WO2022237243A1 - 一种叠瓦电池片、电池小片和叠瓦光伏组件 - Google Patents

一种叠瓦电池片、电池小片和叠瓦光伏组件 Download PDF

Info

Publication number
WO2022237243A1
WO2022237243A1 PCT/CN2022/075103 CN2022075103W WO2022237243A1 WO 2022237243 A1 WO2022237243 A1 WO 2022237243A1 CN 2022075103 W CN2022075103 W CN 2022075103W WO 2022237243 A1 WO2022237243 A1 WO 2022237243A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine grid
battery
line
grid lines
lines
Prior art date
Application number
PCT/CN2022/075103
Other languages
English (en)
French (fr)
Inventor
尹丙伟
周华明
李岩
石刚
Original Assignee
通威太阳能(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(合肥)有限公司 filed Critical 通威太阳能(合肥)有限公司
Priority to US18/255,039 priority Critical patent/US20240097059A1/en
Priority to EP22806220.4A priority patent/EP4220738A4/en
Priority to AU2022271967A priority patent/AU2022271967A1/en
Publication of WO2022237243A1 publication Critical patent/WO2022237243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the field of solar cell fabrication, and in particular, to a shingled battery sheet, a small battery sheet and a shingled photovoltaic module.
  • shingled modules Under the background of vigorously promoting and using solar green energy, shingled modules can significantly increase the power of modules. Shingled modules use special graphic design to cut the entire solar cell into several small cells, and then combine each Partial areas of the battery chip are overlapped and bonded or directly physically bonded through the carrier transport channel on the surface of the battery chip.
  • Conventional shingled batteries have busbars. For example, the front edge of a battery cell has a front busbar, and the corresponding edge on the back has a back busbar.
  • Conductive or non-conductive adhesive is used to overlap and bond the grid lines to the main grid lines on the back of another battery cell to ensure that the inter-chip current conduction can be realized. This design with busbar leads to high unit consumption of silver paste for the production of shingled components, and there is no obvious cost advantage.
  • the embodiment of the present application provides a shingled battery sheet, a small battery sheet, and a shingled photovoltaic module without a busbar design, which greatly reduces the electrode production cost.
  • Some embodiments of the present application provide a small battery sheet, which includes a battery sheet, the front side of the battery sheet is provided with several front fine grid lines arranged side by side, and the back side of the battery sheet is provided with several rear side fine grid lines arranged side by side or The back side is provided with a back electrode and a back electric field, and the front side of the cell is also provided with a front connection line, which is a continuous or discontinuous line segment, and the front connection line is set on at least one side of the battery sheet, and the front connection line is connected to all front fine grids.
  • the ends on the same side of the wires are respectively connected, and the front connecting wires are configured so that when two battery small pieces are overlapped and arranged along the direction of the front thin grid lines, the front connecting wires of the lower battery small pieces are connected to each back side of the upper battery small pieces.
  • the fine grid lines are all in contact.
  • the grid lines on the front of the battery chip are combined into the front electrode, and the grid lines on the back are combined into the back electrode, and the original main grid lines of the battery chip are removed.
  • the main grid lines have a larger line width and occupy more space. Large, large consumption of printing materials (usually silver paste); and a front connection line for current confluence is designed on the front of the cell.
  • the connection line width is smaller, which can save the conductive paste
  • the line width of the connecting line can be greater than the width of the auxiliary grid line.
  • the line width of the front connecting line can be set to be no greater than the line width of the front thin grid line, that is, the front connecting line is compared to
  • the original busbar has a small line width, occupies a small space, and consumes a small amount of printing materials.
  • the front thin grid lines of the battery chip are connected to the contacts of the battery chips above it through the front connecting wires of the battery chip.
  • the thin grid lines on the back enable the current conduction between the two battery chips. Therefore, the battery chip without busbar design can greatly reduce the production cost of electrodes and reduce the manufacturing cost.
  • the edge area on one side where the front connection line is provided on the front side of each battery sheet and the opposite edge area on the back side can be an overlapping area, and the front connection line is located in the overlapping area on the front side of the battery sheet; the front connection line It is directly connected to the front fine grid line, and the distance between the front connection line and the end point on the same side of the front fine grid line is a, and a is not less than 0 and less than the width of the overlapping area.
  • the front connection line is located in the overlapping area, which is convenient for direct contact with the back thin grid line of another overlapping battery cell to realize the conduction of current; the front connection line is directly connected to the front thin grid line, that is, the front side
  • the connection line and the front fine grid line are arranged to cross, and at the same time, the distance a between the front connection line and the adjacent end point of the front fine grid line is not less than 0, and is smaller than the width of the overlapping area, ensuring that the front connection line is in the overlapping area to realize the connection between two battery cells.
  • the fine grid lines on the front side of each battery chip can be parallel to the fine grid lines on the back side, or the fine grid lines on the front side of each battery chip can be perpendicular to the back electrode;
  • the front connection lines may be perpendicular to the front fine grid lines.
  • the front connection line of the lower battery piece can be connected with the upper battery piece on the premise that the total length is relatively short. All backside fine-wire contacts.
  • the front connection line is a continuous long line, and the long line can be respectively connected to ends on the same side of all the front fine grid lines.
  • the front connection line is composed of a plurality of short lines arranged at intervals, and each short line is connected to an end on the same side of at least one front fine grid line.
  • the total length of the short lines arranged at intervals is relatively short, which can further reduce the electrode production cost.
  • the back of the cell can also be provided with a back connection line, the back connection line is respectively connected to the ends on the same side of all the back fine grid lines, and the back connection line and the front connection line are respectively located on the opposite sides of the battery sheet.
  • the back connecting wires are configured so that when two battery chips are overlapped in the direction of the front fine grid lines, the back connecting wires of the upper battery chip are in contact with each front fine grid line of the lower battery chip .
  • the front connecting lines and each front thin grid line of the lower battery small piece correspond to each back fine grid line of the upper battery small piece.
  • the grid line and the back connection line are in contact.
  • the front side of the battery sheet can be provided with a front connection line on the same side edge as the front fine grid line, and an auxiliary connection line can be provided on the other side edge, and the line width of the auxiliary connection line is not larger than that of the front side.
  • the line width of the fine grid lines, the auxiliary connection lines can be connected with all the front fine grid lines respectively.
  • the auxiliary connection line can realize the short connection between the front fine grid lines, and prevent the current from being collected and output through other front fine grid lines when some front fine grid lines are not printed well.
  • the front fine grid lines and the front connection lines may be formed by printing with silver paste.
  • the front connecting lines and the front fine grid lines can be printed and formed at the same time.
  • the line widths of the front fine grid lines and the rear fine grid lines may be the same, and the line widths of the front fine grid lines and the rear fine grid lines may be larger than those of the front The line width of the connection line.
  • a shingled photovoltaic module which may include several battery strings, and each battery string is composed of several battery small pieces provided by the first aspect in sequence along the direction of the front fine grid lines. to make.
  • conductive glue or non-conductive glue can be used for overlapping bonding between two adjacent battery small pieces.
  • the shingled photovoltaic module composed of small battery cells can greatly reduce the electrode production cost, reduce the manufacturing cost, and improve the competitiveness of the shingled module.
  • FIG. 1 is a schematic diagram of the front structure of a battery chip provided in the first embodiment of the present application
  • Fig. 2 is the schematic diagram of the enlarged structure of the lower part of Fig. 1;
