WO2022239683A1 - 基板を処理する装置、及び処理ガスの温度、濃度を測定する方法 - Google Patents

基板を処理する装置、及び処理ガスの温度、濃度を測定する方法 Download PDF

Info

Publication number
WO2022239683A1
WO2022239683A1 PCT/JP2022/019381 JP2022019381W WO2022239683A1 WO 2022239683 A1 WO2022239683 A1 WO 2022239683A1 JP 2022019381 W JP2022019381 W JP 2022019381W WO 2022239683 A1 WO2022239683 A1 WO 2022239683A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
processing
concentration
wavelength range
laser
Prior art date
Application number
PCT/JP2022/019381
Other languages
English (en)
French (fr)
Inventor
雄治 小畑
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN202280032663.4A priority Critical patent/CN117242333A/zh
Priority to KR1020237041148A priority patent/KR20240004732A/ko
Publication of WO2022239683A1 publication Critical patent/WO2022239683A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the present disclosure relates to an apparatus for processing substrates and a method for measuring temperature and concentration of processing gas.
  • wafers semiconductor wafers
  • wafers which are substrates
  • perform processing by supplying a processing gas to a processing space in which the wafers are arranged.
  • the temperature and concentration of the processing gas supplied to the processing space are important measurement items for controlling and designing processing of wafers.
  • Patent Document 1 describes a technique for measuring the concentration of a gas supplied to a semiconductor manufacturing apparatus based on the result of irradiating the gas flowing through a gas flow path with two types of light having different wavelengths.
  • Japanese Patent Laid-Open No. 2002-200002 describes a technique of measuring the concentration of material gas supplied to a substrate holding chamber of a film forming apparatus using an optical detection device.
  • the present disclosure provides a technique of using laser light to measure the temperature and concentration of a processing gas supplied to a processing space where substrate processing is performed.
  • the present disclosure provides an apparatus for processing a substrate, a processing container that houses the substrate and forms a processing space in which the processing is performed; a processing gas supply unit that supplies the processing space with a processing gas for processing the substrate or processing equipment arranged in the processing container; a light projecting unit that projects a laser beam onto the processing space to which the processing gas is supplied; Laser light whose wavelength changes within a first wavelength range that is a range of wavelengths set in advance and laser light whose wavelength changes within a second wavelength range different from the first wavelength range are optically guided.
  • a light source unit that supplies light to the light projecting unit via a wave path
  • a light receiving unit that receives the laser light that has passed through the processing space
  • a temperature calculation unit that calculates the temperature of the processing gas based on the absorption spectrum of the laser light in the first wavelength range and the absorption spectrum of the laser light in the second wavelength range received by the light receiving unit
  • a concentration calculation unit that calculates the concentration of the processing gas based on the absorbance of the laser light of a specific wavelength within the first wavelength range or within the second wavelength range.
  • laser light can be used to measure the temperature and concentration of the processing gas supplied to the processing space where the substrate is processed.
  • FIG. 1 is a vertical cross-sectional side view of a wafer processing apparatus according to the present disclosure
  • FIG. 3 is a schematic diagram of a mounting table and a gas shower head provided in the wafer processing apparatus
  • FIG. 4 is a plan view showing a first layout example of a light projecting and receiving set
  • FIG. 10 is a plan view showing a second layout example of the light emitting and receiving set
  • FIG. 4 is an enlarged schematic diagram of a mounting table provided with a reflecting portion
  • FIG. 11 is a longitudinal side view of a wafer processing apparatus according to another configuration example
  • FIG. 1 A configuration example of an apparatus (wafer processing apparatus 1) for processing a substrate according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 4.
  • FIG. The wafer processing apparatus 1 of this embodiment is configured as an apparatus for performing a film forming process by supplying a plasmatized processing gas to the upper surface of a wafer W, which is a substrate.
  • the wafer processing apparatus 1 includes a cylindrical container body 11 made of a conductive material, for example, aluminum whose inner wall surface is anodized. Grounded. An opening is formed in the upper surface of the container body 11 , and the opening is airtightly closed by the top plate portion 12 .
  • the container main body 11 and the top plate portion 12 constitute a processing container 10 for accommodating the wafers W therein.
  • a space inside the processing container 10 serves as a wafer W processing space 100 .
  • a loading/unloading port 101 for loading/unloading the wafer W and a gate valve 102 for opening/closing the loading/unloading port 101 are provided on the side wall of the processing chamber 10 .
  • a mounting table 2 for mounting a wafer W is provided on the lower side in the processing space 100 so as to face the above-described top plate section 12 .
  • the mounting table 2 includes a mounting table main body 21 made of a conductive metal material, such as aluminum whose surface is anodized. Inside the mounting table 2, a heating unit (not shown) configured by a resistance heating element or the like is provided.
  • An electrostatic chuck 22 having a chuck electrode (not shown) arranged in a ceramic layer is provided on the upper surface of the mounting table main body 21 .
  • the electrostatic chuck 22 can switch between holding and releasing the chucking of the wafer W by power supply/disconnection from a DC power supply (not shown).
  • the mounting table main body 21 is housed in a cover portion 24 made of an insulating material, and is installed on the bottom surface of the container main body 11 via the cover portion 24 .
  • the mounting table 2 also has three or more elevating pins 23 for transferring the wafer W to and from an external substrate transfer mechanism (not shown) entering the processing space 100 through the loading/unloading port 101 .
  • These elevating pins 23 play a role of elevating and transporting the wafer W between a suction holding position on the electrostatic chuck 22 and a transfer position above the suction holding position.
  • Each elevating pin 23 is provided so as to pass vertically through the mounting table body 21 and the bottom plate of the container body 11 , and the lower ends of these elevating pins 23 are attached to a common elevating plate 211 provided outside the container body 11 . It is connected.
  • the elevating plate 211 is further connected to a drive unit 212 , which is used to elevate the elevating plate 211 to cause the upper end of the elevating pin 23 to protrude from the electrostatic chuck 22 . By this operation, the wafer W is lifted and transported between the suction holding position and the delivery position.
  • a bellows 213 is provided between the bottom plate of the container body 11 through which each lifting pin 23 penetrates and the lifting plate 211 to keep the inside of the container body 11 (processing space 100) airtight.
  • a first high-frequency power supply 232 is connected to each mounting table 2 via a matching device 231 .
  • High-frequency power is supplied to the mounting table 2 from a first high-frequency power supply 232 through a matching box 231 .
  • the processing gas supplied into the processing space 100 is turned into plasma by capacitive coupling with the shower head 31, which will be described later, and desired film formation processing can be performed.
  • the means for plasmatizing the processing gas is not limited to the case of adopting a parallel plate type using capacitive coupling.
  • plasma may be generated using an inductively coupled antenna, or plasma may be generated by supplying microwaves to the processing gas from a microwave antenna.
  • a second high-frequency power source 222 is connected to the mounting table 2 via a matching device 221 .
  • the second high-frequency power supply 222 applies bias high-frequency power to the mounting table 2 .
  • the ions in the plasma generated in the processing space 100 can be drawn into the wafer W by the self-bias generated by this high-frequency power for bias.
  • an exhaust port 103 is formed in the bottom surface of the container body 11, and the exhaust port 103 is connected to a vacuum evacuation section 13 including a vacuum pump and the like.
  • the inside of the processing space 100 is evacuated by the evacuation unit 13 to a pressure required for processing.
  • a gap between the side peripheral surface of the mounting table 2 (cover portion 24) and the inner wall surface of the container body 11 is provided.
  • a rectifying plate 104 having a large number of small holes may be arranged at the bottom.
  • a shower head 31 for supplying a processing gas into the processing space 100 is provided on the lower surface side of the top plate portion 12 .
  • a flat diffusion space 311 is formed in the shower head 31 so that a processing gas or the like can be supplied to the entire surface of the wafer W attracted and held by the electrostatic chuck 22 .
  • a large number of gas supply ports 312 are formed on the lower surface side of the shower head 31 , and the gas diffused in the diffusion space 311 is distributed and supplied toward the processing space 100 via these gas supply ports 312 .
  • a gas supply line 32 communicating with the diffusion space 311 is connected to the upper surface side of the shower head 31 .
  • a control unit 321 having an on-off valve and a flow rate control mechanism (none of which are shown) for controlling the supply and stoppage of the processing gas and the flow rate, and a processing gas source in which the source gas is stored. 322 is provided.
  • the shower head 31, gas supply line 32, adjustment section 321, and processing gas source 322 correspond to the processing gas supply section of this example.
  • the film forming process performed by the wafer processing apparatus 1 may be plasma CVD (Chemical Vapor Deposition).
