WO2022237150A1 - 磁鼓及具有其的磁编码器 - Google Patents

磁鼓及具有其的磁编码器 Download PDF

Info

Publication number
WO2022237150A1
WO2022237150A1 PCT/CN2021/137085 CN2021137085W WO2022237150A1 WO 2022237150 A1 WO2022237150 A1 WO 2022237150A1 CN 2021137085 W CN2021137085 W CN 2021137085W WO 2022237150 A1 WO2022237150 A1 WO 2022237150A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
ring wall
permanent magnet
ring
polarity
Prior art date
Application number
PCT/CN2021/137085
Other languages
English (en)
French (fr)
Inventor
成问好
王严
成沐阳
孟怀银
王昕�
Original Assignee
深圳市瑞达美磁业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瑞达美磁业有限公司 filed Critical 深圳市瑞达美磁业有限公司
Publication of WO2022237150A1 publication Critical patent/WO2022237150A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means

Definitions

  • the disclosure belongs to the technical field of magnetic encoder design, and in particular relates to a magnetic drum and a magnetic encoder with the same.
  • a magnetic encoder is an angle or displacement measuring device composed of a magnetoresistive sensor, a magnetic drum, and a signal processing circuit as its main components. Magnetic encoders are widely used in mechanical and electrical industries because of their small size, high precision, high resolution, no contact and no wear, high shock resistance, simple installation, long service life, and multiple interface forms.
  • the number of magnetic poles on the magnetic drum determines the resolution of the magnetic encoder.
  • the uniformity of the magnetic poles on the magnetic drum determines the quality of the output signal of the magnetic encoder.
  • the magnetic field strength and operating distance of the magnetic poles on the magnetic drum determine the structure of the magnetic encoder. and volume. In short, the magnetic drum has an important influence on the isotropic performance parameters of the magnetic encoder, and many performances of the magnetic drum are inseparable from the structure of the magnetic signal source on its circumference.
  • the drum of a magnetic encoder is mainly composed of a permanent magnet ring a as a magnetic signal source, a support ring b, and a rotating shaft c. If the permanent magnet ring on the outer circumference of the magnetic drum is expanded, its surface The arrangement of the magnetic poles is shown in Figure 2, and the cross-sectional magnetic pole structure of the permanent magnet on the outer circumference of the magnetic drum is shown in Figure 3.
  • the characteristics of the magnetic drum with this structure are: the source of the magnetic signal comes from the circumference of the magnetic drum N poles and S poles of permanent magnets distributed at intervals.
  • the disadvantages of the magnetic drum with this structure are: first, with the increase of the number of magnetic poles, the ratio of the magnetic field lines forming a closed loop between adjacent magnetic poles increases greatly, resulting in a rapid decrease in the working distance of the magnetic field, and the reluctance
  • the magnetic signal received by the sensor becomes weaker, which reduces the quality of the output signal of the magnetic encoder, and the number of magnetic poles on the magnetic drum has an important impact on the resolution of the magnetic encoder;
  • second the difference between the N pole and the S pole on the magnetic drum
  • There is a non-magnetic area in between, and the uniformity, width, and shape of the non-magnetic area directly determine the uniformity, width, and shape of the magnetic signal, and then determine the quality of the output signal of the magnetic encoder.
  • the uniformity of the magnetic signal source of the magnetic drum can only be controlled by magnetizing.
  • the manufacturing process of high-quality magnetic drum is very complicated, and the consistency is difficult to guarantee.
  • the purpose of the present disclosure is to overcome the above-mentioned shortcomings of the magnetic signal source on the magnetic drum commonly used at present.
  • the present disclosure provides a magnetic drum and a magnetic encoder having the same, so as to overcome the disadvantage of using a radially magnetized magnetic ring as the magnetic signal source of the magnetic encoder in the related art that the quality of the output signal is low.
  • the present disclosure provides a magnetic drum, including a permanent magnet magnetic ring body, the permanent magnet magnetic ring body includes an inner ring wall and an outer ring wall, and the inner ring wall has a single first polarity, so The outer ring wall has a single second polarity, the first polarity is opposite to the second polarity, the inner ring wall is coaxially arranged with the outer ring wall, the inner ring wall, the outer ring wall One of the walls is evenly provided with a plurality of protrusions around the axis of the permanent magnet ring body, and a recess is formed between any two adjacent protrusions.
  • the maximum circumferential width of the radial opening of the recess is L
  • the radial height of the protrusion is H
  • the magnetic drum further includes a support ring, an outer ring wall of the support ring is connected to the permanent magnet ring body, and an inner ring wall of the support ring is connected to the rotating shaft.
