WO2021033386A1 - 温度測定装置、温度測定方法、及び、温度測定装置用プログラム - Google Patents

温度測定装置、温度測定方法、及び、温度測定装置用プログラム Download PDF

Info

Publication number
WO2021033386A1
WO2021033386A1 PCT/JP2020/020512 JP2020020512W WO2021033386A1 WO 2021033386 A1 WO2021033386 A1 WO 2021033386A1 JP 2020020512 W JP2020020512 W JP 2020020512W WO 2021033386 A1 WO2021033386 A1 WO 2021033386A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas
measurement
target space
measurement target
Prior art date
Application number
PCT/JP2020/020512
Other languages
English (en)
French (fr)
Inventor
林 大介
雅和 南
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Priority to JP2021540636A priority Critical patent/JP7418448B2/ja
Publication of WO2021033386A1 publication Critical patent/WO2021033386A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/58Radiation pyrometry, e.g. infrared or optical thermometry using absorption; using extinction effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a temperature measuring device that measures the temperature in the measurement target space based on the absorbance of the gas existing in the measurement target space.
  • a process gas is supplied at a predetermined concentration into a chamber in which a silicon substrate is housed, and the silicon substrate is heated by a heater to generate plasma in the chamber.
  • Substrate processing such as film formation and etching is performed.
  • the processing result will also be non-uniform. It ends up.
  • thermo measurement by Tunable diode laser absorption spectroscopy is performed two-dimensionally.
  • the process gas existing in the chamber emits laser light having two different wavelengths indicating infrared absorption into the chamber, and the absorbance at each wavelength is measured. After the absorbance ratio is calculated from the measured absorbance, the corresponding temperature is calculated from the temperature characteristics that are the relationship between the absorbance ratio and the temperature obtained experimentally in advance based on this absorbance ratio.
  • the absorbance spectrum may be broad, and the absorbance ratio may not change much with respect to temperature changes.
  • the absorbance ratio may not be sufficiently sensitive to temperature changes, for example, when the concentration of the process gas is low.
  • the present invention has been made in view of the above-mentioned problems, and is a temperature measuring device capable of measuring the temperature in the measurement target space based on the absorbance even when a process gas having unknown temperature characteristics is used.
  • the purpose is to provide.
  • the temperature measuring device is a temperature measuring device that measures the temperature in the measurement target space with the inside of the chamber to which the process gas is supplied or the flow path through which the process gas flows as the measurement target space.
  • a laser emission mechanism that emits laser light having a wavelength including an absorption line of a temperature measuring gas that does not affect the process into the measurement space, and has passed through the measurement space.
  • a laser detection mechanism that detects laser light and a temperature calculator that calculates the temperature in the measurement target space based on the output of the laser detection mechanism are provided, and the output of the laser detection mechanism is a gas for temperature measurement.
  • the temperature measurement gas is a gas containing hydrocarbons, and the temperature measurement gas is supplied into the measurement target space together with the process gas. It is characterized in that the process gas is supplied into the measurement target space after the temperature is measured by the temperature measurement gas or the temperature measurement gas is exhausted from the measurement target space.
  • the temperature measuring method is a temperature measuring method for measuring the temperature in the measurement target space with the inside of the chamber to which the process gas is supplied or the flow path through which the process gas flows as the measurement target space.
  • a gas supply step that supplies a temperature measurement gas, which is a different type of gas from the process gas, into the measurement target space to realize a temperature measurable state, and a laser injection mechanism provide an absorption line for the temperature measurement gas.
  • a laser injection step that emits a laser beam having a wavelength including the wavelength into the measurement space, a laser detection step that detects a laser beam that has passed through the measurement space by a laser detection mechanism, and the laser detection mechanism in the temperature measurable state. It is characterized by including a temperature calculation step of calculating the temperature in the measurement target space based on the absorbance calculated from the output of.
  • the temperature measurement gas is a gas containing hydrocarbons, for example, even if the temperature measurement gas is supplied together with the process gas, it does not act on the substrate treatment performed by using the process gas in the chamber and has an influence. Can be neglected, or even if it has an effect, it can be almost ignored.
  • the temperature measuring gas can be a gas that does not affect the process performed by the process gas in the chamber, so that the temperature is measured in real time even while the substrate processing is in progress in the chamber, for example. It can be made possible, or even if the gas for temperature measurement remains in the chamber, the quality of the substrate processing can be prevented from being affected.
  • the temperature measurement gas as described above is used, the temperature measurement gas having a concentration equal to or higher than a predetermined concentration is supplied into the measurement target space, and the measured absorbance becomes sufficiently sensitive to temperature changes. Can be shown.
  • the temperature characteristics of the temperature measurement gas are created as a database, they can be used in common in processes where various process gases are used. Therefore, the labor required for temperature measurement can be significantly reduced.
  • a compound that does not react with process gas and is particularly suitable for temperature measurement based on absorbance is a compound whose temperature measurement gas is selected from the group consisting of CH 4 , C 2 H 6 , and C 3 H 8. Those containing at least one may be mentioned.
  • the temperature measurement gas contains O 2 and is supplied between processes, the temperature of the measurement target space can be measured without affecting the process.
  • the temperature measurement gas may be supplied into the measurement target space at a temperature-calcifiable predetermined concentration or higher.
  • a temperature measurement gas is supplied into the measurement target space together with the process gas. Anything is fine.
  • a gas control unit that controls a gas supply mechanism for supplying a temperature measurement gas into the measurement target space to realize a temperature measurable state is further provided, and the laser injection mechanism is a temperature measurement gas.
  • the laser beams of the first wavelength and the second wavelength corresponding to the two absorption lines are emitted into the measurement target space, and the temperature calculator emits the first wavelength and the second wavelength from the output of the laser detection mechanism.
  • An absorbance ratio calculation unit that calculates the absorbance ratio of the above, and a temperature characteristic storage unit that stores the temperature characteristics that are the relationship between the absorbance ratio and the temperature of the first wavelength and the second wavelength for the gas for temperature measurement.
  • a temperature output unit that outputs the measured absorbance ratio and the temperature in the measurement target space based on the temperature characteristics is provided, and the temperature calculator can be used as an output of the laser detection mechanism in the temperature measurable state. Based on this, there is one configured to calculate the temperature in the measurement target space.
  • the absorption line of the temperature measuring gas which is a gas different from the process gas.
  • a laser injection mechanism that emits laser light having a wavelength including the above into the measurement target space in the chamber to which the process gas is supplied or in the flow path through which the process gas flows, and the laser light that has passed through the measurement space is detected.
  • There is a program used in a temperature measuring device that has a laser detection mechanism and measures the temperature in the measurement target space, and supplies a temperature measurement gas that is a gas different from the process gas into the measurement target space.
  • the temperature in the measurement target space is calculated based on the gas control unit that controls the gas supply mechanism to realize the temperature measurable state and the absorbance calculated from the output of the laser detection mechanism in the temperature measurable state. It suffices to use a temperature calculator and a program for a temperature measuring device, which is characterized in that a computer exerts its functions.
  • the program for the temperature measuring device may be electronically distributed, or may be recorded on a recording medium such as a CD, DVD, HDD, or flash memory.
  • a temperature measuring gas which is a gas containing a hydrocarbon different from the process gas, is supplied into the measurement target space, and the temperature is based on the absorbance of the temperature measuring gas. Therefore, even if the temperature characteristics of the process gas are unknown, the temperature can be calculated without preparing a database of temperature characteristics in advance by experiments or the like. Further, since the concentration of the temperature measuring gas can be easily adjusted to a value suitable for temperature measurement, for example, the sensitivity of absorbance to a temperature change can be increased, and accurate temperature measurement can be realized.
  • the schematic diagram which shows the temperature measuring apparatus which concerns on 1st Embodiment of this invention The functional block diagram of the temperature measuring apparatus which concerns on 1st Embodiment.
  • the schematic diagram which shows the temperature measuring apparatus and the substrate processing system which concerns on 2nd Embodiment of this invention The schematic perspective view which shows the structure of the laser injection mechanism and the laser detection mechanism of the temperature measuring apparatus which concerns on.
  • the schematic cross-sectional view which shows the structure around the chamber of the temperature measuring apparatus which concerns on this embodiment.
  • Substrate processing system 100 Temperature measuring device 10 ... Chamber 20 . Laser injection mechanism 30 ... Laser detection mechanism 40 ... Control device 44 ... Temperature calculator 441 ... Absorbance ratio calculation unit 442 ... Temperature characteristic storage unit 443 ... Temperature output unit
  • the temperature measuring device 100 according to the first embodiment of the present invention will be described below.
  • the temperature measuring device 100 of the first embodiment measures the temperature based on the absorbance, with the flow path L for supplying process gas into various chambers 10 or the inside of the chamber 10 as a measurement target space in the semiconductor manufacturing process. It is a thing.
  • the temperature measuring device 100 has passed through a laser emitting mechanism 20 which is connected to the chamber 10 and emits laser light to at least the flow path L through which the process gas flows, and the flow path L. It includes a laser detection mechanism 30 for detecting a laser beam and a control mechanism 40 for acquiring a light intensity signal of the laser beam detected by the laser detection mechanism 30.
  • the laser beam emitted from the laser injection mechanism 20 is configured to reach the laser detection mechanism 30 through a transmission window provided in the flow path L.
  • an etching process is performed.
  • fluorofluoride gas such as SF 6 , HBr, and CF 4 is supplied into the chamber 10 via the flow path L as a process gas.
  • CH 4 (methane), which is a gas different from the process gas, is also flowed into the flow path L as a temperature measurement gas alone or in a mixed state with the process gas.
  • the temperature measuring gas is a gas that does not affect various processes performed in the chamber CH.
  • the gas supply mechanism GS provided on the upstream side of the flow path L controls the supply of the process gas or the temperature measurement gas to the flow path L.
  • the control mechanism 40 is configured to calculate the temperature in the measurement target space based on the absorbance of CH 4.
  • the temperature measurement gas when the temperature measurement gas is independently flowed into the flow path L which is the measurement target space, the temperature measurement based on the absorbance of the temperature measurement gas is performed by the temperature measurement device 100, and then the flow path L After the temperature measurement gas is exhausted from the chamber CH, the process gas is supplied to the flow path L and the chamber CH by the gas supply mechanism GS.
  • the gas for temperature measurement is not limited to methane, and may be alkanes such as C 2 H 6 and C 3 H 8 and other hydrocarbon-based gases. Further, the temperature measurement gas may be any gas having an absorption wavelength band in the near infrared region, and may be, for example, oxygen (O 2 ).
  • the laser injection mechanism 20 emits laser light having a wavelength corresponding to two absorption peaks of different temperature measurement gases, and the laser detection mechanism 30 outputs a light intensity signal at each wavelength.
  • the temperature measurement gas does not react with the substrate to be processed in the chamber 10 or the film formed on the substrate during the process, or is substantially negligible as compared with the action of the process gas. The one is selected. Further, as the temperature measuring gas, a gas whose temperature characteristics are known at at least two absorption peaks is used.
  • control mechanism 40 is a dedicated or general-purpose computer physically equipped with a CPU, an internal memory, an input / output interface, an A / D converter, a D / A converter, and the like, and is stored in the internal memory.
  • the gas control unit 41, the laser control unit 42, the light intensity signal acquisition unit 43, and the temperature calculation are performed by the CPU and other components working together based on the program for the temperature measuring device. It is configured to exert the function of the vessel 44 and the like.
