WO2022237478A1 - 起重机的混合动力系统、控制方法、虚拟装置及起重机 - Google Patents

起重机的混合动力系统、控制方法、虚拟装置及起重机 Download PDF

Info

Publication number
WO2022237478A1
WO2022237478A1 PCT/CN2022/087912 CN2022087912W WO2022237478A1 WO 2022237478 A1 WO2022237478 A1 WO 2022237478A1 CN 2022087912 W CN2022087912 W CN 2022087912W WO 2022237478 A1 WO2022237478 A1 WO 2022237478A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
power
hybrid
drive motor
engine
Prior art date
Application number
PCT/CN2022/087912
Other languages
English (en)
French (fr)
Inventor
和进军
袁丹
雷献明
Original Assignee
三一汽车起重机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110530384.8A external-priority patent/CN113147358A/zh
Priority claimed from CN202121042009.0U external-priority patent/CN214928942U/zh
Application filed by 三一汽车起重机械有限公司 filed Critical 三一汽车起重机械有限公司
Priority to EP22806448.1A priority Critical patent/EP4338997A1/en
Publication of WO2022237478A1 publication Critical patent/WO2022237478A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators

Definitions

  • the invention relates to the technical field of engineering machinery, in particular to a hybrid power system of a crane, a control method, a virtual device and the crane.
  • the present invention proposes a hybrid power system of a crane, which is used to solve the problem of the single driving device such as an engine or a motor in the prior art, under the complicated working conditions of the crane, the power selection is too large, and the power distribution of the hybrid power system of the motor and the engine Unreasonable, resulting in the defects of low power utilization, poor economy and high energy consumption.
  • the output shaft can be driven by the motor stator or the engine, which optimizes the The power distribution of the hybrid system realizes the dynamic matching of the drive motor and the engine of the hybrid system, and connects the central controller with the hybrid controller, through which the crane's walking and hybrid control operations can be directly realized.
  • the present invention also proposes a control method for the hybrid power system of the crane, which is used to solve the problem of single driving devices such as engines or motors in the prior art, under complex working conditions of the crane, the power selection is too large, and the hybridization of the motor and the engine.
  • the power distribution of the power system is unreasonable, resulting in low power utilization, poor economy and high energy consumption.
  • the output shaft can be driven by the motor stator or the engine. , optimize the power distribution of the hybrid system, and realize the dynamic matching of the motor and engine of the hybrid system.
  • the invention also provides a virtual device.
  • the present invention further proposes a crane.
  • a hybrid power system of a crane including: an engine, a gearbox, a power take-off, a drive motor, multiple oil pumps, a power source, a central controller and a hybrid controller;
  • the output end of the engine is connected to the input end of the gearbox
  • One end of the power take-off is connected to an output end of the gearbox, and the other end of the power take-off is connected to the input end of the drive motor;
  • the output end of the drive motor is connected to the multiple oil pump
  • the central controller is connected to the engine and the hybrid controller respectively;
  • the hybrid controller is respectively connected to the drive motor and the power source;
  • the engine, the gearbox, the power take-off, the drive motor and the multi-connection oil pump are connected to form a first hydraulic passage for providing power for the crane's boarding operation;
  • the power source, the drive motor and the multiple oil pumps are connected to form a second hydraulic passage for providing power for the crane's boarding operation.
  • the power source includes: a power grid and/or a power battery;
  • the engine, the gearbox, the power take-off, the driving motor and the power battery are connected to form a first charging path for charging the power battery;
  • the grid, the drive motor and the power battery are connected to form a second charging path for charging the power battery.
  • this embodiment provides an implementation manner of providing electric energy for the power battery, and by setting a power source, it provides guarantee for the continuous operation of the driving motor.
  • the power battery can be selected to provide power to the drive motor to ensure the operation of the drive motor.
  • the engine can be used to drive the drive motor to charge the power source to ensure the power reserve of the power source; or the power grid of the motor can be used to supply energy to the drive motor to charge the power source.
  • the driving motor and the engine can be single-driven or mixed-driven.
  • the engine is in a shutdown state, which solves the problems of insufficient crane power and energy saving and emission reduction in complex working conditions.
  • the dynamic allocation of drive motor and engine power under the premise of ensuring emission and economy, adapt to the power demand of various operating conditions of the crane.
  • it further includes: an electric load connected to the power source;
  • the power source and the electric load are connected to form a first power path for providing power for the electric load;
  • the engine, the gearbox, the power take-off, the drive motor and the electric load are connected to form a second electric path for providing power to the electric load.
  • this embodiment provides an implementation of an electric load. By connecting the electric load to a power source, electric energy can be obtained from the power source to drive the electric load and meet more applications.
  • the electric load may be a hoisting motor and/or a slewing motor.
  • it further includes: an angle gear box, an input end of the angle gear box is connected to the power take-off, and an output end of the angle gear box is connected to the driving motor.
  • this embodiment provides an implementation in which an angular gearbox is set between the power take-off and the motor. By setting the angular gearbox, the change of the output angle between the power take-off and the motor is realized.
  • the control arrangement provides more possibilities.
  • it further includes: a transmission shaft and a drive axle, one end of the transmission shaft is connected to the other output end of the gearbox, and the other end of the transmission shaft is connected to the drive axle.
  • this embodiment provides an embodiment of a drive shaft and a drive axle.
  • the engine can generate power on the side of the power take-off.
  • a power chain is also formed on the side of the driving axle to meet the power demand of the crane.
  • a method for controlling the above-mentioned hybrid power system of the crane includes:
  • Control decisions for controlling the hybrid system are generated based on the state parameters.
  • the step of generating a control decision for controlling the hybrid power system according to the state parameters specifically includes:
  • the driving motor drives the multi-connection oil pump to work to realize the loading operation of the crane.
  • this embodiment provides an implementation method for generating control decisions based on the load parameters of the crane.
  • the specific control decision is determined according to the load parameters of the crane on-board operation.
  • the drive motor is connected to electric energy from the power source or the external power grid, and the drive motor drives the multi-connected oil pump to work to complete the loading operation of the crane.
  • the drive motor drives the multi-connected oil pump to work
  • the step of realizing the loading operation of the crane specifically includes:
  • the power parameters of the crane are acquired, and if the crane is not connected to a power grid, a start signal is sent to a power source, and the power source provides electric energy to the drive motor.
  • this embodiment provides an implementation method for generating control decisions based on the power parameters of the crane. Judgments are made based on the power parameters of the crane.
  • the drive motor directly obtains electric energy from the power source to The loading operation of the crane.
  • the step of generating a control decision for controlling the hybrid power system according to the state parameters specifically includes:
  • this embodiment provides another implementation method for generating control decisions based on the power parameters of the crane. Judgment is made based on the power parameters of the crane.
  • the engine starts, on the one hand, the engine provides power for the drive motor, and the drive motor charges the power battery; on the other hand, the engine can also drive the multi-connected oil pump to realize the loading operation of the crane.
  • the power source includes a power grid and a power battery.
  • the step of generating a control decision for controlling the hybrid power system according to the state parameters specifically includes:
  • this embodiment provides another implementation method for generating control decisions based on the power parameters of the crane. Judgment is made based on the power parameters of the crane.
  • the drive motor obtains electric energy from the power grid to work and charge the power battery.
  • the power source includes a power grid and a power battery.
  • the step of generating a control decision for controlling the hybrid power system according to the state parameters specifically includes:
  • the engine drives the multi-connected oil pump to work to realize the loading operation of the crane.
  • this embodiment provides another implementation of generating control decisions based on the load parameters of the crane.
  • the specific control decision is determined according to the load parameters of the crane on-board operation.
  • the engine drives the multi-connected oil pump through the gearbox and the power take-off, and then realizes the loading operation of the crane.
  • the drive motor can work together with the engine to form a hybrid system to meet the action requirements of the multi-connected oil pump in the on-board operation.
  • a virtual device, memory and processor provided according to the third aspect of the present invention.
  • the memory and the processor communicate with each other through a bus;
  • the memory stores computer instructions executable on the processor
  • the processor invokes the computer program instructions, it can execute the above-mentioned control method of the hybrid power system of the crane.
  • a crane which has the above-mentioned hybrid power system of the crane, or adopts the control method of the above-mentioned hybrid power system of the crane when performing boarding operations, or has the above-mentioned virtual device.
  • the hybrid power system, control method, virtual device and crane provided by the present invention, by combining the output of the drive motor and the power take-off Shaft integration design enables the output shaft to be driven by both the motor stator and the engine, which optimizes the power distribution of the hybrid system, realizes the dynamic matching of the drive motor and engine of the hybrid system, and integrates the central controller with the hybrid control Connected with the controller, the operation of the crane's travel and mixed control can be directly realized through the central controller.
  • Fig. 1 is one of the schematic layout diagrams of the hybrid power system of the crane provided by the present invention
  • Fig. 2 is the second schematic diagram of the arrangement relationship of the hybrid power system of the crane provided by the present invention
  • Fig. 3 is the third schematic diagram of the arrangement relationship of the hybrid power system of the crane provided by the present invention.
  • Fig. 4 is the fourth schematic diagram of the arrangement relationship of the hybrid power system of the crane provided by the present invention.
  • Fig. 5 is a schematic flow diagram of the control method of the hybrid power system of the crane provided by the present invention.
  • the present solution provides a hybrid power system of a crane, including: an engine 10, a gearbox 20, a power take-off 30, a driving motor 40, a multiple Oil pump 50, power source 60, central controller 90 and hybrid controller 100; the output end of engine 10 is connected with the input end of gearbox 20; one end of power take-off 30 is connected with an output end of gearbox 20, and the power take-off The other end of 30 is connected with the input end of drive motor 40; The output end of drive motor 40 is connected with multiple oil pump 50; Central controller 90 is connected with engine 10 and hybrid controller 100 respectively; Connect with power source 60; wherein, engine 10, gearbox 20, power take-off 30, driving motor 40 and multi-connection oil pump 50 are connected to form the first hydraulic passage for providing power for the crane's boarding operation; power source 60 , the drive motor 40 and the multi-connection oil pump 50 are connected to form a second hydraulic passage for providing power for the crane's boarding operation.
  • the present invention proposes a hybrid power system of a crane, which is used to solve the problems of single driving devices such as the engine 10 or the motor in the prior art.
  • the unreasonable distribution of power in the hybrid power system results in low power utilization, poor economy, and high energy consumption.
  • the output shaft can be driven by the motor stator. It can also be driven by the engine 10, which optimizes the power distribution of the hybrid system, realizes the dynamic matching of the drive motor 40 and the engine 10 of the hybrid system, and connects the central controller 90 with the hybrid controller 100, through which the central controller 90 can Directly realize the operation of the crane's walking and mixed control.
  • the central controller 90 as the master controller of the crane, is used to control operations such as the engine 10 of the crane and boarding operations, and is also used to connect with the hybrid controller 100, and is used to send corresponding operations to the hybrid controller 100 commands to realize the corresponding control of the driving motor 40 and the power source 60 through the hybrid controller 100 .
  • the multiple oil pump 50 provided by the present invention includes at least a hydraulic pump and a working couple.
  • the power source 60 includes: a power grid and/or a power battery; wherein, the engine 10, the gearbox 20, the power take-off 30, the drive motor 40 and the power battery are connected to form a power battery The first charging path for charging; the grid, the driving motor 40 and the power battery are connected to form a second charging path for charging the power battery.
  • this embodiment provides an implementation manner of providing electric energy for the power battery, and the continuous operation of the driving motor 40 is guaranteed by setting the power source 60 .
  • the power battery can be selected to provide power to the drive motor 40 to ensure the operation of the drive motor 40 .
  • the engine 10 can drive the drive motor 40 to work, and then charge the power source 60 to ensure the electric energy reserve of the power source 60; The power source 60 is charged.
  • the driving motor 40 and the engine 10 can be single-driven or mixed-driven.
  • the engine 10 is in a shutdown state, which solves the problem of insufficient crane power and energy saving in complex working conditions.
  • the dynamic distribution of the power of the driving motor 40 and the engine 10 is adapted to the power requirements of various operating conditions of the crane on the premise of ensuring emission and economy.
  • an electric load 120 the electric load 120 is connected to the power source 60; wherein, the power source 60 and the electric load 120 are connected to form the first electric power used to provide power for the electric load 120 The path; the engine 10 , the gearbox 20 , the power take-off 30 , the driving motor 40 and the electric load 120 are connected to form a second electric path for powering the electric load 120 .
  • this embodiment provides an implementation of the electric load 120.
  • electric energy can be obtained from the power source 60 to realize the driving of the electric load 120 and meet more requirements. use.
  • the electric load 120 may be a winch motor and/or a slewing motor.
  • it further includes: an angle gear box 110 , the input end of the angle gear box 110 is connected with the power take-off 30 , and the output end of the angle gear box 110 is connected with the drive motor 40 .
  • this embodiment provides an implementation in which an angular gear box 110 is arranged between the power take-off 30 and the motor. By setting the angular gear box 110, the change of the output angle between the power take-off 30 and the motor is realized. It provides more possibilities for the control arrangement of the hybrid system.
  • the specific number of angular gear boxes 110 may be one, or two or more.
  • it further includes: a transmission shaft 70 and a drive axle 80 , one end of the transmission shaft 70 is connected to the other output end of the gearbox 20 , and the other end of the transmission shaft 70 is connected to the drive axle 80 .
  • this embodiment provides an implementation of a drive shaft 70 and a drive axle 80, by setting the drive shaft 70 connected to the gearbox 20, and the drive axle 80 connected with the drive shaft 70, so that the engine 10 is connected to the While the power chain is formed on one side of the power take-off 30, a power chain is also formed on the side of the drive axle 80, which meets the power demand of the crane for walking.
  • this solution provides a method for controlling the above-mentioned hybrid power system of the crane, including:
  • Control decisions for controlling the hybrid system are generated based on the state parameters.
  • the present invention also proposes a control method for a hybrid power system of a crane, which is used to solve the problem of a single driving device such as an engine 10 or a motor in the prior art, under complex working conditions of the crane, the power selection is too large, and The power distribution of the hybrid system of the motor and the engine 10 is unreasonable, resulting in the defects of low power utilization, poor economy and high energy consumption.
  • a single driving device such as an engine 10 or a motor in the prior art
  • the power selection is too large, and The power distribution of the hybrid system of the motor and the engine 10 is unreasonable, resulting in the defects of low power utilization, poor economy and high energy consumption.
  • the drive can also be driven by the engine 10, which optimizes the power distribution of the hybrid system and realizes the dynamic matching of the motor and the engine 10 of the hybrid system.
  • the step of generating a control decision for controlling the hybrid power system according to the state parameters specifically includes:
  • the driving motor 40 drives the multi-connection oil pump 50 to work, so as to realize the loading operation of the crane.
  • this embodiment provides an implementation method for generating control decisions based on the load parameters of the crane.
  • the specific control decision is determined according to the load parameters of the crane on-board operation.
  • the drive motor 40 receives electric energy from the power source 60 or an external power grid, and the drive motor 40 drives the multi-connection oil pump 50 to work to complete the loading operation of the crane.
  • the driving motor 40 drives the multi-connected oil pump 50 to work
  • the steps of realizing the loading operation of the crane specifically include:
  • the power parameters of the crane are obtained, and if the crane is not connected to the grid, a start signal is sent to the power source 60 , and the power source 60 provides electric energy to the driving motor 40 .
  • this embodiment provides an implementation method for generating control decisions based on the power parameters of the crane, making judgments based on the power parameters of the crane, and when the crane is not connected to the grid, the drive motor 40 directly obtains electric energy from the power source 60 , to realize the loading operation of the crane.
  • the step of generating a control decision for controlling the hybrid power system according to the state parameters specifically includes:
  • this embodiment provides another implementation method for generating control decisions based on the power parameters of the crane. Judgment is made based on the power parameters of the crane.
  • the engine 10 starts, on the one hand the engine 10 provides power for the drive motor 40, and the drive motor 40 charges the power battery;
  • the power source 60 includes a power grid and a power battery.
  • the step of generating a control decision for controlling the hybrid power system according to the state parameters specifically includes:
  • the power parameters of the crane are acquired. If the crane is connected to the power grid and the energy reserve of the power source 60 is lower than a preset value, a start signal is sent to the drive motor 40 , and the drive motor 40 charges the power source 60 .
  • this embodiment provides another implementation method for generating control decisions based on the power parameters of the crane. Judgment is made based on the power parameters of the crane.
  • the driving motor 40 obtains electric energy from the grid to work, and charges the power battery.
  • the power source 60 includes a power grid and a power battery.
  • the step of generating a control decision for controlling the hybrid power system according to the state parameters specifically includes:
  • the engine 10 drives the multi-connected oil pump 50 to work to realize the loading operation of the crane.
  • this embodiment provides another implementation method of generating control decisions based on the load parameters of the crane.
  • the specific control decision is determined according to the load parameters of the crane on-board operation.
  • the engine 10 drives the multi-connection oil pump 50 through the gearbox 20 and the power take-off 30, thereby realizing the loading operation of the crane.
  • the driving motor 40 can work together with the engine 10 to form a hybrid system to meet the action requirements of the multiple oil pumps 50 during the boarding operation.
  • the solution provides a virtual device, memory and processor
  • the memory and the processor communicate with each other through a bus;
  • the memory stores computer instructions executable on the processor
  • the processor invokes the computer program instructions, it can execute the above-mentioned control method of the hybrid power system of the crane.
  • this solution provides a crane, which has the above-mentioned hybrid power system of the crane, or uses the control method of the above-mentioned hybrid power system of the crane when performing boarding operations, or has the above-mentioned A virtual device.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

一种起重机的混合动力系统、控制方法、虚拟装置及起重机,混合动力系统包括发动机(10)的输出端和变速箱(20)的输入端连接;取力器(30)一端与变速箱(20)的一个输出端连接,取力器(30)另一端与驱动电机(40)的输入端连接;驱动电机(40)输出端与多联油泵(50)连接;中央控制器(90)分别与发动机(10)和混合控制器(100)连接;混合控制器(100)分别与驱动电机(40)和动力源(60)连接;其中,发动机(10)、变速箱(20)、取力器(30)、驱动电机(40)和多联油泵(50)连接形成,用于为起重机的上车作业提供动力的第一液力通路;动力源(60)、驱动电机(40)和多联油泵(50)连接形成,用于为起重机的上车作业提供动力的第二液力通路。混合动力系统通过将驱动电机(40)和取力器(30)的输出轴集成设计,使得输出轴既可通过电机定子驱动,也可通过发动机(10)驱动,优化了混合动力系统功率分配。

Description

起重机的混合动力系统、控制方法、虚拟装置及起重机 技术领域
本发明涉及工程机械技术领域,尤其涉及一种起重机的混合动力系统、控制方法、虚拟装置及起重机。
背景技术
伴随着技术的发展,以及国家对工程机械化的重视和相关政策的扶持,工程起重机械朝着电动化和智能化发展的步伐进一步加快,对工程起重机械的功能要求和续航能力也不断提高。传统的内燃机供能给起重机存在着很多缺陷,起重机上车作业时发动机排放大量有害气体,同时对燃油的消耗量较大,经济性较低,不符合当前追求环保和可持续发展的趋势。而使用纯电力作为动力源的起重机械由于动力电池兼顾整车行驶及上车作业等,不可避免地存在续航能力较差和使用成本高等问题,一旦动力电池电量耗尽或电池出现故障,其作业环境又不能及时充电和检修,必然影响作业工作的持续时长和工作效率。目前现有的起重机多采用单一电动机或发动机供能实现行驶和作业功能,为了满足起重机械复杂的工地作业环境,导致发动机或电动机功率选型非常大,导致整车重量超重以及使用成本升高,同时反而不能达到节能的效果。
发明内容
本发明提出一种起重机的混合动力系统,用以解决现有技术中单一驱动装置例如发动机或者电机等,在起重机复杂工况下,功率选型偏大,以及电机和发动机的混合动力系统功率分配不合理,造成功率利用率低、经济性差和能耗高的缺陷,通过将驱动电机和取力器的输出轴集成设计,使得输出轴既可通过电机定子驱动,也可通过发动机驱动,优化了混合动力系统的功率分配,实现了混合动力系统驱动电机和发动机的动态匹配,并且将中央控制器与混合控制器连接,通过中央控制器可直接实现起重机的行走和混合控制的操作。
本发明还提出一种起重机的混合动力系统的控制方法,用以解决现有技术中单一驱动装置例如发动机或者电机等,在起重机复杂工况下,功率选型偏大,以及电机和发动机的混合动力系统功率分配不合理,造成功率利用率低、经济性差和能耗高的缺陷,通过将电机和取力器的输出轴集成设计,使得输出轴既可通过电机定子驱动,也可通过发动机驱动,优化了混合动力系统的功率分配,实现了混合动力系统电机和发动机的动态匹配。
本发明又提出一种虚拟装置。
本发明再提出一种起重机。
根据本发明第一方面提供的一种起重机的混合动力系统,包括:发动机、变速箱、 取力器、驱动电机、多联油泵、动力源、中央控制器和混合控制器;
所述发动机的输出端和所述变速箱的输入端连接;
所述取力器的一端与所述变速箱的一个输出端连接,所述取力器的另一端与所述驱动电机的输入端连接;
所述驱动电机的输出端与所述多联油泵连接;
所述中央控制器分别与所述发动机和所述混合控制器连接;
所述混合控制器分别与所述驱动电机和所述动力源连接;
其中,所述发动机、所述变速箱、所述取力器、所述驱动电机和所述多联油泵连接形成用于为起重机的上车作业提供动力的第一液力通路;
所述动力源、所述驱动电机和所述多联油泵连接形成用于为起重机的上车作业提供动力的第二液力通路。
根据本发明的一种实施方式,所述动力源包括:电网和\或动力电池;
其中,所述发动机、所述变速箱、所述取力器、所述驱动电机和所述动力电池连接形成,用于为所述动力电池充电的第一充电通路;
所述电网、所述驱动电机和所述动力电池连接形成,用于为所述动力电池充电的第二充电通路。
具体来说,本实施例提供了一种为动力电池提供电能的实施方式,通过设置动力源,为驱动电机的持续工作提供了保障。
进一步地,通过将动力源设置为动力电池,当无电网接入时,可以选择通过动力电池为驱动电机供电,保证驱动电机的工作。
进一步地,当动力电池亏电,可以通过发动机带动驱动电机工作,进而为动力源进行充电,保证动力源的电能储备;或者通过电机的电网为驱动电机工作供能,进而为动力源进行充电。
需要说明的是,在本实施例中,驱动电机与发动机可以单一驱动也可以混合驱动,当只需要驱动电机独立工作时,发动机处于停机状态,解决复杂工况起重机功率不足和节能减排的问题,驱动电机和发动机功率的动态分配,在保证排放和经济性的前提下,适应起重机的各种作业工况的功率需求。
根据本发明的一种实施方式,还包括:电动负载,所述电动负载与所述动力源连接;
其中,所述动力源和所述电动负载连接形成,用于为所述电动负载提供动力的第一电力通路;
所述发动机、所述变速箱、所述取力器、所述驱动电机和所述电动负载连接形成,用于为所述电动负载提供动力的第二电力通路。
具体来说,本实施例提供了一种电动负载的实施方式,通过将电动负载与动力源连接,可从动力源获得电能,实现对电动负载的驱动,满足更多中的用途。
在一个应用场景中,电动负载可以是卷扬电机和\或回转电机。
根据本发明的一种实施方式,还包括:角齿箱,所述角齿箱的输入端与所述取力器连接,所述角齿箱的输出端与所述驱动电机连接。
具体来说,本实施例提供了一种在取力器和电机之间设置角齿箱的实施方式,通过设置角齿箱实现了取力器和电机之间输出角度的变化,为混合动力系统的控制布置提供了更多的可能性。
根据本发明的一种实施方式,还包括:传动轴和驱动桥,所述传动轴的一端与所述变速箱的另一个输出端连接,所述传动轴的另一端与所述驱动桥连接。
具体来说,本实施例提供了一种传动轴和驱动桥的实施方式,通过设置与变速箱连接的传动轴,以及与传动轴连接的驱动桥,使得发动机在与取力器一侧形成动力链的同时,也在驱动桥侧形成了动力链,满足了起重机行走的动力需求。
根据本发明第二方面提供的一种上述的起重机的混合动力系统的控制方法,包括:
响应于起重机的工作信号,获取所述起重机的状态参数;
根据所述状态参数生成控制所述混合动力系统的控制决策。
根据本发明的一种实施方式,所述根据所述状态参数生成控制所述混合动力系统的控制决策的步骤中,具体包括:
获取所述起重机上车作业的负载参数,若所述负载参数小于预设负载参数,则向驱动电机发送启动信号;
所述驱动电机驱动多联油泵工作,实现所述起重机的上车作业。
具体来说,本实施例提供了一种根据起重机的负载参数生成控制决策的实施方式,根据起重机上车作业的负载参数确定具体的控制决策,当起重机上车作业的负载参数低于预设负载参数时,驱动电机从动力源或者外接电网接入电能,驱动电机驱动多联油泵进行工作,完成起重机的上车作业。
根据本发明的一种实施方式,所述驱动电机驱动多联油泵工作,实现所述起重机的上车作业的步骤中,具体包括:
获取所述起重机的动力参数,若所述起重机无电网接入,则向动力源发送启动信号,所述动力源向所述驱动电机提供电能。
具体来说,本实施例提供了一种根据起重机的动力参数生成控制决策的实施方式,根据起重机的动力参数进行判断,当起重机无电网接入时,驱动电机直接从动力源处获得电能,实现起重机的上车作业。
根据本发明的一种实施方式,所述根据所述状态参数生成控制所述混合动力系统的控制决策的步骤中,具体包括:
获取所述起重机的动力参数,若所述起重机无电网接入,且动力源的能源储备低于预设值,则向发动机送启动信号,所述发动机带动驱动电机转动,所述驱动电机为所述 动力源进行充电。
具体来说,本实施例提供了另一种根据起重机的动力参数生成控制决策的实施方式,根据起重机的动力参数进行判断,当起重机无电网接入且动力电池的能源储备低于预设值时,发动机启动,一方面发动机为驱动电机工作提供动力,驱动电机为动力电池进行充电,另一方面发动机也可以驱动多联油泵工作,实现起重机的上车作业。
需要说明的是,在本实施例中动力源包括电网和动力电池。
根据本发明的一种实施方式,所述根据所述状态参数生成控制所述混合动力系统的控制决策的步骤中,具体包括:
获取所述起重机的动力参数,若所述起重机有电网接入,且动力源的能源储备低于预设值,则向驱动电机发送启动信号,所述驱动电机为所述动力源进行充电。
具体来说,本实施例提供了又一种根据起重机的动力参数生成控制决策的实施方式,根据起重机的动力参数进行判断,当起重机有电网接入且动力电池的能源储备低于预设值时,此时驱动电机从电网处获得电能进行工作,为动力电池进行充电。
需要说明的是,在本实施例中动力源包括电网和动力电池。
根据本发明的一种实施方式,所述根据所述状态参数生成控制所述混合动力系统的控制决策的步骤中,具体包括:
获取所述起重机上车作业的负载参数,若所述负载参数大于预设负载参数,则向发动机发送启动信号;
所述发动机驱动多联油泵工作,实现所述起重机的上车作业。
具体来说,本实施例提供了另一种根据起重机的负载参数生成控制决策的实施方式,根据起重机上车作业的负载参数确定具体的控制决策,当起重机上车作业的负载参数高于预设负载参数时,发动机通过变速箱和取力器实现对多联油泵的驱动,进而实现起重机的上车作业。
在一个应用场景中,在负载参数高于预设负载参数时,驱动电机可以与发动机共同工作,形成混合系统,满足多联油泵在上车作业中的动作需求。
根据本发明第三方面提供的一种虚拟装置,存储器和处理器;
所述存储器和所述处理器通过总线完成相互间的通信;
所述存储器存储有,能够在所述处理器上运行的计算机指令;
所述处理器调用所述计算机程序指令时,能够执行上述的起重机的混合动力系统的控制方法。
根据本发明第四方面提供的一种起重机,具有上述的起重机的混合动力系统,或者执行上车作业时采用上述的起重机的混合动力系统的控制方法,或者具有上述的虚拟装置。
本发明中的上述一个或多个技术方案,至少具有如下技术效果之一:本发明提供的 一种起重机的混合动力系统、控制方法、虚拟装置及起重机,通过将驱动电机和取力器的输出轴集成设计,使得输出轴既可通过电机定子驱动,也可通过发动机驱动,优化了混合动力系统的功率分配,实现了混合动力系统驱动电机和发动机的动态匹配,并且将中央控制器与混合控制器连接,通过中央控制器可直接实现起重机的行走和混合控制的操作。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的起重机的混合动力系统的布置关系示意图之一;
图2是本发明提供的起重机的混合动力系统的布置关系示意图之二;
图3是本发明提供的起重机的混合动力系统的布置关系示意图之三;
图4是本发明提供的起重机的混合动力系统的布置关系示意图之四;
图5是本发明提供的起重机的混合动力系统的控制方法流程关系示意图。
附图标记:
10、发动机;20、变速箱;30、取力器;40、驱动电机;50、多联油泵;60、动力源;70、传动轴;80、驱动桥;90、中央控制器;100、混合控制器;110、角齿箱;120、电动负载。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明实施例的限制。 此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的一些具体实施方案中,如图1至图4所示,本方案提供一种起重机的混合动力系统,包括:发动机10、变速箱20、取力器30、驱动电机40、多联油泵50、动力源60、中央控制器90和混合控制器100;发动机10的输出端和变速箱20的输入端连接;取力器30的一端与变速箱20的一个输出端连接,取力器30的另一端与驱动电机40的输入端连接;驱动电机40的输出端与多联油泵50连接;中央控制器90分别与发动机10和混合控制器100连接;混合控制器100分别与驱动电机40和动力源60连接;其中,发动机10、变速箱20、取力器30、驱动电机40和多联油泵50连接形成用于为起重机的上车作业提供动力的第一液力通路;动力源60、驱动电机40和多联油泵50连接形成用于为起重机的上车作业提供动力的第二液力通路。
详细来说,本发明提出一种起重机的混合动力系统,用以解决现有技术中单一驱动装置例如发动机10或者电机等,在起重机复杂工况下,功率选型偏大,以及电机和发动机10的混合动力系统功率分配不合理,造成功率利用率低、经济性差和能耗高的缺陷,通过将驱动电机40和取力器30的输出轴集成设计,使得输出轴既可通过电机定子驱动,也可通过发动机10驱动,优化了混合动力系统的功率分配,实现了混合动力系统驱动电机40和发动机10的动态匹配,并且将中央控制器90与混合控制器100连接,通过中央控制器90可直接实现起重机的行走和混合控制的操作。
需要说明的是,中央控制器90作为起重机的总控,用于控制起重机的发动机10和上车作业等操作,还用于与混合控制器100连接,用于向混合控制器100发送相应的操作指令,实现通过混合控制器100对驱动电机40和动力源60相应的控制。
还需要说明的是,本发明提供的多联油泵50至少包括液压泵和工作联。
在本发明一些可能的实施例中,动力源60包括:电网和\或动力电池;其中,发动机10、变速箱20、取力器30、驱动电机40和动力电池连接形成,用于为动力电池充电的第一充电通路;电网、驱动电机40和动力电池连接形成,用于为动力电池充电的第二充电通路。
具体来说,本实施例提供了一种为动力电池提供电能的实施方式,通过设置动力源60,为驱动电机40的持续工作提供了保障。
进一步地,通过将动力源60设置为动力电池,当无电网接入时,可以选择通过动力电池为驱动电机40供电,保证驱动电机40的工作。
进一步地,当动力电池亏电,可以通过发动机10带动驱动电机40工作,进而为动力源60进行充电,保证动力源60的电能储备;或者通过电机的电网为驱动电机40工作供能,进而为动力源60进行充电。
需要说明的是,在本实施例中,驱动电机40与发动机10可以单一驱动也可以混合 驱动,当只需要驱动电机40独立工作时,发动机10处于停机状态,解决复杂工况起重机功率不足和节能减排的问题,驱动电机40和发动机10功率的动态分配,在保证排放和经济性的前提下,适应起重机的各种作业工况的功率需求。
在本发明一些可能的实施例中,还包括:电动负载120,电动负载120与动力源60连接;其中,动力源60和电动负载120连接形成,用于为电动负载120提供动力的第一电力通路;发动机10、变速箱20、取力器30、驱动电机40和电动负载120连接形成,用于为电动负载120提供动力的第二电力通路。
具体来说,本实施例提供了一种电动负载120的实施方式,通过将电动负载120与动力源60连接,可从动力源60获得电能,实现对电动负载120的驱动,满足更多中的用途。
在一个应用场景中,电动负载120可以是卷扬电机和\或回转电机。
在本发明一些可能的实施例中,还包括:角齿箱110,角齿箱110的输入端与取力器30连接,角齿箱110的输出端与驱动电机40连接。
具体来说,本实施例提供了一种在取力器30和电机之间设置角齿箱110的实施方式,通过设置角齿箱110实现了取力器30和电机之间输出角度的变化,为混合动力系统的控制布置提供了更多的可能性。
在一个应用场景中,角齿箱110具体设置数量可以是一个,也可以是两个及以上。
在本发明一些可能的实施例中,还包括:传动轴70和驱动桥80,传动轴70的一端与变速箱20的另一个输出端连接,传动轴70的另一端与驱动桥80连接。
具体来说,本实施例提供了一种传动轴70和驱动桥80的实施方式,通过设置与变速箱20连接的传动轴70,以及与传动轴70连接的驱动桥80,使得发动机10在与取力器30一侧形成动力链的同时,也在驱动桥80侧形成了动力链,满足了起重机行走的动力需求。
在本发明的一些具体实施方案中,如图1至图5所示,本方案提供一种上述的起重机的混合动力系统的控制方法,包括:
响应于起重机的工作信号,获取起重机的状态参数;
根据状态参数生成控制混合动力系统的控制决策。
详细来说,本发明还提出一种起重机的混合动力系统的控制方法,用以解决现有技术中单一驱动装置例如发动机10或者电机等,在起重机复杂工况下,功率选型偏大,以及电机和发动机10的混合动力系统功率分配不合理,造成功率利用率低、经济性差和能耗高的缺陷,通过将电机和取力器30的输出轴集成设计,使得输出轴既可通过电机定子驱动,也可通过发动机10驱动,优化了混合动力系统的功率分配,实现了混合动力系统电机和发动机10的动态匹配。
在本发明一些可能的实施例中,根据状态参数生成控制混合动力系统的控制决策的 步骤中,具体包括:
获取起重机上车作业的负载参数,若负载参数小于预设负载参数,则向驱动电机40发送启动信号;
驱动电机40驱动多联油泵50工作,实现起重机的上车作业。
具体来说,本实施例提供了一种根据起重机的负载参数生成控制决策的实施方式,根据起重机上车作业的负载参数确定具体的控制决策,当起重机上车作业的负载参数低于预设负载参数时,驱动电机40从动力源60或者外接电网接入电能,驱动电机40驱动多联油泵50进行工作,完成起重机的上车作业。
在本发明一些可能的实施例中,驱动电机40驱动多联油泵50工作,实现起重机的上车作业的步骤中,具体包括:
获取起重机的动力参数,若起重机无电网接入,则向动力源60发送启动信号,动力源60向驱动电机40提供电能。
具体来说,本实施例提供了一种根据起重机的动力参数生成控制决策的实施方式,根据起重机的动力参数进行判断,当起重机无电网接入时,驱动电机40直接从动力源60处获得电能,实现起重机的上车作业。
在本发明一些可能的实施例中,根据状态参数生成控制混合动力系统的控制决策的步骤中,具体包括:
获取起重机的动力参数,若起重机无电网接入,且动力源60的能源储备低于预设值,则向发动机10送启动信号,发动机10带动驱动电机40转动,驱动电机40为动力源60进行充电。
具体来说,本实施例提供了另一种根据起重机的动力参数生成控制决策的实施方式,根据起重机的动力参数进行判断,当起重机无电网接入且动力电池的能源储备低于预设值时,发动机10启动,一方面发动机10为驱动电机40工作提供动力,驱动电机40为动力电池进行充电,另一方面发动机10也可以驱动多联油泵50工作,实现起重机的上车作业。
需要说明的是,在本实施例中动力源60包括电网和动力电池。
在本发明一些可能的实施例中,根据状态参数生成控制混合动力系统的控制决策的步骤中,具体包括:
获取起重机的动力参数,若起重机有电网接入,且动力源60的能源储备低于预设值,则向驱动电机40发送启动信号,驱动电机40为动力源60进行充电。
具体来说,本实施例提供了又一种根据起重机的动力参数生成控制决策的实施方式,根据起重机的动力参数进行判断,当起重机有电网接入且动力电池的能源储备低于预设值时,此时驱动电机40从电网处获得电能进行工作,为动力电池进行充电。
需要说明的是,在本实施例中动力源60包括电网和动力电池。
在本发明一些可能的实施例中,根据状态参数生成控制混合动力系统的控制决策的步骤中,具体包括:
获取起重机上车作业的负载参数,若负载参数大于预设负载参数,则向发动机10发送启动信号;
发动机10驱动多联油泵50工作,实现起重机的上车作业。
具体来说,本实施例提供了一种另一种根据起重机的负载参数生成控制决策的实施方式,根据起重机上车作业的负载参数确定具体的控制决策,当起重机上车作业的负载参数高于预设负载参数时,发动机10通过变速箱20和取力器30实现对多联油泵50的驱动,进而实现起重机的上车作业。
在一个应用场景中,在负载参数高于预设负载参数时,驱动电机40可以与发动机10共同工作,形成混合系统,满足多联油泵50在上车作业中的动作需求。
在本发明的一些具体实施方案中,本方案提供一种虚拟装置,存储器和处理器;
所述存储器和所述处理器通过总线完成相互间的通信;
所述存储器存储有,能够在所述处理器上运行的计算机指令;
所述处理器调用所述计算机程序指令时,能够执行上述的起重机的混合动力系统的控制方法。
在本发明的一些具体实施方案中,本方案提供一种起重机,具有上述的一种起重机的混合动力系统,或者执行上车作业时采用上述的起重机的混合动力系统的控制方法,或者具有上述的一种虚拟装置。
在本发明实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施方式仅用于说明本发明,而非对本发明的限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行各种组合、修改或者等同替换,都不脱离本发明技术方案的精神和范围,均应 涵盖在本发明的权利要求范围中。

Claims (13)

  1. 一种起重机的混合动力系统,其特征在于,包括:发动机、变速箱、取力器、驱动电机、多联油泵、动力源、中央控制器和混合控制器;
    所述发动机的输出端和所述变速箱的输入端连接;
    所述取力器的一端与所述变速箱的一个输出端连接,所述取力器的另一端与所述驱动电机的输入端连接;
    所述驱动电机的输出端与所述多联油泵连接;
    所述中央控制器分别与所述发动机和所述混合控制器连接;
    所述混合控制器分别与所述驱动电机和所述动力源连接;
    其中,所述发动机、所述变速箱、所述取力器、所述驱动电机和所述多联油泵连接形成,用于为起重机的上车作业提供动力的第一液力通路;
    所述动力源、所述驱动电机和所述多联油泵连接形成,用于为起重机的上车作业提供动力的第二液力通路。
  2. 根据权利要求1所述的起重机的混合动力系统,其特征在于,所述动力源包括:电网和\或动力电池;
    其中,所述发动机、所述变速箱、所述取力器、所述驱动电机和所述动力电池连接形成,用于为所述动力电池充电的第一充电通路;
    所述电网、所述驱动电机和所述动力电池连接形成,用于为所述动力电池充电的第二充电通路。
  3. 根据权利要求1所述的起重机的混合动力系统,其特征在于,还包括:电动负载,所述电动负载与所述动力源连接;
    其中,所述动力源和所述电动负载连接形成,用于为所述电动负载提供动力的第一电力通路;
    所述发动机、所述变速箱、所述取力器、所述驱动电机和所述电动负载连接形成,用于为所述电动负载提供动力的第二电力通路。
  4. 根据权利要求1所述的起重机的混合动力系统,其特征在于,还包括:角齿箱,所述角齿箱的输入端与所述取力器连接,所述角齿箱的输出端与所述驱动电机连接。
  5. 根据权利要求1至4任一所述的起重机的混合动力系统,其特征在于,还包括:传动轴和驱动桥,所述传动轴的一端与所述变速箱的另一个输出端连接,所述传动轴的另一端与所述驱动桥连接。
  6. 一种上述权利要求1至5任一所述的起重机的混合动力系统的控制方法,其特征在于,包括:
    响应于起重机的工作信号,获取所述起重机的状态参数;
    根据所述状态参数生成控制所述混合动力系统的控制决策。
  7. 根据权利要求6所述的起重机的混合动力系统的控制方法,其特征在于,所述根据所述状态参数生成控制所述混合动力系统的控制决策的步骤中,具体包括:
    获取所述起重机上车作业的负载参数,若所述负载参数小于预设负载参数,则向驱动电机发送启动信号;
    所述驱动电机驱动多联油泵工作,实现所述起重机的上车作业。
  8. 根据权利要求7所述的起重机的混合动力系统的控制方法,其特征在于,所述驱动电机驱动多联油泵工作,实现所述起重机的上车作业的步骤中,具体包括:
    获取所述起重机的动力参数,若所述起重机无电网接入,则向动力源发送启动信号,所述动力源向所述驱动电机提供电能。
  9. 根据权利要求6所述的起重机的混合动力系统的控制方法,其特征在于,所述根据所述状态参数生成控制所述混合动力系统的控制决策的步骤中,具体包括:
    获取所述起重机的动力参数,若所述起重机无电网接入,且动力源的能源储备低于预设值,则向发动机送启动信号,所述发动机带动驱动电机转动,所述驱动电机为所述动力源进行充电。
  10. 根据权利要求6所述的起重机的混合动力系统的控制方法,其特征在于,所述根据所述状态参数生成控制所述混合动力系统的控制决策的步骤中,具体包括:
    获取所述起重机的动力参数,若所述起重机有电网接入,且动力源的能源储备低于预设值,则向驱动电机发送启动信号,所述驱动电机为所述动力源进行充电。
  11. 根据权利要求6所述的起重机的混合动力系统的控制方法,其特征在于,所述根据所述状态参数生成控制所述混合动力系统的控制决策的步骤中,具体包括:
    获取所述起重机上车作业的负载参数,若所述负载参数大于预设负载参数,则向发动机发送启动信号;
    所述发动机驱动多联油泵工作,实现所述起重机的上车作业。
  12. 一种虚拟装置,其特征在于,存储器和处理器;
    所述存储器和所述处理器通过总线完成相互间的通信;
    所述存储器存储有,能够在所述处理器上运行的计算机指令;
    所述处理器调用所述计算机程序指令时,能够执行上述权利要求6至11任一所述的起重机的混合动力系统的控制方法。
  13. 一种起重机,其特征在于,具有上述权利要求1至5任一所述的起重机的混合动力系统,或者执行上车作业时采用上述权利要求6至11任一所述的起重机的混合动力系统的控制方法,或者具有上述权利要求12所述的虚拟装置。
PCT/CN2022/087912 2021-05-14 2022-04-20 起重机的混合动力系统、控制方法、虚拟装置及起重机 WO2022237478A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22806448.1A EP4338997A1 (en) 2021-05-14 2022-04-20 Hybrid power system for crane, control method, virtual device and crane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110530384.8A CN113147358A (zh) 2021-05-14 2021-05-14 起重机的混合动力系统、控制方法、虚拟装置及起重机
CN202110530384.8 2021-05-14
CN202121042009.0 2021-05-14
CN202121042009.0U CN214928942U (zh) 2021-05-14 2021-05-14 起重机的混合动力系统及起重机

Publications (1)

Publication Number Publication Date
WO2022237478A1 true WO2022237478A1 (zh) 2022-11-17

Family

ID=84027953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087912 WO2022237478A1 (zh) 2021-05-14 2022-04-20 起重机的混合动力系统、控制方法、虚拟装置及起重机

Country Status (2)

Country Link
EP (1) EP4338997A1 (zh)
WO (1) WO2022237478A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065476A2 (en) * 2008-12-01 2010-06-10 Odyne Systems, Llc Hybrid drive for medium and heavy duty trucks
CN109057346A (zh) * 2018-10-17 2018-12-21 三汽车制造有限公司 泵车
CN106061784B (zh) * 2013-11-18 2019-07-19 电力科技控股有限责任公司 采用分轴式动力输出装置的混合动力车辆驱动系统和方法
CN110758580A (zh) * 2019-12-02 2020-02-07 三一汽车起重机械有限公司 起重机
CN111114306A (zh) * 2020-01-02 2020-05-08 中联重科股份有限公司 工程机械
CN210821809U (zh) * 2019-10-31 2020-06-23 李响 一种混凝土搅拌运输车混合动力装置
CN113147358A (zh) * 2021-05-14 2021-07-23 三一汽车起重机械有限公司 起重机的混合动力系统、控制方法、虚拟装置及起重机
CN214928942U (zh) * 2021-05-14 2021-11-30 三一汽车起重机械有限公司 起重机的混合动力系统及起重机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065476A2 (en) * 2008-12-01 2010-06-10 Odyne Systems, Llc Hybrid drive for medium and heavy duty trucks
CN106061784B (zh) * 2013-11-18 2019-07-19 电力科技控股有限责任公司 采用分轴式动力输出装置的混合动力车辆驱动系统和方法
CN109057346A (zh) * 2018-10-17 2018-12-21 三汽车制造有限公司 泵车
CN210821809U (zh) * 2019-10-31 2020-06-23 李响 一种混凝土搅拌运输车混合动力装置
CN110758580A (zh) * 2019-12-02 2020-02-07 三一汽车起重机械有限公司 起重机
CN111114306A (zh) * 2020-01-02 2020-05-08 中联重科股份有限公司 工程机械
CN113147358A (zh) * 2021-05-14 2021-07-23 三一汽车起重机械有限公司 起重机的混合动力系统、控制方法、虚拟装置及起重机
CN214928942U (zh) * 2021-05-14 2021-11-30 三一汽车起重机械有限公司 起重机的混合动力系统及起重机

Also Published As

Publication number Publication date
EP4338997A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
KR101199244B1 (ko) 하이브리드식 건설기계
CN103863311B (zh) 基于能量优化的混合动力汽车发动机与电机扭矩分配方法
CN113147358A (zh) 起重机的混合动力系统、控制方法、虚拟装置及起重机
CN102826000B (zh) 车辆混合动力系统及集装箱堆高机
WO2020078040A1 (zh) 泵车
WO2012002585A1 (ko) 하이브리드식 굴삭기의 제어시스템
CN113147357B (zh) 作业机械的动力驱动系统、控制方法及作业机械
JP3134673U (ja) 車両搭載型クレーン用圧油供給装置
CN203713586U (zh) 电动客车增程器的集成控制系统
CN110901371A (zh) 一种专项作业车及其控制方法
CN115179750A (zh) 一种增程式混合动力系统、控制方法及起重机
CN113147359A (zh) 作业机械的动力系统和控制方法
WO2022237478A1 (zh) 起重机的混合动力系统、控制方法、虚拟装置及起重机
US11725363B2 (en) Machine configuration and control system enabling interchangeable power sources
CN113147360A (zh) 起重机并联混合动力系统、控制方法、虚拟装置及起重机
CN214928942U (zh) 起重机的混合动力系统及起重机
WO2024007545A1 (zh) 一种汽车起重机油电混合作业系统及起重机
CN214447406U (zh) 搅拌车多功能混合上装动力系统
CN215626270U (zh) 起重机的并联混合动力系统及起重机
CN208747488U (zh) 一种优化增程式起重机结构
CN215798028U (zh) 一种汽车起重机
CN218952149U (zh) 一种强夯机混合动力系统
CN217374173U (zh) 作业机械的插电式作业混合动力系统及作业机械
CN220577054U (zh) 混合动力系统和工程机械
CN217514955U (zh) 动力系统及泵车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022806448

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022806448

Country of ref document: EP

Effective date: 20231212