  • Fig. 3 is a schematic diagram of an enlarged structure of the lower half of the front of a battery chip provided in the second embodiment of the present application;
  • Fig. 4 is a schematic structural diagram of the lower half of the front of a battery chip provided by the third embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of the lower half of the front of a battery chip provided by the fourth embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of the lower half of the front of a battery chip provided by the fifth embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of the lower half of the front of a battery chip provided by the sixth embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of the lower half of the front of a battery chip provided by the seventh embodiment of the present application.
  • Fig. 9 is a schematic diagram of the back structure of a small battery chip provided by the embodiment of the present application.
  • FIG. 10 is an enlarged structural schematic diagram of the lower part of FIG. 9 .
  • Icon 100-battery small piece; 110-battery piece; 120-front thin grid line; 130-front connecting line; 140-auxiliary connecting line; 150-back thin grid line; 160-back connecting line; 200-battery small piece; 210 - Front connection wire; 300-battery piece; 310-front connection wire; 400-battery piece; 410-front connection line; 500-battery piece; 510-front connection line; 600-battery piece; 610-front connection line; - battery small piece; 710 - front connecting wire.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “left”, “right”, “inner” and “outer” are based on those shown in the accompanying drawings. Orientation or positional relationship, or the orientation or positional relationship that the application product is usually placed in use, is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, in order to Specific orientation configurations and operations, therefore, are not to be construed as limitations on the application.
  • the terms “first”, “second”, “third”, etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
  • setting and “connection” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Integral connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Integral connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components.
  • a battery chip 100 provided in this embodiment may include a battery chip 110 (the outermost dotted line frame in the figure), the front of the battery chip 110 is provided with several There are several front fine grid lines 120 arranged side by side, and several back fine grid lines 150 arranged side by side are arranged on the back of the battery sheet 110 (in other embodiments, the back electrode and the back electric field are arranged on the back to form a back electric field).
  • the front of the battery sheet 110 is also provided with a front connection line 130, the line width of the front connection line 130 is not greater than the line width of the front fine grid line 120, in other embodiments, the line width of the front connection line 130 can also be greater than the front fine grid line
  • the line width of 120, the front connection line 130 is arranged on at least one side of the battery sheet 110, and is respectively connected to the ends (which may be terminals) on the same side of all the front fine grid lines 120, and the front connection line 130 is configured as two batteries.
  • the front connecting wires 130 of the lower battery small pieces 100 are in contact with each rear fine grid line 150 of the upper battery small pieces 100 .
  • "Several" in the embodiments of the present application means that the number is greater than or equal to three.
  • the battery sheet 110 is rectangular, with long sides and short sides.
  • the cell 110 is a silicon chip, and the silicon chip is generally cut from a silicon rod, but not limited thereto; the corners of the cell 110 can be chamfered, and the two cells of the cell 110 in this embodiment The corners are chamfered, and the two triangle dotted boxes on the right edge in FIG. 1 indicate the situation after the two corners of the battery sheet 110 are chamfered.
  • the front fine grid lines 120 are all parallel to the short side of the battery sheet 110, that is, each front fine grid line 120 is arranged along the short side, and all the front fine grid lines 120 are arranged along the short side of the battery sheet.
  • the long sides of 110 are arranged at intervals;
  • the back fine grid lines 150 are all parallel to the short sides of the battery sheet 110, that is, each back fine grid line 150 is also arranged along the short side, and all the front fine grid lines 120 are arranged along the long side of the battery sheet 110 Arranged at intervals, the front fine grid lines 120 and the rear fine grid lines 150 are parallel to each other.
  • the fine grid lines 120 on the front and the fine grid lines 150 on the back can also be arranged on the battery sheet 110 in other forms. conduction.
  • the front fine grid lines 120 are all parallel to the long sides of the battery sheet 110
  • the back fine grid lines 150 are all parallel to the long sides of the battery sheet 110
  • all the front fine grid lines 120 and the back fine grid lines 150 are all parallel to the long sides of the battery sheet 110.
  • the side or the short side is slightly inclined, and the front fine grid lines 120 and the back fine grid lines 150 are not limited to being parallel to each other, the front fine grid lines 120 can also be parallel to the short side of the battery sheet 110, and the back fine grid lines 150 Slightly sloped compared to the short sides.
  • the front fine grid lines 120 of each battery cell 100 may be perpendicular to the back electrode.
  • the front fine grid lines 120, the rear fine grid lines 150, and the front connection lines 130 can be formed by printing with silver paste.
  • the layout density of the front fine grid lines 120 is smaller than that of the rear fine grid lines 150, that is, the spacing is larger, which ensures the front current collection, and at the same time, the coverage of the entire surface will not be too large due to the high density of the front fine grid lines 120 lead to a decrease in battery efficiency; short connections can also be provided between the front fine grid lines 120 to prevent other front fine grid lines 120 from collecting and outputting current when some front fine grid lines 120 are poorly printed.
  • Short connection lines are arranged between the gate lines 120, and these short connection lines are arranged at intervals to ensure production cost and avoid excessive coverage.
  • the line widths of the front fine grid lines 120 and the rear fine grid lines 150 are the same, and both are larger than the line width of the front connection lines 130 .
  • the front connection line 130 is a continuous long line, and the long line is respectively connected to the ends of all the front fine grid lines 120 on the same side, or the front connection line 130 is composed of a plurality of short lines arranged at intervals, each The short lines are connected to the end of at least one front fine grid line 120 on the same side.
  • the long lines are straight, curved or broken, such as S-shaped and W-shaped, or multiple short lines are arranged in a straight, curved or broken line.
  • the front connection line 130 may be a continuous long line; the front connection line 130 is straight, and the front connection line 130 is perpendicular to the front fine grid line 120 .
  • the front connecting lines 130 can also be inclined compared with the front fine grid lines 120, and it is necessary to ensure that the front connecting lines 130 pass through all the front connecting lines 130, so that the front connecting lines 130 and all the front fine grid lines 120 direct connection.
  • the front connecting wire 130 is disposed on one long edge of the battery sheet 110 , specifically on the left long edge of the battery sheet 110 .
  • the long edges of the two battery slices 110 overlap together, that is, the left long edge of the lower battery slice 100 overlaps the right long edge of the upper battery slice 100 .
  • the side edge area (left long edge) and the opposite edge area (right long edge) of the back side where the front connection line 130 is provided on the front of each battery sheet 110 are overlapping areas, and the overlapping area requires Control within a relatively small range to ensure battery efficiency, that is, the width of the overlapping area is relatively small, and the front connection line 130 is located in the overlapping area on the front of the battery sheet 110 .
  • the front connection line 130 is directly connected to the front fine grid line 120 , and the distance between the front connection line 130 and the end points on the same side of the front fine grid line 120 is a, where a is not less than 0 and smaller than the width of the overlapping area.
  • the front connection lines 130 can be designed at the end points on the same side of the front fine grid lines 120 or at the end points a on the same side from the front fine grid lines 120 , where a is smaller than the width of the overlapping area, for example, a ⁇ 2mm.
  • the front connecting wires 130 are located at the left end points of all the front fine grid lines 120 , that is, connect the left end points of all the front fine grid lines 120 .
  • a front connection line 130 may be provided on the front side of the battery sheet 110 relative to the front fine grid lines 120, and an auxiliary connection line 140 may be provided on the other side edge.
