定されるように構成されている。
 レーザー発生部17は、発信器から発振されるレーザー光Lの波長を特定の波長に設定し、所定の光強度に調整する制御部を有している。制御部は、半導体レーザー素子から出力されるレーザー光Lの波長を測定対象の特定ガス固有の特定波長に調整して、レーザー光Lが所定の入射光強度で射出されるように増幅制御する。
 レーザー受光部17は、輸液バッグHを透過したレーザー光Lを受光する受信器と、受信器からの受光信号に基づいて酸素濃度を測定する測定部とを有している。
 受信器は、輸液バッグHを透過したレーザー光Lの透過光強度を電気的な透過光信号に変換する素子、例えばフォトダイオードを有している。これによって、輸液バッグHを透過したレーザー光Lの透過光強度を電気的に処理することができる。
 測定部は、透過光強度に係る透過光信号と、発信器から発振されたレーザー光Lの入射光強度に係る入射光信号に基づいて透過率を計算し、当該透過率に基づいてレーザー光の酸素ガスによる吸光度を求め、当該吸光度に基づいて輸液バッグH内の酸素ガスの濃度を測定するように構成されている。
 ガス濃度測定装置Gは、レーザー発生部15の先端部16とレーザー受光部17の先端部18の双方に、輸液バッグHの表面部19a,裏面部19bをそれぞれ吸着可能とする吸着機構を有している。これにより、レーザー発生部15の先端部16とレーザー受光部17の先端部18と被測定物(輸液バッグH)との密着性を確保できると共に、輸液バッグH内に十分な検知空間を確保して測定精度を向上させることができる。
 具体的には、レーザー発生部15の先端部16およびレーザー受光部17の先端部18は、吸引穴を備えた連通路に流量調整弁や圧力計を介して真空ポンプ等の真空源が取り付けられて吸引可能な吸着機構をそれぞれ有している。
 なお、この実施例のレーザー式ガス濃度計20は、連通路とレーザー経路とがそれぞれ連通し、吸着機構による吸引により、レーザー発光部15とレーザー受光部17のレーザー経路内も真空雰囲気下となるように構成されている。これにより、レーザー経路内の残存酸素率をほぼ0%として測定精度をより高めることができる。
 また、ガス濃度測定装置Gは、図3に示すように、往復動機構21を有している。往復動機構21は、レーザー発生部15の先端部16およびレーザー受光部17の先端部18を、グリップ対gにより吊り下げ状に支持された輸液バッグHに対して内外に往復動させるための機構である。これにより、輸液バッグHのサイズに応じてレーザー発生部15の先端部16およびレーザー受光部17の先端部18の間隔を調整することができ、レーザー発光部15の先端部16やレーザー受光部17の先端部18と被測定物(輸液バッグH)との密着性を確保できる。
 具体的には、この実施例の往復動機構21は、レーザー発生部15を固定した第1往復動部22と、レーザー受光部17を固定した第2往復動部23と、第1往復動部22と第2往復動部23とをそれぞれ往復動可能に取り付けた送りねじ機構24と、送りねじ機構24を正逆回転させるサーボモーターなどの回転駆動部25とを有し、送りねじ機構24を正逆回転させることにより、レーザー発生部15とレーザー受光部17が内外に移動してレーザー発生部15の先端部16およびレーザー受光部17の先端部18の間隔が調整可能に構成されている。
 そして、この実施例の輸液バッグの酸素濃度測定方法は、図1に示すように、ポート13の真下の気相部14の両外側(表面部19aと裏面部19のそれぞれ外側)に、特定波長のレーザー光を照射するレーザー発生部15の先端部16とレーザー発生部15から発振されるレーザー光Lを受光するレーザー受光部17の先端部18とを対向配置して輸液バッグH内の酸素濃度を測定することを特徴とする。これにより、より検知空間を確保しやすいポート13の真下で輸液バッグHの酸素濃度を測定することができ、必要な検知空間を確保して測定精度を向上させることができる。
 つぎに、図4および図5に示した本発明の輸液バッグの酸素濃度測定方法の他の実施例およびその輸液バッグの酸素濃度測定方法に使用される輸液バッグについて説明する。
 この実施例の輸液バッグの酸素濃度測定方法は、医療用輸液Sを充填しガス置換して包装された輸液バッグH1内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、特定波長のレーザー光Lを照射するレーザー発生部15の先端部16とレーザー発生部15から発振されるレーザー光Lを受光するレーザー受光部17の先端部18とを、輸液バッグH1の気相部14内に設けられ気相部14内のガスは侵入可能でかつ医療用輸液Sは侵入不能に区画された検知空間Qの両外側(表面部19aと裏面部19のそれぞれ外側)に対向配置して輸液バッグH1内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法である。以下、詳述するが、前述した輸液バッグの酸素濃度測定方法にて説明した構成と同一構成部分については同一符号を付し説明を省略する。