  • the shape of the protrusion is one of a rectangle, an isosceles trapezoid, an isosceles triangle, and an arc.
  • the permanent magnet ring body is a radiation-oriented magnetic ring or an isotropic magnetic ring with monopolar magnetization characteristics.
  • the radiation orientation magnetic ring is made of at least one of NdFeB, SmCo, AlNiCo, and ferrite permanent magnets; and/or, each of the unipolar magnetization features
  • the isotropic magnetic ring is formed by at least one of NdFeB and SmCo permanent magnets.
  • the present disclosure also provides a magnetic encoder, including the above-mentioned magnetic drum.
  • the disclosure provides a magnetic drum and its magnetic encoder.
  • the magnetic poles of the protrusions and depressions it has are the same (or Both are N poles or both are S poles), even if the width of the protrusion and the depression is very narrow, the magnetic field lines between the two will not form a closed loop, and the magnetic field strength of the protrusion will not weaken much.
  • the received magnetic signal will not be weakened a lot, which overcomes the currently commonly used magnetic drum with N poles and S poles arranged at intervals on the outer surface.
  • the permanent magnet magnetic ring body (such as a radiation orientation magnetic ring) with protrusions and depressions can be manufactured on the basis of radiation orientation magnetic rings by machining (such as laser cutting), so that the protrusions and depressions can be precisely controlled
  • the relative size of the part such as width, depth, height, shape
  • control the magnetic field parameters between the convex part and the concave part such as the difference in magnetic field strength, the strength of the magnetic signal, the shape of the magnetic signal, etc.
  • Fig. 1 is a schematic diagram of the internal structure of a magnetic drum in the prior art
  • Fig. 2 is the outer circumferential surface development diagram of the radially magnetized magnetic ring (multi-pole magnetic ring) adopted by the magnetic drum in the prior art;
  • Fig. 3 is a sectional view (radial section) of the radially magnetized magnetic ring (multipole magnetic ring) in Fig. 2;
  • Fig. 4 is a kind of structural representation of the permanent magnet magnetic ring body that the magnetic drum of the embodiment of the present disclosure has;
  • Fig. 5 is another schematic structural view of the permanent magnet magnetic ring body of the magnetic drum according to the embodiment of the present disclosure
  • Fig. 6 is the outer peripheral surface development view when the outer ring wall of the permanent magnet magnetic ring body in Fig. 4 is a single N pole;
  • Fig. 7 is the sectional view (radial section) of the permanent magnet magnetic ring body among Fig. 6;
  • Fig. 8 is the magnetic field waveform diagram of the outer surface of the magnetic drum (the magnetic poles alternate between N poles and S poles) using radially magnetized magnetic rings (multi-pole magnetic rings) in the prior art;
  • Fig. 9 is the magnetic field waveform diagram of the outer surface of the magnetic drum (the magnetic pole is a single magnetic pole S pole) adopting the permanent magnet magnetic ring body of the present disclosure;
  • Fig. 10 is another structural schematic view of the permanent magnet magnetic ring body of the magnetic drum according to the embodiment of the present disclosure.
  • a magnetic drum including a permanent magnet magnetic ring body 1 , the permanent magnet magnetic ring body 1 includes an inner ring wall 11 and an outer ring wall 12 ,
  • the inner ring wall 11 has a single first polarity
  • the outer ring wall 12 has a single second polarity
  • the first polarity is opposite to the second polarity (that is, when the first When the polarity is N pole, the second polarity is S pole, on the contrary, when the first polarity is S pole, the second polarity is N pole)
  • the inner ring wall 11 and The outer ring wall 12 is coaxially arranged, and one of the inner ring wall 11 and the outer ring wall 12 is evenly provided with a plurality of protrusions 13 around the axis of the permanent magnet magnetic ring body 1, and any adjacent A depression 14 is formed between the two protrusions 13 .
  • the inner ring wall 11 and the outer ring wall 12 of the permanent magnet ring body 1 in this technical solution respectively correspond to one of the N pole and the S pole in the magnetic poles.
  • the inner ring wall 11 is a single magnetic pole
  • the outer ring wall 12 is a single other magnetic pole.
  • the corresponding inner ring wall 11 is an S pole at this time.
  • the circumferential surface of the permanent magnet magnetic ring body 1 is expanded, and the arrangement of the magnetic poles on its outer surface is a single N pole as shown in Figure 6, and the corresponding permanent magnet magnetic ring body 1 of Figure 6 7, the upper side corresponds to the N pole with the concave-convex structure on the outer surface of the magnetic drum, and the lower side corresponds to the S pole on the inner surface of the magnetic drum.
  • the specific setting surfaces of the protruding portion 13 and the concave portion 14 depend on which of the inner ring wall 11 and the outer ring wall 12 is selected as the detection face, specifically, when the outer ring wall 12 as the detection surface (i.e.