  • the gate lines 120 are respectively connected, that is, the front connection line 130 is disposed on the left edge of the battery sheet 110 , and the auxiliary connection line 140 is disposed on the right edge of the battery sheet 110 .
  • the auxiliary connection lines 140 may be arranged in the form of the front connection lines 130 , and in this embodiment, the auxiliary connection lines 140 are connected to right ends of all the front fine grid lines 120 .
  • the line width of the auxiliary connection lines 140 is not greater than the line width of the front fine grid lines 120 . In this embodiment, the line width of the auxiliary connection lines 140 is equal to the line width of the front fine grid lines 120 .
  • the schematic diagram of the back structure of the battery chip 100 shown in FIG. It can be designed as a back electric field method.
  • the back of the battery sheet 110 is also provided with a back connection line 160, the back connection line 160 and the back fine grid lines are perpendicular to each other, the back connection line 160 is respectively connected to the same side ends of all the back side fine grid lines 150, and the back side is connected to
  • the wire 160 and the front connecting wire 130 are respectively located on the opposite side edges of the battery sheet 110, and the back connecting wire 160 is configured so that when two small battery sheets 100 are arranged overlappingly along the direction of the front fine grid lines 120, the upper battery small sheet 100
  • the back connection wires 160 are in contact with each of the front thin grid wires 120 of the lower battery chip 100 .
  • the setting method of the back connection line 160 may be the same as the setting method of the front connection line 130 , which will not be repeated here.
  • the back connecting line 160 is located in the overlapping area on the back, and the back connecting line 160 can be designed at the end point on the same side of the back fine grid line 150 or at a distance b from the end point on the same side, where b is not less than 0 and less than the width of the overlapping distance, for example, b ⁇ 2mm.
  • the back connection line 160 is a continuous long line, perpendicular to the back fine grid line 150 and the front fine grid line 120 , and is arranged at the right end of the rear fine grid line 150 .
  • the back connection lines 160 can still be arranged in the same manner as above, and the front fine grid lines 120 of each battery cell 100 can still be designed to be perpendicular to the back connection lines 160 .
  • the front connection line 130 can be arranged on one or both sides of the front edge of the battery sheet 110, and the back connection line 160 can be arranged on one or both sides of the front edge of the battery sheet 110.
  • the front connecting line 130 is located at the left edge of the front
  • the back connecting line 160 is located at the right edge of the back.
  • the front connection lines 130 and the back connection lines 160 can be combined according to the same or different types of lines and layouts, and the front and back graphics of the battery chip 100 can be designed according to different graphic design styles, or can be Collocation and combination are carried out in the form of combination, and some specific arrangements will be listed in the following embodiments.
  • This embodiment also provides a shingled battery sheet 110 , which can be cut into several small battery sheets 100 described above.
  • this embodiment also provides a shingled photovoltaic module, which includes several battery strings, and each battery string is composed of several above-mentioned small battery pieces 100 stacked in series along the direction of the front fine grid lines 120. Bus bars set at both ends of the string.
  • the small battery pieces 100 are overlapped in the form of shingles, the overlapping area between two adjacent battery small pieces 100 is bonded with conductive glue or non-conductive glue.
  • conductive glue When using conductive glue, the conductive glue only needs to be placed on the However, when non-conductive adhesive is used for bonding, the non-conductive adhesive needs to avoid the front connection line 130 and the back connection line 160, for example, it is set at intervals to ensure that the front connection line 130 and the back connection line 160 are connected to the front fine grid.
  • the contact between the wire 120 and the fine grid line 150 on the back side is used to conduct current between chips.
  • Each small cell 100 of the shingled photovoltaic module has enough conductive channels on the edges of the front fine grid lines 120 and the rear fine grid lines 150 through the setting of the front connecting wire 130 and the back connecting wire 160, ensuring that each cell small The current conducted to the edge by all the thin grid lines on the 100 can be effectively conducted to the next slice, and finally the power output is realized through the bus bars arranged at the first and last ends of the battery string.
  • a battery chip 300 provided in this embodiment is roughly the same as that of the first embodiment, the difference is that the front connection line 310 is a plurality of short lines arranged at intervals All the short lines are arranged in a straight line (on the same straight line), and each short line is connected to the same side endpoints of two adjacent front fine grid lines 120, that is, the front connecting line 310 is a non-continuous line.
  • a battery chip 400 provided in this embodiment is roughly the same as that of the first embodiment, the difference is that the front connection line 410 is a plurality of short lines arranged at intervals All the short lines are arranged in a straight line, and each short line is correspondingly connected to one side end of a front fine grid line 120, that is, the front connecting line 410 is a non-continuous line.
  • the front connection line 510 is composed of a plurality of short lines arranged at intervals, and all the short lines are arranged in a straight line. Each short line is connected to the ends on the same side of two adjacent front fine grid lines 120, and the distance between the front connecting line 510 and the end points on the same side of the front fine grid lines 120 is 1mm, that is, the front connecting line 510 is a non-continuous line , and indented from the front fine grid lines 120 .
  • a battery chip 600 provided in this embodiment is roughly the same as that of the first embodiment, the difference is that the front connection line 610 is a plurality of short lines arranged at intervals All short lines are arranged in a straight line, and each short line is connected to one end of a front fine grid line 120, and the distance between the front connecting line 610 and the end point of the same side of the front fine grid line 120 is 1mm, that is, the front connection The lines 610 are discontinuous lines, and are indented from the front fine grid lines 120 .
  • a battery chip 700 provided in this embodiment is roughly the same as that of the first embodiment, the difference is that the front connection line 710 is a plurality of short lines arranged at intervals Composition, all the short lines are divided into two groups of short lines, each group of short lines is arranged in a straight line, two groups of short lines are arranged alternately, and each short line of one group of short lines corresponds to one side endpoint of a front fine grid line 120 connection, each short line of another group of short lines corresponds to the same side end of the remaining front fine grid lines 120, and the distance between the front connecting line 710 and the same side end of the front fine grid lines 120 is 1mm, that is, the front connection
  • the lines 710 are discontinuous lines, and some areas are indented compared with the front fine grid lines 120 .
  • the shingled battery sheet, small battery sheet and shingled photovoltaic module of the embodiment of the present application have no busbar design, which greatly reduces the electrode production cost.
  • the application provides a shingled battery sheet, a small battery sheet and a shingled photovoltaic module, which relate to the field of solar cell manufacturing.
  • the small battery sheet includes a battery sheet.
  • the front of the battery sheet is provided with several front thin grid lines arranged side by side.
  • a front connection line is also provided, which is a continuous or discontinuous line segment, and the front connection line is arranged on at least one side of the battery sheet, and the front connection line is respectively connected to the same side ends of all the front fine grid lines, and the front connection line It is configured such that when two small battery pieces are arranged overlappingly along the direction of the front fine grid lines, the front connecting wires of the lower battery small piece are in contact with each back fine grid line of the upper battery small piece.
  • Shingled cells, small cells and shingled photovoltaic modules, with no busbar design greatly reduce the production cost of electrodes.
  • shingled cells, cell dies and shingled photovoltaic modules of the present application are reproducible and can be used in various industrial applications.
  • a shingled battery sheet, a small battery sheet and a shingled photovoltaic module of the present application can be used in the field of solar cell manufacturing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种叠瓦电池片、电池小片和叠瓦光伏组件,涉及太阳能电池制作领域。电池小片包括电池片,电池片的正面设置有若干条并列设置的正面细栅线,电池片的背面设置有若干条并列设置的背面细栅线或背面设置有背电极和背电场,电池片正面还设置有正面连接线,正面连接线为连续或非连续的线段,正面连接线设置在电池片的至少一侧,正面连接线与所有正面细栅线的同一侧端部分别连接,正面连接线被配置成当两片电池小片沿正面细栅线的方向重叠布置时,位于下方的电池小片的正面连接线与位于上方的电池小片的每条背面细栅线均接触。叠瓦电池片、电池小片和叠瓦光伏组件,无主栅的设计,大大降低电极生产成本。