  • the gas control unit 41 controls the gas supply mechanism GS to supply methane gas, which is a gas for temperature measurement, into the flow path L, and realizes a temperature measurable state in which the concentration of methane gas is equal to or higher than a predetermined concentration.
  • methane gas which is a gas for temperature measurement
  • the gas control unit 41 controls the gas supply mechanism GS to supply only methane gas into the flow path L.
  • the concentration of methane gas is set to a concentration value that is equal to or higher than a predetermined concentration and the absorbance ratio at the first wavelength and the second wavelength has sufficient sensitivity to a temperature change.
  • the predetermined concentration is such that the absorbance becomes 10-4 about or 10 -4 or more for example is detected.
  • the laser control unit 42 controls the laser injection mechanism 20 in a state where the temperature measurement gas is supplied to the flow path L from the gas supply mechanism GS under the control of the gas control unit 41. Specifically, the laser control unit 42 controls the current or voltage applied to the laser emission mechanism 20 to emit laser light corresponding to the first wavelength and the second wavelength corresponding to the absorption peak of the temperature measurement gas. It is ejected from the mechanism 20.
  • the light intensity signal acquisition unit 43 digitizes the light intensity signal, which is the output when the laser detection mechanism 30 detects the laser light passing through the flow path L, into the value of the light intensity indicated by the signal, and captures it in the computer.
  • the temperature calculator 44 calculates the temperature in the measurement target space based on the output of the laser detection mechanism 30. That is, the temperature calculator 44 calculates the corresponding temperature from the absorbance ratio at the first wavelength and the second wavelength generated in the methane gas which is the temperature measurement gas.
  • the temperature calculation algorithm based on the absorbance ratio of the first wavelength and the second wavelength by the temperature calculator 44 is known, for example, described in Non-Patent Document 1.
  • the temperature calculator 44 includes an absorbance ratio calculation unit 441, a temperature characteristic storage unit 442, and a temperature output unit 443.
  • the absorbance ratio calculation unit 441 calculates the absorbance ratio from the light intensity signals of the first wavelength and the second wavelength obtained from the laser detection mechanism 30.
  • the temperature characteristic storage unit 442 stores the temperature characteristic, which is the relationship between the absorbance ratio and the temperature of the first wavelength and the second wavelength, for the temperature measurement gas.
  • This temperature characteristic is stored as a database created in advance by an experiment.
  • the absorbance of the first wavelength is a value that depends on the temperature and the concentration
  • the second wavelength is a value that does not depend on the temperature but depends only on the concentration. Therefore, the concentration of the temperature measuring gas can be calculated from the absolute value of the absorbance at the second wavelength. Further, assuming that the concentration of the absorbance ratio of the first wavelength and the second wavelength is kept constant, the temperature can be calculated because it has a peculiar correspondence with the temperature.
  • the temperature output unit 443 outputs the corresponding temperature by referring to the above-mentioned temperature relationship with the calculated absorbance ratio of the first wavelength and the second wavelength.
  • the temperature of the measurement target space is measured based on the absorbance ratio of the temperature measuring gas different from the process gas, and thus is used, for example. Even when there are not at least two absorption wavelength peaks for which the temperature can be easily calculated in the process gas, the temperature can be easily measured.
  • the temperature characteristics of the temperature measurement gas are known, it is not necessary to create a database of temperature characteristics as a preparation before performing temperature measurement. Therefore, it is possible to measure the temperature of the measurement target space based on the absorbance even if the process gas does not have a known composition as illustrated and the characteristics are unknown.
  • the temperature measuring device 100 and the substrate processing system 200 according to the second embodiment of the present invention will be described below with reference to FIGS. 3 to 6.
  • the substrate processing system 200 of the present embodiment is used in a semiconductor manufacturing process, and substrate processing such as film formation and etching is performed on a substrate such as a silicon wafer.
  • the substrate processing system 200 includes a chamber 10, a gas supply mechanism GS that supplies various gases into the chamber 10, a gas discharge mechanism that discharges the gas in the chamber 10 to the outside, and the inside of the chamber 10 as a measurement target space. At least a temperature measuring device 100 for measuring the temperature is provided.
  • SF 6 is supplied into the chamber 10 as a process gas in order to etch the silicon substrate in the chamber 10.
  • the chamber 10 is formed with an internal space S for accommodating the substrate, and the internal space S is provided with a heater H for heating the substrate. Then, the substrate processing described above is performed by heating the substrate with the heater H and generating plasma in the internal space S of the chamber 10 while supplying the process gas to the chamber 10.
  • the chamber 10 is formed with a plurality of supply ports P1 to which the process gas is supplied and a discharge port P2 to discharge the process gas supplied to the internal space S.
  • One end of the process gas supply path L1 is connected to the supply port P1 described above, and the other end is connected to the process gas gas source Z1.
  • a process gas supply path L1 is connected to each of the plurality of supply ports P1, and the plurality of process gas supply paths L1 are provided in parallel with each other. As a result, the flow rate of the process gas flowing through each process gas supply path L1 can be controlled independently.
  • Each process gas supply path L1 is provided with a part of a gas supply mechanism GS consisting of a plurality of fluid devices.
  • the gas supply mechanism GS includes one or a plurality of on-off valves V1 provided in each process gas supply path L1 and a first fluid control device MFC1 for controlling physical quantities such as the flow rate and pressure of the process gas.
  • the first fluid control device MFC1 here is a differential pressure type or thermal type mass flow controller that controls the flow rate of the process gas flowing through the process gas supply path L1, calculates the actual flow rate flowing through the process gas supply path L1, and is the actual flow rate.
  • the fluid control valve (not shown) is controlled so that the flow rate approaches the target flow rate input in advance.
  • each process gas supply path L1 is connected to a temperature measurement gas supply path L3 through which a temperature measurement gas such as methane gas different from the process gas flows, and these plurality of temperature measurement gas supply paths L3 are connected. , Are provided in parallel with each other. As a result, the flow rate of the temperature measuring gas flowing through each temperature measuring gas supply path L3 can be independently controlled.
  • a laser beam having a wavelength corresponding to the absorption line of methane gas is introduced into the chamber 10, and its absorbance is measured.
  • each temperature measurement gas supply path L3 is connected to the process gas supply path L1 and the other end is connected to the temperature measurement gas gas source Z2. Further, a part of the gas supply mechanism GS is provided on each temperature measurement gas supply path L3. Specifically, the gas supply mechanism GS is provided with one or more on-off valves V2 provided on each temperature measurement gas supply path L3, and a second fluid control that controls physical quantities such as the flow rate and pressure of the temperature measurement gas. It further includes the device MFC2.
  • the second fluid control device MFC2 here is a differential pressure type or thermal type mass flow controller that controls the flow rate of the temperature measurement gas, like the first fluid control device MFC1 described above.
  • each process gas supply path L1 is connected to a temperature measurement gas supply path L3 through which a temperature measurement gas such as methane gas different from the process gas flows, and these plurality of temperature measurement gas supply paths L3 are connected. , Are provided in parallel with each other. As a result, the flow rate of the temperature measuring gas flowing through each temperature measuring gas supply path L3 can be independently controlled.
  • a laser beam having a wavelength corresponding to the absorption line of methane gas is introduced into the chamber 10, and its absorbance is measured.
  • each temperature measurement gas supply path L3 is connected to the process gas supply path L1 and the other end is connected to the temperature measurement gas gas source Z2. Further, a part of the gas supply mechanism GS is provided on each temperature measurement gas supply path L3. Specifically, the gas supply mechanism GS is provided with one or more on-off valves V2 provided on each temperature measurement gas supply path L3, and a second fluid control that controls physical quantities such as the flow rate and pressure of the temperature measurement gas. It further includes the device MFC2.
  • the second fluid control device MFC2 here is a differential pressure type or thermal type mass flow controller that controls the flow rate of the temperature measurement gas, like the first fluid control device MFC1 described above.
  • each material gas supply path L1 is connected to a dilution gas supply path L4 through which a dilution gas for diluting the process gas such as nitrogen gas flows, and these plurality of dilution gas supply paths L4 are provided in parallel with each other. Has been done. Thereby, the flow rate of the diluted gas flowing through each of the diluted gas supply paths L4 can be controlled independently.
  • each dilution gas supply path L4 is connected to the process gas supply path L1 and the other end is connected to the dilution gas gas source Z3, and one or more on-off valves V3 and the flow rate of the dilution gas
  • a third fluid control device MFC3 that controls a physical quantity such as pressure is provided.
  • the second fluid control device MFC3 here is a differential pressure type or thermal type mass flow controller that controls the flow rate of the diluted gas, like the first fluid control device MFC1 described above.
  • One end of the process gas discharge path L2 is connected to the above-mentioned discharge port P2, and the other end is connected to, for example, a suction pump P located outside the chamber 10.
  • the process gas discharge path L2 is provided with a pressure control means V4 such as a pressure control valve and an on-off valve V5 that constitute a gas discharge mechanism.
  • the temperature measuring device 100 of the present embodiment includes a laser emitting mechanism 20 that emits laser light into the chamber 10 so as to traverse the inside of the chamber 10, and each laser that has passed through the chamber 10. It further includes a laser detection mechanism 30 that detects light, and a control mechanism 40 that acquires the light intensity signal of each laser light detected by the laser detection mechanism 30 and controls the operation of various devices.
  • a laser emitting mechanism 20 that emits laser light into the chamber 10 so as to traverse the inside of the chamber 10, and each laser that has passed through the chamber 10.
  • It further includes a laser detection mechanism 30 that detects light, and a control mechanism 40 that acquires the light intensity signal of each laser light detected by the laser detection mechanism 30 and controls the operation of various devices.
  • the configurations relating to the chamber 10, the laser injection mechanism 20, and the laser detection mechanism 30 are known, for example, described in Non-Patent Document 2.
  • the chamber 10 of the present embodiment includes a chamber body 11 having the above-mentioned internal space S and an upper lid member 12 covering the internal space S from above.
  • a perforated member 13 provided below the upper lid member 12 and having a large number of small holes h1 formed therein, and a lower lid member 14 provided below the perforated member 13 and covering the internal space S from below. ing.
  • the chamber body 11 has, for example, an inner peripheral surface forming an internal space S in the shape of a rotating body, and an outer peripheral surface on which an incident window W1 and an ejection window W2 for transmitting laser light are formed. Further, one discharge port P2 described above is formed on the bottom wall of the chamber body 11. The number and arrangement of the discharge ports P2 may be changed as appropriate.
  • the outer peripheral surface of the chamber body 11 of the present embodiment has a polygonal shape, and an incident window W1 is formed on one of a pair of side portions facing each other on the outer peripheral surface, and an injection window W2 is formed on the other. There is.
  • the outer peripheral surface here is octagonal, and as shown in FIG. 4, an incident window W1 is formed on one side portion, and an injection window W2 is formed on a side portion facing the incident window W1.
  • the chamber body 11 is formed with one laser optical path X penetrating the inner peripheral surface and the outer peripheral surface.
  • the laser optical path X is formed along a plane orthogonal to the central axis C of the internal space S, in other words, along a substrate housed in the internal space S.
  • the upper lid member 12 constitutes the upper wall of the chamber 10, and is, for example, a circular flat plate on which the plurality of supply ports P1 described above are formed.
  • the plurality of supply ports P1 are arranged at equal intervals on the circumference of the top view, for example, and here, four supply ports P1 are arranged at equal intervals around the central axis C of the internal space S.
  • the number and arrangement of supply ports P1 may be changed as appropriate.
  • the perforated member 13 is arranged below the upper lid member 12 with a gap. As a result, the internal space S is partitioned into an upper space S1 above the porous member 13 and a lower space S2 below the porous member 13. A large number of small holes h1 penetrating in the thickness direction are formed in the perforated member 13, and the process gas supplied from the supply port P1 to the upper space S1 is dispersed in the large number of small holes h1 in the lower space. It is designed to be distributed throughout S2.
  • the lower lid member 14 is formed with a plurality of through holes h2 that guide the process gas supplied to the internal space S to the discharge port P2, and here, as a substrate holding member on which a substrate (not shown) is placed. Used.
  • the lower lid member 14 is, for example, a circular flat plate having a plurality of through holes h2 formed at positions corresponding to the above-mentioned supply port P1. Further, a plurality of heaters H such as a cartridge heater are provided on the lower surface of the lower lid member.
  • the laser injection mechanism 20 emits laser light toward the incident window W1 formed on the peripheral wall of the chamber 10.
  • the laser injection mechanism 20 is provided with a laser light source 21 such as a semiconductor laser, guides the laser light emitted from the laser light source 21 with a fiber, and is arranged so as to face the incident window W1. It is ejected from the ejection end 23.
  • the laser light source 21 is configured to emit lasers having a first wavelength and a second wavelength corresponding to two different infrared absorption lines of methane gas, which is a gas for temperature measurement.
  • the laser light source 21 may be composed of, for example, two types of semiconductor lasers, or may be one in which the wavelength of the emitted laser light can be changed by changing the applied voltage.
  • the first wavelength and the second wavelength are absorption lines for the temperature measuring gas, but are not absorption lines for the process gas.
  • the laser detection mechanism 30 detects the laser light that passes through the chamber 10 and is emitted from the injection window W2 formed on the peripheral wall of the chamber 10.
  • the laser detection mechanism 30 has a laser detection unit 31 which is an end portion of the fiber for detecting the laser light emitted from the fiber and passing through the internal space S, and the laser detection unit 31 includes the laser detection unit 31. It is arranged so as to face the injection end portion 23 of the fiber so as to sandwich the internal space S.
  • the light intensity signal indicating the intensity of the laser light detected by the laser detection unit 31 is output to the control mechanism 40 described above via the amplifier A or the like.
  • the control mechanism 40 is a dedicated or general-purpose computer physically equipped with a CPU, an internal memory, an input / output interface, an A / D converter, a D / A converter, and the like, and is a temperature measuring device 100 stored in the internal memory.
  • the CPU and other components cooperate with each other based on the program to control the gas control unit 41, the laser control unit 42, the light intensity signal acquisition unit 43, the temperature calculator 44, and the heater control. It is configured to exhibit the functions of the unit 45 and the like.
  • the gas control unit 41 controls the gas supply mechanism GS to supply methane gas, which is a gas for temperature measurement, into the chamber 10, and realizes a temperature measurable state in which the concentration of methane gas is equal to or higher than a predetermined concentration.
  • methane gas which is a gas for temperature measurement
  • the gas control unit 41 controls the gas supply mechanism GS to supply only methane gas into the chamber 10.
  • the concentration of methane gas is set to a concentration value that is equal to or higher than a predetermined concentration and the absorbance ratio at the first wavelength and the second wavelength has sufficient sensitivity to a temperature change.
  • the predetermined concentration is such that the absorbance becomes 10-4 about or 10 -4 or more for example is detected.
  • the laser control unit 42 emits laser light from the laser injection mechanism into the chamber 10 after the temperature measurement gas, methane gas, has reached a predetermined concentration or higher in the chamber 10 by the gas control unit 41.
  • the light intensity signal acquisition unit 43 digitizes the light intensity signal, which is the output when the laser detection mechanism detects the laser light that has passed through the chamber 10, into the value of the light intensity indicated by the signal, and takes it into the computer.
  • the temperature calculator 44 calculates the temperature in the measurement target space based on the output of the laser detection mechanism 30. That is, the temperature calculator 44 calculates the temperature from the absorbance ratio at the first wavelength and the second wavelength generated in methane gas, which is a gas for temperature measurement. Here, the temperature calculated by the temperature calculator 44 is the average temperature in the chamber 10.
  • the temperature calculator 44 includes an absorbance ratio calculation unit 441, a temperature characteristic storage unit 442, and a temperature output unit 443.
  • the absorbance ratio calculation unit 441 calculates the absorbance ratio from the light intensity signals of the first wavelength and the second wavelength of each optical path obtained from the laser detection mechanism 30.
  • the temperature characteristic storage unit 442 stores the temperature characteristic, which is the relationship between the absorbance ratio and the temperature of the first wavelength and the second wavelength, for the temperature measurement gas.
  • This temperature characteristic is stored as a database created in advance by an experiment.
  • the absorbance of the first wavelength is a value that depends on the temperature and the concentration
  • the second wavelength is a value that does not depend on the temperature but depends only on the concentration. Therefore, the concentration of the temperature measuring gas can be calculated from the absolute value of the absorbance at the second wavelength. Further, assuming that the concentration of the absorbance ratio of the first wavelength and the second wavelength is kept constant, the temperature can be calculated because it has a peculiar correspondence with the temperature.
  • the temperature output unit 443 refers to the above-mentioned temperature relationship with the calculated absorbance ratio of the first wavelength and the second wavelength, and outputs the corresponding temperature as the average temperature of the chamber 10.
  • the heater control unit 45 controls each heater H so that the temperature on the substrate becomes uniform at the target temperature based on the average temperature calculated by the temperature output unit 443.
  • the temperature in the chamber 10 which is the measurement target space can be measured based on the absorbance of the temperature measuring gas instead of the process gas.
  • the gas for temperature measurement has known temperature characteristics and has an absorption line in the infrared region at a wavelength that is easy to use for temperature measurement, the temperature measurement based on the absorbance can be performed accurately. Easy to implement.
  • the temperature characteristics are known, it is not necessary to create a database showing the relationship between the absorbance ratio and the temperature in advance by experiments or the like.
  • methane gas is used as the temperature measurement gas, for example, it is easy to control the concentration in the measurement target space, and by setting the concentration suitable for temperature measurement based on absorbance, the absorbance ratio can be changed against temperature changes. Sufficient sensitivity can be made to appear.
  • methane gas which is a gas for temperature measurement, has an absorption line in the infrared region and does not react with the process gas, so that it does not substantially affect the silicon etching in the chamber 10. Therefore, even if the temperature is measured, the quality of the substrate is not adversely affected.
  • the process is performed by measuring the temperature in the chamber CH by the absorbance of the temperature measuring gas, and then supplying the process gas into the measurement target space after the temperature measuring gas is exhausted from the chamber CH. It can be used when the reaction is particularly low pressure. That is, it is easier to maintain the inside of the chamber CH in a low pressure state as compared with the case where the temperature measurement gas and the process gas are introduced into the chamber CH at the same time.
  • the configuration of the chamber 10, the laser injection mechanism 20, and the laser detection mechanism 30 in this modification is known, for example, described in Non-Patent Document 2.
  • the temperature measuring device 100 is not limited to the one having the single-pass laser optical path X described above, and may have a multi-pass laser optical path X. That is, as shown in FIG. 7, the laser injection mechanism 20 may emit laser light from a plurality of locations around the chamber 10, and the laser detection mechanism 30 may be configured to detect each laser light.
  • the incident windows W1 are formed on the side portions of the continuous half (four) of the chamber 10, and the injection windows W2 are formed on the other continuous (four) side portions.
  • the laser detection mechanism 20 includes a fiber splitter 22 that disperses the laser light into each fiber, emits eight parallel laser lights to each side portion, and emits eight parallel laser beams to each side portion, and the laser incident from each side portion in the chamber 10. The light is configured to intersect in a grid pattern.
  • the temperature calculator 44 calculates the two-dimensional temperature distribution in the chamber 10 based on the absorbance detected in each laser optical path X. Further, the control mechanism 40 controls each heater H individually based on the two-dimensional temperature distribution. Specifically, the control mechanism 40 raises the voltage applied to the corresponding heater H in the portion lower than the target temperature in the two-dimensional temperature distribution, and the voltage applied to the corresponding heater H in the portion higher than the target temperature. To reduce.
  • the temperature is calculated based on the absorbance measured in the state where only the temperature measurement gas is present in the measurement target space, but the measurement is performed in the state where the process gas and the temperature measurement gas are present at the same time.
  • the temperature may be calculated based on the absorbance.
  • the measurement target space is not limited to the chamber to which the process gas is supplied, and may be, for example, a flow path through which the process gas flows.
  • the temperature can be measured by flowing a gas for temperature measurement instead of the process gas in the flow path and measuring the absorbance of the laser beam.
  • the present invention is not only applied to the silicon etching process as in each of the above-described embodiments, but is also applicable to other processes.
  • the process may be a process for various substrate processing such as etching of aluminum or III-V semiconductor or CVD process.
  • the process gas used in the silicon etching process is a gas containing at least one compound selected from the group consisting of SF 6, HBr, CF4, and halogen compounds.
  • the process gas is a gas containing at least one compound selected from the group consisting of Cl 2 , BCl 2 , NaCl 4 , and CHCl 3.
  • a gas of a different type from these may be used.
  • an organic metal material such as trimethylgallium, trimethylaluminum, or trimethylindium is used as the process gas, and a gas different from these may be used as the temperature measurement gas. In either case, methane gas can be used as the temperature measurement gas.
  • the process gas used in the film forming process may be a gas for forming an insulating film, a gas for forming a ferroelectric substance, or a gas for forming an electrode.
  • the insulating film forming gas is, for example, tetraethoxysilane (TEOS), trimethylborate (TMB), triethylborate (TEB), trimethylolpropane (TMP), trimethylphosphate (TMOP), triethylphosphate (TEOP), tetrakis ethylmethylamino zirconium (TEMAZ), tetrakis (diethylamino) hafnium (TDMAH), tertiary butyl imino-tris (ethylmethylamino) tantalum (TBTEMT), tris (dimethylamino) silane (3DMAS), Jirikoniumu chloride (ZrCl 4), hafnium tetrachloride (HfCl 4 ), Tung
  • the process gases used for forming ferroelectrics or forming electrodes are pentaethoxytantal (Ta (OC 2 H 5 ) 5 ) and tetra-t-butoxyhafnium (Hf (OtC 4 H 9 ) 4 ).
  • Tri-sec-butoxyaluminum Al (O-sec-C 4 H 9 ) 3
  • bis (ethylcyclopentadienyl) ruthenium Ru (C 5 H 4 C 2 H 5 ) 2
  • bis (zipi) Valoylmethanato) Lead Pb (C 11 H 19 O 2 ) 2
  • (Isopropoxy) Tris Dipivaloylmethanato) Zirconium (Zr (OiC 3 H 7 ) (C 11 H 19 O 2 ) 3
  • Examples of preferable temperature measuring gases for measuring the temperature in the measurement target space in an etching process or a film forming process using a process gas containing the above compounds are methane (CH 4 ), C 2 H 6 , and C.
  • examples thereof include gases containing at least one compound selected from the group consisting of alkanes such as 3 H 8 and other hydrocarbons. Since such a temperature measuring gas does not react with the above-mentioned process gas, the temperature of the measurement target space can be measured even during the process. Further, for example, if the temperature in the space to be measured is measured between processes, the temperature measuring gas may be one that reacts with the above-mentioned process gas. In such a case, oxygen (O 2 ) having an absorber in the near infrared region can be used as a gas for temperature measurement.
  • the temperature measurement gas is not limited to the above-mentioned gas, and other gases having known temperature characteristics may be used.
  • the temperature measuring gas preferably has an absorption wavelength band in the infrared.
  • the ratio of the peaks of the first wavelength and the second wavelength was used as the absorbance ratio.
  • the wavelength of the laser beam was swept in a predetermined band, and the first wavelength and the second wavelength were used, respectively.
  • the spectral area ratio of may be used as the absorbance ratio.
  • thermoelectric measuring device capable of measuring the temperature in the measurement target space based on the absorbance even when a process gas having unknown temperature characteristics is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

温度特性が未知のプロセスガスが使用される場合でも吸光度に基づいて測定対象空間内の温度を測定することが可能な温度測定装置を提供するために、プロセスガスが供給されるチャンバ10内、又は、プロセスガスが流される流路内を測定対象空間として、当該測定対象空間内の温度を測定する温度測定装置100であって、プロセスガスとは別種のガスである温度測定用ガスの吸収線を含む波長のレーザ光を前記測定空間内に射出するレーザ射出機構20と、前記測定空間内を通過したレーザ光を検出するレーザ検出機構30と、前記レーザ検出機構30の出力に基づいて、前記測定対象空間内の温度を算出する温度算出器44と、を備え、前記レーザ検出機構30の出力が、温度測定用ガスが存在する前記測定対象空間内を通過したレーザ光によって生じたものであり、温度測定用ガスが、炭化水素を含むガスであることを特徴とした。

Description

温度測定装置、温度測定方法、及び、温度測定装置用プログラム
 本発明は、測定対象空間内に存在するガスの吸光度に基づいて当該測定対象空間内の温度を測定する温度測定装置に関するものである。
 特許文献1に示すように例えば半導体製造プロセスでは、シリコン基板が収容されたチャンバ内にプロセスガスを所定の濃度で供給するとともに、シリコン基板をヒータによって加熱してチャンバ内にプラズマを発生させることで、成膜やエッチング等の基板処理が行われる。
 このような基板処理では、チャンバ内のシリコン基板の面板方向に沿った平面内における温度分布(以下、二次元温度分布ともいう)が不均一であると、処理結果も不均一なものになってしまう。
 したがって、上述した二次元温度分布を制御するために、レーザ吸光分光法(Tunable diode laser absorption spectroscopy: TDLAS)による温度測定が二次元的に行われる。
 具体的には、チャンバ内に存在するプロセスガスが赤外吸収を示す異なる2波長のレーザ光がチャンバ内に射出され、各波長における吸光度が測定される。測定された吸光度から吸光度比が算出された後、この吸光度比に基づいて、予め実験的に求められた吸光度比と温度との関係である温度特性から対応する温度が算出される。
 ところで、プロセスガスの吸光度に基づいて温度測定を行う場合、温度に対して変化を検出しやすい波長を少なくとも2つ選定する必要がある。
 しかしながら、プロセスガスの種類や濃度によっては測定に適した2波長を見つけることが困難な場合がある。すなわち、プロセスガスによっては吸光度のスペクトルがブロードであり、温度変化に対して吸光度比があまり変化しないことがある。加えて、吸光度はガスの濃度に対しても影響を受けるので、例えばプロセスガスの濃度が低い場合には吸光度比が温度変化に対して十分な感度を示さないこともある。
 仮に温度測定に適した2波長が存在したとしても、プロセスガスの種類や使用する波長ごとに温度特性は異なっている。このため、温度特性が未知のプロセスガスが用いられる場合には、予め実験により温度特性のデータベースを作成しなくてはならず、吸光度に基づいて温度を測定するのは非常に手間がかかる。
特開2012-204692号公報
Meas. Sci. Technol. 9 (1998) 545-562 ECS Journal of Solid State Science and Technology, 7 (11) Q211-Q217 (2018) CT半導体レーザ吸収法を用いた高温・高圧域における2次元温度分布計測の特性評価」自動車技術会論文集2015 年 46 巻 6 号 p. 1031-1037
 本発明は上述したような問題に鑑みてなされたものであり、温度特性が未知のプロセスガスが使用される場合でも吸光度に基づいて測定対象空間内の温度を測定することが可能な温度測定装置を提供することを目的とする。
 本発明に係る温度測定装置は、プロセスガスが供給されるチャンバ内、又は、プロセスガスが流される流路内を測定対象空間として、当該測定対象空間内の温度を測定する温度測定装置であって、プロセスガスとは別種のガスであり、プロセスに影響を与えない温度測定用ガスの吸収線を含む波長のレーザ光を前記測定空間内に射出するレーザ射出機構と、前記測定空間内を通過したレーザ光を検出するレーザ検出機構と、前記レーザ検出機構の出力に基づいて、前記測定対象空間内の温度を算出する温度算出器と、を備え、前記レーザ検出機構の出力が、温度測定用ガスが存在する前記測定対象空間内を通過したレーザ光によって生じたものであり、温度測定用ガスが、炭化水素を含むガスであり、温度測定用ガスが、プロセスガスとともに前記測定対象空間内に供給される、又は、温度測定用ガスで温度が測定された後、前記測定対象空間内から温度測定用ガスが排気された後にプロセスガスが当該測定対象空間内に供給されることを特徴とする。
 また、本発明に係る温度測定方法は、プロセスガスが供給されるチャンバ内、又は、プロセスガスが流される流路内を測定対象空間として、当該測定対象空間内の温度を測定する温度測定方法あって、プロセスガスとは別種のガスである温度測定用ガスを前記測定対象空間内に供給し、温度測定可能状態を実現するガス供給ステップと、レーザ射出機構によって、温度測定用ガスの吸収線を含む波長のレーザ光を前記測定空間内に射出するレーザ射出ステップと、レーザ検出機構によって、前記測定空間内を通過したレーザ光を検出するレーザ検出ステップと、前記温度測定可能状態における前記レーザ検出機構の出力から算出される吸光度に基づいて、前記測定対象空間内の温度を算出する温度算出ステップと、を備えたことを特徴とする。
 このようなものであれば、プロセスガスについて吸光度と温度との関係である温度特性が未知であったとしても、温度特性が既知の温度測定用ガスを用いることでデータベース等を作成することなく、前記測定対象空間の温度を測定することができる。
 また、温度測定用ガスが、炭化水素を含むガスであるので、例えばプロセスガスとともに温度測定用ガスを供給しても、チャンバにおいてプロセスガスを用いて行われる基板処理に対して作用せず、影響を与えない、あるいは、影響を与えたとしてもほとんど無視できる程度にすることができる。言い換えると、温度測定用ガスが、前記チャンバ内でプロセスガスにより行われるプロセスに影響を与えないガスとすることができるので、例えばチャンバ内において基板処理が進行している間でもリアルタイムで温度を測定できるようにしたり、温度測定用ガスがチャンバ内に残存していたとしても基板処理の品質に影響が現れないようにしたりできる。
 加えて、上述したような温度測定用ガスを使用すれば、前記測定対象空間内に所定の濃度以上の温度測定用ガスを供給して、測定される吸光度が温度変化に対して十分な感度を示すようにできる。
 さらに、温度測定用ガスの温度特性を一度データベースとして作成しておけば、様々なプロセスガスが用いられるプロセスにおいて共通して使用できる。したがって、温度測定のために必要となる手間を大幅に低減できる。
 プロセスガスに対して反応しないもので、特に吸光度に基づく温度測定に適したものとしては、温度測定用ガスが、CH4、C2H6、C3H8からなる群から選択される化合物を少なくとも1つ含むものが挙げられる。
 温度測定用ガスが、O2を含み、プロセス間に供給されるものであっても、プロセスに影響を与えることなく、測定対象空間の温度を測定することができる。
 十分な感度で吸光度に基づいた温度測定を可能とするには、温度測定用ガスが、前記測定対象空間内に温度算出可能な所定濃度以上で供給されればよい。
 例えばパージ中だけでなく、基板処理が行われている間も前記測定対象空間内の温度を測定できるようにするには、温度測定用ガスが、プロセスガスとともに前記測定対象空間内に供給されるものであればよい。
 前記測定対象空間内に温度測定用ガスが存在している状態においてのみ、前記測定対象空間内の温度が算出されるようにして、不正確な温度が算出されないようにするための具体的な構成例としては、前記測定対象空間内へ温度測定用ガスの供給するガス供給機構を制御して、温度測定可能状態を実現するガス制御部をさらに備え、前記レーザ射出機構が、温度測定用ガスの2つの吸収線に対応する第1波長と第2波長のレーザ光を前記測定対象空間内に射出するものであり、前記温度算出器が、前記レーザ検出機構の出力から第1波長と第2波長の吸光度比を算出する吸光度比算出部と、温度測定用ガスについて、前記第1波長と前記第2波長の吸光度比及び温度の間の関係である温度特性を記憶する温度特性記憶部と、算出された吸光度比と、前記温度特性に基づいて前記測定対象空間内の温度を出力する温度出力部と、を具備し、前記温度算出器が、前記温度測定可能状態における前記レーザ検出機構の出力に基づいて、前記測定対象空間内の温度を算出するように構成されたものが挙げられる。
 既存の温度測定装置においてプログラムを更新することにより、本発明に係る温度測定装置とほぼ同様の効果を享受できるようにするには、プロセスガスとは別種のガスである温度測定用ガスの吸収線を含む波長のレーザ光をプロセスガスが供給されるチャンバ内、又は、プロセスガスが流される流路内を測定対象空間に射出するレーザ射出機構と、前記測定空間内を通過したレーザ光を検出するレーザ検出機構と、を備え、前記測定対象空間内の温度を測定する温度測定装置に用いられるプログラムあって、プロセスガスとは別種のガスである温度測定用ガスを前記測定対象空間内に供給するガス供給機構を制御して、温度測定可能状態を実現するガス制御部と、前記温度測定可能状態における前記レーザ検出機構の出力から算出される吸光度に基づいて、前記測定対象空間内の温度を算出する温度算出器と、しての機能をコンピュータに発揮させることを特徴とする温度測定装置用プログラムを用いればよい。
 なお、温度測定装置用プログラムは電子的に配信されるものであってもよいし、CD、DVD、HDD、フラッシュメモリ等の記録媒体に記録されたものであってもよい。
 このように本発明に係る温度測定装置によれば、プロセスガスとは別種の炭化水素を含むガスである温度測定用ガスを測定対象空間内に供給し、温度測定用ガスの吸光度に基づいて温度を算出するように構成されているので、プロセスガスの温度特性が不明であっても、実験等により温度特性のデータベースを事前に用意せずに、温度を算出できる。また、温度測定用ガスの濃度についても温度測定に適した値に調整しやすいので、例えば温度変化に対する吸光度の感度を高くし、正確な温度測定を実現できる。
本発明の第1実施形態に係る温度測定装置を示す模式図。 第1実施形態に係る温度測定装置の機能ブロック図。 本発明の第2実施形態に係る温度測定装置、及び、基板処理システムを示す模式図。 に係る温度測定装置のレーザ射出機構及びレーザ検出機構の構成を示す模式的斜視図。 同実施形態に係る温度測定装置のチャンバ周辺の構造を示す模式的断面図。 同実施形態に係る温度測定装置の機能ブロック図。 本発明の第2実施形態に係る温度測定装置の変形例。
200・・・基板処理システム
100・・・温度測定装置
10 ・・・チャンバ
20 ・・・レーザ射出機構
30 ・・・レーザ検出機構
40 ・・・制御装置
44 ・・・温度算出器
441・・・吸光度比算出部
442・・・温度特性記憶部
443・・・温度出力部
 以下に、本発明の第1実施形態に係る温度測定装置100について説明する。
 第1実施形態の温度測定装置100は、半導体製造プロセスにおいて様々なチャンバ10内にプロセスガスを供給するための流路L又はチャンバ10内を測定対象空間として、その温度を吸光度に基づいて測定するものである。
 図1に示すように、温度測定装置100は、チャンバ10に対して接続され、少なくともプロセスガスが流される流路Lに対してレーザ光を射出するレーザ射出機構20と、流路Lを通過したレーザ光を検出するレーザ検出機構30と、レーザ検出機構30により検出されたレーザ光の光強度信号を取得する制御機構40と、を備えている。レーザ射出機構20から射出されたレーザ光は流路Lに設けられた透過窓を介してレーザ検出機構30へと到達するように構成されている。
 チャンバ10内では例えばエッチングプロセスが実施される。シリコンのエッチングが実施される場合には、プロセスガスとしてSF、HBr、及び、CF等の炭化フッ素系ガスが流路Lを介してチャンバ10内に供給される。
 さらに、第1実施形態ではプロセスガスとは別種のガスである例えばCH(メタン)も温度測定用ガスとして単独又はプロセスガスと混合された状態で流路Lに流される。ここで、温度測定用ガスはチャンバCHにおいて行われる各種プロセスに影響を与えないガスである。なお、流路Lの上流側に設けられたガス供給機構GSによってプロセスガス又は温度測定用ガスの流路Lへの供給が制御される。そして、第1実施形態では、制御機構40はCHの吸光度に基づいて測定対象空間内の温度を算出するように構成されている。また、温度測定用ガスが測定対象空間である流路L内に単独で流される場合には、この温度測定用ガスの吸光度に基づく温度測定が温度測定装置100によって行われた後、流路L及びチャンバCHから温度測定用ガスが排気された後にガス供給機構GSによってプロセスガスが流路L及びチャンバCH供給される。なお、温度測定用ガスはメタンに限られるものではなく、C2H6、C3H8等のアルカンやその他の炭化水素系ガスであっても構わない。また、温度測定用ガスは近赤外領域に吸収波長帯を有するものであればよく、例えば酸素(O2)であってもよい。
 すなわち、レーザ射出機構20は、温度測定用ガスの異なる2つの吸収ピークに対応する波長のレーザ光を射出し、レーザ検出機構30はそれぞれ波長での光強度信号を出力する。また、温度測定用ガスはチャンバ10においてプロセスの対象となる基板又は基板上に成膜された膜に対してプロセス中においても反応しない、あるいは、プロセスガスによる作用と比較して実質的に無視できるものが選定される。さらに温度測定用ガスは、その温度特性が少なくとも2つの吸収ピークにおいて既知のものが使用される。
 より具体的には、制御機構40は、物理的にはCPU、内部メモリ、入出力インターフェース、A/Dコンバータ、D/Aコンバータ等を備えた専用乃至汎用のコンピュータであり、前記内部メモリに格納された温度測定装置用プログラムに基づいて、CPU及びその他の構成要素が協働することによって、図2に示すように、ガス制御部41、レーザ制御部42、光強度信号取得部43、温度算出器44などの機能を発揮するように構成されたものである。
 ガス制御部41は、ガス供給機構GSを制御して流路L内に温度測定用ガスであるメタンガスを供給し、メタンガスの濃度が所定濃度以上の温度測定可能状態を実現する。例えばチャンバ10に対してプロセスガスが供給される前にガス制御部41は、ガス供給機構GSを制御して、メタンガスのみを流路L内に供給させる。ここで、メタンガスの濃度は、所定の濃度以上であって、第1波長と第2波長における吸光度比が温度変化に対して十分な感度を有する濃度値に設定される。ここで所定の濃度とは、例えば検出される吸光度が10-4程度もしくは10-4以上となるような値である。
 レーザ制御部42は、ガス制御部41の制御によってガス供給機構GSから温度測定用ガスが流路Lに供給されている状態においてレーザ射出機構20を制御する。具体的にはレーザ制御部42はレーザ射出機構20に印加される電流又は電圧を制御して、温度測定用ガスの吸収ピークに対応する第1波長と第2波長に対応するレーザ光をレーザ射出機構20から射出させる。
 光強度信号取得部43は、流路Lを通過したレーザ光をレーザ検出機構30が検出した場合の出力である光強度信号をその信号が示す光強度の値にデジタル化してコンピュータ内に取り込む。
 温度算出器44は、レーザ検出機構30の出力に基づいて、測定対象空間内の温度を算出する。すなわち、温度算出器44は温度測定用ガスであるメタンガスにおいて生じる第1波長と第2波長での吸光度比から対応する温度を算出する。ここで、温度算出器44による第1波長と第2波長の吸光度比に基づく温度算出アルゴリズムについては、例えば非特許文献1に記載されている既知のものである。
 より具体的には、温度算出器44は、吸光度比算出部441、温度特性記憶部442、温度出力部443からなる。
 吸光度比算出部441は、レーザ検出機構30から得られた第1波長と第2波長の光強度信号から吸光度比を算出する。
 温度特性記憶部442は、温度測定用ガスについて、第1波長と第2波長の吸光度比及び温度の間の関係である温度特性を記憶する。この温度特性は、予め実験により作成されたデータベースとして記憶されている。ここで第1波長の吸光度は温度と濃度に依存する値であり、第2波長は温度に対しては依存しておらず、濃度に対してのみ依存する値である。したがって、第2波長の吸光度の絶対値からは温度測定用ガスの濃度を算出することができる。また、第1波長と第2波長の吸光度比は濃度が一定に保たれていることを前提とすれば、温度に対して固有の対応関係を有するので、温度を算出できる。
 温度出力部443は、算出された第1波長と第2波長の吸光度比で、前述した温度関係を参照し、対応する温度を出力する。
 このように構成された第1実施形態の温度測定装置によれば、プロセスガスとは別の温度測定用ガスの吸光度比に基づいて、測定対象空間の温度を測定するので、例えば使用されているプロセスガスにおいて温度を算出しやすい吸収波長ピークが少なくとも2つ存在していない場合でも、容易に温度測定を行うことができる。
 また、温度測定用ガスの温度特性については既知のものであるので、温度測定を行う前の準備として温度特性のデータベースを作成する必要がない。したがって、プロセスガスが例示したような既知の組成のものではなく、特性が未知のプロセスガスであっても測定対象空間の温度を吸光度に基づいて測定することが可能となる。
 以下に、本発明の第2実施形態に係る温度測定装置100、及び、基板処理システム200について、図3乃至図6を参照して説明する。
 本実施形態の基板処理システム200は、半導体製造プロセスに用いられるものであり、シリコンウエハ等の基板に対して成膜やエッチング等の基板処理が行われる。この基板処理システム200は、チャンバ10と、チャンバ10内に各種ガスを供給するガス供給機構GSと、チャンバ10内のガスを外部へ排出するガス排出機構と、チャンバ10内を測定対象空間としてその温度を測定する温度測定装置100を少なくとも備える。
 具体的に図3に示すように、基板(不図示)を収容するチャンバ10にはプロセスガスを供給するプロセスガス供給路L1と、チャンバ10に供給されたプロセスガスを排出するプロセスガス排出路L2とが接続されている。なお、第2実施形態ではチャンバ10内のシリコン基板をエッチングするために、プロセスガスとしてはSFがチャンバ10内へと供給される。
 チャンバ10は、基板を収容する内部空間Sが形成されたものであり、この内部空間Sには基板を加熱するためのヒータHが設けられている。そして、ヒータHによって基板を加熱するとともに、チャンバ10にプロセスガスを供給しながら、該チャンバ10の内部空間Sにプラズマを発生させることで、上述した基板処理が行われる。
 このチャンバ10には、プロセスガスが供給される複数の供給ポートP1と、内部空間Sに供給されたプロセスガスを排出する排出ポートP2とが形成されている。
 プロセスガス供給路L1は、一端が上述した供給ポートP1に接続されるとともに、他端がプロセスガスのガス源Z1に接続されている。ここでは、複数の供給ポートP1それぞれにプロセスガス供給路L1が接続されており、これら複数のプロセスガス供給路L1は、互いに並列に設けられている。これにより、各プロセスガス供給路L1を流れるプロセスガスの流量等を独立して制御することができる。
 各プロセスガス供給路L1には、複数の流体機器かならなるガス供給機構GSの一部が設けられている。具体的にガス供給機構GSは、各プロセスガス供給路L1に設けられた1又は複数の開閉弁V1と、プロセスガスの流量や圧力等の物理量を制御する第1流体制御機器MFC1と、を備えている。ここでの第1流体制御機器MFC1は、プロセスガス供給路L1に流れるプロセスガスの流量を制御する差圧式又は熱式のマスフローコントローラであり、プロセスガス供給路L1に流れる実流量を算出し、その実流量が予め入力された目標流量に近づくように、流体制御弁(不図示)を制御するものである。
 また、各プロセスガス供給路L1には、プロセスガスとは別種のメタンガス等の温度測定用ガスが流れる温度測定用ガス供給路L3が接続されており、これら複数の温度測定用ガス供給路L3は、互いに並列に設けられている。これにより、各温度測定用ガス供給路L3を流れる温度測定用ガスの流量等を独立して制御することができる。第2実施形態ではメタンガスの吸収線に対応する波長のレーザ光をチャンバ10内に導入し、その吸光度が測定される。
 各温度測定用ガス供給路L3は、一端がプロセスガス供給路L1に接続されるとともに、他端が温度測定用ガスのガス源Z2に接続されている。また、各温度測定用ガス供給路L3上にはガス供給機構GSの一部が設けられている。具体的にガス供給機構GSは、各温度測定用ガス供給路L3上に設けられた、1又は複数の開閉弁V2と、温度測定用ガスの流量や圧力等の物理量を制御する第2流体制御機器MFC2と、をさらに備えている。ここでの第2流体制御機器MFC2は、上述した第1流体制御機器MFC1と同様、温度測定用ガスの流量を制御する差圧式又は熱式のマスフローコントローラである。
 また、各プロセスガス供給路L1には、プロセスガスとは別種のメタンガス等の温度測定用ガスが流れる温度測定用ガス供給路L3が接続されており、これら複数の温度測定用ガス供給路L3は、互いに並列に設けられている。これにより、各温度測定用ガス供給路L3を流れる温度測定用ガスの流量等を独立して制御することができる。第2実施形態ではメタンガスの吸収線に対応する波長のレーザ光をチャンバ10内に導入し、その吸光度が測定される。
 各温度測定用ガス供給路L3は、一端がプロセスガス供給路L1に接続されるとともに、他端が温度測定用ガスのガス源Z2に接続されている。また、各温度測定用ガス供給路L3上にはガス供給機構GSの一部が設けられている。具体的にガス供給機構GSは、各温度測定用ガス供給路L3上に設けられた、1又は複数の開閉弁V2と、温度測定用ガスの流量や圧力等の物理量を制御する第2流体制御機器MFC2と、をさらに備えている。ここでの第2流体制御機器MFC2は、上述した第1流体制御機器MFC1と同様、温度測定用ガスの流量を制御する差圧式又は熱式のマスフローコントローラである。
 さらに、各材料ガス供給路L1には、プロセスガスを希釈する例えば窒素ガス等の希釈ガスが流れる希釈ガス供給路L4が接続されており、これら複数の希釈ガス供給路L4は、互いに並列に設けられている。これにより、各希釈ガス供給路L4を流れる希釈ガスの流量等を独立して制御することができる。
 各希釈ガス供給路L4は、一端がプロセスガス供給路L1に接続されるとともに、他端が希釈ガスのガス源Z3に接続されており、1又は複数の開閉弁V3と、希釈ガスの流量や圧力等の物理量を制御する第3流体制御機器MFC3とが設けられている。ここでの第2流体制御機器MFC3は、上述した第1流体制御機器MFC1と同様、希釈ガスの流量を制御する差圧式又は熱式のマスフローコントローラである。
 プロセスガス排出路L2は、一端が上述した排出ポートP2に接続されており、他端がチャンバ10の外部に位置する例えば吸引ポンプPに接続されている。このプロセスガス排出路L2には、ガス排出機構を構成する調圧弁等の調圧手段V4や開閉弁V5が設けられている。
 そして、本実施形態の温度測定装置100は、図4に示すように、チャンバ10内を横断するようにチャンバ10内にレーザ光を射出するレーザ射出機構20と、チャンバ10内を通過した各レーザ光を検出するレーザ検出機構30と、レーザ検出機構30により検出された各レーザ光の光強度信号を取得して、各種機器の動作を制御する制御機構40とをさらに具備している。ここで、チャンバ10、レーザ射出機構20、レーザ検出機構30に関する構成については、例えば非特許文献2に記載されている公知のものである。
 まず、チャンバ10をより詳細について説明すると、本実施形態のチャンバ10は、図5に示すように、上述した内部空間Sを有するチャンバ本体11と、内部空間Sを上方から覆う上側蓋部材12と、上側蓋部材12の下方に設けられて多数の小孔h1が形成された多孔部材13と、多孔部材13の下方に設けられて内部空間Sを下方から覆う下側蓋部材14とを有している。
 チャンバ本体11は、例えば回転体形状の内部空間Sを形成する内周面と、レーザ光を透過させる入射窓W1及び射出窓W2が形成された外周面とを有している。また、チャンバ本体11の底壁には、上述した排出ポートP2が1つ形成されている。なお、排出ポートP2の数や配置は適宜変更して構わない。
 本実施形態のチャンバ本体11は、外周面が多角形状をなしており、外周面のうちの互いに対向する一対の辺部の一方に入射窓W1が形成され、他方に射出窓W2が形成されている。ここでの外周面は八角形であり、図4に示すようにある1つの辺部に入射窓W1が形成され、当該入射窓W1に対向する辺部に射出窓W2が形成されている。
 さらにチャンバ本体11には、内周面と外周面とを貫通する1本のレーザ光路Xが形成されている。このレーザ光路Xは、内部空間Sの中心軸Cに直交する平面に沿って、言い換えれば内部空間Sに収容された基板に沿って形成されている。
 上側蓋部材12は、チャンバ10の上壁を構成しており、上述した複数の供給ポートP1が形成された例えば円形平板状のものである。複数の供給ポートP1は、例えば上面視円周上に等間隔に配置されており、ここでは4つの供給ポートP1が内部空間Sの中心軸C周りに等間隔に配置されている。なお、供給ポートP1の数や配置は適宜変更して構わない。
 多孔部材13は、上側蓋部材12の下方に隙間を隔てて配置されたものである。これにより、内部空間Sは多孔部材13よりも上方の上部空間S1と、多孔部材13よりも下方の下部空間S2とに仕切られている。この多孔部材13には、厚み方向に貫通する多数の小孔h1が形成されており、供給ポートP1から上部空間S1に供給されたプロセスガスが、これら多数の小孔h1に分散しながら下部空間S2の全体に行き渡るようにしてある。
 下側蓋部材14は、内部空間Sに供給されたプロセスガスを排出ポートP2に導く複数の貫通孔h2が形成されており、ここでは基板(不図示)が載置される基板保持部材としても用いられる。この下側蓋部材14は、例えば上述した供給ポートP1に対応する位置に複数の貫通孔h2が形成された例えば円形平板状のものである。また、この下側蓋部材の下面には、例えばカートリッジヒータ等のヒータHが複数設けられている。
 次に、温度測定装置100を構成するレーザ射出機構20、レーザ検出機構30、及び制御機構40について説明する。
 レーザ射出機構20は、図4に示すように、チャンバ10の周壁に形成された入射窓W1に向かってレーザ光を射出するものである。具体的にこのレーザ射出機構20は、例えば半導体レーザ等のレーザ光源21を備え、レーザ光源21から射出されたレーザ光をファイバにより導光し、入射窓W1に対して対向するように配置された射出端部23から射出する。また、レーザ光源21は、温度測定用ガスであるメタンガスの赤外吸収線の異なる2つに対応する第1波長と第2波長のレーザを射出するように構成されている。レーザ光源21は、例えば2種類の半導体レーザからなるものであってもよいし、印加される電圧を変化させることで射出されるレーザ光の波長を変更可能にしたものであってもよい。ここで、第1波長、及び、第2波長は、温度測定用ガスの吸収線ではあるが、プロセスガスの吸収線ではないものが挙げられる。
 レーザ検出機構30は、図4に示すように、チャンバ10内を通過し、チャンバ10の周壁に形成された射出窓W2から射出するレーザ光を検出するものである。具体的にこのレーザ検出機構30は、ファイバから射出されて内部空間Sを通過したレーザ光を検出するためのファイバの端部であるレーザ検出部31を有しており、レーザ検出部31は、内部空間Sを挟むようにファイバの射出端部23に対向配置されている。レーザ検出部31により検出されたレーザ光の強度を示す光強度信号は、アンプA等を介して上述した制御機構40に出力される。
 制御機構40は、物理的にはCPU、内部メモリ、入出力インターフェース、A/Dコンバータ、D/Aコンバータ等を備えた専用乃至汎用のコンピュータであり、前記内部メモリに格納された温度測定装置100用プログラムに基づいて、CPU及びその他の構成要素が協働することによって、図6に示すように、ガス制御部41、レーザ制御部42、光強度信号取得部43、温度算出器44、ヒータ制御部45などの機能を発揮するように構成されたものである。
 ガス制御部41は、ガス供給機構GSを制御してチャンバ10内に温度測定用ガスであるメタンガスを供給し、メタンガスの濃度が所定濃度以上の温度測定可能状態を実現する。例えばチャンバ10に対してプロセスガスが供給される前にガス制御部41は、ガス供給機構GSを制御して、メタンガスのみをチャンバ10内に供給させる。ここで、メタンガスの濃度は、所定の濃度以上であって、第1波長と第2波長における吸光度比が温度変化に対して十分な感度を有する濃度値に設定される。ここで所定の濃度とは、例えば検出される吸光度が10-4程度もしくは10-4以上となるような値である。
 レーザ制御部42は、ガス制御部41によってチャンバ10内に温度測定用ガスであるメタンガスが所定の濃度以上となった後にレーザ射出機構からチャンバ10内へレーザ光を射出させる。
 光強度信号取得部43は、チャンバ10内を通過したレーザ光をレーザ検出機構が検出した場合の出力である光強度信号をその信号が示す光強度の値にデジタル化してコンピュータ内に取り込む。