  • a raw material gas, a reaction gas, or the like which is a processing gas for film formation, is continuously supplied to the processing space 100, and these gases are activated by plasma to form a film on the wafer W. done.
  • plasma ALD adsorption of the raw material gas on the wafer W and reaction of the adsorbed raw material gas with, for example, a plasma-activated reaction gas are alternately and repeatedly performed in the processing space 100 . lamination of layers of membrane material formed in the In the case of ALD, the shower head 31 is connected to a plurality of control units 321 and processing gas sources 322 for supplying source gas, reaction gas, and purge gas.
  • this wafer processing apparatus 1 is provided with a control section 6 .
  • the control unit 6 comprises a computer having a CPU (Central Processing Unit) (not shown) and a storage unit.
  • a program is recorded in which a group of steps (instructions) for outputting a control signal for processing the wafer W by applying .
  • This program is stored in a storage medium such as a hard disk, a compact disc, a magnet optical disc, a memory card, etc., and installed in the storage unit from there.
  • the wafer processing apparatus 1 has a mechanism for measuring the temperature and concentration of the processing gas supplied from the processing gas supply unit to the processing space 100 .
  • a known spectrophotometric analysis is performed.
  • the processing space 100 supplied with a processing gas is irradiated with light having a wavelength that is absorbed by the processing gas, and the intensity of the incident light and the intensity of the light after passing through the processing space 100 are measured. Based on the ratio, the concentration of the process gas is determined.
  • the absorbance of the light irradiated to the processing gas is used for the temperature measurement as well as the concentration measurement.
  • Some gases have multiple absorption wavelengths.
  • an actual gas exhibits an absorption spectrum in which the absorbance is highest at the absorption wavelength, and the absorbance gradually decreases in the wavelength regions before and after that as the distance from the absorption wavelength increases. It is known that there is a corresponding relationship between the area ratio or peak intensity ratio of the two absorption spectra and the temperature of the gas, and gas temperature measurement techniques using this relationship have also been proposed (e.g., JP 2000-74830, JP 2020-6724).
  • the wafer processing apparatus 1 of this embodiment calculates the temperature and concentration of the processing gas based on the absorption spectrum obtained by irradiating the processing space 100 supplied with the processing gas with laser light in a predetermined wavelength range.
  • a light source unit 43 for supplying laser light and a light receiving unit 42 for receiving the laser light that has passed through the processing space 100 are provided.
  • the light projecting unit 41 includes a light projecting lens 411 through which laser light is emitted, and an optical fiber 400 that is an optical waveguide for supplying the laser light to the light projecting lens 411 .
  • the projection lens 411 is provided on the mounting table 2 within the processing container 10 . Further, the mounting table 2 is provided with a plurality of projection lenses 411 .
  • Each projection lens 411 is arranged in a direction to project laser light from the upper surface side of the mounting table 2 toward the facing surface 310 of the shower head 31 arranged to face the surface.
  • a cover made of a member that transmits laser light may be provided on the upper surface side of the projection lens 411 .
  • the planar arrangement of the plurality of projection lenses 411 will be described later.
  • Each projection lens 411 is connected to a common changeover switch 412 via an optical fiber 400 .
  • the changeover switch 412 plays a role of switching the projection lens 411 to which the laser light supplied from the light source unit 43 is supplied.
  • the light source unit 43 includes a first semiconductor laser device 431 , a second semiconductor laser device 432 and a coupler 433 .
  • the first and second semiconductor laser devices 431 and 432 use semiconductor diodes to generate laser light of desired wavelengths.
  • the first semiconductor laser device 431 can change the wavelength of laser light within a preset wavelength range (first wavelength range) around the center wavelength of the absorption wavelength ⁇ 1 of the processing gas.
  • the absorption wavelength ⁇ 2 which is different from the absorption wavelength ⁇ 1 described above, is set as the center wavelength, and the laser is emitted within a preset wavelength range (second wavelength range) before and after the center wavelength.
  • the wavelength of light can be changed.
  • the absorption wavelengths ⁇ 1 and ⁇ 2 There is no particular limitation on the setting examples of the absorption wavelengths ⁇ 1 and ⁇ 2.
  • Laser light having a wavelength in the range of invisible light such as infrared light or ultraviolet light may be used, or laser light having a wavelength in the range of visible light may be used.
  • the first wavelength range and the second wavelength range are set so that the absorbance of the tails on both sides of each absorption spectrum is sufficiently small to include the region where the absorbance reaches the baseline in the process gas.
  • the first and second semiconductor laser devices 431 and 432 use a reference beam indicating the intensity of the laser beam with zero absorbance and a laser beam used as an etalon signal for filtering, which will be described later. It may be configured to output toward the main unit 426 of the measuring device.
  • the laser beams supplied from the first and second semiconductor laser devices 431 and 432 are coupled by a coupler 433, input to a changeover switch 412 via an optical fiber 400, and supplied to a selected projection lens 411. be done.
  • the light-receiving section 42 includes a light-receiving lens 421 for receiving laser light and an optical fiber 400 for guiding the laser light received through the light-receiving lens 421 .
  • the light receiving lens 421 is also provided on the mounting table 2 in the same manner as the light projecting lens 411 .
  • the mounting table 2 is also provided with light receiving lenses 421 which are the same in number as the light projecting lenses 411 .
  • Each light-receiving lens 421 is arranged in a direction to receive the laser light reflected by the facing surface 310 of the shower head 31 .
  • a cover made of a member that transmits laser light may be provided on the upper surface side of the light receiving lens 421 .
  • the planar arrangement of the plurality of light receiving lenses 421 will be described later. 1 to 3A and 3B, the light receiving lens 421 is given a gray tone.
  • Each light receiving lens 421 is connected to a common changeover switch 422 via an optical fiber 400 .
  • the changeover switch 422 plays a role of switching the light receiving lens 421 from which laser light is extracted.
  • the light projecting lenses 411 and the light receiving lenses 421 provided in the same number on the mounting table 2 are associated with each other via the optical path L of the laser light to form the light projecting/receiving set 40 . That is, the light projecting lens 411 and the light receiving lens 421 that constitute the common light projecting/receiving set 40 are arranged so as to be positioned at one end and the other end of the optical path L of the laser light.
  • the laser light projected from the selected light projecting lens 411 is reflected by the facing surface 310 of the shower head 31, and then received by the light receiving lens 421 associated with the light projecting lens 411.
  • the shower head 31 is preferably made of metal, or the surface of the shower head 31 made of ceramic is coated with silicon so that the laser beam can be reflected on the facing surface 310 .
  • laser light can be passed through different regions in the processing space 100, and the temperature and concentration of the processing gas in these regions can be measured.
  • the temperature distribution and concentration distribution of the processing gas within the processing space 100 can be specified.
  • FIG. 3A and 3B show variations in arrangement of the plurality of light projecting and receiving sets 40 on the mounting table 2.
  • FIG. A wafer W is mounted on the upper surface of the mounting table 2 during the period in which the processing using the processing gas is being performed. Therefore, when the light projecting/receiving set 40 is arranged in the mounting area where the wafer W is mounted, the light projecting lens 411 and the light receiving lens 421 are covered with the wafer W during the period of the processing.
  • FIG. 3A shows an example in which the light emitting and receiving set 40 is arranged around the mounting area of the wafer W in order to prevent the light emitting lens 411 and the light receiving lens 421 from being covered by the wafer W.
  • FIG. 3A a plurality of light emitting and receiving sets 40 are arranged at regular intervals along the circumferential direction of the mounting table 2 which is circular in plan view.
  • the light projecting/receiving set 40 may be arranged in the area where the wafer W is placed.
  • a plurality of light emitting and receiving sets 40 are arranged radially along the radial direction of the mounting area of the wafer W, which is circular.
  • the laser light is projected from the light emitting lens 411 while the wafer W is not mounted on the mounting table 2, for example. , the temperature and concentration of the process gas may be measured.
  • the wafer W made of silicon transmits light with a wavelength in the range of 1.8 to 6.0 ⁇ m.
  • the absorption wavelength of the processing gas is included in this wavelength range, by projecting a laser beam having a wavelength that can pass through the wafer W, the processing gas is absorbed while the wafer W is mounted on the mounting table 2 . Temperature and concentration can be measured.
  • the laser light output from the light receiving unit 42 via the changeover switch 422 is divided into the laser light in the first wavelength range and the laser light in the second wavelength range by the demultiplexer 423 equipped with an optical filter. A range of laser light and demultiplexed. After that, the laser light in each wavelength range is converted into an electrical signal by the photodiodes 425a and 425b, and then input to the main body 426 of the photometric device.
  • Main unit 426 outputs information specifying the absorption spectrum to control unit 6 described above.
  • the controller 6 of this example has functions of a temperature calculator 61 and a concentration calculator 62 .
  • the temperature calculator 61 calculates the temperature of the processing gas based on the correspondence relationship between the area ratio and the peak intensity ratio of the absorption spectrum in the first wavelength range and the absorption spectrum in the second wavelength range with respect to the temperature of the processing gas. . Correspondence relationships between the temperature of the processing gas and the above-described area ratio and peak intensity ratio are obtained in advance through experiments or the like, and stored in the storage unit of the control unit 6 as tables or functions.
  • the concentration calculator 62 calculates the concentration of the processing gas based on the absorbance of the laser beam at a specific wavelength included in the first and second wavelength ranges, for example, the maximum peak wavelength of the absorption spectrum. In calculating the concentration, a case of using the well-known Lambert-Beer law can be exemplified.
  • the gate valve 102 is opened, and the wafer W to be processed is loaded into the processing container 10 using an external transfer device (not shown). Thereafter, the lifting pins 23 push up the wafer W from the lower surface side and receive it, the transfer mechanism is retracted to the outside of the apparatus, and the gate valve 102 is closed. Then, the wafer W is mounted on the mounting table 2 by lowering the elevating pins 23 .
  • the mounting table 2 is heated to a preset temperature by a heating unit (not shown) provided therein, and the wafer W is heated to the processing temperature by heat transfer from the mounting table 2 .
  • a heating unit not shown
  • the wafer W is heated to the processing temperature by heat transfer from the mounting table 2 .
  • the heating unit by surrounding the area where the projection lens 411, the reception lens 421, and the optical fiber 400 are arranged with a heat insulating material, it is possible to avoid the influence of heating by the heating unit on these devices.
  • the vacuum evacuation unit 13 evacuates the inside of the processing container 10 (processing space 100 ).
  • a processing gas is supplied to the processing space 100 to perform film formation processing. That is, when film formation is performed by plasma CVD, raw material gases and reaction gases are continuously supplied, and high-frequency power is applied to the mounting table 2 from the high-frequency power sources 222 and 232 to turn these gases into plasma. , allowing reactions to form the membrane material. As a result, the film substance is deposited on the surface of the wafer W to form a desired film.
  • the operation of measuring the temperature and concentration of the processing gas is executed during the execution of the film forming process.
  • the wafer W is mounted on the mounting table 2 . Therefore, the measurement may be performed using a light projecting/receiving set 40 arranged around the mounting area of the wafer W, as shown in FIG. 3A.
  • the measurement may be performed using a laser beam having a wavelength that passes through the wafer W using a light emitting/receiving set 40 arranged in the mounting area of the wafer W, as shown in FIG. 3B.
  • one or a plurality (or all) of the light emitting and receiving sets 40 are selected so that the laser beam passes through the area where the temperature and concentration are to be measured. . Then, the light emitting/receiving set 40 selected by using the changeover switches 412 and 422 is connected to the light source section 43 and the main body section 426 . Thereafter, laser light is supplied from the first and second semiconductor laser devices 431 and 432 while gradually changing the wavelength within the first and second wavelength ranges (sweep operation).
  • Each laser beam is combined by a coupler 433 , supplied to the projection lens 411 selected by the changeover switch 412 , and projected into the processing space 100 .
  • the laser beam passes through the processing space 100 to which the processing gas is supplied, is reflected by the facing surface 310 of the shower head 31 , and reaches the light receiving lens 421 selected by the switch 422 . During the period of passage through this optical path, the laser light is absorbed by the process gas and its intensity is reduced.
  • the laser light received by the light-receiving lens 421 is separated into laser light in each wavelength range by the demultiplexer 423, and then converted into an electric signal having a voltage corresponding to the intensity of the laser light by the photodiodes 425a and 425b. It is converted and input to main unit 426 .
  • the main body 426 creates absorption spectra in the first and second wavelength ranges by, for example, comparing the intensity of the reference light.
  • Data representing the created absorption spectrum is output to the control unit 6, the temperature of the processing gas is calculated by the temperature calculation unit 61, and the concentration of the processing gas is calculated by the concentration calculation unit 62, based on the calculation method described above. be done.
  • the selected light projecting/receiving set 40 is sequentially switched, and the above-described measurement operation is repeatedly performed.
  • the temperature of the processing gas is adjusted by a temperature control mechanism provided in the processing gas source 322. good too.
  • the film forming process for the wafer W may be performed after the adjustment. After a predetermined time has passed and the film formation process is completed, the supply of the processing gas, the application of the high-frequency power, and the heating of the wafer W are stopped. After that, after adjusting the pressure in the processing container 10, the wafer W after the film formation is carried out from the processing container 10 in a procedure opposite to that at the time of loading.
  • the temperature and concentration may be measured by setting a period during which the processing gas is supplied to the processing space 100 while the wafer W is not being processed.
  • the laser light to be used has a wavelength that passes through the wafer W. is not required. Also in this case, it is of course possible to measure the temperature and concentration of the processing gas using the light emitting and receiving set 40 arranged in the area shown in FIG. 3A.
  • the temperature and concentration of the processing gas are simultaneously measured by acquiring the absorption profiles of the laser beams in two different wavelength ranges. be able to.
  • the temperature and concentration distribution of the processing gas in the processing space 100 can be specified by using the light emitting and receiving sets 40 arranged at a plurality of different positions.
  • FIG. 4 shows a modification of the configuration in which the light projecting/receiving set 40 is provided on the mounting table 2 described with reference to FIGS.
  • the upper surface of the mounting table 2 is provided with a reflector 25 that reflects the laser light reflected by the facing surface 310 of the shower head 31 toward the facing surface 310 .
  • the laser beam projected from the projection lens 411 is reflected many times between the facing surface 310 on the side of the shower head 31 and the reflecting portion 25 on the side of the mounting table 2.
  • the distance of the optical path L is lengthened, so that the sensitivity of temperature and concentration measurement of the processing gas can be improved.
  • FIG. 5 components common to the configuration described using FIGS. 1 to 4 are denoted by common reference numerals used in these figures.
  • a light projecting lens 411 forming a light projecting section 41 and a light receiving lens 421 forming a light receiving section 42 are provided outside the processing vessel 10 (processing space 100).
  • a window portion 14 for transmitting laser light is provided in a side wall surface of the processing chamber 10 at a position different from the region where the loading/unloading port 101 is formed.
  • a light projecting lens 411 and a light receiving lens 421 are arranged at positions facing the window 14 while being held by the collimator 401 .
  • a reflecting section 15 is provided on the inner wall surface of the processing container 10 facing the light projecting lens 411 and the light receiving lens 421 with the window section 14 interposed therebetween.
  • a two-core cable 402 is used to connect the light projecting section 41 and the light source section 43 and to connect the light receiving section 42 and the device on the main body section 426 side.
  • the temperature and concentration of the processing gas are simultaneously measured by obtaining absorption profiles of laser light in two different wavelength ranges in the processing space 100 supplied with the processing gas.
  • the window portion 14 shown in FIG. 5 includes a light projection window portion that allows the laser light projected from the light projection lens 411 to enter the processing space 100, and a light receiving lens 421 that receives the laser light that has passed through the processing space 100. It can be said that the configuration is such that the light-receiving window is shared.
  • the projection lens 411 and the light reception lens 421 may be separately arranged at positions facing each other with the processing container 10 interposed therebetween.
  • the wall surface of the processing vessel 10 facing the light projecting lens 411 is provided with a light projecting window through which the laser beam enters the processing space 100, and the wall surface facing the light receiving lens 421 receives the laser beam that has passed through the processing space 100.
  • a configuration in which a light-receiving window is provided for this purpose can be exemplified.
  • the processing gas whose temperature and concentration are to be measured is not limited to the raw material gas and reaction gas used in the film forming process.
  • Etching gas used for substrate etching processing, ashing gas used for ashing removal processing of a resist film coated on the substrate, and cleaning gas for cleaning equipment disposed in the processing space 100, for example, may be used.
  • the substrate to be processed using the processing gas is not limited to the example of the semiconductor wafer.
  • it may be a glass substrate for an FPD (Flat Panel Display).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

レーザー光を用いて、基板の処理が行われる処理空間に供給された処理ガスの温度と濃度とを測定する技術を提供する。基板を処理する装置に設けられた処理ガス供給部は、処理空間に処理ガスを供給し、投光部は処理ガスが供給された処理空間に対して、互いに異なる波長範囲内で波長が変化するレーザー光を投光する。受光部は、処理空間を通過したレーザー光を受光し、温度算出部は、各波長範囲のレーザー光の吸収スペクトルに基づき、処理ガスの温度を算出し、濃度算出部は前記波長範囲内の特定の波長のレーザー光の吸光度に基づき処理ガスの濃度を算出する。

Description

基板を処理する装置、及び処理ガスの温度、濃度を測定する方法
 本開示は、基板を処理する装置、及び処理ガスの温度、濃度を測定する方法に関する。
 例えば、基板である半導体ウエハ(以下、「ウエハ」ともいう)に対する処理を行う装置には、ウエハが配置された処理空間に対して処理ガスを供給することにより、処理を実行するものがある。処理空間に供給された処理ガスの温度及び濃度は、ウエハに対する処理の制御や設計を行ううえで重要な測定項目である。
 例えば特許文献1には、ガス流路を流れるガスに対して波長の異なる2種類の光を照射した結果に基づいて、半導体製造装置に供給されるガスの濃度を測定する技術が記載されている。また、特許文献2には、光学的検知装置を用いて成膜装置の基板保持室に供給された材料ガスの濃度を測定する技術が記載されている。
国際公開2016/080532号 特開2012-122101号公報
 本開示は、レーザー光を用いて、基板の処理が行われる処理空間に供給された処理ガスの温度と濃度とを測定する技術を提供する。
 本開示は、基板を処理する装置において、
 前記基板を収容し、前記処理が行われる処理空間を形成する処理容器と、
 前記処理空間に対して、前記基板の処理または処理容器内に配置された機器の処理を行うための処理ガスを供給する処理ガス供給部と、
 前記処理ガスが供給された前記処理空間に対して、レーザー光を投光する投光部と、
 予め設定された波長の範囲である第1の波長範囲内で波長が変化するレーザー光と、前記第1の波長範囲とは異なる第2の波長範囲内で波長が変化するレーザー光とを、光導波路を介して前記投光部に供給する光源部と、
 前記処理空間を通過した前記レーザー光を受光する受光部と、
 前記受光部にて受光された前記第1の波長範囲のレーザー光の吸収スペクトルと、前記第2の波長範囲のレーザー光の吸収スペクトルとに基づき、前記処理ガスの温度を算出する温度算出部と、
 前記第1の波長範囲内または前記第2の波長範囲内の特定の波長のレーザー光の吸光度に基づき、前記処理ガスの濃度を算出する濃度算出部と、を備えた装置である。
 本開示によれば、レーザー光を用いて、基板の処理が行われる処理空間に供給された処理ガスの温度と濃度とを測定することができる。
本開示に係るウエハ処理装置の縦断側面図である。 前記ウエハ処理装置に設けられている載置台及びガスシャワーヘッドの模式図である。 投受光セットの第1のレイアウト例を示す平面図である。 投受光セットの第2のレイアウト例を示す平面図である。 反射部が設けられた載置台の拡大模式図である。 他の構成例に係るウエハ処理装置の縦断側面図である。
 以下、図1~図4を参照しながら本開示の実施の形態に係る基板を処理する装置(ウエハ処理装置1)の構成例を説明する。 
 本例のウエハ処理装置1は、基板であるウエハWの上面に対してプラズマ化された処理ガスを供給して、成膜処理を実行する装置として構成されている。
 図1の縦断側面図に示すように、ウエハ処理装置1は、導電性材料、例えば、内壁面がアルマイト処理されたアルミニウムからなる円筒形状の容器本体11を備え、この容器本体11は電気的に接地されている。容器本体11の上面には開口が形成され、この開口は、天板部12によって気密に塞がれる。これら容器本体11及び天板部12は、ウエハWを収容するための処理容器10を構成する。処理容器10の内部の空間はウエハWの処理空間100となる。 
 また処理容器10の側壁には、ウエハWを搬入出するための搬入出口101および搬入出口101を開閉するゲートバルブ102が設けられている。
 処理空間100内の下部側には、前述の天板部12と対向するように、ウエハWを載置するための載置台2が設けられている。載置台2は、導電性の金属材料、例えば表面がアルマイト処理されたアルミニウムで構成された載置台本体21を備えている。載置台2の内部には、抵抗発熱体などによって構成される、不図示の加熱部が設けられている。
 載置台本体21の上面は、セラミクス層内に不図示のチャック電極を配置してなる静電チャック22が設けられている。静電チャック22は、直流電源(不図示)からの電力の給断によりウエハWの吸着保持、解除を切り替えることができる。載置台本体21は絶縁体製のカバー部24内に収納され、このカバー部24を介して容器本体11の底面に設置されている。
 また載置台2は、搬入出口101を介して処理空間100内に進入した外部の基板搬送機構(不図示)との間でウエハWの受け渡しを行うための3本以上の昇降ピン23を備えている。これらの昇降ピン23は、静電チャック22上の吸着保持位置と、この吸着保持位置の上方側の受け渡し位置との間でウエハWの昇降搬送を行う役割を果たす。各昇降ピン23は、載置台本体21及び容器本体11の底板を上下方向に貫通するように設けられ、これら昇降ピン23の下端部は容器本体11の外部に設けられた共通の昇降板211に接続されている。
 昇降板211はさらに駆動部212に接続され、この駆動部212を用いて昇降板211を昇降させ、静電チャック22から昇降ピン23の上端を突没させる。この動作により、吸着保持位置と受け渡し位置との間でのウエハWの昇降搬送が実行される。なお、各昇降ピン23が貫通する容器本体11の底板と昇降板211との間にはベローズ213が設けられ、容器本体11(処理空間100)内の気密が保たれている。
 各載置台2には、整合器231を介して第1の高周波電源232が接続されている。載置台2には、第1の高周波電源232から整合器231を介して高周波電力が供給される。これにより、後述するシャワーヘッド31との容量結合により、処理空間100内に供給された処理ガスがプラズマ化し、所望の成膜処理を行うことができる。
 なお、処理ガスをプラズマ化する手段は、容量結合を利用した平行平板型のものを採用する場合に限定されない。例えば誘導結合アンテナを用いてプラズマを発生させてもよいし、マイクロ波アンテナから処理ガスにマイクロ波を供給してプラズマを発生させてもよい。
 さらに載置台2には、整合器221を介して第2の高周波電源222が接続されている。第2の高周波電源222は、バイアス用の高周波電力を載置台2に印加する。このバイアス用の高周波電力により生成されたセルフバイアスによって、処理空間100内に生成されたプラズマ中のイオンをウエハWに引き込むことができる。
 また図1に示すように、容器本体11の底面には、排気口103が形成され、この排気口103には真空ポンプなどを含む真空排気部13が接続されている。処理空間100の内部は、この真空排気部13によって処理時に必要な圧力となるまで真空排気される。さらに処理空間100内に供給されたガスが載置台2の周方向に向けて均一に流れるようにするため、載置台2(カバー部24)の側周面と容器本体11の内壁面との間に、多数の小孔が穿設された整流板104を配置してもよい。
 図1に示すように、天板部12の下面側には、処理空間100内に処理ガスを供給するためのシャワーヘッド31が設けられている。シャワーヘッド31内には、静電チャック22に吸着保持されたウエハWの全面に向けて処理ガスなどを供給可能な扁平な拡散空間311が形成されている。シャワーヘッド31の下面側には多数のガス供給口312が形成され、拡散空間311内に拡散したガスは、これらのガス供給口312を介して処理空間100へ向けて分散供給される。
 またシャワーヘッド31の上面側には、拡散空間311に連通するガス供給ライン32が接続されている。ガス供給ライン32の上流側には、処理ガスの給断や流量調節を行うための開閉バルブや流量調節機構(いずれも不図示)を備えた調節部321、及び原料ガスを貯留した処理ガス源322が設けられている。これらシャワーヘッド31、ガス供給ライン32、調節部321及び処理ガス源322は、本例の処理ガス供給部に相当する。
 ウエハ処理装置1にて実施される成膜処理は、プラズマCVD(Chemical Vapor Deposition)であってもよい。プラズマCVDでは、処理空間100に対して、成膜処理用の処理ガスである原料ガスや反応ガスなどを連続的に供給し、これらのガスをプラズマにより活性化させてウエハWへの成膜が行われる。 
 また、プラズマALD(Atomic Layer Deposition)による成膜を行ってもよい。プラズマALDでは、処理空間100に対して、ウエハWへの原料ガスの吸着と、吸着した原料ガスと、例えばプラズマにより活性化した反応ガスとの反応と、を交互に繰り返し実施して、ウエハWに形成される膜物質の層を積層する。ALDの場合には、シャワーヘッド31に対しては、原料ガス及び反応ガス、パージガスの供給に係る複数系統の調節部321や処理ガス源322が接続される。
 さらに図1に示すように、このウエハ処理装置1には制御部6が設けられている。制御部6は不図示のCPU(Central Processing Unit)と記憶部とを備えたコンピュータからなり、この記憶部にはウエハWが配置された処理空間100内を真空排気し、載置台2に高周波電力を印加して処理ガスをプラズマ化してウエハWを処理する制御信号を出力するためのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリカードなどの記憶媒体に格納され、そこから記憶部にインストールされる。
 さらに本実施の形態に係るウエハ処理装置1は、処理ガス供給部から処理空間100に供給された処理ガスの温度及び濃度を測定する機構を備える。
 濃度の測定法としては、公知の吸光光度分析を行う。吸光光度分析は、処理ガスが供給された処理空間100に対し、当該処理ガスによって吸収される波長の光を照射し、入射光の強度と、処理空間100を通過した後の光の強度との比に基づき、処理ガスの濃度を特定する。
 また、本例のウエハ処理装置1においては、濃度の測定と同様に、温度測定においても処理ガスに照射した光の吸光度を利用する。気体には、複数の吸収波長を有するものがある。また、実際の気体は、吸収波長にて最も吸光度が大きくなり、その前後の波長領域にて吸収波長から離れるに従い、次第に吸光度が小さくなる吸収スペクトルを呈する。 
 2つの吸収スペクトルの面積比やピーク強度比と、気体の温度との間には対応関係があることが知られており、この関係を利用した気体の温度測定技術も提案されている(例えば特開2000―74830、特開2020―6724)。
 本例のウエハ処理装置1は、処理ガスが供給された処理空間100に対して所定の波長範囲のレーザー光を照射して得られた吸収スペクトルに基づき、処理ガスの温度及び濃度を算出する。 
 これらの温度測定、濃度測定を行うため、図2に示すように、ウエハ処理装置1は、処理空間100にレーザー光を投光する投光部41と、投光部41に対してレーザー光を供給する光源部43と、処理空間100を通過したレーザー光を受光する受光部42とを備えている。
 投光部41は、レーザー光が射出される投光レンズ411と、当該投光レンズ411にレーザー光を供給する光導波路である光ファイバー400とを備える。図1、図2に示すように、本例のウエハ処理装置1において、投光レンズ411は、処理容器10内の載置台2に設けられている。また、載置台2には、複数の投光レンズ411が設けられている。
 各投光レンズ411は、載置台2の上面側から、当該面と対向するように配置されたシャワーヘッド31の対向面310へ向けてレーザー光の投光を行う向きに配置されている。なお、処理ガスにより投光レンズ411汚れることを避けるため、投光レンズ411の上面側に、レーザー光を透過させる部材からなるカバーを設けてもよい。複数の投光レンズ411の平面配置については後述する。
 各投光レンズ411は、光ファイバー400を介して共通の切り替えスイッチ412に接続されている。切り替えスイッチ412は、光源部43から供給されたレーザー光の供給先となる投光レンズ411を切り替える役割を果たす。
 光源部43は、第1の半導体レーザー装置431と、第2の半導体レーザー装置432と、カプラー433とを備える。 
 第1、第2の半導体レーザー装置431、432は、半導体ダイオードを用いて所望の波長のレーザー光を発生させる。第1の半導体レーザー装置431は、処理ガスの吸収波長λ1を中心波長として、その前後の予め設定された波長範囲(第1の波長範囲)内でレーザー光の波長を変化させることができる。また、第2の半導体レーザー装置432についても同様に、既述の吸収波長λ1とは異なる吸収波長λ2を中心波長として、その前後の予め設定された波長範囲(第2の波長範囲)内でレーザー光の波長を変化させることができる。
 吸収波長λ1、λ2の設定例に特段の限定はない。赤外光や紫外光などの非可視光の範囲の波長を有するレーザー光を用いてもよいし、可視光の範囲の波長を有するレーザー光を用いてもよい。
 第1の波長範囲及び第2の波長範囲は、各吸収スペクトルの両側の裾部の吸光度が十分に小さくなり、当該処理ガスにおける吸光度のベースラインに達した領域が含まれるように設定される。 
 なお、第1、第2の半導体レーザー装置431、432は、吸収スペクトルを求めるにあたって、吸光度がゼロのレーザー光の強度を示す参照光や、フィルター用のエタロン信号として用いられるレーザー光を後述する光度測定装置の本体部426へ向けて出力するように構成してもよい。
 第1、第2の半導体レーザー装置431、432から供給されたレーザー光は、カプラー433にて結合された後、光ファイバー400を介して切り替えスイッチ412に入力され、選択された投光レンズ411へ供給される。
 次いで受光部42は、レーザー光が入射する受光レンズ421と、当該受光レンズ421を介して受光したレーザー光を導波する光ファイバー400とを備える。図1、図2に示すように、本例のウエハ処理装置1において、投光レンズ411と同様に、受光レンズ421についても載置台2に設けられている。また、この載置台2には、投光レンズ411と同数の受光レンズ421が設けられている。
 各受光レンズ421は、シャワーヘッド31の対向面310にて反射されたレーザー光の受光を行う向きに配置されている。なお、投光レンズ411の場合と同様に、受光レンズ421の上面側に、レーザー光を透過させる部材からなるカバーを設けてもよい。複数の受光レンズ421の平面配置については後述する。なお、図1~図3A、図3Bにおいて、受光レンズ421には、灰色のトーンを付してある。
 各受光レンズ421は、光ファイバー400を介して共通の切り替えスイッチ422に接続されている。切り替えスイッチ422は、レーザー光を取り出す対象となる受光レンズ421を切り替える役割を果たす。
 載置台2に対して同数ずつ設けられた投光レンズ411と受光レンズ421とは、各々レーザー光の光路Lを介して互いに対応付けられ、投受光セット40を構成している。即ち、共通の投受光セット40を構成する投光レンズ411、受光レンズ421は、レーザー光の光路Lの一端部と、他端部とに位置するように配置される。この構成により、選択された投光レンズ411から投光されたレーザー光を、シャワーヘッド31の対向面310にて反射させた後、前記投光レンズ411に対応付けられた受光レンズ421にて受光させることができる。 
 ここでシャワーヘッド31は、対向面310にてレーザー光を反射させることができるように、金属で構成したり、セラミック製のシャワーヘッド31の表面をシリコンコーティングしたりするとよい。
 これら複数の投受光セット40を載置台2の異なる位置に設けることにより、処理空間100内の異なる領域にレーザー光を通過させ、これらの領域の処理ガスの温度及び濃度を測定することができる。互いに異なる複数の領域の処理ガスの温度や濃度を測定することにより、処理空間100内における処理ガスの温度分布や濃度分布を特定することができる。
 図3A、図3Bは、載置台2における複数の投受光セット40の配置のバリエーションを示している。 
 処理ガスによる処理が行われている期間中、載置台2の上面には、ウエハWが載置される。このため、ウエハWの載置される載置領域に投受光セット40を配置すると、当該処理の期間中、投光レンズ411や受光レンズ421は、ウエハWによって覆われた状態となる。
 図3Aは、投光レンズ411や受光レンズ421が、ウエハWによって覆われてしまうことを避けるため、ウエハWの載置領域の周囲に投受光セット40を配置した例を示している。図3Aに示す例では、平面視したとき円形の載置台2の周方向に沿って、複数の投受光セット40が等間隔で配置されている。
 一方、図3Bに示すように、ウエハWが載置される領域内に投受光セット40を配置してもよい。この例は、円形であるウエハWの載置領域の径方向に沿って放射状に並ぶように、複数の投受光セット40が配置されている。
 ウエハWの載置領域に投受光セット40が設けられている場合には、例えば当該載置台2にウエハWが載置されていない期間中に投光レンズ411からのレーザー光の投光を行い、処理ガスの温度、濃度を測定してもよい。
 また、例えば0~270℃の加熱温度において、シリコン製のウエハWは1.8~6.0μmの範囲の波長の光を透過させる。この波長の範囲内に処理ガスの吸収波長が含まれている場合には、ウエハWを透過する波長のレーザー光を投光することにより、載置台2にウエハWを載置したまま処理ガスの温度、濃度の測定を行うことができる。
 図2の説明に戻ると、切り替えスイッチ422を介して受光部42から出力されたレーザー光は、光学フィルターを備えた分波器423にて第1の波長範囲のレーザー光と、第2の波長範囲のレーザー光とに分波される。しかる後、各波長範囲のレーザー光がフォトダイオード425a、425bにて電気信号に変換された後、光度測定装置の本体部426に入力される。
 本体部426では、第1、第2の半導体レーザー装置431、432から供給された参照光の強度との比較を行うことにより、レーザー光の波長に対する吸光度の変化を示す吸収スペクトルを求めることができる。 
 本体部426は、吸収スペクトルを特定する情報を既述の制御部6へと出力する。
 本例の制御部6は、温度算出部61及び濃度算出部62の機能を備える。
 温度算出部61は、処理ガスの温度に対する、第1の波長範囲の吸収スペクトルと第2の波長範囲の吸収スペクトルとの面積比やピーク強度比の対応関係に基づき、処理ガスの温度を算出する。処理ガスの温度と、上述の面積比、ピーク強度比との対応関係は、実験などにより予め取得し、制御部6の記憶部にテーブルや関数として記憶されている。
 濃度算出部62は、第1、第2の波長範囲に含まれる特定の波長、例えば吸収スペクトルの最大ピーク波長におけるレーザー光の吸光度に基づいて処理ガスの濃度を算出する。濃度の算出に当たっては、公知のランバート・ベールの法則を利用する場合を例示できる。
 以上に説明した構成を備えるウエハ処理装置1の作用について説明する。
 まず、ゲートバルブ102を開き、外部の搬送装置(不図示)を用いて処理対象のウエハWを処理容器10内に搬入する。しかる後、昇降ピン23によりウエハWを下面側から突き上げて受け取り、搬送機構を装置の外部に退避させると共にゲートバルブ102を閉じる。次いで昇降ピン23を降下させることにより、載置台2にウエハWが載置される。
 載置台2は、その内部に設けられた不図示の加熱部によって予め設定された温度まで加熱されており、ウエハWは載置台2からの伝熱によって処理温度まで加熱される。ここで、投光レンズ411、受光レンズ421や光ファイバー400が配置されている領域を断熱材によって囲むことにより、これらの機器に対する加熱部による加熱の影響を避ける構成としてもよい。
 ウエハWを載置台2に載置したら、真空排気部13によって処理容器10内(処理空間100)の真空排気を行う。次いで、処理空間100に処理ガスを供給して成膜処理を行う。即ち、プラズマCVDによる成膜を行う場合は、原料ガスや反応ガスを連続的に供給すると共に、高周波電源222、高周波電源232から載置台2に高周波電力を印加し、これらのガスをプラズマ化して、膜物質を形成する反応を進行させる。この結果、ウエハWの表面に膜物質が堆積し、所望の膜が形成される。
 またプラズマALDによる成膜を行う場合は、原料ガス、反応ガスの供給と、これらのガスの排気(パージガスを供給しながら排気を行う場合を含む)とを順番に繰り返す。また、プラズマ化する処理ガスの供給期間中には、載置台2に高周波電力を印加することにより、当該処理ガスをプラズマ化して反応を進行させる。この結果、ウエハWの表面に形成された膜物質の層が積層されて所望の膜が形成される。
 このとき、レーザー光を用いた処理ガスの温度、濃度の測定をin-situで行う場合は、上記成膜処理の実行中に、処理ガスの温度、濃度の計測動作を実行する。この場合には、載置台2にはウエハWが載置された状態となっている。そこで図3Aに示す、ウエハWの載置領域の周囲に配置された投受光セット40を用いて測定を行ってもよい。また、図3Bに示す、ウエハWの載置領域に配置された投受光セット40を用い、ウエハWを透過する波長のレーザー光を利用して測定を行ってもよい。
 また、プラズマ化したガスについては、レーザー光の吸収スペクトルを利用した処理ガスの温度、濃度測定が困難となる場合もある。このような場合には、処理ガスの供給後、当該処理ガスをプラズマ化せず、温度、濃度測定を行う期間を設けてもよい。
 処理ガスの温度、濃度の測定に当たっては、温度、濃度の測定を行いたい領域をレーザー光が通過する位置に配置された、1つ、または複数(全てでもよい)の投受光セット40を選択する。そして、切り替えスイッチ412、422を用いて選択された投受光セット40と光源部43及び本体部426との接続を行う。しかる後、第1、第2の半導体レーザー装置431、432から、第1、第2の波長範囲内で波長を次第に変化させながらのレーザー光の供給を行う(掃引操作)。
 各レーザー光はカプラー433にて結合されてから、切り替えスイッチ412により選択された投光レンズ411へと供給され、処理空間100へと投光される。レーザー光は、処理ガスが供給されている処理空間100内を通ってシャワーヘッド31の対向面310にて反射された後、切り替えスイッチ422によって選択された受光レンズ421へと到達する。この光路を通過する期間中に、レーザー光が処理ガスに吸収されて、強度が低下する。
 受光レンズ421にて受光されたレーザー光は、分波器423にて各波長範囲のレーザー光に分離された後、フォトダイオード425a、425bにてレーザー光の強度に対応する電圧を有する電気信号に変換され、本体部426に入力される。 
 本体部426では、例えば参照光の強度との比較を行うことにより、第1、第2の波長範囲の各吸収スペクトルを作成する。
 作成された吸収スペクトルを示すデータは、制御部6に出力され、既述の算出法に基づき、温度算出部61により処理ガスの温度が算出され、また濃度算出部62により処理ガスの濃度が算出される。 
 複数の投受光セット40を用いて測定を行う場合には、選択する投受光セット40を順次、切り替え、上述の測定動作を繰り返し実行する。
 こうした測定した処理ガスの温度、濃度に基づいて、処理ガスの供給量や真空排気部13による真空排気量、例えば処理ガス源322に設けられている温度調節機構による処理ガスの温度調節を行ってもよい。この場合には、当該調節を行った後、ウエハWに対する成膜処理を実行してもよい。 
 所定の時間が経過し、成膜処理が完了したら、処理ガスの供給、高周波電力の印加、ウエハWの加熱を停止する。しかる後、処理容器10内の圧力調節を行った後、搬入時とは反対の手順で、成膜後のウエハWを処理容器10から搬出する。
 また、ウエハWの処理を実行している期間中に処理ガスの温度、濃度の測定を行うことが困難な場合もある。そこで、ウエハWの処理を行っていない期間中に、処理空間100に処理ガスを供給する期間を設定し、温度、濃度の測定を行ってもよい。この場合には、図3Bに示すように、ウエハWの載置領域に配置された投受光セット40を用いる場合であっても、利用するレーザー光がウエハWを透過する波長を有していることは必須ではない。なお、この場合にも図3Aに示す領域に配置された投受光セット40を用いて処理ガスの温度、濃度の測定を行ってもよいことは勿論である。
 以上に説明した実施の形態によれば、処理ガスが供給された処理空間100にて、2つの異なる波長範囲のレーザー光の吸収プロファイルを取得することにより、処理ガスの温度、濃度を同時に測定することができる。 
 特に、複数の異なる位置に配置された投受光セット40を利用することにより、処理空間100内の処理ガスの温度、濃度の分布を特定することができる。
 図4は、図1、図2を用いて説明した、載置台2に投受光セット40を設ける構成の変形例を示している。この例においては、載置台2の上面には、シャワーヘッド31の対向面310にて反射したレーザー光を、当該対向面310に向けて反射させる反射部25が設けられている。
 この構成によれば、図4に示すように、投光レンズ411から投光されたレーザー光は、シャワーヘッド31側の対向面310と載置台2側の反射部25との間で多数回反射させることができる。レーザー光を多数回反射させることにより、光路Lの距離が長くなるため、処理ガスの温度、濃度測定の感度を向上させることができる。
 次いで、図5を参照しながら第2の実施形態に係るウエハ処理装置1aの構成例について説明する。図5において、図1~図4を用いて説明した構成と共通の構成要素に対しては、これらの図にて用いたものと共通の符号を付してある。
 図5に示すウエハ処理装置1aにおいては、投光部41を構成する投光レンズ411、及び受光部42を構成する受光レンズ421が処理容器10(処理空間100)の外部に設けられている。処理容器10の側壁面には、既述の搬入出口101が形成されている領域とは異なる位置に、レーザー光を透過させるための窓部14が設けられている。
 窓部14に臨む位置には、コリメーター401に保持された状態で投光レンズ411、受光レンズ421が配置されている。一方、窓部14を挟んで投光レンズ411、受光レンズ421と対向する処理容器10の内壁面には反射部15が設けられている。また本例では、2心ケーブル402を用いて投光部41と光源部43との間の接続、受光部42と本体部426側の機器との間の接続が行われている。 
 上述の配置により、投光レンズ411から投光されたレーザー光は窓部14を介して処理空間100に進入した後、反射部15にて反射し、次いで処理空間100及び窓部14を通過してから受光レンズ421にて受光される。
 本例のウエハ処理装置1a構成においても、処理ガスが供給された処理空間100にて、2つの異なる波長範囲のレーザー光の吸収プロファイルを取得することにより、処理ガスの温度、濃度を同時に測定することができる。
 なお、図5に示す窓部14は、投光レンズ411から投光されたレーザー光を処理空間100に進入させる投光窓部と、処理空間100を通過したレーザー光を受光レンズ421に受光させる受光窓部とが共通化された構成であると言える。
 また、図5に示す例とは異なり、例えば処理容器10を挟んで互いに対向する位置に投光レンズ411と受光レンズ421とを別々に配置してもよい。この場合は、投光レンズ411に臨む処理容器10の壁面にレーザー光を処理空間100に進入させる投光窓部を設け、受光レンズ421に臨む壁面に処理空間100を通過したレーザー光を受光させるための受光窓部を設ける構成を例示することができる。
 以上に説明した手法において、温度、濃度の測定対象となる処理ガスは、成膜処理の際に用いられる原料ガスや反応ガスに限定されない。基板のエッチング処理に用いるエッチグガスや、基板に塗布されたレジスト膜のアッシング除去処理に用いるアッシングガス、処理空間100に配置された機器の処理として、例えばクリーニングを行うクリーニングガスであってもよい。
 また、処理ガスを用いた処理が行われる基板は、半導体ウエハの例に限定されるものではない。例えば、FPD(Flat Panel Display)のガラス基板であってもよい。
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
L     光路
W     ウエハ
1、1a  ウエハ処理装置
100   処理空間
10    処理容器
31    シャワーヘッド
411   投光レンズ
421   受光レンズ
6     制御部
61    温度算出部
62    濃度算出部
 