Description

一种叠瓦电池片、电池小片和叠瓦光伏组件
相关申请的交叉引用
本申请要求于2021年05月12日提交中国国家知识产权局的申请号为202110520958.3、名称为“一种叠瓦电池片、电池小片和叠瓦光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池制作领域,具体而言,涉及一种叠瓦电池片、电池小片和叠瓦光伏组件。
背景技术
随着全球煤炭、石油、天然气等常规化石能源消耗速度加快,生态环境不断恶化,人类社会的可持续发展已经受到严重威胁。各国纷纷制定能源发展战略,以应对常规化石能源资源的有限性和开发利用带来的环境问题。太阳能凭借其可靠性、安全性、广泛性、长寿性、环保性、资源充足性的特点已成为最重要的可再生能源之一,有望成为未来全球电力供应的主要支柱。
在大力推广和使用太阳能绿色能源的背景下,叠瓦组件能明显提升组件功率,叠瓦组件是通过特殊图形设计,将整片太阳能电池片切割成若干电池小片,再将一致性较好的各电池小片的部分区域重叠在一起,并粘合或通过电池小片表面的载流子传输通道直接物理贴合而形成的。常规的叠瓦电池具有主栅线,例如电池小片的正面边缘具有正面主栅线,背面相对应的边缘具有背面主栅线,两片电池小片叠瓦形式搭接时,一片电池小片的正面主栅线采用导电胶或非导电胶与另一片电池小片的背面主栅线叠置粘接,需保证能够实现片间电流传导。这种具有主栅线的设计导致生产叠瓦组件的银浆单耗高,无明显的成本优势。
发明内容
本申请实施例提供了一种叠瓦电池片、电池小片和叠瓦光伏组件,无主栅的设计,大大降低电极生产成本。
本申请的一些实施例提供了一种电池小片,其包括电池片,电池片的正面设置有若干条并列设置的正面细栅线,电池片的背面设置有若干条并列设置的背面细栅线或背面设置有背电极和背电场,电池片正面还设置有正面连接线,正面连接线为连续或非连续的线段,正面连接线设置在电池片的至少一侧,正面连接线与所有正面细栅线的同一侧端部分别连接,正面连接线被配置成当两片电池小片沿正面细栅线的方向重叠布置时,位于下方的电池小片的正面连接线与位于上方的电池小片的每条背面细栅线均接触。
在上述实现过程中,电池小片正面的栅线组合为正面电极,背面的栅线组合为背面电极,去除电池小片原本的主栅线,主栅线相较于细栅线,线宽大、占据空间大、印刷材料(一般为银浆)耗量大;并在电池片的正面设计了实现电流汇流作用的正面连接线,连接线相较于主栅线线宽更小,可以节省导电浆料的使用,连接线的线宽可以大于副栅线的宽度,为进一步节省导电浆料使用,则正面连接线的线宽可以设置为不大于正面细栅线的线宽,即正面连接线相较于原本的主栅线,线宽小,占据空间小、印刷材料耗量小。当采用本申请实施例的电池小片按照沿正面细栅线的方向重叠布置组成叠瓦电池后,通过电池小片的正面连接线连接该电池小片的正面细栅线和接触重叠其上方的电池小片的背面细栅线,从而实现这两个电池小片之间的电流导通。因此,这种无主栅的设计的电池小片,能够大大降低电极生产成本,降低生产制造成本。
在一种可能的实现方式中,每片电池片的正面设置正面连接线的一侧边缘区域和背面的相对边缘区域可以为重叠区域,正面连接线位于电池片正面的重叠区域内;正面连接线与正面细栅线直接连接,正面连接线与正面细栅线的同一侧端点的距离为a,a不小于0,且小于重叠区域的宽度。
在上述实现过程中,正面连接线位于重叠区域内,便于与相重叠的另一片电池小片的背面细栅线直接接触,实现电流的导通;正面连接线与正面细栅线直接连接,即正面连接线与正面细栅线交叉设置,同时正面连接线与正面细栅线邻近端点的距离a不小于0,且小于重叠区域的宽度,保证正面连接线在重叠区域内,实现两片电池小片之间的电流导通。
在一种可能的实现方式中,每片电池小片的正面细栅线可以与背面细栅线相互平行,或者,每片所述电池小片的正面细栅线可以与背面电极相互垂直;
和/或,正面连接线可以与正面细栅线相互垂直。
在上述实现过程中,当两片电池小片沿正面细栅线的方向重叠布置时,位于下方的电池小片的正面连接线在总长度较短的前提下,就能实现与位于上方的电池小片的所有背面细栅线接触。
在一种可能的实现方式中,正面连接线为一条连续的长线条,长线条与所有正面细栅线的同一侧端部可以分别连接。
在上述实现过程中,只需要保证正面连接线、背面细栅线在重叠区域内,连续的长线条很容易实现与所有的背面细栅线有效接触,保证搭接效果。
在一种可能的实现方式中,正面连接线是由多条间隔设置的短线条组成,每条短线条与至少一条正面细栅线的同一侧端部连接。
在上述实现过程中,间隔设置的短线条的总长度比较短,可以进一步降低电极生产成本。
在一种可能的实现方式中,电池片背面还可以设置有背面连接线,背面连接线与所有背面细栅线的同一侧端部分别连接,背面连接线和正面连接线分别位于电池片的相对两侧边缘,背面连接线被配置成当两片电池小片沿正面细栅线的方向重叠布置时,位于上方的电池小片的背面连接线与位于下方的电池小片的每条正面细栅线均接触。
在上述实现过程中,当两片电池小片沿正面细栅线的方向重叠布置时,位于下方的电池小片的正面连接线、每条正面细栅线对应与位于上方的电池小片的每条背面细栅线、背面连接线相接触,这种双重接触的方式,实现位于下方的电池下片的正面细栅线与位于上方的电池下片的背面细栅线之间有效接触,保证其中一片电池小片的所有细栅线传导至边缘的电流能够被有效传导至下一片电池小片。
在一种可能的实现方式中,电池片的正面相对于正面细栅线的同一侧边缘可以设置有正面连接线,另一侧边缘可以设置有辅助连接线,辅助连接线的线宽不大于正面细栅线的线宽,辅助连接线可以与所有的正面细栅线分别连接。
在上述实现过程中,辅助连接线能够实现各正面细栅线之间的短连接,防止部分正面细栅线印刷不良时可以通过其他正面细栅线收集电流、输出。
在一种可能的实现方式中,正面细栅线和正面连接线可以采用银浆印刷形成。
在上述实现过程中,按照相应的版图设计,正面连接线可以与正面细栅线同时印刷形成。
在一种可能的实现方式中,所述正面细栅线和所述背面细栅线的线宽可以相同,所述正面细栅线和所述背面细栅线的线宽可以均大于所述正面连接线的线宽。
本申请的另一些实施例提供了一种叠瓦电池片,其能够切割成若干个第一方面提供的电池小片。
本申请的又一些实施例提供了一种叠瓦光伏组件,其可以包括若干条电池串,每条电池串由若干个第一方面提供的电池小片沿正面细栅线的方向顺次重叠串联而成。
在一种可能的实现方式中,在所述电池小片按照叠瓦形式搭接时,相邻两片电池小片之间在重叠区域可以采用导电胶或非导电胶叠置粘接。
在上述实现过程中,采用电池小片组成的叠瓦光伏组件能够大大降低电极生产成本,降低生产制造成本,提升叠瓦组件的竞争力。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请第一实施例提供的一种电池小片的正面结构示意图;