  • the protrusions 13 and recesses 14 are arranged on the outer ring wall 12, on the contrary, when the inner ring wall 11 is used as the detection surface , the protruding portion 13 and the recessed portion 14 are arranged on the inner ring wall 11 .
  • the protruding part 13 and the concave part 14 magnetic poles it has are the same (or both are N poles or both are S poles) , even if the width of the protruding part 13 and the concave part 14 is very narrow, the magnetic field lines between the two will not form a closed loop, the magnetic field strength of the protruding part 13 will not weaken a lot, and the magnetic signal received by the magnetoresistive sensor will also be It will not weaken a lot, and it overcomes the currently commonly used magnetic drum with N poles and S poles arranged at intervals on the outer surface.
  • the radiation orientation magnetic ring (for example, the radiation orientation magnetic ring) of the protrusion 13 and the depression 14 can be manufactured on the basis of the radiation orientation magnetic ring by machining (such as laser cutting), so that the protrusion 13 and the depression can be precisely controlled.
  • the magnetic field parameters between the convex portion 13 and the concave portion 14 such as the difference in magnetic field strength, the strength of the magnetic signal, the shape of the magnetic signal, etc. ), so that the magnetic signal received by the magnetoresistive sensor in the magnetic encoder is no longer a simple N and S pole magnetic field strength signal, but a personalized magnetic signal that has been carefully edited and optimized, thereby creating a better quality Good magnetic encoders that can meet special testing needs.
  • FIG. 8 is the magnetic field waveform diagram of the outer surface of the magnetic drum that adopts the radially magnetized magnetic ring (multi-pole magnetic ring) in the prior art. It can be seen that the magnetic field on the magnetic drum surface is composed of N pole and S pole. They are respectively located at the upper and lower parts of the X-axis;
  • FIG. 9 is a magnetic field waveform diagram of the outer surface of the magnetic drum of the present disclosure. It can be seen that all the magnetic signals are below the X-axis, that is, the surface of the magnetic drum is all S poles.
  • the maximum circumferential width of the radial opening of the recessed portion 14 is L
  • the radial height of the protruding portion 13 is H
  • L>0.1H in some embodiments, L>0.5 H, to ensure that the difference in magnetic field intensity between the magnetic drum and the corresponding positions of the protruding portion 13 and the concave portion 14 can obtain the best detection resolution.
  • the magnetic drum can form a fixed connection with the corresponding rotating shaft through the inner ring wall 11 of the permanent magnet magnetic ring body 1, and in order to facilitate the connection between the permanent magnet magnetic ring body 1 and the rotating shaft, the magnetic drum also includes a support ring, the outer ring wall of the support ring is connected to the permanent magnet magnetic ring body 1, and the inner ring wall of the support ring is connected to the rotating shaft.
  • the inner ring wall of the support ring can be processed to form the necessary connection structure , such as a keyway (can be a spline, a flat key), which makes the removal of the magnetic drum more convenient.
  • corresponding protrusions and depressions may also be appropriately designed on the inner ring wall 11 and the outer ring wall 12 that are not used as detection surfaces.
  • the shape of the protrusion 13 is one of a rectangle, an isosceles trapezoid, an isosceles triangle, and an arc shape. It should be noted that, The specific shape of the protruding portion 13 is not particularly limited in the present disclosure, but no matter what specific shape it adopts, a plurality of the protruding portions 13 should be in the shape of the axis of the permanent magnet ring body 1. Central symmetric structure to meet the requirements of it as the magnetic signal source of the encoder.
  • the permanent magnet ring body 1 is a radiation-oriented magnetic ring or an isotropic magnetic ring with monopolar magnetization characteristics.
  • the radiation alignment magnetic ring is made of at least one of NdFeB, SmCo, AlNiCo, and ferrite, that is, the radiation alignment magnetic ring can be made of a single material, It can also be made of multiple materials.
  • the isotropic magnetic ring characterized by unipolar magnetization is made of at least one of NdFeB and SmCo permanent magnets.
  • a magnetic encoder including the above-mentioned magnetic drum. It can be understood that the magnetic encoder also includes the magnetoresistive sensor and the corresponding signal processing circuit board, this part is a conventional technology of the magnetic encoder, and will not be described here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种磁鼓及具有其的磁编码器,其中磁鼓,包括永磁体磁环本体(1),永磁体磁环本体(1)包括内环壁(11)、外环壁(12),内环壁(11)为单一的第一极性,外环壁(12)为单一的第二极性,第一极性与第二极性相反,内环壁(11)与外环壁(12)同轴设置,内环壁(11)、外环壁(12)中的一个上环绕永磁体磁环本体(1)的轴线均匀设有多个凸出部(13),任意相邻的两个凸出部(13)之间形成凹陷部(14)。避免了现有技术中相邻的磁极之间磁力线形成闭合回路的情况发生,提高了磁信号的强度,检测面不存在无磁区,使磁阻传感器接收的磁信号更加清晰明确,能够大幅提高磁编码器的输出信号的质量。