 

Claims (11)

  1.  基板を処理する装置において、
     前記基板を収容し、前記処理が行われる処理空間を形成する処理容器と、
     前記処理空間に対して、前記基板の処理または処理容器内に配置された機器の処理を行うための処理ガスを供給する処理ガス供給部と、
     前記処理ガスが供給された前記処理空間に対して、レーザー光を投光する投光部と、
     予め設定された波長の範囲である第1の波長範囲内で波長が変化するレーザー光と、前記第1の波長範囲とは異なる第2の波長範囲内で波長が変化するレーザー光とを、光導波路を介して前記投光部に供給する光源部と、
     前記処理空間を通過した前記レーザー光を受光する受光部と、
     前記受光部にて受光された前記第1の波長範囲のレーザー光の吸収スペクトルと、前記第2の波長範囲のレーザー光の吸収スペクトルとに基づき、前記処理ガスの温度を算出する温度算出部と、
     前記第1の波長範囲内または前記第2の波長範囲内の特定の波長のレーザー光の吸光度に基づき、前記処理ガスの濃度を算出する濃度算出部と、を備えた装置。
  2.  前記処理空間には、前記基板が載置される載置台と、前記載置台に対向する対向面を有し、当該処理空間に前記処理ガスを供給するためのガス供給口が前記対向面に形成されたガスシャワーヘッドと、が設けられ、
     前記投光部及び受光部は、前記投光部から投光された前記レーザー光が、前記対向面にて反射してから、前記受光部にて受光されるように、前記載置台に配置されている、請求項1に記載の装置。
  3.  前記載置台には、前記処理空間内の異なる領域に前記レーザー光が通過するように、互いに対応付けられた前記投光部と前記受光部とからなる投受光セットが複数組設けられ、前記温度算出部及び前記濃度算出部は、各々の前記投受光セットにて投受光される前記レーザー光が通過する領域の前記処理ガスの温度及び濃度を算出する、請求項2に記載の装置。
  4.  前記載置台には、前記対向面にて反射した前記レーザー光を、当該対向面に向けて反射させる反射部が設けられている、請求項2または3に記載の装置。
  5.  前記投光部及び受光部は、前記載置台にて前記基板が載置される領域の周囲に設けられている、請求項2ないし4のいずれか一つに記載の装置。
  6.  前記投光部及び受光部は、前記載置台にて前記基板が載置される領域に設けられ、前記投光部は、前記載置台に前記基板が載置されていない期間中に前記レーザー光の投光を行う、請求項2ないし4のいずれか一つに記載の装置。
  7.  前記投光部及び受光部は、前記載置台にて前記基板が載置される領域に設けられ、前記光源部は、前記基板を透過する波長のレーザー光を前記投光部に供給する、請求項2ないし4のいずれか一つに記載の装置。
  8.  前記投光部及び受光部は、前記処理容器の外部に設けられ、前記処理容器には、前記投光部から投光された前記レーザー光を前記処理空間に進入させるための投光窓部と、前記処理空間を通過した前記レーザー光を前記受光部に受光させるための受光窓部と、を備える、請求項1に記載の装置。
  9.  前記投光窓部と前記受光窓部とが共通化された窓部を備え、前記処理空間内には、前記窓部を介して前記処理空間に進入した前記レーザー光を前記窓部に向けて反射させるための反射部が設けられている、請求項8に記載の装置。
  10.  基板を処理する処理ガスの温度、濃度を測定する方法において、
     前記処理が行われる処理空間に対して、前記基板の処理または処理容器内に配置された機器の処理を行うための処理ガスを供給する工程と、
     予め設定された波長の範囲である第1の波長範囲内で波長が変化するレーザー光と、前記第1の波長範囲とは波長の範囲が異なる第2の波長範囲内で波長が変化するレーザー光とを、前記処理ガスが供給された前記処理空間に対して投光する工程と、
     前記処理空間を通過した前記レーザー光を受光する工程と、
     前記受光された前記第1の波長範囲のレーザー光の吸収スペクトルと、前記第2の波長範囲のレーザー光の吸収スペクトルとに基づき、前記処理ガスの温度を算出する工程と、
     前記第1の波長範囲内または前記第2の波長範囲内の特定の波長のレーザー光の吸光度に基づき、前記処理ガスの濃度を算出する工程と、を含む方法。
  11.  前記処理空間に対して前記レーザー光を投光する工程、及び前記レーザー光を受光する工程では、前記処理空間内の異なる領域に前記レーザー光が通過するように、複数の前記レーザー光の投受光が行われ、
     前記処理ガスの温度を算出する工程と、前記処理ガスの濃度を算出する工程とでは、各々の前記レーザー光が通過する領域の前記処理ガスの温度及び濃度の算出が行われる、請求項10に記載の方法。

     
PCT/JP2022/019381 2021-05-12 2022-04-28 基板を処理する装置、及び処理ガスの温度、濃度を測定する方法 WO2022239683A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280032663.4A CN117242333A (zh) 2021-05-12 2022-04-28 对基板进行处理的装置、以及测定处理气体的温度和浓度的方法
KR1020237041148A KR20240004732A (ko) 2021-05-12 2022-04-28 기판을 처리하는 장치 및 처리 가스의 온도, 농도를 측정하는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-081140 2021-05-12
JP2021081140A JP2022175030A (ja) 2021-05-12 2021-05-12 基板を処理する装置、及び処理ガスの温度、濃度を測定する方法

Publications (1)

Publication Number Publication Date
WO2022239683A1 true WO2022239683A1 (ja) 2022-11-17

Family

ID=84028289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019381 WO2022239683A1 (ja) 2021-05-12 2022-04-28 基板を処理する装置、及び処理ガスの温度、濃度を測定する方法

Country Status (4)

Country Link
JP (1) JP2022175030A (ja)
KR (1) KR20240004732A (ja)
CN (1) CN117242333A (ja)
WO (1) WO2022239683A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203707A (ja) * 1995-10-10 1997-08-05 L'air Liquide 室の流出物のモニターシステム、および吸着分光測定からなる半導体加工システム、およびその使用方法
JP2019102482A (ja) * 2017-11-28 2019-06-24 株式会社Screenホールディングス 基板処理装置および基板処理方法
WO2021033386A1 (ja) * 2019-08-20 2021-02-25 株式会社堀場エステック 温度測定装置、温度測定方法、及び、温度測定装置用プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122101A (ja) 2010-12-08 2012-06-28 Tokyo Electron Ltd 成膜装置
KR102197100B1 (ko) 2014-12-29 2020-12-30 도레이첨단소재 주식회사 원단의 유연성을 개선한 자연스러운 염색 농담차를 가지는 폴리에스테르 혼섬사 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203707A (ja) * 1995-10-10 1997-08-05 L'air Liquide 室の流出物のモニターシステム、および吸着分光測定からなる半導体加工システム、およびその使用方法
JP2019102482A (ja) * 2017-11-28 2019-06-24 株式会社Screenホールディングス 基板処理装置および基板処理方法
WO2021033386A1 (ja) * 2019-08-20 2021-02-25 株式会社堀場エステック 温度測定装置、温度測定方法、及び、温度測定装置用プログラム

Also Published As

Publication number Publication date
JP2022175030A (ja) 2022-11-25
KR20240004732A (ko) 2024-01-11
CN117242333A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
KR101960826B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 장치의 운전 방법
TWI376005B (en) Advanced process sensing and control using near infrared spectral reflectometry
TWI437634B (zh) A plasma processing device and an optical detection device
US8486221B2 (en) Focus ring heating method, plasma etching apparatus, and plasma etching method
JP5789036B2 (ja) プラズマエッチング装置及びプラズマエッチング方法
JP7498225B2 (ja) インラインチャンバメテロロジ-
WO2022239683A1 (ja) 基板を処理する装置、及び処理ガスの温度、濃度を測定する方法
TW202201492A (zh) 成膜方法及成膜裝置
KR20220085026A (ko) 플라즈마 및 열처리 시스템을 갖는 워크피스 처리 장치
WO2023223845A1 (ja) 膜厚計測方法及び基板処理装置
WO2023132268A1 (ja) 判定方法及び基板処理装置
TWI793441B (zh) 電漿處理裝置及晶圓處理方法
US10935429B2 (en) Substrate processing apparatus, substrate processing module, and semiconductor device fabrication method
WO2023002854A1 (ja) 基板処理方法及び基板処理装置
JP2023100573A (ja) 判定方法及び基板処理装置
KR20180067764A (ko) 기판 처리 장치
KR20220134116A (ko) 기판 처리 장치
JP2023127323A (ja) 膜の厚さを測定する方法、及び、処理装置
KR20220130421A (ko) 기판 처리 장치
TW201520538A (zh) 用於處理大面積基板之方法與設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280032663.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18558822

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237041148

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807385

Country of ref document: EP

Kind code of ref document: A1