图2为图1下半部分的放大结构示意图;
图3为本申请第二实施例提供的一种电池小片正面下半部分的放大结构示意图;
图4为本申请第三实施例提供的一种电池小片正面下半部分的结构示意图;
图5为本申请第四实施例提供的一种电池小片正面下半部分的结构示意图;
图6为本申请第五实施例提供的一种电池小片正面下半部分的结构示意图;
图7为本申请第六实施例提供的一种电池小片正面下半部分的结构示意图;
图8为本申请第七实施例提供的一种电池小片正面下半部分的结构示意图;
图9为本申请实施例提供的一种电池小片的背面结构示意图;
图10为图9下半部分的放大结构示意图。
图标:100-电池小片;110-电池片;120-正面细栅线;130-正面连接线;140-辅助连接线;150-背面细栅线;160-背面连接线;200-电池小片;210-正面连接线;300-电池小片;310-正面连接线;400-电池小片;410-正面连接线;500-电池小片;510-正面连接线;600-电池小片;610-正面连接线;700-电池小片;710-正面连接线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连 接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
第一实施例
请参看图1、图2和图9、图10,本实施例提供的一种电池小片100,其可以包括电池片110(图中最外层的虚线框),电池片110的正面设置有若干条并列设置的正面细栅线120,电池片110的背面设置有若干条并列设置的背面细栅线150(在其他实施例中,背面设置背电极和背电场,以形成背电场的方式)。电池片110正面还设置有正面连接线130,正面连接线130的线宽不大于正面细栅线120的线宽,在其他实施例中,正面连接线130的线宽还可以大于正面细栅线120的线宽,正面连接线130设置于电池片110的至少一侧,与所有正面细栅线120的同一侧端部(可以为端点)分别连接,正面连接线130被配置成当两片电池小片100沿正面细栅线120的方向重叠布置时,位于下方的电池小片100的正面连接线130与位于上方的电池小片100的每条背面细栅线150均接触。本申请实施例中的“若干”是指数量大于等于3。
本实施例中,电池片110呈矩形,具有长边和短边。通常情况下,电池片110为硅片,硅片一般是由硅棒切割而成,但不限于此;电池片110的角部可以经过倒角处理,本实施例中的电池片110的两个角经过倒角处理,图1中右侧边缘的两个三角形虚线框示意了电池片110的两个角经倒角后的情形。
本实施例中,对于单片电池小片100,正面细栅线120均平行于电池片110的短边,即每条正面细栅线120沿短边设置,所有的正面细栅线120沿电池片110的长边间隔排列;背面细栅线150均平行于电池片110的短边,即每条背面细栅线150同样沿短边设置,所有的正面细栅线120沿电池片110的长边间隔排列,正面细栅线120与背面细栅线150相互平行。在本申请的其他实施例中,正面细栅线120和背面细栅线150还可以按照其他形式布置在电池片110上,只需要满足叠瓦方式设置的电池小片100能够产生电流并实现片间传导。例如,正面细栅线120均平行于电池片110的长边,背面细栅线150均平行于电池片110的长边,或者所有的正面细栅线120、背面细栅线150相较于长边或短边略微倾斜,而且正面细栅线120和背面细栅线150之间并不局限于为相互平行,还可以正面细栅线120平行于电池片110的短边,背面细栅线150相较于短边略微倾斜。对于电池片110的背面设置背电极和背电场的情况,每片电池小片100的正面细栅线120可以与背面电极相互垂直。
通常情况下,正面细栅线120、背面细栅线150、正面连接线130可以采用银浆印刷形 成。正面细栅线120的布置密度比背面细栅线150的布置密度小,即间距更大,保证正面电流收集,同时也不会因为正面细栅线120密度太大,整面的覆盖率过大导致电池效率降低;正面细栅线120之间还可以设置短连接,防止某些正面细栅线120印刷不良时有其他正面细栅线120收集电流、输出,例如在相邻的两条正面细栅线120之间设置短连接线,而且这些短连接线间隔设置,以保证生产成本和避免过大覆盖率。本实施例中,正面细栅线120和背面细栅线150的线宽相同,均大于正面连接线130的线宽。
本申请实施例中,正面连接线130为一条连续的长线条,长线条与所有正面细栅线120的同一侧端部分别连接或者正面连接线130是由多条间隔设置的短线条组成,每条短线条与至少一条正面细栅线120的同一侧端部连接。本申请实施例中,长线条呈直线型、曲线型或折线型,例如S线型、W线型,或者多条短线条排列成直线型、曲线型或折线型。本实施例中,正面连接线130可以为一条连续的长线条;正面连接线130呈直线型,正面连接线130与正面细栅线120垂直。在其他实施例中,正面连接线130还可以相较于正面细栅线120倾斜,需保证正面连接线130穿过所有的正面连接线130,从而实现正面连接线130与所有的正面细栅线120直接连接。
请参看图1和图2,本实施例中,正面连接线130设置于电池片110的一侧长边边缘,具体是设置在电池片110的左侧长边边缘。两片电池小片100重叠设置时,两片电池片110的长边边缘重叠在一起,即位于下方的电池小片100的左侧长边边缘与位于上方的电池小片100的右侧长边边缘相重叠。
本申请实施例中,每片电池片110的正面设置正面连接线130的一侧边缘区域(左侧长边边缘)和背面的相对边缘区域(右侧长边边缘)为重叠区域,重叠区域需要控制在比较小的范围内,以保证电池效率,即重叠区域的宽度比较小,正面连接线130位于电池片110正面的重叠区域内。正面连接线130与正面细栅线120直接连接,正面连接线130与正面细栅线120的同一侧端点的距离为a,a不小于0,且小于重叠区域的宽度。即正面连接线130可以设计在正面细栅线120的同一侧端点或者在距离正面细栅线120的同一侧端点a,a小于重叠区域的宽度,例如a≤2mm。本实施例中,正面连接线130位于所有正面细栅线120的左侧端点,即连接所有正面细栅线120的左侧端点。
本实施例中,电池片110的正面相对于正面细栅线120的同一侧边缘可以设置有正面连接线130,另一侧边缘可以设置有辅助连接线140,辅助连接线140与所有的正面细栅线120分别连接,即正面连接线130设置于电池片110的左侧边缘,辅助连接线140设置于电池片110的右侧边缘。辅助连接线140可以按照正面连接线130的形式布置,本实施例中,辅助连接线140连接于所有正面细栅线120的右侧端部。为了降低生产成本,辅助连接线140的线宽不大于正面细栅线120的线宽,本实施例中,辅助连接线140的线宽等于 正面细栅线120的线宽。