Description

磁鼓及具有其的磁编码器
本公开要求于2021年05月13日提交中国专利局、申请号为202110522321.8、发明名称为“磁鼓及具有其的磁编码器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于磁编码器设计技术领域,具体涉及一种磁鼓及具有其的磁编码器。
背景技术
磁编码器是一种以磁阻传感器、磁鼓、信号处理电路为主要组成部分构成的角度或者位移测量装置。磁编码器因为有体积小、精密度高、分辨度高、无接触无磨损、高抗震、安装简单、使用寿命长、接口形式多等众多优点,因而在机电等行业得到广泛应用。
磁鼓上磁极的个数决定着磁编码器的分辨率,磁鼓上磁极的均匀性决定着磁编码器输出信号的质量,磁鼓上磁极的磁场强度和作用距离决定着磁编码器的结构和体积。总之,磁鼓对磁编码器的各向性能参数有着及其重要的影响,而磁鼓的很多性能又与其圆周上的磁信号源的结构密不可分。
如图1所示,磁编码器的磁鼓主要由作为磁信号源的永磁体环a、支撑环b和旋转轴c等部分组成,如果将磁鼓外圆周面的永磁体环展开,其表面磁极的排列方式如图2所示出,而磁鼓外圆周面永磁体展开图的剖面磁极结构如图3所示,具有这种结构的磁鼓的特点是:磁信号源来自于磁鼓圆周上间隔分布的永磁体的N极和S极。这种结构的磁鼓的不足之处是:第一,随着磁极个数的增加,磁力线在相邻磁极之间形成闭合回路的比例大幅度增加,致使磁场的作用距离迅速减小,磁阻传感器接收到的磁信号变弱,使磁编码器的输出信号质量降低,而磁鼓上磁极的个数对磁编码器的分辨率有着重要影响;第二,磁鼓上N极和S极之间存在一个无磁区,无磁区均匀性、宽度、形状直接决定着磁信号的均匀 性、宽度和形状,进而决定着磁编码器输出信号的质量。目前磁鼓的磁信号源的均匀性只能通过充磁的方法进行控制,高质量磁鼓制作工艺很复杂,一致性难以保证。本公开的目的就是为了克服目前普遍应用的磁鼓上的磁信号源存在的前述不足。
公开内容
因此,本公开提供一种磁鼓及具有其的磁编码器,以克服相关技术中采用径向充磁磁环作为磁编码器的磁信号源存在输出信号质量较低的不足。
为了解决上述问题,本公开提供一种磁鼓,包括永磁体磁环本体,所述永磁体磁环本体包括内环壁、外环壁,所述内环壁为单一的第一极性,所述外环壁为单一的第二极性,所述第一极性与所述第二极性相反,所述内环壁与所述外环壁同轴设置,所述内环壁、外环壁中的一个上环绕所述永磁体磁环本体的轴线均匀设有多个凸出部,任意相邻的两个所述凸出部之间形成凹陷部。
在一些实施方式中,所述凹陷部的径向开口的最大周向宽度为L,所述凸出部的径向高度为H,L>0.1H。
在一些实施方式中,L>0.5H。
在一些实施方式中,所述磁鼓还包括支撑环,所述支撑环的外侧环壁连接所述永磁体磁环本体,所述支撑环的内侧环壁连接旋转轴。
在一些实施方式中,在所述永磁体磁环本体的任一径向平面上投影,所述凸出部的形状为矩形、等腰梯形、等腰三角形、圆弧形中的一种。
在一些实施方式中,所述永磁体磁环本体为辐射取向磁环或者单极充磁特征的各向同性磁环。
在一些实施方式中,所述辐射取向磁环采用钕铁硼、钐钴、铝镍钴、铁氧体永磁体中的至少一种制作形成;和/或,所述单极充磁特征的各向同性磁环采用钕铁硼、钐钴永磁体中的至少一种制作形成。
本公开还提供一种磁编码器,包括上述的磁鼓。
本公开提供的一种磁鼓及具有其的磁编码器,一方面,因为具有单一磁极的永磁体磁环本体作为磁鼓的磁信号源,其具有的凸出部、凹陷部磁极相同(或者同为N极或者同为S极),即使凸出部和凹陷部的宽度很窄,两者之间的磁力线也不会形成闭合回路,凸出部的磁场强度不会减弱很多,磁阻传感器接收到的磁信号也就不会减弱很多,也就克服了目前普遍使用的外表面N极和S极间隔排列的磁鼓上当磁极间隔很小的时候磁极间的磁力线形成闭合回路致 使磁阻传感器检测到的磁信号减弱很多的缺点;另一方面,凸出部处的磁场强度高、凹陷部处的磁场强度低,所述凸出部与凹陷部之间不存在目前普遍使用的磁鼓表面上存在的N极和S极之间的过渡区(无磁区),因而磁编码器中的磁阻传感器接收到的磁信号更加清晰明确,可极大提高磁编码器输出信号的质量;再一方面,具有凸出部以及凹陷部的永磁体磁环本体(例如辐射取向磁环)可以通过机械加工在辐射取向磁环的基础上制作(例如激光切割),因而可以精确控制凸出部以及凹陷部的相关尺寸(例如宽度、深度、高度、形状),进而控制凸出部以及凹陷部之间的磁场参数(例如磁场强度的差值、磁信号的强弱程度、磁信号的形状等),如此一来,磁编码器中的磁阻传感器接收到的磁信号不再是简单的N、S极磁场强度信号,而是经过精心编辑和优化的个性化磁信号,从而制造出质量更好、可满足特殊检测需要的磁编码器。
附图说明
图1为现有技术中磁鼓的内部结构示意图;
图2为现有技术中的磁鼓采用的径向充磁磁环(多极磁环)的外周面展开图;
图3为图2中的径向充磁磁环(多极磁环)的剖面图(径向剖面);
图4为本公开实施例的磁鼓具有的永磁体磁环本体的一种结构示意图;
图5为本公开实施例的磁鼓具有的永磁体磁环本体的另一种结构示意图;
图6为图4中的永磁体磁环本体的外环壁为单一N极时的外周面展开图;
图7为图6中的永磁体磁环本体的剖面图(径向剖面);
图8为现有技术中的采用径向充磁磁环(多极磁环)的磁鼓外表面(磁极为N极与S极交替)的磁场波形图;
图9为本公开的采用永磁体磁环本体的磁鼓外表面(磁极为单一磁极S极)的磁场波形图;
图10为本公开实施例的磁鼓具有的永磁体磁环本体的再一种结构示意图。
附图标记表示为:
1、永磁体磁环本体;11、内环壁;12、外环壁;13、凸出部;14、凹陷部。
具体实施方式
结合参见图1至图10所示,根据本公开的实施例,提供一种磁鼓,包括永磁体磁环本体1,所述永磁体磁环本体1包括内环壁11、外环壁12,所述内环壁11为单一的第一极性,所述外环壁12为单一的第二极性,所述第一极性与所述第二极性相反(也即当所述第一极性为N极时,所述第二极性为S极,相反的,当所述第一极性为S极时,所述第二极性为N极),所述内环壁11与所述外环壁12同轴设置,所述内环壁11、外环壁12中的一个上环绕所述永磁体磁环本体1的轴线均匀设有多个凸出部13,任意相邻的两个所述凸出部13之间形成凹陷部14。与现有技术中的多极磁环不同的是,该技术方案中的所述永磁体磁环本体1的内环壁11与外环壁12分别对应磁极中的N极、S极中的一个,也即,内环壁11为单一的一个磁极,外环壁12为单一的另一个磁极,假定外环壁12为N极时,此时对应的内环壁11则为S极,具体参见图6及图7所示,将永磁体磁环本体1的圆周面展开,其外表面磁极的排列方式如图6所示为单一的N极,而图6所对应的永磁体磁环本体1的剖面图为图7,其上侧对应为磁鼓的外表面为凹凸结构的N极,下侧对应为磁鼓的内表面为S极。可以理解的是,所述凸出部13、凹陷部14的具体设置面以所述内环壁11、外环壁12中谁被选择作为检测面为准,具体的,当所述外环壁12作为检测面时(也即与磁阻元件配对使用),所述凸出部13、凹陷部14被设置在所述外环壁12上,相反的,当所述内环壁11作为检测面时,所述凸出部13、凹陷部14则被设置在所述内环壁11上。
该技术方案中,一方面,因为具有单一磁极的辐射取向磁环作为磁鼓的磁信号源,其具有的凸出部13、凹陷部14磁极相同(或者同为N极或者同为S极),即使凸出部13和凹陷部14的宽度很窄,两者之间的磁力线也不会形成闭合回路,凸出部13的磁场强度不会减弱很多,磁阻传感器接收到的磁信号也就不会减弱很多,也就克服了目前普遍使用的外表面N极和S极间隔排列的磁鼓上当磁极间隔很小的时候磁极间的磁力线形成闭合回路致使磁阻传感器检测到的磁信号减弱很多的缺点;另一方面,凸出部13处的磁场强度高、凹陷部14处的磁场强度低,所述凸出部13与凹陷部14之间不存在目前普遍使用的磁鼓表面上存在的N极和S极之间的过渡区(无磁区),因而磁编码器中的磁阻传感器接收到的磁信号更加清晰明确,可极大提高磁编码器输出信号的质量;再一方面,具有凸出部13以及凹陷部14的辐射取向磁环(例如辐射取向磁环)可以通过机械加工在辐射取向磁环的基础上制作(例如激光切割),因而可以精确控制凸出部13以及凹陷部14的相关尺寸(例如宽度、深度、高 度、形状),进而控制凸出部13以及凹陷部14之间的磁场参数(例如磁场强度的差值、磁信号的强弱程度、磁信号的形状等),如此一来,磁编码器中的磁阻传感器接收到的磁信号不再是简单的N、S极磁场强度信号,而是经过精心编辑和优化的个性化磁信号,从而制造出质量更好、可满足特殊检测需要的磁编码器。
图8为现有技术中的采用径向充磁磁环(多极磁环)的磁鼓外表面的磁场波形图,可以看出,磁鼓表面的磁场由N极和S极两部分构成,分别位于X轴的上下部分;图9为本公开的磁鼓外表面的磁场波形图,可以看出,磁信号全部在X轴的下方,即磁鼓的表面都是S极。
在一些实施方式中,所述凹陷部14的径向开口的最大周向宽度为L,所述凸出部13的径向高度为H,L>0.1H,在一些实施方式中,L>0.5H,以保证所述磁鼓与所述凸出部13、凹陷部14对应位置的磁场强度差值能够获得最佳检测分辨率。
所述磁鼓可以通过所述永磁体磁环本体1的内环壁11与相应的转轴形成固定连接,而为了便于所述永磁体磁环本体1与转轴的连接,所述磁鼓还包括支撑环,所述支撑环的外侧环壁连接所述永磁体磁环本体1,所述支撑环的内侧环壁连接旋转轴,此时,所述支撑环的内侧环壁可以加工形成必要的连接结构,例如键槽(可以为花键、平键),使磁鼓拆卸更加方便。
在一些情况下,所述内环壁11、外环壁12中的不作为检测面的环壁上也可以适当地设计相应的凸出部以及凹陷部。
在所述永磁体磁环本体1的任一径向平面上投影,所述凸出部13的形状为矩形、等腰梯形、等腰三角形、圆弧形中的一种,需要说明的是,所述凸出部13的具体形状本公开不做特别限定,但其无论是采用何种具体的形状,多个所述凸出部13皆应该关于所述永磁体磁环本体1的轴心呈中心对称结构,以满足其作为编码器的磁信号源的需求。
在一些实施方式中,所述永磁体磁环本体1为辐射取向磁环或者单极充磁特征的各向同性磁环。
在一些实施方式中,所述辐射取向磁环采用钕铁硼、钐钴、铝镍钴、铁氧体中的至少一种制作形成,也即所述辐射取向磁环可以为单一的材料制作,亦可以采用多种材料复合而成。所述单极充磁特征的各向同性磁环采用钕铁硼、钐钴永磁体中的至少一种制作形成。
根据本公开的实施例,还提供一种磁编码器,包括上述的磁鼓。可以理解 的,所述磁编码器还包括所述磁阻传感器以及相应的信号处理电路板,此部分作为磁编码器的常规技术,此处不做赘述。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (8)

  1. 一种磁鼓,包括永磁体磁环本体(1),其特征在于,所述永磁体磁环本体(1)包括内环壁(11)、外环壁(12),所述内环壁(11)为单一的第一极性,所述外环壁(12)为单一的第二极性,所述第一极性与所述第二极性相反,所述内环壁(11)与所述外环壁(12)同轴设置,所述内环壁(11)、外环壁(12)中的一个上环绕所述永磁体磁环本体(1)的轴线均匀设有多个凸出部(13),任意相邻的两个所述凸出部(13)之间形成凹陷部(14)。
  2. 根据权利要求1所述的磁鼓,其特征在于,所述凹陷部(14)的径向开口的最大周向宽度为L,所述凸出部(13)的径向高度为H,L>0.1H。
  3. 根据权利要求2所述的磁鼓,其特征在于,L>0.5H。
  4. 根据权利要求1所述的磁鼓,其特征在于,还包括支撑环,所述支撑环的外侧环壁连接所述永磁体磁环本体(1),所述支撑环的内侧环壁连接旋转轴。
  5. 根据权利要求1所述的磁鼓,其特征在于,在所述永磁体磁环本体(1)的任一径向平面上投影,所述凸出部(13)的形状为矩形、等腰梯形、等腰三角形、圆弧形中的一种。
  6. 根据权利要求1所述的磁鼓,其特征在于,所述永磁体磁环本体(1)为辐射取向磁环或者单极充磁特征的各向同性磁环。
  7. 根据权利要求6所述的磁鼓,其特征在于,所述辐射取向磁环采用钕铁硼、钐钴、铝镍钴、铁氧体永磁体中的至少一种制作形成;和/或,所述单极充磁特征的各向同性磁环采用钕铁硼、钐钴永磁体中的至少一种制作形成。
  8. 一种磁编码器,包括磁鼓,其特征在于,所述磁鼓为权利要求1至7中任一项所述的磁鼓。
PCT/CN2021/137085 2021-05-13 2021-12-10 磁鼓及具有其的磁编码器 WO2022237150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110522321.8 2021-05-13
CN202110522321.8A CN113155158A (zh) 2021-05-13 2021-05-13 磁鼓及具有其的磁编码器

Publications (1)

Publication Number Publication Date
WO2022237150A1 true WO2022237150A1 (zh) 2022-11-17

Family

ID=76874842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137085 WO2022237150A1 (zh) 2021-05-13 2021-12-10 磁鼓及具有其的磁编码器

Country Status (2)

Country Link
CN (1) CN113155158A (zh)
WO (1) WO2022237150A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155158A (zh) * 2021-05-13 2021-07-23 深圳市瑞达美磁业有限公司 磁鼓及具有其的磁编码器
CN113776563A (zh) * 2021-09-17 2021-12-10 深圳市瑞达美磁业有限公司 磁鼓及具有其的磁编码器
CN114111848A (zh) * 2021-11-11 2022-03-01 深圳市瑞达美磁业有限公司 磁编码器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292275A (ja) * 2007-05-24 2008-12-04 Nsk Ltd 転がり軸受ユニット用荷重測定装置
CN101964236A (zh) * 2009-07-21 2011-02-02 中国科学院宁波材料技术与工程研究所 一种多极磁环的制造方法
CN104374412A (zh) * 2014-11-14 2015-02-25 陆丕清 一种用于磁感应齿轮编码器的磁场结构
JP2015132496A (ja) * 2014-01-10 2015-07-23 セイコーエプソン株式会社 磁気式エンコーダー、電気機械装置、移動体およびロボット
CN107328016A (zh) * 2017-05-31 2017-11-07 广东美的制冷设备有限公司 空调器以及空调器中运动部件的检测控制装置和方法
CN113155158A (zh) * 2021-05-13 2021-07-23 深圳市瑞达美磁业有限公司 磁鼓及具有其的磁编码器
CN215064570U (zh) * 2021-05-13 2021-12-07 深圳市瑞达美磁业有限公司 磁鼓及具有其的磁编码器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292275A (ja) * 2007-05-24 2008-12-04 Nsk Ltd 転がり軸受ユニット用荷重測定装置
CN101964236A (zh) * 2009-07-21 2011-02-02 中国科学院宁波材料技术与工程研究所 一种多极磁环的制造方法
JP2015132496A (ja) * 2014-01-10 2015-07-23 セイコーエプソン株式会社 磁気式エンコーダー、電気機械装置、移動体およびロボット
CN104374412A (zh) * 2014-11-14 2015-02-25 陆丕清 一种用于磁感应齿轮编码器的磁场结构
CN107328016A (zh) * 2017-05-31 2017-11-07 广东美的制冷设备有限公司 空调器以及空调器中运动部件的检测控制装置和方法
CN113155158A (zh) * 2021-05-13 2021-07-23 深圳市瑞达美磁业有限公司 磁鼓及具有其的磁编码器
CN215064570U (zh) * 2021-05-13 2021-12-07 深圳市瑞达美磁业有限公司 磁鼓及具有其的磁编码器

Also Published As

Publication number Publication date
CN113155158A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022237150A1 (zh) 磁鼓及具有其的磁编码器
CN215064570U (zh) 磁鼓及具有其的磁编码器
US6501265B2 (en) Angular position detection device having linear output characteristics
JP5340904B2 (ja) 永久磁石を用いた電気モーター用回転子
CN101090022B (zh) 一种避免异常磁化的强磁场永磁机构
CN101828408A (zh) 用于无铁电动扬声器电动机的磁结构、电动机和扬声器
US8405388B2 (en) Rotation angle sensor having a permanent magnet deviated from a center of a rotation shaft
CN216283555U (zh) 磁鼓及具有其的磁编码器
CN107994704B (zh) 电机转子和永磁电机
MY129046A (en) Driving apparatus, light-amount regulating apparatus, and lens driving apparatus
MY122975A (en) Driving apparatus, light-amount regulating apparatus, and lens driving apparatus
JP2003348786A (ja) 小型モータ
JP2009247041A (ja) 回転機
WO2023040085A1 (zh) 磁鼓及具有其的磁编码器
JP2012010571A (ja) 回転電機用磁石ロータ及びその製造方法並びにインナーロータ型モータ
JP4304869B2 (ja) 磁気式エンコーダ
KR100585578B1 (ko) 마그네트론 스퍼터링 장치
WO2023082392A1 (zh) 磁编码器
JP2003017323A (ja) 着磁ヨーク
CN215893642U (zh) 磁鼓及具有其的磁编码器
JP2536297Y2 (ja) スパッタリング装置用磁気回路
CN213023519U (zh) 一种磁场感应装置
CN216216150U (zh) 一种转子磁铁组合件
JP2002199669A (ja) 永久磁石の着磁方法
RU2190856C1 (ru) Датчик скорости вращения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18557012

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941712

Country of ref document: EP

Kind code of ref document: A1