 温度算出器44は、レーザ検出機構30の出力に基づいて、前記測定対象空間内の温度を算出する。すなわち、温度算出器44は温度測定用ガスであるメタンガスにおいて生じる第1波長と第2波長での吸光度比から温度を算出する。ここで、温度算出器44により算出される温度は、チャンバ10内の平均温度である。
 より具体的には、温度算出器44は、吸光度比算出部441、温度特性記憶部442、温度出力部443からなる。
 吸光度比算出部441は、レーザ検出機構30から得られた各光路の第1波長と第2波長の光強度信号のから、それぞれ吸光度比を算出する。
 温度特性記憶部442は、温度測定用ガスについて、第1波長と第2波長の吸光度比及び温度の間の関係である温度特性を記憶する。この温度特性は、予め実験により作成されたデータベースとして記憶されている。ここで第1波長の吸光度は温度と濃度に依存する値であり、第2波長は温度に対しては依存しておらず、濃度に対してのみ依存する値である。したがって、第2波長の吸光度の絶対値からは温度測定用ガスの濃度を算出することができる。また、第1波長と第2波長の吸光度比は濃度が一定に保たれていることを前提とすれば、温度に対して固有の対応関係を有するので、温度を算出できる。
 温度出力部443は、算出された第1波長と第2波長の吸光度比で、前述した温度関係を参照し、対応する温度をチャンバ10の平均温度として出力する。
 ヒータ制御部45は、温度出力部443で算出された平均温度に基づいて基板上の温度が目標温度で均一となるように各ヒータHを制御する。
 このように構成された温度測定装置100によれば、プロセスガスではなく、温度測定用ガスの吸光度に基づいて測定対象空間であるチャンバ10内の温度を測定することができる。
 また、温度測定用ガスは温度特性が既知で、かつ、温度測定に使用しやすい波長に赤外領域の吸収線を有しているものが選択されているので、吸光度に基づく温度測定を正確に実施しやすい。また、温度特性が既知であるので、予め実験等によって吸光度比と温度との間の関係を示すデータベースを作成する必要がない。
 したがって、プロセスガスが仮に温度特性が未知のものであったとしても、測定前に手間をかけなくても正確な温度測定を実現することができる。
 加えて、温度測定用ガスは例えばメタンガスを使用しているので、測定対象空間内における濃度を制御しやすく、吸光度に基づく温度測定に適した濃度にすることで、吸光度比に温度変化に対して十分な感度が現れるようにできる。
 また、温度測定用ガスであるメタンガスは、赤外に吸収線を有しており、かつ、プロセスガスと反応しないのでチャンバ10内におけるシリコンエッチングにも実質的に影響を与えない。したがって、温度測定を行っても基板の品質に悪影響が出ることもない。
 また、本実施形態では温度測定用ガスの吸光度によりチャンバCH内の温度を測定した後で、チャンバCH内から温度測定用ガスが排気した後にプロセスガスを測定対象空間内に供給することで、プロセス反応が特に低圧な場合に活用できる。すなわち、温度測定用ガスとプロセスガスをチャンバCH内に同時に導入する場合に比べてチャンバCH内を低圧状態で維持しやすい。
 次に第2実施形態の変形例について説明する。なお、この変形例におけるチャンバ10、レーザ射出機構20、レーザ検出機構30に関する構成については、例えば非特許文献2に記載されている公知のものである。温度測定装置100は、前述したシングルパスのレーザ光路Xを有するものに限られず、マルチパスのレーザ光路Xを有するものであってもよい。すなわち、図7に示すようにレーザ射出機構20はチャンバ10の周囲の複数箇所からレーザ光を射出し、レーザ検出機構30はそれぞれのレーザ光を検出するように構成してもよい。
 具体的には、チャンバ10の連続する半数(4つ)の辺部に入射窓W1が形成され、それ以外の連続する(4つ)の辺部に射出窓W2が形成されている。レーザ検出機構20は、レーザ光を各ファイバに分光するファイバスプリッタ22を具備し、各辺部に対してそれぞれ8本の平行なレーザ光を射出し、チャンバ10内において各辺部から入射したレーザ光が格子状に交差するように構成されている。
 また、温度算出器44は各レーザ光路Xで検出される吸光度に基づいてチャンバ10内の2次元温度分布を算出する。また制御機構40は2次元温度分布に基づき、各ヒータHを個別に制御する。具体的には、制御機構40は2次元温度分布において目標温度よりも低い部分については対応するヒータHに印加する電圧を上昇させ、目標温度よりも高い部分については対応するヒータHに印加する電圧を低下させる。
 その他の実施形態について説明する。
 前述した実施形態では、測定対象空間内に温度測定用ガスのみが存在する状態で測定される吸光度に基づいて温度を算出していたが、プロセスガスと温度測定用ガスが同時に存在する状態で測定される吸光度に基づいて温度を算出するようにしてもよい。このようなものであれば、例えばチャンバにおいて基板処理が行われている間もリアルタイムで温度の変化をモニタリングし、逐次ヒータのフィードバック制御を行うといったことができる。言い換えると、温度測定用ガスがプロセスガスとともに測定対象空間内に供給する場合においては、温度測定用ガスとプロセスガスを別々に測定対象空間内に供給する場合と比較して短時間、かつ、リアルタイムな温度計測が可能となるとともに、温度測定とともにプロセスガスによる反応を同時に実施する事が可能となる。
 測定対象空間についてはプロセスガスが供給されるチャンバ内に限られず、例えばプロセスガスが流れる流路であっても構わない。この場合、流路内にプロセスガスの代わりに温度測定用ガスを流し、レーザ光の吸光度を測定することで温度を測定することができる。
 本発明は、前述した各実施形態のようにシリコンのエッチングプロセスのみに適用されるものではなく、その他のプロセスであっても適用可能である。例えば、プロセスは、アルミやIII-V族半導体のエッチングや、CVDプロセス等様々な基板処理のためのプロセスであってもよい。
 シリコンのエッチングプロセスに用いられるプロセスガスは、SF、HBr、CF4、ハロゲン化合物からなる群から選択される少なくとも1つの化合物を含むガスである。また、アルミやIII-V族半導体のエッチングプロセスの場合には、プロセスガスはCl、BCl、SiCl、CHClからなる群から選択される少なくとも1つの化合物を含むガスである。温度測定用ガスとしてはこれらとは別種のガスを使用すればよい。
 また、MOCVDプロセスでは、プロセスガスとしてトリメチルガリウム、トリメチルアルミニウム、トリメチルインジウム等の有機金属材料が用いられ、温度測定用ガスとしてこれらとは別種のガスを使用すればよい。いずれの場合でもあっても温度測定用ガスとしてはメタンガスを使用することができる。
 成膜プロセスに用いられるプロセスガスとしては、絶縁膜形成用ガスであってもよいし、強誘電体形成用ガス又は電極形成用ガスであってもよい。具体的には絶縁膜形成用ガスは、例えばテトラエトキシシラン(TEOS),トリメチルボレート(TMB)、トリエチルボレート(TEB)、トリメチロールプロパン(TMP)、トリメチルホスフェート(TMOP)、トリエチルホスフェート(TEOP)、テトラキスエチルメチルアミノジルコニウム(TEMAZ)、テトラキスジエチルアミノハフニウム(TDMAH)、ターシャリーブチルイミノトリス(エチルメチルアミノ)タンタル(TBTEMT)、トリスジメチルアミノシラン(3DMAS)、塩化ジリコニウム(ZrCl4)、塩化ハフニウム(HfCl4)、六塩化タングステン(WCl6)、塩化アルミニウム(AlCl3)、五塩化モリブデン(MoCl5)からなる群から選択される少なくとも1つの化合物を含むものである。
 また、強誘電体形成用ガス又は電極形成用ガスとして用いられるプロセスガスは、ペンタエトキシタンタル(Ta(OC2H5)5)、テトラ-t-ブトキシハフニウム(Hf(O-t-C4H9)4), トリ-sec-ブトキシアルミニウム(Al(O-sec-C4H9)3), ビス(エチルシクロペンタジエニル)ルテニウム(Ru(C5H4C2H5)2), ビス(ジピバロイルメタナト)鉛(Pb(C11H19O2)2), (イソプロポキシ)トリス(ジピバロイルメタナト)ジルコニウム(Zr(O-i-C3H7)(C11H19O2)3), ジ(イソプロポキシ)ビス(ジピバロイルメタナト)チタン(Ti(O-i-C3H7)2(C11H19O2)2)からなる群から選択される少なくとも1つの化合物を含むものである。
 上記の化合物を含むプロセスガスを使用するエッチングプロセス又は成膜プロセスにおいて測定対象空間内の温度を測定するために好ましい温度測定用ガスの例としては、メタン(CH4)、C2H6、C3H8等のアルカンやその他の炭化水素からなる群から選択される化合物を少なくとも1つ含むガスが挙げられる。このような温度測定用ガスであれば、上述したプロセスガスに対して反応しないので、プロセス中でも測定対象空間の温度を測定できる。また、例えばプロセス間において測定対象空間内の温度を測定するのであれば、温度測定用ガスは、上記のプロセスガスと反応するものであっても構わない。このような場合には、近赤外領域に吸収体を有する酸素(O2)を温度測定用ガスとして用いることができる。
 なお、温度測定用ガスは上述したものに限られず、その他の温度特性が既知のガスを用いても構わない。吸光度に基づいて温度を測定できるようにするには、温度測定用ガスは赤外に吸収波長帯を有するものが好ましい。
 吸光度から温度を算出する場合、第1波長と第2波長のピークの比を吸光度比として用いていたが、例えばレーザ光の波長を所定帯域で掃引して、第1波長と第2波長のそれぞれのスペクトル面積比を吸光度比として用いても構わない。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や、各実施形態の一部同士の組み合わせを行っても構わない。
 本発明であれば、温度特性が未知のプロセスガスが使用される場合でも吸光度に基づいて測定対象空間内の温度を測定することが可能な温度測定装置を提供できる。

Claims (8)

  1.  プロセスガスが供給されるチャンバ内、又は、プロセスガスが流される流路内を測定対象空間として、当該測定対象空間内の温度を測定する温度測定装置であって、
     プロセスガスとは別種のガスであり、プロセスに影響を与えない温度測定用ガスの吸収線を含む波長のレーザ光を前記測定空間内に射出するレーザ射出機構と、
     前記測定空間内を通過したレーザ光を検出するレーザ検出機構と、
     前記レーザ検出機構の出力に基づいて、前記測定対象空間内の温度を算出する温度算出器と、を備え、
     前記レーザ検出機構の出力が、温度測定用ガスが存在する前記測定対象空間内を通過したレーザ光によって生じたものであり、
     温度測定用ガスが、炭化水素を含むガスであり、
     温度測定用ガスが、プロセスガスとともに前記測定対象空間内に供給される、又は、温度測定用ガスで温度が測定された後、前記測定対象空間内から温度測定用ガスが排気された後にプロセスガスが当該測定対象空間内に供給されることを特徴とする温度測定装置。
  2.  温度測定用ガスが、CH4、C2H6、C3H8からなる群から選択される化合物を少なくとも1つ含む請求項1記載の温度測定装置。
  3.  温度測定用ガスが、O2を含み、プロセス間に供給される請求項1又は2いずれかに記載の温度測定装置。
  4.  温度測定用ガスが、前記測定対象空間内に温度算出可能な所定濃度以上で供給される請求項1乃至3いずれかに記載の温度測定装置。
  5.  温度測定用ガスが、プロセスガスとともに前記測定対象空間内に供給される請求項1乃至4いずれかに記載の温度測定装置。
  6.  前記測定対象空間内へ温度測定用ガスの供給するガス供給機構を制御して、温度測定可能状態を実現するガス制御部をさらに備え、
     前記レーザ射出機構が、温度測定用ガスの2つの吸収線に対応する第1波長と第2波長のレーザ光を前記測定対象空間内に射出するものであり、
     前記温度算出器が、
      前記レーザ検出機構の出力から第1波長と第2波長の吸光度比を算出する吸光度比算出部と、
      温度測定用ガスについて、前記第1波長と前記第2波長の吸光度比及び温度の間の関係である温度特性を記憶する温度特性記憶部と、
      算出された吸光度比と、前記温度特性に基づいて前記測定対象空間内の温度を出力する温度出力部と、を具備し、
     前記温度算出器が、前記温度測定可能状態における前記レーザ検出機構の出力に基づいて、前記測定対象空間内の温度を算出するように構成された請求項1乃至5いずれかに記載の温度測定装置。
  7.  プロセスガスが供給されるチャンバ内、又は、プロセスガスが流される流路内を測定対象空間として、当該測定対象空間内の温度を測定する温度測定方法あって、
     プロセスガスとは別種のガスである温度測定用ガスを前記測定対象空間内に供給し、温度測定可能状態を実現するガス供給ステップと、
     レーザ射出機構によって、温度測定用ガスの吸収線を含む波長のレーザ光を前記測定空間内に射出するレーザ射出ステップと、
     レーザ検出機構によって、前記測定空間内を通過したレーザ光を検出するレーザ検出ステップと、
     前記温度測定可能状態における前記レーザ検出機構の出力から算出される吸光度に基づいて、前記測定対象空間内の温度を算出する温度算出ステップと、を備えたことを特徴とする温度測定方法。
  8.  プロセスガスとは別種のガスである温度測定用ガスの吸収線を含む波長のレーザ光をプロセスガスが供給されるチャンバ内、又は、プロセスガスが流される流路内を測定対象空間に射出するレーザ射出機構と、前記測定空間内を通過したレーザ光を検出するレーザ検出機構と、を備え、前記測定対象空間内の温度を測定する温度測定装置に用いられるプログラムあって、
     プロセスガスとは別種のガスである温度測定用ガスを前記測定対象空間内に供給するガス供給機構を制御して、温度測定可能状態を実現するガス制御部と、
     前記温度測定可能状態における前記レーザ検出機構の出力から算出される吸光度に基づいて、前記測定対象空間内の温度を算出する温度算出器と、しての機能をコンピュータに発揮させることを特徴とする温度測定装置用プログラム。
PCT/JP2020/020512 2019-08-20 2020-05-25 温度測定装置、温度測定方法、及び、温度測定装置用プログラム WO2021033386A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021540636A JP7418448B2 (ja) 2019-08-20 2020-05-25 温度測定装置、温度測定方法、及び、温度測定装置用プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-150425 2019-08-20
JP2019150425 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021033386A1 true WO2021033386A1 (ja) 2021-02-25

Family

ID=74661102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020512 WO2021033386A1 (ja) 2019-08-20 2020-05-25 温度測定装置、温度測定方法、及び、温度測定装置用プログラム

Country Status (3)

Country Link
JP (1) JP7418448B2 (ja)
TW (1) TW202109668A (ja)
WO (1) WO2021033386A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239683A1 (ja) * 2021-05-12 2022-11-17 東京エレクトロン株式会社 基板を処理する装置、及び処理ガスの温度、濃度を測定する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123186A1 (ja) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. プラズマ電子温度の測定方法および装置
JP2009510480A (ja) * 2005-10-04 2009-03-12 ゾロ テクノロジーズ,インコーポレイティド 2線のガス分光法の較正
JP2011145680A (ja) * 2003-03-31 2011-07-28 Zolo Technologies Inc 光学的モードノイズ平均化デバイス
WO2018052074A1 (ja) * 2016-09-15 2018-03-22 株式会社堀場エステック 吸光度計及び該吸光度計を用いた半導体製造装置
JP2018100902A (ja) * 2016-12-20 2018-06-28 株式会社堀場製作所 分析装置、分析システム、分析方法、及び、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145680A (ja) * 2003-03-31 2011-07-28 Zolo Technologies Inc 光学的モードノイズ平均化デバイス
JP2009510480A (ja) * 2005-10-04 2009-03-12 ゾロ テクノロジーズ,インコーポレイティド 2線のガス分光法の較正
WO2008123186A1 (ja) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. プラズマ電子温度の測定方法および装置
WO2018052074A1 (ja) * 2016-09-15 2018-03-22 株式会社堀場エステック 吸光度計及び該吸光度計を用いた半導体製造装置
JP2018100902A (ja) * 2016-12-20 2018-06-28 株式会社堀場製作所 分析装置、分析システム、分析方法、及び、プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239683A1 (ja) * 2021-05-12 2022-11-17 東京エレクトロン株式会社 基板を処理する装置、及び処理ガスの温度、濃度を測定する方法

Also Published As

Publication number Publication date
JPWO2021033386A1 (ja) 2021-02-25
TW202109668A (zh) 2021-03-01
JP7418448B2 (ja) 2024-01-19

Similar Documents

Publication Publication Date Title
KR102023444B1 (ko) 플라스마 처리 장치 및 플라스마 처리 방법
KR102333219B1 (ko) Pecvd 장치 및 프로세스
US6838114B2 (en) Methods for controlling gas pulsing in processes for depositing materials onto micro-device workpieces
KR20190101878A (ko) 고온 환경에서 화학물질 전구체를 감지하고 모니터링하기 위한 장치
JP2017078223A (ja) Pealdによりトレンチに誘電体膜を堆積する方法
KR20040005702A (ko) 성막 장치 및 이것을 사용하는 원료 공급 장치, 가스 농도검출 방법
US20070292598A1 (en) Substrate Processing Method and Substrate Processing Apparatus
US6482266B1 (en) Metal organic chemical vapor deposition method and apparatus
TWI575104B (zh) 用於在電漿沉積過程中測定薄膜之厚度的方法
KR20040007738A (ko) 처리 장치 및 처리 방법
WO2021033386A1 (ja) 温度測定装置、温度測定方法、及び、温度測定装置用プログラム
KR20020026857A (ko) 내부의 습도 레벨을 제어하기 위한 반도체 처리 시스템 및방법
TW201621299A (zh) 分解檢測裝置、濃度測量裝置及濃度控制裝置
US20080078504A1 (en) Self-Calibrating Optical Emission Spectroscopy for Plasma Monitoring
CN113745103A (zh) 等离子体处理方法和等离子体处理装置
US10685819B2 (en) Measuring concentrations of radicals in semiconductor processing
KR102592122B1 (ko) 성막 방법 및 성막 장치
US11972921B2 (en) Temperature measurement system, temperature measurement method, and substrate processing apparatus
KR20120049193A (ko) 가스상 핵형성을 검출하기 위한 텅스텐 헥사플루오라이드 공정을 모니터링하기 위한 tpir 장치, 및 이를 사용하는 방법 및 시스템
US20050087296A1 (en) Processor
Maslar et al. In Situ Gas-Phase Diagnostics for Titanium Nitride Atomic Layer Deposition
KR102600883B1 (ko) 플라즈마 프로세싱에서의 공간적으로 분해된 광학적 방출 스펙트로스코피(oes)
Hayashi et al. Journal of Vibration Testing and System Dynamics
Lang et al. In Situ Monitoring Capabiities of Quantum Cascade Laser Absorption Spectroscopy in Industrial Plasma Processes
KR20240016198A (ko) 반도체 제조 모니터링 프로세스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854698

Country of ref document: EP

Kind code of ref document: A1