请参看图9和图10,图9所示的电池小片100背面结构示意图是由图1所示的电池小片100正面视角绕短边旋转180°后呈现的视角图,本申请实施例的背面也可以设计成背电场方式。本实施例中,电池片110背面还设置有背面连接线160,背面连接线160与背面细栅线相互垂直,背面连接线160与所有背面细栅线150的同一侧端部分别连接,背面连接线160和正面连接线130分别位于电池片110的相对两侧边缘,背面连接线160被配置成当两片电池小片100沿正面细栅线120的方向重叠布置时,位于上方的电池小片100的背面连接线160与位于下方的电池小片100的每条正面细栅线120均接触。背面连接线160的设置方式可以按照正面连接线130的设置方式,在此不再赘述。背面连接线160位于背面的重叠区域内,背面连接线160可以设计在背面细栅线150的同一侧端点或者距离同一侧端点b的距离,b不小于0,小于重叠距离的宽度,例如b≤2mm。本实施例中,背面连接线160为一条连续的长线条,与背面细栅线150和正面细栅线120垂直,设置于背面细栅线150的右侧端点。对于背面为背电场方式的情况,仍然可以按照上述相同的方式设置背面连接线160,每片电池小片100的正面细栅线120仍然可以设计成与背面连接线160相互垂直。
需要说明的是,本申请实施例中,正面连接线130可以布置于电池片110的正面单侧边缘或双侧边缘,背面连接线160可以布置于电池片110的正面单侧边缘或双侧边缘。本实施例中,正面连接线130位于正面的左侧边缘,背面连接线160位于背面的右侧边缘,当两片电池小片100重叠布置时,正面连接线130和背面连接线160位于重叠区域内,且二者交错设置,即位置不重合,以保证接触效果。
本申请实施例中,正面连接线130和背面连接线160可以按照相同或不同类型线型及布置方式组合,电池小片100的正面图形和背面图形均可以按照不同的图形设计样式进行设计,也可以以组合形式进行搭配组合,以下实施例会列举出一些具体的布置方式。
本实施例还提供一种叠瓦电池片110,其能够切割成若干个上述的电池小片100。
相应的,本实施例还提供一种叠瓦光伏组件,其包括若干条电池串,每条电池串由若干个上述的电池小片100沿正面细栅线120的方向顺次重叠串联而成,电池串首尾两端设置的汇流条。电池小片100按照叠瓦形式搭接时,相邻两片电池小片100之间在重叠区域采用导电胶或非导电胶叠置粘接,当采用导电胶粘结时,导电胶只需要设置于的重叠区域内即可,但是采用非导电胶粘接时,非导电胶需要避开正面连接线130和背面连接线160,例如间隔设置,保证正面连接线130和背面连接线160实现与正面细栅线120和背面细栅线150的接触,以进行片间电流传导。
该叠瓦光伏组件的每片电池小片100通过正面连接线130和背面连接线160的设置, 使正面细栅线120和背面细栅线150的边缘具有足够多的导电通道,保证每片电池小片100上由所有细栅线传导至边缘的电流能够被有效传导至下一片,最终经由电池串首尾两端设置的汇流条实现功率输出。
第二实施例
请参看图3和图9、图10,本实施例提供的一种电池小片200,其与第一实施例的大致相同,正面细栅线120为连续的长线条,且与正面细栅线120互相垂直,不同之处在于:正面细栅线120的同一侧端点穿出正面连接线210,正面连接线210与正面细栅线120的同一侧端点的距离a,a=1mm,即正面连接线210相较于正面细栅线120缩进。
第三实施例
请参看图4和图9、图10,本实施例提供的一种电池小片300,其与第一实施例的大致相同,不同之处在于:正面连接线310是由多条间隔设置的短线条组成,所有短线条排列成直线型(位于同一条直线上),每条短线条与两条相邻的正面细栅线120的同一侧端点连接,即正面连接线310为非连续型线条。
第四实施例
请参看图5和图9、图10,本实施例提供的一种电池小片400,其与第一实施例的大致相同,不同之处在于:正面连接线410是由多条间隔设置的短线条组成,所有短线条排列成直线型,每条短线条对应与一条正面细栅线120的一侧端点连接,即正面连接线410为非连续型线条。
第五实施例
请参看图6和图9、图10,本实施例提供的一种电池小片500,不同之处在于:正面连接线510是由多条间隔设置的短线条组成,所有短线条排列成直线型,每条短线条与两条相邻的正面细栅线120的同一侧端部连接,正面连接线510与正面细栅线120的同一侧端点的距离1mm,即正面连接线510为非连续型线条,且相较于正面细栅线120缩进。
第六实施例
请参看图7和图9、图10,本实施例提供的一种电池小片600,其与第一实施例的大致相同,不同之处在于:正面连接线610是由多条间隔设置的短线条组成,所有短线条排列成直线型,每条短线条对应与一条正面细栅线120的一侧端部连接,正面连接线610与正面细栅线120的同一侧端点的距离1mm,即正面连接线610为非连续型线条,且相较于正面细栅线120缩进。
第七实施例
请参看图8和图9、图10,本实施例提供的一种电池小片700,其与第一实施例的大致相同,不同之处在于:正面连接线710是由多条间隔设置的短线条组成,所有短线条分为 两组短线条,每组短线条排列成直线型,两组短线条交错设置,其中一组短线条的每条短线条对应与一条正面细栅线120的一侧端点连接,另一组短线条的每条短线条对应与剩余的正面细栅线120的同一侧端部连接,且正面连接线710与正面细栅线120的同一侧端点的距离1mm,即正面连接线710为非连续型线条,且部分区域相较于正面细栅线120缩进。
综上所述,本申请实施例的叠瓦电池片、电池小片和叠瓦光伏组件,无主栅的设计,大大降低电极生产成本。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供了一种叠瓦电池片、电池小片和叠瓦光伏组件,涉及太阳能电池制作领域。电池小片包括电池片,电池片的正面设置有若干条并列设置的正面细栅线,电池片的背面设置有若干条并列设置的背面细栅线或背面设置有背电极和背电场,电池片正面还设置有正面连接线,正面连接线为连续或非连续的线段,正面连接线设置在电池片的至少一侧,正面连接线与所有正面细栅线的同一侧端部分别连接,正面连接线被配置成当两片电池小片沿正面细栅线的方向重叠布置时,位于下方的电池小片的正面连接线与位于上方的电池小片的每条背面细栅线均接触。叠瓦电池片、电池小片和叠瓦光伏组件,无主栅的设计,大大降低电极生产成本。
此外,可以理解的是,本申请的叠瓦电池片、电池小片和叠瓦光伏组件是可以重现的,并且可以用在多种工业应用中。例如,本申请的一种叠瓦电池片、电池小片和叠瓦光伏组件可以用于太阳能电池制作领域。