 また、この実施例の輸液バッグの酸素濃度測定方法に使用にされる輸液バッグH1は、図5に示すように、医療用輸液Sを充填しガス置換して包装された輸液バッグH1内の気相部14内に設けられ気相部14内のガスは侵入可能でかつ医療用輸液Sは侵入不能に区画された検知空間Qを有していることを特徴とする輸液バッグである。この輸液バッグH1についても併せて説明するが、前述した輸液バッグHと同一構成部分については同一符号を付し説明を省略する。
 この実施例の輸液バッグH1は、検知空間Qが、輸液バッグH1の表面部19aと裏面部19bとの内面同士を連結した区画壁部Rと、区画壁部Rの上部に設けられたガス侵入部Tとにより形成されている。検知空間Qがこれら区画壁部Rとガス侵入部Tとで形成されることで、気相部14内にガスは侵入可能でかつ医療用輸液Sは侵入不能に区画された検知空間Qが構成される。
 より具体的には、この実施例の輸液バッグH1は、図5に示すように、輸液バッグH1の幅方向の一側壁部cと、一側壁部cから水平方向に延在した区画壁部R1と、区画壁部R1の他端から垂直方向に延在した区画壁部R2とで区画された空間で検知空間Qが形成されていることに加え、区画壁部R2の上部にガス侵入部(間隙)Tが設けられることにより、気相部14内に設けられた検知空間Qがガスは侵入可能でかつ医療用輸液Sは侵入不能に構成されている。なお、ガス侵入部Tを構成する間隙は、医療用輸液Sの粘度等によりその大きさが適宜設計変更可能に構成される。
 そして、この実施例における輸液バッグの酸素濃度測定方法は、図4に示すように、特定波長のレーザー光Lを照射するレーザー発生部15の先端部16とレーザー発生部15から発振されるレーザー光Lを受光するレーザー受光部17の先端部18とを、輸液バッグH1の気相部14内に設けられ気相部14内のガスは侵入可能でかつ医療用輸液Sは侵入不能に区画された検知空間Qの両外側(表面部19aと裏面部19のそれぞれ外側)に対向配置して輸液バッグH1内の酸素濃度を測定することを特徴とするものである。これにより、輸液バッグH1の気相部14内に設けられ、気相部14内のガスは侵入可能でかつ医療用輸液Sは侵入不能に区画された検知空間Qで輸液バッグH1の酸素濃度を測定することができ、必要な検知空間Qを確保して測定精度を向上させることができる。
 さらに、図6に示した本発明の輸液バッグの酸素濃度測定方法の他の実施例について説明する。
 この実施例の輸液バッグの酸素濃度測定方法は、医療用輸液Sを充填しガス置換して包装された輸液バッグH1内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、特定波長のレーザー光Lを照射するレーザー発生部15の先端部16とレーザー発生部15から発振されるレーザー光Lを受光するレーザー受光部17の先端部18とを、輸液バッグHの気相部14の両外側(表面部19aと裏面部19のそれぞれ外側)に対向配置すると共に、輸液バッグHの下部を両外側(表面部19aと裏面部19のそれぞれ外側)から圧迫部30a,30bにより圧迫することにより輸液バッグH内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法である。以下、詳述するが、前述した輸液バッグの酸素濃度測定方法にて説明した構成と同一構成部分については同一符号を付し説明を省略する。
 具体的には、この実施例の輸液バッグの酸素濃度測定方法は、レーザー発生部15の先端部16およびレーザー受光部17の先端部18を、グリップ対gにより吊り下げ状に支持された輸液バッグHの気相部14の両外側(表面部19aと裏面部19のそれぞれ外側)に対向配置すると共に、輸液バッグHの下部を両外側(表面部19aと裏面部19のそれぞれ外側)から、シリンダーなどの圧迫部往復動機構31,32を用いて圧迫部(この実施例では圧迫板)30a,30bを移動させ圧迫する。このような圧迫により、輸液バッグの気相部14の厚みが増大して必要な検知空間が確保され測定精度を向上させることができる。
 また、レーザー発生部15の先端部16とレーザー受光部17の先端部18は、輸液バッグHを吸着可能とする吸着機構33,34を有している。これらにより、輸液バッグHの表裏面(表面部19aと裏面部19のそれぞれ外側面)を吸着することで、輸液バッグH内により十分な検知空間を確保して測定精度を向上させることができる。
 具体的には、吸着機構33,34は、それぞれ吸引穴を備えた連通路に流量調整弁や圧力計を介して真空ポンプ等の真空源が取り付け吸引可能に構成されている。
G1,G2   酸素濃度測定装置
H,H1    輸液バッグ
g       グリップ対
11a,11b 両側下辺部
12      肩部
13      ポート
14      気相部
15      レーザー発生部
16      レーザー発生部の先端部
17      レーザー受光部
18      レーザー受光部の先端部
19a     表面部
19b     裏面部
20      レーザー式ガス濃度計 
21      往復動機構
22      第1往復動部
23      第2往復動部
24      送りねじ機構
25      回転駆動部
30a,30b 圧迫部
31,32   圧迫部往復動機構
33,34   吸着機構
R       区画壁部
T       ガス侵入部
Q       検知空間

Claims (6)

  1. 医療用輸液を充填しガス置換して包装された輸液バッグ内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、
    前記輸液バッグは、正面視で両側下辺部が中央に向かってそれぞれ斜め上方に上昇する肩部と、該肩部の中央に設けられたポートと、前記肩部の下部に設けられた気相部とを有し、
    前記ポートの真下の前記気相部の両外側に、特定波長のレーザー光を照射するレーザー発生部の先端部と該レーザー発生部から発振されるレーザー光を受光するレーザー受光部の先端部とを対向配置して前記輸液バッグ内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法。
  2. 医療用輸液を充填しガス置換して包装された輸液バッグ内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、
    特定波長のレーザー光を照射するレーザー発生部の先端部と該レーザー発生部から発振されるレーザー光を受光するレーザー受光部の先端部とを、前記輸液バッグの気相部内に設けられ前記気相部内のガスは侵入可能でかつ前記医療用輸液は侵入不能に区画された検知空間の両外側にそれぞれ対向配置して前記輸液バッグ内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法。
  3. 医療用輸液を充填しガス置換して包装された輸液バッグ内の気相部内に設けられ前記気相部内のガスは侵入可能でかつ前記医療用輸液は侵入不能に区画された検知空間を有していることを特徴とする輸液バッグ。
  4. 前記検知空間は、前記輸液バッグの表面部と裏面部との内面同士を連結した区画壁部と、該区画壁部の上部に設けられたガス侵入部により形成されている請求項3に記載の輸液バッグ。
  5. 医療用輸液を充填しガス置換して包装された輸液バッグ内の酸素濃度を測定する輸液バッグの酸素濃度測定方法であって、
    特定波長のレーザー光を照射するレーザー発生部の先端部と該レーザー発生部から発振されるレーザー光を受光するレーザー受光部の先端部とを、前記輸液バッグの気相部の両外側に対向配置すると共に、前記輸液バッグの下部を両外側から圧迫部により圧迫することにより前記輸液バッグ内の酸素濃度を測定することを特徴とする輸液バッグの酸素濃度測定方法。
  6. 前記レーザー発生部の先端部と前記レーザー受光部の先端部は、前記輸液バッグを吸着可能とする吸着機構を有している請求項5に記載の輸液バッグの酸素濃度測定方法。
PCT/JP2022/019764 2021-05-12 2022-05-10 輸液バッグの酸素濃度測定方法および輸液バッグ WO2022239760A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021080871A JP2022174863A (ja) 2021-05-12 2021-05-12 輸液バッグの酸素濃度測定方法および輸液バッグ
JP2021-080871 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239760A1 true WO2022239760A1 (ja) 2022-11-17

Family

ID=84029628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019764 WO2022239760A1 (ja) 2021-05-12 2022-05-10 輸液バッグの酸素濃度測定方法および輸液バッグ

Country Status (2)

Country Link
JP (1) JP2022174863A (ja)
WO (1) WO2022239760A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342058A (ja) * 2003-06-20 2006-12-21 Otsuka Pharmaceut Factory Inc プラスチック製容器入りシスプラチン製剤
JP2007333742A (ja) * 2001-06-14 2007-12-27 Otsuka Pharmaceut Factory Inc 炭酸ガスインジケーター、及び炭酸ガスインジケーターを配置した包装体
JP2010107197A (ja) * 2008-10-28 2010-05-13 General Packer Co Ltd 包装袋のガス濃度測定装置
JP2012233701A (ja) * 2011-04-28 2012-11-29 Hitachi Zosen Corp 袋状容器内における酸素濃度の非破壊検査装置
JP2016520838A (ja) * 2013-05-27 2016-07-14 ガスポロックス エービー 容器中の気体の濃度を判定するためのシステムおよび方法
WO2020204170A1 (ja) * 2019-04-04 2020-10-08 扶桑薬品工業株式会社 重炭酸イオンを含有する心筋保護液の収容体、及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333742A (ja) * 2001-06-14 2007-12-27 Otsuka Pharmaceut Factory Inc 炭酸ガスインジケーター、及び炭酸ガスインジケーターを配置した包装体
JP2006342058A (ja) * 2003-06-20 2006-12-21 Otsuka Pharmaceut Factory Inc プラスチック製容器入りシスプラチン製剤
JP2010107197A (ja) * 2008-10-28 2010-05-13 General Packer Co Ltd 包装袋のガス濃度測定装置
JP2012233701A (ja) * 2011-04-28 2012-11-29 Hitachi Zosen Corp 袋状容器内における酸素濃度の非破壊検査装置
JP2016520838A (ja) * 2013-05-27 2016-07-14 ガスポロックス エービー 容器中の気体の濃度を判定するためのシステムおよび方法
WO2020204170A1 (ja) * 2019-04-04 2020-10-08 扶桑薬品工業株式会社 重炭酸イオンを含有する心筋保護液の収容体、及びその製造方法

Also Published As

Publication number Publication date
JP2022174863A (ja) 2022-11-25

Similar Documents

Publication Publication Date Title
JP5309349B2 (ja) 包装袋のガス濃度測定装置
JP5137740B2 (ja) 袋状容器内における酸素濃度の非破壊検査装置
US8848193B2 (en) Non-destructive inspection device for oxygen concentration in bag-shaped container
US8397475B2 (en) Packaging machine with gas concentration measuring device
WO2022239760A1 (ja) 輸液バッグの酸素濃度測定方法および輸液バッグ
CN102575981A (zh) 用于包装内的气体的非侵入性评估的设备和方法
ITMI20120493A1 (it) Apparecchiatura per il controllo non distruttivo dell'integrita' e/o idoneita' di confezioni sigillate
WO2022244647A1 (ja) 包装袋のガス濃度測定装置および包装袋のガス濃度測定方法
JP2021067632A (ja) 包装袋内のガス濃度測定装置
WO2022244646A1 (ja) 包装袋のガス濃度測定装置およびそれを備えた包装機並びに包装袋のガス濃度測定方法
WO2022244648A1 (ja) 包装袋のガス濃度測定装置および包装袋のガス濃度測定方法
WO2021079994A1 (ja) 包装容器のガス濃度測定装置、それを備えた包装機および包装機におけるガス濃度測定方法
MXPA02011662A (es) Metodo y pararo para producir un medio gaseoso.
JP7460141B2 (ja) 包装容器のガス濃度測定装置
WO2021124711A1 (ja) 包装容器内のガス濃度測定方法
JP2024034580A (ja) レーザー式ガス濃度測定装置およびそれを備えた包装機
JP2021096133A (ja) 包装袋用ガス濃度測定装置
WO2021079993A1 (ja) 包装容器のガス濃度測定装置、それを備えた包装機および包装機におけるガス濃度測定方法
WO2022239759A1 (ja) ピロー包装袋のガス濃度測定方法
JP2024034581A (ja) レーザー式ガス濃度測定装置およびそれを備えた包装機
JP2021067564A (ja) 包装容器のガス濃度測定装置、それを備えた包装機および包装機におけるガス濃度測定方法
JP7343169B2 (ja) 密封包装容器のガス濃度測定方法およびガス濃度測定装置
WO2021124710A1 (ja) 密封包装容器
JP2023065021A (ja) 包装容器内の酸素濃度制御方法および包装機
JP2021096097A (ja) 密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807460

Country of ref document: EP

Kind code of ref document: A1