Claims (12)

  1. 一种电池小片,其特征在于,其包括电池片,所述电池片的正面设置有若干条并列设置的正面细栅线,所述电池片的背面设置有若干条并列设置的背面细栅线或背面设置有背电极和背电场,所述电池片正面还设置有正面连接线,所述正面连接线为连续或非连续的线段,所述正面连接线设置在电池片的至少一侧,所述正面连接线与所有所述正面细栅线的同一侧端部分别连接,所述正面连接线被配置成当两片所述电池小片沿所述正面细栅线的方向重叠布置时,位于下方的所述电池小片的所述正面连接线与位于上方的所述电池小片的每条所述背面细栅线均接触。
  2. 根据权利要求1所述的电池小片,其特征在于,每片所述电池片的正面设置所述正面连接线的一侧边缘区域和背面的相对边缘区域为重叠区域,所述正面连接线位于所述电池片正面的重叠区域内;所述正面连接线与所述正面细栅线直接连接,所述正面连接线与所述正面细栅线的同一侧端点的距离为a,所述a不小于0,且小于所述重叠区域的宽度。
  3. 根据权利要求1或2所述的电池小片,其特征在于,每片所述电池小片的所述正面细栅线与所述背面细栅线相互平行,或者,每片所述电池小片的所述正面细栅线与背面电极相互垂直;
    和/或,所述正面连接线与所述正面细栅线相互垂直。
  4. 根据权利要求1或3所述的电池小片,其特征在于,所述正面连接线为一条连续的长线条,所述长线条与所有正面细栅线的同一侧端部分别连接。
  5. 根据权利要求1或3所述的电池小片,其特征在于,所述正面连接线是由多条间隔设置的短线条组成,每条短线条与至少一条所述正面细栅线的同一侧端部连接。
  6. 根据权利要求1至5中任一项所述的电池小片,其特征在于,所述电池片背面还设置有背面连接线,所述背面连接线与所有所述背面细栅线的同一侧端部分别连接,所述背面连接线和所述正面连接线分别位于所述电池片的相对两侧边缘,所述背面连接线被配置成当两片所述电池小片沿所述正面细栅线的方向重叠布置时,位于上方的所述电池小片的所述背面连接线与位于下方的所述电池小片的每条所述正面细栅线均接触。
  7. 根据权利要求1至6中任一项所述的电池小片,其特征在于,所述电池片的正面相对于所述正面细栅线的同一侧边缘设置有所述正面连接线,另一侧边缘设置有辅助连接线,所述辅助连接线的线宽不大于所述正面细栅线的线宽,所述辅助连接线与所有的正面细栅线分别连接。
  8. 根据权利要求1至7中任一项所述的电池小片,其特征在于,所述正面细栅线和所述正面连接线采用银浆印刷形成。
  9. 根据权利要求6至8中任一项所述的电池小片,其特征在于,所述正面细栅线和所述背面细栅线的线宽相同,所述正面细栅线和所述背面细栅线的线宽均大于所述正面连接线的线宽。
  10. 一种叠瓦电池片,其特征在于,其能够切割成若干片如权利要求1至8中任一项所述的电池小片。
  11. 一种叠瓦光伏组件,其特征在于,其包括若干条电池串,每条所述电池串由若干片如权利要求1至8中任一项所述的电池小片沿所述正面细栅线的方向顺次重叠串联而成。
  12. 根据权利要求11所述的叠瓦光伏组件,其特征在于,在所述电池小片按照叠瓦形式搭接时,相邻两片电池小片之间在重叠区域采用导电胶或非导电胶叠置粘接。
PCT/CN2022/075103 2021-05-12 2022-01-29 一种叠瓦电池片、电池小片和叠瓦光伏组件 WO2022237243A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/255,039 US20240097059A1 (en) 2021-05-12 2022-01-29 Shingled cell, cell unit, and shingled photovoltaic assembly
EP22806220.4A EP4220738A4 (en) 2021-05-12 2022-01-29 SHINGLE CELL, CELL STRIP AND SHINGLE PHOTOVOLTAIC ASSEMBLY
AU2022271967A AU2022271967A1 (en) 2021-05-12 2022-01-29 Shingled cell, cell strip, and shingled photovoltaic assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110520958.3A CN113097316A (zh) 2021-05-12 2021-05-12 一种叠瓦电池片、电池小片和叠瓦光伏组件
CN202110520958.3 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022237243A1 true WO2022237243A1 (zh) 2022-11-17

Family

ID=76665376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075103 WO2022237243A1 (zh) 2021-05-12 2022-01-29 一种叠瓦电池片、电池小片和叠瓦光伏组件

Country Status (5)

Country Link
US (1) US20240097059A1 (zh)
EP (1) EP4220738A4 (zh)
CN (1) CN113097316A (zh)
AU (1) AU2022271967A1 (zh)
WO (1) WO2022237243A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097316A (zh) * 2021-05-12 2021-07-09 通威太阳能(合肥)有限公司 一种叠瓦电池片、电池小片和叠瓦光伏组件
CN114695574A (zh) * 2022-04-27 2022-07-01 浙江爱康光电科技有限公司 一种无主栅的异质结电池片

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090332A1 (en) * 2014-12-05 2016-06-09 Solarcity Corporation Photovoltaic electrode design with contact pads for cascaded application
CN105917472A (zh) * 2014-01-13 2016-08-31 光城公司 高效率太阳能面板
CN205863177U (zh) * 2016-07-21 2017-01-04 上海港旺新材料有限公司 无主栅的太阳能电池组件
CN109326665A (zh) * 2017-09-28 2019-02-12 长春永固科技有限公司 太阳能电池串、太阳能电池组件及其制备方法
CN110556442A (zh) * 2019-09-10 2019-12-10 常州时创能源科技有限公司 无主栅晶硅电池片及其应用
CN110783415A (zh) * 2019-11-07 2020-02-11 江苏辉伦太阳能科技有限公司 一种新型太阳能电池组件及其制备方法
CN111223962A (zh) * 2019-11-27 2020-06-02 浙江爱旭太阳能科技有限公司 一种新型光伏电池叠瓦组件的生产方法
CN112234113A (zh) * 2019-06-27 2021-01-15 苏州阿特斯阳光电力科技有限公司 光伏组件
CN113097316A (zh) * 2021-05-12 2021-07-09 通威太阳能(合肥)有限公司 一种叠瓦电池片、电池小片和叠瓦光伏组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780253B2 (en) * 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
US10115838B2 (en) * 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
KR20200101832A (ko) * 2018-01-18 2020-08-28 플렉스 엘티디 버스 바가 없는 슁글드 어레이 태양 전지 및 태양광 모듈을 제조하는 방법
WO2021020657A1 (ko) * 2019-07-29 2021-02-04 한국생산기술연구원 슁글드 태양전지 패널 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917472A (zh) * 2014-01-13 2016-08-31 光城公司 高效率太阳能面板
WO2016090332A1 (en) * 2014-12-05 2016-06-09 Solarcity Corporation Photovoltaic electrode design with contact pads for cascaded application
CN205863177U (zh) * 2016-07-21 2017-01-04 上海港旺新材料有限公司 无主栅的太阳能电池组件
CN109326665A (zh) * 2017-09-28 2019-02-12 长春永固科技有限公司 太阳能电池串、太阳能电池组件及其制备方法
CN112234113A (zh) * 2019-06-27 2021-01-15 苏州阿特斯阳光电力科技有限公司 光伏组件
CN110556442A (zh) * 2019-09-10 2019-12-10 常州时创能源科技有限公司 无主栅晶硅电池片及其应用
CN110783415A (zh) * 2019-11-07 2020-02-11 江苏辉伦太阳能科技有限公司 一种新型太阳能电池组件及其制备方法
CN111223962A (zh) * 2019-11-27 2020-06-02 浙江爱旭太阳能科技有限公司 一种新型光伏电池叠瓦组件的生产方法
CN113097316A (zh) * 2021-05-12 2021-07-09 通威太阳能(合肥)有限公司 一种叠瓦电池片、电池小片和叠瓦光伏组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220738A4 *

Also Published As

Publication number Publication date
AU2022271967A1 (en) 2023-06-29
CN113097316A (zh) 2021-07-09
US20240097059A1 (en) 2024-03-21
EP4220738A4 (en) 2024-05-22
EP4220738A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
WO2022237243A1 (zh) 一种叠瓦电池片、电池小片和叠瓦光伏组件
WO2018223868A1 (zh) 一种光伏太阳能电池片组件
CN212136454U (zh) 切片电池光伏组件
CN107910396B (zh) 一种双面单晶叠片光伏组件及其制造方法
CN113782624A (zh) 具有特殊前表面电极设计的太阳能电池
WO2017161692A1 (zh) 一种背接触工艺电池组件及其制作方法
US20120298171A1 (en) Solar cell
CN107706258A (zh) 一种电池片串联组件
US11973150B2 (en) Solar cell and solar cell module
WO2021013275A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN218677162U (zh) 一种太阳能电池串和光伏组件
JP2012019094A (ja) 太陽電池モジュール
EP4174959A1 (en) Electrode structure, solar cell, and photovoltaic module
CN107611212A (zh) 一种基于四等分切片的太阳能电池片及组件
CN207367985U (zh) 双面太阳能电池及太阳能电池模块
CN110649119B (zh) 一种基于晶硅的太阳能发电组件及其制备方法
CN109037364B (zh) 分片贯孔双面直连太阳能电池组件及制备方法
CN214477494U (zh) 一种光伏组件
CN215266315U (zh) 一种叠瓦电池片、电池小片和叠瓦光伏组件
CN109378348A (zh) 一种太阳能电池片及太阳能电池组件
WO2021013276A2 (zh) 电池片大片、太阳能电池片、叠瓦组件和制造方法
CN210837777U (zh) 一种光伏电池串和光伏组件
CN210897299U (zh) 条形电池片、太阳能电池片及光伏组件
CN111403499A (zh) 条形电池片、太阳能电池片、光伏组件及其制造方法
CN207869063U (zh) 竖版型光伏叠片组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022806220

Country of ref document: EP

Effective date: 20230428

WWE Wipo information: entry into national phase

Ref document number: 18255039

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022271967

Country of ref document: AU

Date of ref document: 20220129

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE