WO2022234957A1 - 딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법 - Google Patents

딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법 Download PDF

Info

Publication number
WO2022234957A1
WO2022234957A1 PCT/KR2022/004811 KR2022004811W WO2022234957A1 WO 2022234957 A1 WO2022234957 A1 WO 2022234957A1 KR 2022004811 W KR2022004811 W KR 2022004811W WO 2022234957 A1 WO2022234957 A1 WO 2022234957A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
defect
learning
difference
calculating
Prior art date
Application number
PCT/KR2022/004811
Other languages
English (en)
French (fr)
Inventor
하종문
최원재
승홍민
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to US17/776,909 priority Critical patent/US20240053302A1/en
Publication of WO2022234957A1 publication Critical patent/WO2022234957A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4481Neural networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/449Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0455Auto-encoder networks; Encoder-decoder networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to an ultrasonic non-destructive inspection method and system using deep learning and an autoencoder-based predictive model learning method used therein. It relates to an ultrasonic non-destructive inspection method and system capable of extracting and analyzing a defect signal even when it interferes with (initial pulse) or a reflected signal by the surface of an inspection object, and an auto-encoder-based predictive model learning method used therein.
  • NDT Non-destructive testing
  • Ultrasonic inspection is a commonly used quality evaluation method because the size of the equipment is relatively small, so it is not affected by the installation and measurement location, and there is no risk of radiation exposure.
  • an ultrasonic scanner In ultrasonic non-destructive testing, an ultrasonic scanner is used to radiate ultrasonic waves to an object to be inspected. At this time, the ultrasonic signal emitted from the ultrasonic scanner is reflected from defects such as bubbles or cracks existing on the back or inside of the object to be inspected and returned to the ultrasonic scanner. It is said
  • the ultrasonic signal includes an initial pulse that reflects the characteristics of the sensor, an echo signal that is primarily reflected from the surface of an object, a defect echo signal that is reflected from an internal defect, and a back echo signal that is reflected from the back of the object.
  • an initial pulse and an echo signal primarily reflected from the surface overlap a lot, it can be collectively referred to as an initial pulse.
  • Japanese Patent Application Laid-Open No. 2021-032754 (ultrasonic inspection apparatus and ultrasonic inspection method) compares the signal measured from the inspection object without defects with the signal measured from the inspection object for the purpose of inspection to analyze the defect.
  • a residual-based analysis method is disclosed.
  • the present invention provides an ultrasonic non-destructive inspection method and system using deep learning that can extract and analyze only a defect signal by accurately removing an initial pulse from an echo signal measured from an inspection object, and an auto encoder used therein It aims to provide a method for learning a predictive model based on
  • a method for learning an auto-encoder-based predictive model used in an ultrasonic non-destructive inspection method using deep learning is provided.
  • An auto-encoder-based predictive model learning method includes an ultrasonic signal acquisition step of transmitting an ultrasonic wave to an inspection object without defects, and receiving an ultrasonic wave reflected from the inspection object to acquire a normal signal; It may include a predictive model learning step of learning the predictive model in a manner that minimizes the loss function according to Equation 1 using the normal signal.
  • silver measurement signal is a learning parameter.
  • the auto-encoder-based predictive model learning method includes a hypothetical signal for a part without a defect and a defect signal for a part with a defect by transmitting and receiving ultrasound from a defective inspection object.
  • the ultrasonic signal re-acquisition step of acquiring a re-measurement signal, the hypothetical signal extraction step of extracting only the hypothetical signal from the re-measured signal, and the normal signal and the hypothetical signal are used to minimize the loss function according to Equation 2 below It may further include a predictive model re-learning step of re-learning the predictive model in such a way.
  • silver measurement signal is the re-measurement signal, , is a re-learning parameter.
  • the step of extracting the hypothetical signal includes averaging the absolute value of the difference between the normal signal and the re-measured signal to calculate the degree of anomaly (MAD).
  • the method may further include a determination step, wherein the degree of abnormality indicates a degree of inconsistency compared with the normal signal.
  • an ultrasonic non-destructive inspection method using deep learning is provided.
  • an ultrasonic signal acquisition step of transmitting an ultrasonic wave to an inspection object and receiving an ultrasonic wave reflected from the inspection object to obtain a measurement signal;
  • a reference signal prediction step of predicting a reference signal expected to be measured on an inspection object without defects by inputting it into an autoencoder-based prediction model, and calculating a difference signal that is an absolute value of the difference between the measured signal and the reference signal It may include a differential signal calculating step and a defect analysis step of analyzing the differential signal to analyze the information on the defect existing in the inspection object.
  • the difference signal calculating step includes an average calculating step of calculating an average of the difference signals and multiplying the difference signal by the average of the difference signals to obtain the difference
  • the method may further include a scaling step of scaling the signal.
  • the defect analysis step includes an average and propagation time calculation step of calculating an average and time-of-flight (TOF) from the difference signal. , a defect detection step of determining whether there is a defect in the inspection object using the distribution of the average, and a defect depth calculation step of calculating the depth of the defect using the propagation time.
  • TOF time-of-flight
  • a computer-readable recording medium in which a program for implementing the above-described method is recorded is provided.
  • an ultrasonic non-destructive inspection system using deep learning is provided.
  • An ultrasonic non-destructive inspection system using deep learning is an ultrasonic scanner that moves in the longitudinal direction of an inspection object and transmits and receives ultrasound to the inspection object to obtain a measurement signal, and receives the measurement signal to detect defects
  • An auto-encoder-based prediction model that predicts a reference signal expected to be measured in an object to be measured without an auto-encoder, calculates a difference signal that is an absolute value of the difference between the measurement signal and the reference signal, and analyzes the difference signal to give the test object It may include a control unit for analyzing information about the existing defect.
  • the predictive model is learned in a way that minimizes the loss function according to the following Equation 1 using only the normal signal obtained from the inspection object without defects.
  • Equation 1 the loss function according to the following Equation 1 using only the normal signal obtained from the inspection object without defects.
  • silver measurement signal is a learning parameter.
  • the predictive model extracts a hypothetical signal for a non-defective part from a re-measurement signal obtained from a defective inspection object, and the assumption It may be characterized in that the re-learning is performed in a manner that minimizes the loss function according to Equation 2 below using the phase signal.
  • silver measurement signal is the re-measurement signal, , is a re-learning parameter.
  • the hypothetical signal uses the distribution of the degree of anomaly (MAD) calculated by averaging the absolute values of the difference between the normal signal and the re-measured signal.
  • MID degree of anomaly
  • control unit calculates an average of the difference signal
  • a scaling unit for adjusting the magnitude of the difference signal by multiplying the difference signal by the average.
  • control unit calculates an average of the difference signals, and uses the distribution of the average to determine whether there is a defect in the inspection object.
  • the method may further include a detection unit and a defect depth calculator configured to calculate a time-of-flight (TOF) from the differential signal and calculate the depth of the defect using the propagation time.
  • TOF time-of-flight
  • 1 is a schematic diagram of a signal obtained through a conventional ultrasonic non-destructive test.
  • FIG. 2 is a flowchart of a method for learning a predictive model based on an auto-encoder according to an embodiment of the present invention.
  • FIG. 3(a) is a diagram illustrating an ultrasound signal acquisition step in an auto-encoder-based predictive model learning method according to an embodiment of the present invention
  • FIG. 3(b) schematically illustrates a predictive model learning step.
  • FIG. 4 is a flowchart of a method for learning a predictive model based on an auto-encoder according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a process of a method for learning a predictive model based on an auto-encoder according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of the hypothetical signal extraction step of the auto-encoder-based predictive model learning method according to another embodiment of the present invention.
  • FIG. 7 is a histogram of the anomaly degree (MAD) distribution calculated in the anomaly degree calculation step according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of an ultrasonic non-destructive inspection method using deep learning according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an ultrasonic non-destructive inspection method using deep learning according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a differential signal calculation step of an ultrasonic non-destructive inspection method using deep learning according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a defect analysis step of an ultrasonic non-destructive inspection method using deep learning according to an embodiment of the present invention.
  • Fig. 12 (a) is a histogram of the average distribution of the difference signal calculated in the defect analysis step
  • Fig. 12 (b) is an exemplary diagram of calculating the average and propagation time from the difference signal.
  • FIG. 13 is a block diagram of an ultrasonic non-destructive inspection system using deep learning according to an embodiment of the present invention.
  • a method for learning an auto-encoder-based predictive model used in an ultrasonic non-destructive inspection method using deep learning is provided.
  • An auto-encoder-based predictive model learning method includes an ultrasonic signal acquisition step of transmitting an ultrasonic wave to an inspection object without defects, and receiving an ultrasonic wave reflected from the inspection object to acquire a normal signal; It may include a predictive model learning step of learning the predictive model in a manner that minimizes the loss function according to Equation 1 using the normal signal.
  • silver measurement signal is a learning parameter.
  • the auto-encoder-based predictive model learning method includes a hypothetical signal for a part without a defect and a defect signal for a part with a defect by transmitting and receiving ultrasound from a defective inspection object.
  • the ultrasonic signal re-acquisition step of acquiring a re-measurement signal, the hypothetical signal extraction step of extracting only the hypothetical signal from the re-measured signal, and the normal signal and the hypothetical signal are used to minimize the loss function according to Equation 2 below It may further include a predictive model re-learning step of re-learning the predictive model in such a way.
  • silver measurement signal is the re-measurement signal, , is a re-learning parameter.
  • the step of extracting the hypothetical signal includes averaging the absolute value of the difference between the normal signal and the re-measured signal to calculate the degree of anomaly (MAD).
  • the method may further include a determination step, wherein the degree of abnormality indicates a degree of inconsistency compared with the normal signal.
  • an ultrasonic non-destructive inspection method using deep learning is provided.
  • an ultrasonic signal acquisition step of transmitting an ultrasonic wave to an inspection object and receiving an ultrasonic wave reflected from the inspection object to obtain a measurement signal;
  • a reference signal prediction step of predicting a reference signal expected to be measured on an inspection object without defects by inputting it into an autoencoder-based prediction model, and calculating a difference signal that is an absolute value of the difference between the measured signal and the reference signal It may include a differential signal calculating step and a defect analysis step of analyzing the differential signal to analyze the information on the defect existing in the inspection object.
  • the difference signal calculating step includes an average calculating step of calculating an average of the difference signals and multiplying the difference signal by the average of the difference signals to obtain the difference
  • the method may further include a scaling step of scaling the signal.
  • the defect analysis step includes an average and propagation time calculation step of calculating an average and time-of-flight (TOF) from the difference signal. , a defect detection step of determining whether there is a defect in the inspection object using the distribution of the average, and a defect depth calculation step of calculating the depth of the defect using the propagation time.
  • TOF time-of-flight
  • a computer-readable recording medium in which a program for implementing the above-described method is recorded is provided.
  • an ultrasonic non-destructive inspection system using deep learning is provided.
  • An ultrasonic non-destructive inspection system using deep learning is an ultrasonic scanner that moves in the longitudinal direction of an inspection object and transmits and receives ultrasound to the inspection object to obtain a measurement signal, and receives the measurement signal to detect defects
  • An auto-encoder-based prediction model that predicts a reference signal expected to be measured in an object to be measured without an auto-encoder, calculates a difference signal that is an absolute value of the difference between the measurement signal and the reference signal, and analyzes the difference signal to give the test object It may include a control unit for analyzing information about the existing defect.
  • the predictive model is learned in a way that minimizes the loss function according to the following Equation 1 using only the normal signal obtained from the inspection object without defects.
  • Equation 1 the loss function according to the following Equation 1 using only the normal signal obtained from the inspection object without defects.
  • silver measurement signal is a learning parameter.
  • the predictive model extracts a hypothetical signal for a non-defective part from a re-measurement signal obtained from a defective inspection object, and the assumption It may be characterized in that the re-learning is performed in a manner that minimizes the loss function according to Equation 2 below using the phase signal.
  • silver measurement signal is the re-measurement signal, , is a re-learning parameter.
  • the hypothetical signal uses the distribution of the degree of anomaly (MAD) calculated by averaging the absolute values of the difference between the normal signal and the re-measured signal.
  • MID degree of anomaly
  • control unit calculates an average of the difference signal
  • a scaling unit for adjusting the magnitude of the difference signal by multiplying the difference signal by the average.
  • control unit calculates an average of the difference signals, and uses the distribution of the average to determine whether there is a defect in the inspection object.
  • the method may further include a detection unit and a defect depth calculator configured to calculate a time-of-flight (TOF) from the differential signal and calculate the depth of the defect using the propagation time.
  • TOF time-of-flight
  • FIG. 2 is a flowchart of a method for learning the predictive model 200 based on an auto-encoder according to an embodiment of the present invention.
  • Figure 3 (a) is a diagram of the ultrasonic signal acquisition step (S110) in the auto-encoder-based predictive model 200 learning method according to an embodiment of the present invention
  • Figure 3 (b) is a schematic diagram of the predictive model learning step (S120), respectively did it
  • Autoencoder is a type of Artificial Neural Network (ANN) composed of two networks, an encoder and a decoder.
  • the encoder compresses the input signal into a latent variable, and the decoder reconstructs the input signal from the compressed latent variable.
  • the encoder and the decoder may be implemented by Equations 1 and 2, respectively.
  • a single-layer auto-encoder may be used for simple and rapid implementation.
  • the ultrasonic non-destructive inspection method using deep learning may include an ultrasonic signal acquisition step ( S110 ) and a predictive model learning step ( S120 ).
  • the ultrasonic scanner 100 transmits an ultrasonic wave to an inspection object having no defects, and receives the reflected ultrasonic wave from the inspection object to obtain a normal signal. acquire
  • the predictive model 200 is trained in a manner that minimizes the loss function according to Equation 3 below using a normal signal.
  • Fig. 3(b) This is the reference signal predicted by the prediction model 200 .
  • silver measurement signal is a learning parameter.
  • FIG. 4 is a flowchart of a method for learning the predictive model 200 based on an auto encoder according to another embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a process of a method for learning an auto-encoder-based predictive model 200 according to another embodiment of the present invention.
  • the auto encoder-based predictive model 200 learning method includes an ultrasound signal acquisition step (S110), a predictive model learning step (S120), and an ultrasound signal re-acquisition It is configured to include a step (S130), a hypothetical signal extraction step (S140) and a predictive model re-learning step (S150).
  • the learning method of the prediction model 200 and the ultrasonic signal acquisition step ( S110 ) are the same as those described with reference to FIGS. 2 to 3 .
  • the ultrasonic scanner 100 transmits and receives ultrasonic waves from a defective inspection object, a hypothetical signal for a non-defective part and a defective Acquire the re-measurement signal including the defect signal for the part.
  • the predictive model 200 is retrained in a manner that minimizes the loss function according to Equation 4 below using a normal signal and a hypothetical signal. learn
  • silver measurement signal is the re-measurement signal, , is a re-learning parameter.
  • FIG. 6 is a flowchart of the hypothetical signal extraction step (S140) of the auto-encoder-based predictive model 200 learning method according to another embodiment of the present invention.
  • FIG. 7 is a histogram of the distribution of the degree of anomaly (MAD) calculated in the step of calculating the degree of anomaly ( S131 ) according to another embodiment of the present invention.
  • the hypothetical signal extraction step (S140) of the auto-encoder-based predictive model 200 learning method includes an anomaly level calculation step (S131) and a threshold value calculation step (S132). ) and a hypothetical signal determination step (S133).
  • the control unit 300 calculates an abnormality degree (MAD, Mean Absolute Difference) by averaging the absolute values of the difference between the normal signal and the re-measured signal.
  • the degree of abnormality indicates the degree of discrepancy compared with the normal signal.
  • the control unit 300 calculates a threshold value according to Equation 5 below by using the distribution of the degree of abnormality.
  • the controller 300 determines the hypothetical signal.
  • the normal signal When the normal signal is subtracted from the defective signal measured at the defective part, the signal reflected from the defect is included, so it has a relatively large degree of anomaly (MAD), whereas the hypothetical signal measured at the non-defective part When the normal signal is subtracted from , all signals except for the error will be removed, so it has a relatively small degree of anomaly (MAD).
  • MAD degree of anomaly
  • FIG. 8 is a flowchart of an ultrasonic non-destructive inspection method using deep learning according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of an ultrasonic non-destructive inspection method using deep learning according to an embodiment of the present invention.
  • the ultrasonic non-destructive inspection method using deep learning includes an ultrasonic signal acquisition step (S210), a reference signal prediction step (S220), a differential signal calculation step (S230) and It is configured to include a defect analysis step (S240).
  • the ultrasonic scanner 100 transmits an ultrasonic wave to the test object and receives the reflected ultrasonic wave from the test object to obtain a measurement signal.
  • control unit 300 inputs the measurement signal to the autoencoder-based prediction model 200 to predict the reference signal expected to be measured in the inspection object without defects.
  • the control unit 300 calculates a difference signal that is an absolute value of the difference between the measurement signal and the reference signal.
  • the control unit 300 analyzes the difference signal to analyze information on defects present in the inspection object.
  • 10 is a flowchart of the differential signal calculating step (S230) of the ultrasonic non-destructive inspection method using deep learning according to an embodiment of the present invention.
  • the differential signal calculation step S230 may further include an average calculation step S231 and a scaling step S232. have.
  • the scaling unit 310 calculates an average of the difference signals.
  • the scaling unit 310 multiplies the difference signal by the average to scale the difference signal.
  • FIG. 11 is a flowchart of the defect analysis step (S240) of the ultrasonic non-destructive inspection method using deep learning according to an embodiment of the present invention
  • FIG. 12 (a) is the average distribution of the difference signal calculated in the defect analysis step (S240).
  • FIG. 12(b) is an exemplary diagram of calculating the mean (MAD) and propagation time (TOF) from the differential signal.
  • the defect analysis step S240 includes the average and propagation time calculation step S241, the defect detection step S242, and the defect depth calculation. It may be configured to further include a step (S243).
  • the defect detection unit 320 and the defect depth calculation unit 330 calculate an average and time-of-flight (TOF) from the difference signal, respectively.
  • TOF time-of-flight
  • the defect detection unit 320 determines whether there is a defect in the inspection object using the distribution of the average.
  • the differential signal is obtained by subtracting the reference signal from the measurement signal, if a specific signal remains in the differential signal, this will mean a signal caused by a defect. Accordingly, the average (MAD) of the differential signal may include information about the size or strength of the defect.
  • the average of the difference signals is greater than the threshold value, it may be determined that there is a defect. This is because if there is a defect, the signal reflected by the defect will remain in the differential signal.
  • the defect depth calculation step ( S243 ) may further include a defect depth calculation step ( S243 ) of calculating the depth of the defect using the propagation time (TOF).
  • the propagation time means the time required for the ultrasonic wave to propagate from the ultrasonic scanner 100 into the inspection object and return to the ultrasonic scanner 100, and the longer the propagation time, the farther away the defect is from the surface.
  • the present invention may provide a computer-readable recording medium for implementing the method of FIGS. 1 to 12 as a program.
  • the above-described method can be written as a program that can be executed on a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable medium.
  • the structure of the data used in the above method may be recorded in a computer-readable medium through various means.
  • a recording medium for recording an executable computer program or code for performing various methods of the present invention should not be construed as including temporary objects such as carrier waves or signals.
  • the computer-readable medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optically readable medium (eg, a CD-ROM, a DVD, etc.).
  • FIG. 13 is a block diagram of an ultrasonic non-destructive inspection system using deep learning according to an embodiment of the present invention.
  • the ultrasonic non-destructive inspection system using deep learning moves in the longitudinal direction of an inspection object and transmits and receives ultrasound to the inspection object to obtain a measurement signal ( 100 ) , an auto-encoder-based prediction model 200 that receives the measurement signal and predicts a reference signal expected to be measured in a defect-free inspection object, and calculates a difference signal that is an absolute value of the difference between the measurement signal and the reference signal and a control unit 300 that analyzes the difference signal to analyze information on defects present in the inspection object.
  • the predictive model 200 may be characterized in that it is learned in a manner that minimizes the loss function according to Equation 6 below using only the normal signal obtained from the inspection object having no defects.
  • silver measurement signal is a learning parameter.
  • the predictive model 200 extracts a hypothetical signal for a non-defective part from a re-measurement signal obtained from a defective inspection object, and uses the hypothetical signal to obtain a loss according to Equation 7 below. It may be characterized in that the function is retrained in a way that minimizes it.
  • silver measurement signal is the re-measurement signal, , is a re-learning parameter.
  • the hypothetical signal is smaller than the threshold value calculated according to Equation 8 using the distribution of the degree of anomaly (MAD) calculated by averaging the absolute values of the difference between the normal signal and the re-measured signal.
  • the degree of abnormality may be characterized in that it represents a degree of discrepancy compared with the normal signal.
  • the controller 300 may further include a scaling unit 310 that calculates an average of the difference signal and adjusts the magnitude of the difference signal by multiplying the difference signal by the average.
  • control unit 300 calculates the average of the difference signals, and uses the distribution of the averages to determine whether there is a defect in the inspection object and the defect detection unit 320 from the difference signal to the propagation time (TOF, time). -of-flight) and may further include a defect depth calculator 330 for calculating the depth of the defect using the propagation time.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Acoustics & Sound (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

본 발명은 결함에 의한 반사신호가 초음파 트랜스듀서가 갖는 고유의 초기 펄스(initial pulse) 또는 검사 대상물의 표면에 의한 반사신호와 간섭되는 경우에도 결함신호를 추출 및 분석할 수 있는 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법에 관한 것이다. 본 발명에 따른 딥러닝을 이용한 초음파 비파괴 검사방법은 검사 대상물로 초음파를 송신하고 검사 대상물에서 반사된 초음파를 수신하여 측정신호를 획득하는 초음파 신호 획득단계, 측정신호를 오토 인코더기반의 예측모델에 입력하여 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측하는 기준신호 예측단계, 측정신호와 기준신호의 차이의 절대값인 차분신호를 산출하는 차분신호 산출단계 및 차분신호를 분석하여 검사 대상물에 존재하는 결함에 대한 정보를 분석하는 결함분석단계를 포함할 수 있다. 본 발명에 따르면, 초기 신호와의 간섭에도 불구하고 검사 대상물의 표면에 존재하는 결함을 분석할 수 있다는 이점이 있다.

Description

딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법
본 발명은 딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더(Autoencoder) 기반의 예측모델 학습방법에 관한 것으로, 더욱 상세하게는 결함에 의한 반사신호가 초음파 스캐너의 특성에 의한 초기 펄(initial pulse) 또는 검사 대상물의 표면에 의한 반사신호와 간섭되는 경우에도 결함신호를 추출 및 분석할 수 있는 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법에 관한 것이다.
산업 현장에서 생산된 부품 등의 품질을 평가하기 위한 방법으로 비파괴 검사(Non-Destructive Test, NDT)가 보편화되고 있다. 이는 방사선(radiation) 투과 검사 및 초음파(Ultrasonic) 탐상 검사 등으로 분류된다.
초음파 탐상 검사는 장비의 크기가 상대적으로 작아 설치 및 측정 장소에 영향을 받지 않으며, 방사능 노출 등의 위험성이 없어 보편적으로 사용되는 품질 평가 방법이다.
초음파 비파괴 검사에서는 초음파 스캐너를 이용하여 검사 대상물에 초음파를 방사한다. 이때, 초음파 스캐너에서 방사된 초음파 신호는 검사 대상물의 뒷면 혹은 내부에 존재하는 기포나 크랙 등과 같은 결함에서 반사되어 초음파 스캐너로 돌아오게 되는데 검사 대상물에서 반사되어 초음파 스캐너로 돌아온 신호를 에코(echo) 신호라고 한다.
초음파 신호에는 센서의 특성을 반영하는 초기 펄스 (Initial pulse), 물체의 표면에서 1차로 반사되는 에코 신호, 내부의 결함에서 반사되는 결함 에코 신호, 물체의 뒤쪽에서 반사되는 뒷면 에코신호가 포함된다.
접촉식 초음파 검사의 경우 초기 펄스(initial pulse)와 표면에서 1차로 반사되는 에코 신호가 많은 부분 겹쳐서 발생하므로, 이를 통칭하여 초기펄스 (initial pulse)라고 할 수 있다.
도 1(a)에 도시된 바와 같이 결함이 검사 대상체의 표면에서부터 멀리 떨어진 곳에 존재하는 경우에는 결함에서 반사된 신호가 초기 펄스에 간섭되지 않으므로 결함의 분석이 용이하나, 도 1(b)에 도시된 바와 같이 결함이 검사 대상체의 표면 근처에 존재하는 경우에는 결함에서 반사된 신호가 초기 펄스와 간섭되어 결함의 존재 또는 분석이 어렵다는 문제점이 있다.
이를 해결하기 위한 종래 기술로서 일본 공개특허 제2021-032754호(초음파 검사 장치 및 초음파 검사 방법)에서는 결함이 없는 검사 대상물에서 측정한 신호와 조사 목적의 검사 대상물에서 측정한 신호를 비교하여 결함을 분석하는 잔차(residual) 기반 분석 방법을 개시한다.
그러나, 위의 특허문헌에 개시된 기술과 같은 잔차 기반 분석 방법은 검사 과정에서 비교의 기준이 되는 신호의 측정 시 신호 왜곡 또는 위상변조 등의 오차가 발생할 수 있으며, 단순히 두 검사 대상물에서 측정한 신호를 비교하는 것은 그 정확성이 높지 않다는 문제점이 있다.
이를 해결하기 위해 신호 미분(signal differentiation), 저역 통과 필터링(low pass filtering), 디콘볼루션(deconvolution), 웨이블릿(wavelets), 상관기반 접근방식(correlation-based approaches)과 같은 다양한 신호처리 방법이 사용된다. 이러한 신호처리 방법은 경험적 선택에 의존하는 것으로, 최적의 결과를 얻기 위해 상당한 노력이 필요하며, 대부분의 경우 현장에서 널리 사용되는 접촉 방식 보다는 침지 방식에서 주로 사용된다는 점에서 실제 활용성이 떨어진다는 문제점이 있다.
상기 전술한 문제점을 해결하기 위하여 본 발명은 검사 대상물에서 측정한 에코 신호에서 초기 펄스를 정확하게 제거하여 결함 신호만을 추출 및 분석할 수 있는 딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법을 제공하는 것을 목적으로 한다.
본 발명의 일 실시 예로써, 딥러닝을 이용한 초음파 비파괴 검사방법에서 사용되는 오토 인코더 기반의 예측모델을 학습시키는 방법이 제공된다.
본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법은, 결함이 없는 검사 대상물로 초음파를 송신하고, 상기 검사 대상물에서 반사된 초음파를 수신하여 정상신호를 획득하는 초음파 신호 획득단계 및 상기 정상신호를 이용하여 하기 수식 1에 따른 손실함수를 최소화하는 방식으로 예측모델을 학습시키는 예측모델 학습단계를 포함 할 수 있다.
[수식 1]
Figure PCTKR2022004811-appb-img-000001
여기서,
Figure PCTKR2022004811-appb-img-000002
은 측정신호,
Figure PCTKR2022004811-appb-img-000003
,
Figure PCTKR2022004811-appb-img-000004
는 학습 파라미터이다.
본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법은, 결함이 있는 검사 대상물에서 초음파를 송수신하여, 결함이 없는 부분에 대한 가정상신호와 결함이 있는 부분에 대한 결함신호가 포함된 재측정신호를 획득하는 초음파 신호 재획득단계, 상기 재측정신호에서 상기 가정상신호만을 추출하는 가정상신호 추출단계 및 상기 정상신호 및 상기 가정상신호를 이용하여 하기 수식 2에 따른 손실함수를 최소화하는 방식으로 예측모델을 재학습시키는 예측모델 재학습단계를 더 포함 할 수 있다.
[수식 2]
Figure PCTKR2022004811-appb-img-000005
여기서,
Figure PCTKR2022004811-appb-img-000006
은 측정신호,
Figure PCTKR2022004811-appb-img-000007
은 재측정신호,
Figure PCTKR2022004811-appb-img-000008
,
Figure PCTKR2022004811-appb-img-000009
는 재학습 파라미터이다.
본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법에서, 상기 가정상신호 추출단계는, 상기 정상신호와 재측정신호의 차이의 절대값을 평균화하여 이상정도(MAD)를 산출하는 이상정도 산출단계, 상기 이상정도의 분포를 이용하여 하기 수식 3에 따른 역치값(threshold)을 산출하는 역치값 산출단계 및 상기 이상정도가 상기 역치값 보다 작은 경우 상기 가정상신호로 판단하는 가정상신호 판단단계를 더 포함하며, 상기 이상정도는 상기 정상신호와 비교한 불일치 정도를 나타내는 것을 특징으로 할 수 있다.
[수식 3]
Figure PCTKR2022004811-appb-img-000010
여기서,
Figure PCTKR2022004811-appb-img-000011
Figure PCTKR2022004811-appb-img-000012
는 가우시안 혼합 모델에 의해 추정된 이상정도의 첫번째 가우스 분포의 평균 및 표준편차,
Figure PCTKR2022004811-appb-img-000013
는 임계 파라미터이다.
본 발명의 일 실시 예로써, 딥러닝을 이용한 초음파 비파괴 검사방법이 제공된다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법은, 검사 대상물로 초음파를 송신하고 상기 검사 대상물에서 반사된 초음파를 수신하여 측정신호를 획득하는 초음파 신호 획득단계, 상기 측정신호를 상기 오토 인코더(Autoencoder)기반의 예측모델에 입력하여 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측하는 기준신호 예측단계, 상기 측정신호와 상기 기준신호의 차이의 절대값인 차분신호를 산출하는 차분신호 산출단계 및 상기 차분신호를 분석하여 상기 검사 대상물에 존재하는 결함에 대한 정보를 분석하는 결함분석단계를 포함할 수 있다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법에서, 상기 차분신호 산출단계는, 상기 차분신호의 평균을 산출하는 평균산출단계 및 상기 차분신호에 상기 차분신호의 평균을 곱하여 상기 차분신호의 크기를 조정(scaling)하는 스케일링 단계를 더 포함할 수 있다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법에서, 상기 결함분석단계는, 상기 차분신호로부터 평균 및 전파시간(TOF, time-of-flight)를 산출하는 평균 및 전파시간 산출단계, 상기 평균의 분포를 이용하여 상기 검사 대상물에 결함이 있는지 여부를 판별하는 결함검출단계 및 상기 전파시간을 이용하여 상기 결함의 깊이를 산출하는 결함 깊이 산출단계를 더 포함할 수 있다.
본 발명의 일 실시 예로써, 전술한 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체가 제공된다.
본 발명의 일 실시 예로써, 딥러닝을 이용한 초음파 비파괴 검사시스템이 제공된다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템은, 검사 대상물의 길이 방향으로 이동하며 상기 검사 대상물로 초음파를 송수신하여 측정신호를 획득하는 초음파 스캐너, 상기 측정신호를 입력 받아 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측하는 오토 인코더 기반의 예측모델 및 상기 측정신호와 상기 기준신호의 차이의 절대값인 차분신호를 산출하고, 상기 차분신호를 분석하여 상기 검사 대상물에 존재하는 결함에 대한 정보를 분석하는 제어부를 포함할 수 있다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 예측모델은, 결함이 없는 검사 대상물에서 획득된 정상신호만을 이용하여 하기 수식 1에 따른 손실함수를 최소화하는 방식으로 학습되는 것을 특징으로 할 수 있다.
[수식 1]
Figure PCTKR2022004811-appb-img-000014
여기서,
Figure PCTKR2022004811-appb-img-000015
은 측정신호,
Figure PCTKR2022004811-appb-img-000016
,
Figure PCTKR2022004811-appb-img-000017
는 학습 파라미터이다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 예측모델은, 결함이 있는 검사 대상물에서 획득된 재측정신호에서 결함이 없는 부분에 대한 가정상신호를 추출하고, 상기 가정상신호를 이용하여 하기 수식 2에 따른 손실함수를 최소화하는 방식으로 재학습되는 것을 특징으로 할 수 있다.
[수식 2]
Figure PCTKR2022004811-appb-img-000018
여기서,
Figure PCTKR2022004811-appb-img-000019
은 측정신호,
Figure PCTKR2022004811-appb-img-000020
은 재측정신호,
Figure PCTKR2022004811-appb-img-000021
,
Figure PCTKR2022004811-appb-img-000022
는 재학습 파라미터이다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 가정상신호는, 상기 정상신호와 재측정신호의 차이의 절대값을 평균화하여 산출한 이상정도(MAD)의 분포를 이용하여 하기 수식 3에 따라 산출된 역치값을 보다 작은 것을 의미하며, 상기 이상정도는 상기 정상신호와 비교한 불일치 정도를 나타내는 것을 특징으로 할 수 있다.
[수식 3]
Figure PCTKR2022004811-appb-img-000023
여기서,
Figure PCTKR2022004811-appb-img-000024
Figure PCTKR2022004811-appb-img-000025
는 가우시안 혼합 모델에 의해 추정된 이상정도의 첫번째 가우스 분포의 평균 및 표준편차,
Figure PCTKR2022004811-appb-img-000026
는 임계 파라미터이다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 제어부는, 상기 차분신호의 평균을 산출하고, 상기 차분신호에 상기 평균을 곱하여 상기 차분신호의 크기를 조정하는 스케일링부를 더 포함할 수 있다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 제어부는, 상기 차분신호의 평균을 산출하고, 상기 평균의 분포를 이용하여 상기 검사 대상물에 결함이 있는지 여부를 판별하는 결함 검출부 및 상기 차분신호로부터 전파시간(TOF, time-of-flight)을 산출하고, 상기 전파시간을 이용하여 상기 결함의 깊이를 산출하는 결함 깊이 산출부를 더 포함할 수 있다.
본 발명의 일 실시 예에 따르면, 초기 신호와의 간섭에도 불구하고 검사 대상물의 표면에 존재하는 결함을 분석할 수 있다는 이점이 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급된 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 초음파 비파괴 검사를 통해 획득한 신호를 도식화한 것이다.
도 2는 본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법의 순서도이다.
도 3(a)는 본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법에서 초음파 신호 획득단계를 도 3(b)는 예측모델 학습단계를 각각 도식화한 것이다.
도 4는 본 발명의 다른 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법의 순서도이다.
도 5는 본 발명의 다른 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법의 과정을 도식화한 것이다.
도 6은 본 발명의 다른 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법의 가정상신호 추출단계의 순서도이다.
도 7은 본 발명의 다른 일 실시 예에 따른 이상정도 산출단계에서 산출한 이상정도(MAD) 분포의 히스토그램이다.
도 8은 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법의 순서도이다.
도 9는 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법을 도식화한 것이다.
도 10은 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법의 차분신호 산출단계의 순서도이다.
도 11은 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법의 결함분석단계의 순서도이다.
도 12(a)는 결함분석단계에서 산출한 차분신호의 평균 분포의 히스토그램이고, 도 12(b)는 차분신호로부터 평균과 전파시간을 산출한 것의 예시도이다.
도 13은 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템의 블록도이다.
본 발명의 일 실시 예로써, 딥러닝을 이용한 초음파 비파괴 검사방법에서 사용되는 오토 인코더 기반의 예측모델을 학습시키는 방법이 제공된다.
본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법은, 결함이 없는 검사 대상물로 초음파를 송신하고, 상기 검사 대상물에서 반사된 초음파를 수신하여 정상신호를 획득하는 초음파 신호 획득단계 및 상기 정상신호를 이용하여 하기 수식 1에 따른 손실함수를 최소화하는 방식으로 예측모델을 학습시키는 예측모델 학습단계를 포함 할 수 있다.
[수식 1]
Figure PCTKR2022004811-appb-img-000027
여기서,
Figure PCTKR2022004811-appb-img-000028
은 측정신호,
Figure PCTKR2022004811-appb-img-000029
,
Figure PCTKR2022004811-appb-img-000030
는 학습 파라미터이다.
본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법은, 결함이 있는 검사 대상물에서 초음파를 송수신하여, 결함이 없는 부분에 대한 가정상신호와 결함이 있는 부분에 대한 결함신호가 포함된 재측정신호를 획득하는 초음파 신호 재획득단계, 상기 재측정신호에서 상기 가정상신호만을 추출하는 가정상신호 추출단계 및 상기 정상신호 및 상기 가정상신호를 이용하여 하기 수식 2에 따른 손실함수를 최소화하는 방식으로 예측모델을 재학습시키는 예측모델 재학습단계를 더 포함 할 수 있다.
[수식 2]
Figure PCTKR2022004811-appb-img-000031
여기서,
Figure PCTKR2022004811-appb-img-000032
은 측정신호,
Figure PCTKR2022004811-appb-img-000033
은 재측정신호,
Figure PCTKR2022004811-appb-img-000034
,
Figure PCTKR2022004811-appb-img-000035
는 재학습 파라미터이다.
본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델 학습방법에서, 상기 가정상신호 추출단계는, 상기 정상신호와 재측정신호의 차이의 절대값을 평균화하여 이상정도(MAD)를 산출하는 이상정도 산출단계, 상기 이상정도의 분포를 이용하여 하기 수식 3에 따른 역치값(threshold)을 산출하는 역치값 산출단계 및 상기 이상정도가 상기 역치값 보다 작은 경우 상기 가정상신호로 판단하는 가정상신호 판단단계를 더 포함하며, 상기 이상정도는 상기 정상신호와 비교한 불일치 정도를 나타내는 것을 특징으로 할 수 있다.
[수식 3]
Figure PCTKR2022004811-appb-img-000036
여기서,
Figure PCTKR2022004811-appb-img-000037
Figure PCTKR2022004811-appb-img-000038
는 가우시안 혼합 모델에 의해 추정된 이상정도의 첫번째 가우스 분포의 평균 및 표준편차,
Figure PCTKR2022004811-appb-img-000039
는 임계 파라미터이다.
본 발명의 일 실시 예로써, 딥러닝을 이용한 초음파 비파괴 검사방법이 제공된다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법은, 검사 대상물로 초음파를 송신하고 상기 검사 대상물에서 반사된 초음파를 수신하여 측정신호를 획득하는 초음파 신호 획득단계, 상기 측정신호를 상기 오토 인코더(Autoencoder)기반의 예측모델에 입력하여 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측하는 기준신호 예측단계, 상기 측정신호와 상기 기준신호의 차이의 절대값인 차분신호를 산출하는 차분신호 산출단계 및 상기 차분신호를 분석하여 상기 검사 대상물에 존재하는 결함에 대한 정보를 분석하는 결함분석단계를 포함할 수 있다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법에서, 상기 차분신호 산출단계는, 상기 차분신호의 평균을 산출하는 평균산출단계 및 상기 차분신호에 상기 차분신호의 평균을 곱하여 상기 차분신호의 크기를 조정(scaling)하는 스케일링 단계를 더 포함할 수 있다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법에서, 상기 결함분석단계는, 상기 차분신호로부터 평균 및 전파시간(TOF, time-of-flight)를 산출하는 평균 및 전파시간 산출단계, 상기 평균의 분포를 이용하여 상기 검사 대상물에 결함이 있는지 여부를 판별하는 결함검출단계 및 상기 전파시간을 이용하여 상기 결함의 깊이를 산출하는 결함 깊이 산출단계를 더 포함할 수 있다.
본 발명의 일 실시 예로써, 전술한 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체가 제공된다.
본 발명의 일 실시 예로써, 딥러닝을 이용한 초음파 비파괴 검사시스템이 제공된다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템은, 검사 대상물의 길이 방향으로 이동하며 상기 검사 대상물로 초음파를 송수신하여 측정신호를 획득하는 초음파 스캐너, 상기 측정신호를 입력 받아 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측하는 오토 인코더 기반의 예측모델 및 상기 측정신호와 상기 기준신호의 차이의 절대값인 차분신호를 산출하고, 상기 차분신호를 분석하여 상기 검사 대상물에 존재하는 결함에 대한 정보를 분석하는 제어부를 포함할 수 있다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 예측모델은, 결함이 없는 검사 대상물에서 획득된 정상신호만을 이용하여 하기 수식 1에 따른 손실함수를 최소화하는 방식으로 학습되는 것을 특징으로 할 수 있다.
[수식 1]
Figure PCTKR2022004811-appb-img-000040
여기서,
Figure PCTKR2022004811-appb-img-000041
은 측정신호,
Figure PCTKR2022004811-appb-img-000042
,
Figure PCTKR2022004811-appb-img-000043
는 학습 파라미터이다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 예측모델은, 결함이 있는 검사 대상물에서 획득된 재측정신호에서 결함이 없는 부분에 대한 가정상신호를 추출하고, 상기 가정상신호를 이용하여 하기 수식 2에 따른 손실함수를 최소화하는 방식으로 재학습되는 것을 특징으로 할 수 있다.
[수식 2]
Figure PCTKR2022004811-appb-img-000044
여기서,
Figure PCTKR2022004811-appb-img-000045
은 측정신호,
Figure PCTKR2022004811-appb-img-000046
은 재측정신호,
Figure PCTKR2022004811-appb-img-000047
,
Figure PCTKR2022004811-appb-img-000048
는 재학습 파라미터이다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 가정상신호는, 상기 정상신호와 재측정신호의 차이의 절대값을 평균화하여 산출한 이상정도(MAD)의 분포를 이용하여 하기 수식 3에 따라 산출된 역치값을 보다 작은 것을 의미하며, 상기 이상정도는 상기 정상신호와 비교한 불일치 정도를 나타내는 것을 특징으로 할 수 있다.
[수식 3]
Figure PCTKR2022004811-appb-img-000049
여기서,
Figure PCTKR2022004811-appb-img-000050
Figure PCTKR2022004811-appb-img-000051
는 가우시안 혼합 모델에 의해 추정된 이상정도의 첫번째 가우스 분포의 평균 및 표준편차,
Figure PCTKR2022004811-appb-img-000052
는 임계 파라미터이다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 제어부는, 상기 차분신호의 평균을 산출하고, 상기 차분신호에 상기 평균을 곱하여 상기 차분신호의 크기를 조정하는 스케일링부를 더 포함할 수 있다.
본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템에서, 상기 제어부는, 상기 차분신호의 평균을 산출하고, 상기 평균의 분포를 이용하여 상기 검사 대상물에 결함이 있는지 여부를 판별하는 결함 검출부 및 상기 차분신호로부터 전파시간(TOF, time-of-flight)을 산출하고, 상기 전파시간을 이용하여 상기 결함의 깊이를 산출하는 결함 깊이 산출부를 더 포함할 수 있다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에 기재된 "~부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다. 또한, 명세서 전체에서 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, "그 중간에 다른 소자를 사이에 두고"연결되어 있는 경우도 포함한다.
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하기로 한다.
도 2는 본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델(200) 학습방법의 순서도이다.
도 3(a)는 본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델(200) 학습방법에서 초음파 신호 획득단계(S110)를 도 3(b)는 예측모델 학습단계(S120)를 각각 도식화한 것이다.
오토 인코더(Autoencoder)는 인코더(encoder)와 디코더(decoder) 두 개의 네트워크로 구성된 ANN(Artificial Neural Network)의 한 종류이다. 인코더는 입력신호를 잠재변수로 압축하고, 디코더는 압축된 잠재변수로부터 입력신호를 재구성한다.
인코더와 디코더는 각각 하기 수학식1 및 수학식2로 구현될 수 있다.
Figure PCTKR2022004811-appb-img-000053
Figure PCTKR2022004811-appb-img-000054
여기서,
Figure PCTKR2022004811-appb-img-000055
는 인코더에 입력되는 신호,
Figure PCTKR2022004811-appb-img-000056
는 디코더에서 출력되는 신호,
Figure PCTKR2022004811-appb-img-000057
는 잠재변수,
Figure PCTKR2022004811-appb-img-000058
는 인코더의 전환함수,
Figure PCTKR2022004811-appb-img-000059
는 디코더의 전환함수,
Figure PCTKR2022004811-appb-img-000060
는 활성화 함수,
Figure PCTKR2022004811-appb-img-000061
는 가중치,
Figure PCTKR2022004811-appb-img-000062
는 바이어스,
Figure PCTKR2022004811-appb-img-000063
Figure PCTKR2022004811-appb-img-000064
는 각각 인코더와 디코더를 나타내는 것이다.
본 발명의 일 실시 예에 따른 예측모델(200) 학습방법에서는 간단하고 신속한 구현을 위해 단일 레이어 오토 인코더가 사용될 수 있다.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법은 초음파 신호 획득단계(S110), 예측모델 학습단계(S120)를 포함하여 구성될 수 있다.
도 3(a)에 도시된 바와 같이, 상기 초음파 신호 획득단계(S110)에서는 초음파 스캐너(100)가 결함이 없는 검사 대상물로 초음파를 송신하고, 상기 검사 대상물에서 반사된 초음파를 수신하여 정상신호를 획득한다.
도 3(b)에 도시된 바와 같이, 상기 예측모델 학습단계(S120)에서는 정상신호를 이용하여 하기 수학식 3에 따른 손실함수를 최소화하는 방식으로 예측모델(200)을 학습시킨다. 도 3(b)에서
Figure PCTKR2022004811-appb-img-000065
이 예측모델(200)에 의해 예측된 기준신호이다.
Figure PCTKR2022004811-appb-img-000066
여기서,
Figure PCTKR2022004811-appb-img-000067
은 측정신호,
Figure PCTKR2022004811-appb-img-000068
,
Figure PCTKR2022004811-appb-img-000069
는 학습 파라미터이다.
도 4는 본 발명의 다른 일 실시 예에 따른 오토 인코더 기반의 예측모델(200) 학습방법의 순서도이다.
도 5는 본 발명의 다른 일 실시 예에 따른 오토 인코더 기반의 예측모델(200) 학습방법의 과정을 도식화한 것이다.
도 4 및 도 5를 참조하면, 본 발명의 일 실시 예에 따른 오토 인코더 기반의 예측모델(200) 학습방법은, 초음파 신호 획득단계(S110), 예측모델 학습단계(S120), 초음파 신호 재획득단계(S130), 가정상신호 추출단계(S140) 및 예측모델 재학습단계(S150)를 포함하여 구성된다.
도 5(a)에 도시된 바와 같이, 상기 예측모델(200) 학습방법과 초음파 신호 획득단계(S110)는 도 2 내지 도 3에서 설명한 바와 같다.
도 5(b)에 도시된 바와 같이 상기 초음파 신호 재획득단계(S130)에서는 초음파 스캐너(100)가 결함이 있는 검사 대상물에서 초음파를 송수신하여, 결함이 없는 부분에 대한 가정상신호와 결함이 있는 부분에 대한 결함신호가 포함된 재측정신호를 획득한다.
도 5(b)에 도시된 바와 같이, 상기 가정상신호 추출단계(S140)에서는 재측정신호에서 가정상신호만을 추출한다.
도 5(b)에 도시된 바와 같이, 상기 예측모델 재학습단계(S150)에서는 정상신호 및 가정상신호를 이용하여 하기 수학식 4에 따른 손실함수를 최소화하는 방식으로 예측모델(200)을 재학습시킨다.
Figure PCTKR2022004811-appb-img-000070
여기서,
Figure PCTKR2022004811-appb-img-000071
은 측정신호,
Figure PCTKR2022004811-appb-img-000072
은 재측정신호,
Figure PCTKR2022004811-appb-img-000073
,
Figure PCTKR2022004811-appb-img-000074
는 재학습 파라미터이다.
도 6은 본 발명의 다른 일 실시 예에 따른 오토 인코더 기반의 예측모델(200) 학습방법의 가정상신호 추출단계(S140)의 순서도이다.
도 7은 본 발명의 다른 일 실시 예에 따른 이상정도 산출단계(S131)에서 산출한 이상정도(MAD) 분포의 히스토그램이다.
도 6을 참조하면, 본 발명의 다른 일 실시 예에 따른 오토 인코더 기반의 예측모델(200) 학습방법의 가정상신호 추출단계(S140)는 이상정도 산출단계(S131), 역치값 산출단계(S132) 및 가정상신호 판단단계(S133)를 포함하여 구성된다.
상기 이상정도 산출단계(S131)에서는 제어부(300)가 정상신호와 재측정신호의 차이의 절대값을 평균화하여 이상정도(MAD, Mean Absolute Difference)를 산출한다. 이때, 이상정도는 상기 정상신호와 비교한 불일치 정도를 나타낸다.
상기 역치값 산출단계(S132)에서는 제어부(300)가 이상정도의 분포를 이용하여 하기 수학식 5에 따른 역치값(threshold)을 산출한다.
Figure PCTKR2022004811-appb-img-000075
여기서,
Figure PCTKR2022004811-appb-img-000076
Figure PCTKR2022004811-appb-img-000077
는 가우시안 혼합 모델에 의해 추정된 이상정도의 첫번째 가우스 분포의 평균 및 표준편차,
Figure PCTKR2022004811-appb-img-000078
는 임계 파라미터이다.
상기 가정상신호 판단단계(S133)에서는 제어부(300)가 이상정도가 역치값 보다 작은 경우 가정상신호로 판단한다.
결함이 있는 부분에서 측정된 결함신호에서 정상신호를 뺄 경우 결함에서 반사되어 돌아온 신호가 포함되어 있으므로, 상대적으로 큰 값의 이상정도(MAD)를 갖는 반면, 결함이 없는 부분에서 측정된 가정상신호에서 정상신호를 뺄 경우에는 오차를 제외한 모든 신호가 제거될 것이므로 상대적으로 작은 값의 이상정도(MAD)를 갖는다.
즉, 결함신호의 이상정도가 가정상신호의 이상정도 보다 클 것이므로, 도 7에 도시된 바와 같이, 역치값(threshold)보다 작은 값의 이상정도를 갖는 신호들이 결함이 없는 부분에서 측정된 가정상신호이다.
도 8은 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법의 순서도이고, 도 9는 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법을 도식화한 것이다.
도 8 및 도 9를 참조하면, 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법은 초음파 신호 획득단계(S210), 기준신호 예측단계(S220), 차분신호 산출단계(S230) 및 결함분석단계(S240)를 포함하여 구성된다.
상기 초음파 신호 획득단계(S210)에서는 초음파 스캐너(100)가 검사 대상물로 초음파를 송신하고 상기 검사 대상물에서 반사된 초음파를 수신하여 측정신호를 획득한다.
상기 기준신호 예측단계(S220)에서는 제어부(300)가 측정신호를 오토 인코더(Autoencoder)기반의 예측모델(200)에 입력하여 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측한다.
상기 차분신호 산출단계(S230)에서는 제어부(300)가 측정신호와 기준신호의 차이의 절대값인 차분신호를 산출한다.
상기 결함분석단계(S240)에서는 제어부(300)가 차분신호를 분석하여 상기 검사 대상물에 존재하는 결함에 대한 정보를 분석한다.
도 10은 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법의 차분신호 산출단계(S230)의 순서도이다.
도 10을 참조하면, 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법에서 차분신호 산출단계(S230)는 평균산출단계(S231) 및 스케일링 단계(S232)를 더 포함하여 구성될 수 있다.
상기 평균산출단계(S231)에서는 스케일링부(310)가 차분신호의 평균을 산출한다.
상기 스케일링 단계(S232)에서는 스케일링부(310)가 차분신호에 평균을 곱하여 상기 차분신호의 크기를 조정(scaling)한다.
도 11은 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법의 결함분석단계(S240)의 순서도이고, 도 12(a)는 결함분석단계(S240)에서 산출한 차분신호의 평균 분포의 히스토그램이고, 도 12(b)는 차분신호로부터 평균(MAD)과 전파시간(TOF)을 산출한 것의 예시도이다.
도 11을 참조하면, 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사방법에서 결함분석단계(S240)는 평균 및 전파시간 산출단계(S241), 결함검출단계(S242) 및 결함 깊이 산출단계(S243)를 더 포함하여 구성될 수 있다.
상기 평균 및 전파시간 산출단계(S241)에서는 결함 검출부(320) 및 결함 깊이 산출부(330)가 차분신호로부터 평균 및 전파시간(TOF, time-of-flight)을 각각 산출한다.
상기 결함검출단계(S242)에서는 결함 검출부(320)가 평균의 분포를 이용하여 상기 검사 대상물에 결함이 있는지 여부를 판별한다.
차분신호는 측정신호에서 기준신호를 뺀 것이므로, 차분신호에 특정 신호가 남아있을 경우 이는 결함에 의해 발생한 신호를 의미할 것이다. 따라서, 차분신호의 평균(MAD)은 결함의 크기 또는 세기에 관한 정보를 포함할 수 있다.
또한, 도 6에서 설명한 바와 같이, 역치값(threshold)을 이용하여 차분신호의 평균이 역치값보다 큰 경우 결함이 있는 것으로 판단할 수 있을 것이다. 결함이 있는 경우, 결함에 의해 반사된 신호가 차분신호에 남아있을 것이기 때문이다.
상기 결함 깊이 산출단계(S243)에서는 상기 전파시간(TOF)을 이용하여 상기 결함의 깊이를 산출하는 결함 깊이 산출단계(S243)를 더 포함할 수 있다.
이때, 전파시간(TOF)은 초음파가 초음파 스캐너(100)로부터 검사 대상물 속을 전파하여 초음파 스캐너(100)로 되돌아올 때까지 필요한 시간을 의미하며, 전파시간이 길수록 결함이 표면에서 멀리 떨어져 있는 것으로 해석할 수 있다.
또한, 본 발명은, 도 1 내지 도 12의 방법을 프로그램으로 구현 하기 위한, 컴퓨터로 판독 가능한 기록 매체로 제공할 수 있다. 다시 말해서, 전술 한 방법은 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터 판독 가능 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 또한, 상술한 방법에서 사용된 데이터의 구조는 컴퓨터 판독 가능 매체에 여러 수단을 통하여 기록될 수 있다.
본 발명의 다양한 방법들을 수행하기 위한 실행 가능한 컴퓨터 프로 그램이나 코드를 기록하는 기록 매체는, 반송파(carrier waves)나 신호들과 같이 일시적인 대상들은 포함하는 것으로 이해되지는 않아야 한다. 상기 컴퓨터 판독 가 능 매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광 학적 판독 매체(예를 들면, 시디롬, DVD 등)와 같은 저장 매체를 포함할 수 있다.
도 13은 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템의 블록도이다.
도 13을 참조하면, 본 발명의 일 실시 예에 따른 딥러닝을 이용한 초음파 비파괴 검사시스템은, 검사 대상물의 길이 방향으로 이동하며 상기 검사 대상물로 초음파를 송수신하여 측정신호를 획득하는 초음파 스캐너(100), 상기 측정신호를 입력 받아 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측하는 오토 인코더 기반의 예측모델(200) 및 상기 측정신호와 상기 기준신호의 차이의 절대값인 차분신호를 산출하고, 상기 차분신호를 분석하여 상기 검사 대상물에 존재하는 결함에 대한 정보를 분석하는 제어부(300)를 포함할 수 있다.
실시 예에 따라, 상기 예측모델(200)은, 결함이 없는 검사 대상물에서 획득된 정상신호만을 이용하여 하기 수학식 6에 따른 손실함수를 최소화하는 방식으로 학습되는 것을 특징으로 할 수 있다.
Figure PCTKR2022004811-appb-img-000079
여기서,
Figure PCTKR2022004811-appb-img-000080
은 측정신호,
Figure PCTKR2022004811-appb-img-000081
,
Figure PCTKR2022004811-appb-img-000082
는 학습 파라미터이다.
실시 예에 따라, 상기 예측모델(200)은 결함이 있는 검사 대상물에서 획득된 재측정신호에서 결함이 없는 부분에 대한 가정상신호를 추출하고, 가정상신호를 이용하여 하기 수학식 7에 따른 손실함수를 최소화하는 방식으로 재학습되는 것을 특징으로 할 수 있다.
Figure PCTKR2022004811-appb-img-000083
여기서,
Figure PCTKR2022004811-appb-img-000084
은 측정신호,
Figure PCTKR2022004811-appb-img-000085
은 재측정신호,
Figure PCTKR2022004811-appb-img-000086
,
Figure PCTKR2022004811-appb-img-000087
는 재학습 파라미터이다.
실시 예에 따라, 상기 가정상신호는 상기 정상신호와 재측정신호의 차이의 절대값을 평균화하여 산출한 이상정도(MAD)의 분포를 이용하여 하기 수학식 8에 따라 산출된 역치값을 보다 작은 것을 의미하며, 상기 이상정도는 상기 정상신호와 비교한 불일치 정도를 나타내는 것을 특징으로 할 수 있다.
Figure PCTKR2022004811-appb-img-000088
여기서,
Figure PCTKR2022004811-appb-img-000089
Figure PCTKR2022004811-appb-img-000090
는 가우시안 혼합 모델에 의해 추정된 이상정도의 첫번째 가우스 분포의 평균 및 표준편차,
Figure PCTKR2022004811-appb-img-000091
는 임계 파라미터이다.
실시 예에 따라, 상기 제어부(300)는 차분신호의 평균을 산출하고, 차분신호에 상기 평균을 곱하여 상기 차분신호의 크기를 조정하는 스케일링부(310)를 더 포함할 수 있다.
실시 예에 따라, 상기 제어부(300)는 차분신호의 평균을 산출하고, 평균의 분포를 이용하여 검사 대상물에 결함이 있는지 여부를 판별하는 결함 검출부(320) 및 차분신호로부터 전파시간(TOF, time-of-flight)을 산출하고, 전파시간을 이용하여 결함의 깊이를 산출하는 결함 깊이 산출부(330)를 더 포함할 수 있다.
본 발명의 일 실시 예에 따른 시스템과 관련하여서는 전술한 방법에 대한 내용이 적용될 수 있다. 따라서, 시스템과 관련하여 전술한 방법에 대한 내용과 동일한 내용에 대하여는 설명을 생략한다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 딥러닝을 이용한 초음파 비파괴 검사방법에서 사용되는 오토 인코더 기반의 예측모델을 학습시키는 방법에 있어서,
    결함이 없는 검사 대상물로 초음파를 송신하고, 상기 검사 대상물에서 반사된 초음파를 수신하여 정상신호를 획득하는 초음파 신호 획득단계; 및
    상기 정상신호를 이용하여 하기 수식 1에 따른 손실함수를 최소화하는 방식으로 예측모델을 학습시키는 예측모델 학습단계를 포함하는 오토 인코더 기반의 예측모델 학습방법.
    [수식 1]
    Figure PCTKR2022004811-appb-img-000092
    여기서,
    Figure PCTKR2022004811-appb-img-000093
    은 측정신호,
    Figure PCTKR2022004811-appb-img-000094
    ,
    Figure PCTKR2022004811-appb-img-000095
    는 학습 파라미터이다.
  2. 제 1 항에 있어서,
    결함이 있는 검사 대상물에서 초음파를 송수신하여, 결함이 없는 부분에 대한 가정상신호와 결함이 있는 부분에 대한 결함신호가 포함된 재측정신호를 획득하는 초음파 신호 재획득단계;
    상기 재측정신호에서 상기 가정상신호만을 추출하는 가정상신호 추출단계; 및
    상기 정상신호 및 상기 가정상신호를 이용하여 하기 수식 2에 따른 손실함수를 최소화하는 방식으로 예측모델을 재학습시키는 예측모델 재학습단계를 더 포함하는 오토 인코더 기반의 예측모델 학습방법.
    [수식 2]
    Figure PCTKR2022004811-appb-img-000096
    여기서,
    Figure PCTKR2022004811-appb-img-000097
    은 측정신호,
    Figure PCTKR2022004811-appb-img-000098
    은 재측정신호,
    Figure PCTKR2022004811-appb-img-000099
    ,
    Figure PCTKR2022004811-appb-img-000100
    는 재학습 파라미터이다.
  3. 제 2 항에 있어서,
    상기 가정상신호 추출단계는,
    상기 정상신호와 재측정신호의 차이의 절대값을 평균화하여 이상정도(MAD)를 산출하는 이상정도 산출단계;
    상기 이상정도의 분포를 이용하여 하기 수식 3에 따른 역치값(threshold)을 산출하는 역치값 산출단계; 및
    상기 이상정도가 상기 역치값 보다 작은 경우 상기 가정상신호로 판단하는 가정상신호 판단단계를 더 포함하며,
    상기 이상정도는 상기 정상신호와 비교한 불일치 정도를 나타내는 것을 특징으로 하는 오토 인코더 기반의 예측모델 학습방법.
    [수식 3]
    Figure PCTKR2022004811-appb-img-000101
    여기서,
    Figure PCTKR2022004811-appb-img-000102
    Figure PCTKR2022004811-appb-img-000103
    는 가우시안 혼합 모델에 의해 추정된 이상정도의 첫번째 가우스 분포의 평균 및 표준편차,
    Figure PCTKR2022004811-appb-img-000104
    는 임계 파라미터이다.
  4. 검사 대상물로 초음파를 송신하고 상기 검사 대상물에서 반사된 초음파를 수신하여 측정신호를 획득하는 초음파 신호 획득단계;
    상기 측정신호를 오토 인코더(Autoencoder)기반의 예측모델에 입력하여 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측하는 기준신호 예측단계;
    상기 측정신호와 상기 기준신호의 차이의 절대값인 차분신호를 산출하는 차분신호 산출단계; 및
    상기 차분신호를 분석하여 상기 검사 대상물에 존재하는 결함에 대한 정보를 분석하는 결함분석단계를 포함하는 딥러닝을 이용한 초음파 비파괴 검사방법.
  5. 제 4 항에 있어서,
    상기 차분신호 산출단계는,
    상기 차분신호의 평균을 산출하는 평균산출단계; 및
    상기 차분신호에 상기 차분신호의 평균을 곱하여 상기 차분신호의 크기를 조정(scaling)하는 스케일링 단계를 더 포함하는 딥러닝을 이용한 초음파 비파괴 검사방법.
  6. 제 4 항에 있어서,
    상기 결함분석단계는,
    상기 차분신호로부터 평균 및 전파시간(TOF, time-of-flight)를 산출하는 평균 및 전파시간 산출단계;
    상기 평균의 분포를 이용하여 상기 검사 대상물에 결함이 있는지 여부를 판별하는 결함검출단계; 및
    상기 전파시간을 이용하여 상기 결함의 깊이를 산출하는 결함 깊이 산출단계를 더 포함하는 딥러닝을 이용한 초음파 비파괴 검사방법.
  7. 제 1 항 내지 제 6 항 중 어느 한 항의 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체.
  8. 검사 대상물의 길이 방향으로 이동하며 상기 검사 대상물로 초음파를 송수신하여 측정신호를 획득하는 초음파 스캐너;
    상기 측정신호를 입력 받아 결함이 없는 검사 대상물에서 측정될 것으로 예상되는 기준신호를 예측하는 오토 인코더 기반의 예측모델; 및
    상기 측정신호와 상기 기준신호의 차이의 절대값인 차분신호를 산출하고, 상기 차분신호를 분석하여 상기 검사 대상물에 존재하는 결함에 대한 정보를 분석하는 제어부를 포함하는 딥러닝을 이용한 초음파 비파괴 검사시스템.
  9. 제 8 항에 있어서,
    상기 예측모델은,
    결함이 없는 검사 대상물에서 획득된 정상신호만을 이용하여 하기 수식 1에 따른 손실함수를 최소화하는 방식으로 학습되는 것을 특징으로 하는 딥러닝을 이용한 초음파 비파괴 검사시스템.
    [수식 1]
    Figure PCTKR2022004811-appb-img-000105
    여기서,
    Figure PCTKR2022004811-appb-img-000106
    은 측정신호,
    Figure PCTKR2022004811-appb-img-000107
    ,
    Figure PCTKR2022004811-appb-img-000108
    는 학습 파라미터이다.
  10. 제 9 항에 있어서,
    상기 예측모델은,
    결함이 있는 검사 대상물에서 획득된 재측정신호에서 결함이 없는 부분에 대한 가정상신호를 추출하고, 상기 가정상신호를 이용하여 하기 수식 2에 따른 손실함수를 최소화하는 방식으로 재학습되는 것을 특징으로 하는 딥러닝을 이용한 초음파 비파괴 검사시스템.
    [수식 2]
    Figure PCTKR2022004811-appb-img-000109
    여기서,
    Figure PCTKR2022004811-appb-img-000110
    은 측정신호,
    Figure PCTKR2022004811-appb-img-000111
    은 재측정신호,
    Figure PCTKR2022004811-appb-img-000112
    ,
    Figure PCTKR2022004811-appb-img-000113
    는 재학습 파라미터이다.
  11. 제 10 항에 있어서,
    상기 가정상신호는,
    상기 정상신호와 재측정신호의 차이의 절대값을 평균화하여 산출한 이상정도(MAD)의 분포를 이용하여 하기 수식 3에 따라 산출된 역치값을 보다 작은 것을 의미하며,
    상기 이상정도는 상기 정상신호와 비교한 불일치 정도를 나타내는 것을 특징으로 하는 딥러닝을 이용한 초음파 비파괴 검사시스템.
    [수식 3]
    Figure PCTKR2022004811-appb-img-000114
    여기서,
    Figure PCTKR2022004811-appb-img-000115
    Figure PCTKR2022004811-appb-img-000116
    는 가우시안 혼합 모델에 의해 추정된 이상정도의 첫번째 가우스 분포의 평균 및 표준편차,
    Figure PCTKR2022004811-appb-img-000117
    는 임계 파라미터이다.
  12. 제 8 항에 있어서,
    상기 제어부는,
    상기 차분신호의 평균을 산출하고, 상기 차분신호에 상기 평균을 곱하여 상기 차분신호의 크기를 조정하는 스케일링부를 더 포함하는 딥러닝을 이용한 초음파 비파괴 검사시스템.
  13. 제 8 항에 있어서,
    상기 제어부는,
    상기 차분신호의 평균을 산출하고, 상기 평균의 분포를 이용하여 상기 검사 대상물에 결함이 있는지 여부를 판별하는 결함 검출부; 및
    상기 차분신호로부터 전파시간(TOF, time-of-flight)을 산출하고, 상기 전파시간을 이용하여 상기 결함의 깊이를 산출하는 결함 깊이 산출부를 더 포함하는 딥러닝을 이용한 초음파 비파괴 검사시스템.
PCT/KR2022/004811 2021-05-03 2022-04-04 딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법 WO2022234957A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/776,909 US20240053302A1 (en) 2021-05-03 2022-04-04 Ultrasonic non-destructive test method and system using deep learning, and auto-encoder-based prediction model training method used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0057220 2021-05-03
KR1020210057220A KR102497000B1 (ko) 2021-05-03 2021-05-03 딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법

Publications (1)

Publication Number Publication Date
WO2022234957A1 true WO2022234957A1 (ko) 2022-11-10

Family

ID=83932245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004811 WO2022234957A1 (ko) 2021-05-03 2022-04-04 딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법

Country Status (3)

Country Link
US (1) US20240053302A1 (ko)
KR (1) KR102497000B1 (ko)
WO (1) WO2022234957A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116858943A (zh) * 2023-02-03 2023-10-10 台州五标机械股份有限公司 用于新能源汽车的空心轴智能化制备方法及其系统
CN117434153A (zh) * 2023-12-20 2024-01-23 吉林蛟河抽水蓄能有限公司 基于超声波技术的道路无损检测方法及系统
CN117542585A (zh) * 2024-01-08 2024-02-09 营口阿部配线有限公司 一种线束屏蔽线保护套推动拉伸装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075155A (ja) * 1993-06-16 1995-01-10 Sumitomo Metal Ind Ltd 超音波自動疵種判別方法
JP2004257971A (ja) * 2003-02-27 2004-09-16 Mitsubishi Heavy Ind Ltd 超音波信号処理システム、方法、プログラム及び記憶媒体並びに超音波探傷装置
KR100762502B1 (ko) * 2006-03-27 2007-10-02 한국원자력연구원 표면 결함의 깊이를 측정하기 위한 레이저-초음파 검사장치 및 방법
JP2021004738A (ja) * 2019-06-25 2021-01-14 神鋼検査サービス株式会社 超音波探傷用機械学習装置、該方法および該プログラムならびに超音波探傷装置
KR20210038143A (ko) * 2019-09-30 2021-04-07 (주)쎄미시스코 인공지능(ai) 기반 대상물 검사 시스템 및 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257290B2 (ja) 2019-08-27 2023-04-13 株式会社日立パワーソリューションズ 超音波検査装置および超音波検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075155A (ja) * 1993-06-16 1995-01-10 Sumitomo Metal Ind Ltd 超音波自動疵種判別方法
JP2004257971A (ja) * 2003-02-27 2004-09-16 Mitsubishi Heavy Ind Ltd 超音波信号処理システム、方法、プログラム及び記憶媒体並びに超音波探傷装置
KR100762502B1 (ko) * 2006-03-27 2007-10-02 한국원자력연구원 표면 결함의 깊이를 측정하기 위한 레이저-초음파 검사장치 및 방법
JP2021004738A (ja) * 2019-06-25 2021-01-14 神鋼検査サービス株式会社 超音波探傷用機械学習装置、該方法および該プログラムならびに超音波探傷装置
KR20210038143A (ko) * 2019-09-30 2021-04-07 (주)쎄미시스코 인공지능(ai) 기반 대상물 검사 시스템 및 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116858943A (zh) * 2023-02-03 2023-10-10 台州五标机械股份有限公司 用于新能源汽车的空心轴智能化制备方法及其系统
CN117434153A (zh) * 2023-12-20 2024-01-23 吉林蛟河抽水蓄能有限公司 基于超声波技术的道路无损检测方法及系统
CN117434153B (zh) * 2023-12-20 2024-03-05 吉林蛟河抽水蓄能有限公司 基于超声波技术的道路无损检测方法及系统
CN117542585A (zh) * 2024-01-08 2024-02-09 营口阿部配线有限公司 一种线束屏蔽线保护套推动拉伸装置及其使用方法
CN117542585B (zh) * 2024-01-08 2024-03-12 营口阿部配线有限公司 一种线束屏蔽线保护套推动拉伸装置及其使用方法

Also Published As

Publication number Publication date
KR102497000B1 (ko) 2023-02-08
US20240053302A1 (en) 2024-02-15
KR20220150031A (ko) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2022234957A1 (ko) 딥러닝을 이용한 초음파 비파괴 검사방법 및 시스템과 이에 사용되는 오토 인코더 기반의 예측모델 학습방법
WO2020231193A1 (en) Beam management method, apparatus, electronic device and computer readable storage medium
WO2019083144A1 (ko) 지중케이블 고장위치 탐지 장치 및 그 방법
WO2016074169A1 (zh) 一种对目标物体的检测方法、检测装置以及机器人
WO2014204179A1 (en) Method for verifying bad pattern in time series sensing data and apparatus thereof
WO2017010778A1 (ko) 대형 운용 시스템의 상태 기반 예방정비 장치 및 방법
WO2021157765A1 (ko) 해양관측 부이용 영상촬영 카메라를 이용한 파랑관측 방법 및 시스템
WO2021210838A1 (ko) 다양한 오믹스 데이터 분석에 기초한 생체나이 예측방법 및 시스템
WO2019009664A1 (en) APPARATUS FOR OPTIMIZING THE INSPECTION OF THE OUTSIDE OF A TARGET OBJECT AND ASSOCIATED METHOD
WO2020096141A1 (ko) 초단기예보모델 기반의 레이더 융해층 고도 자료 동화 방법, 이를 수행하기 위한 기록 매체 및 장치
WO2015182891A1 (ko) 초음파를 이용한 열화 평가 및 강도 추정 장치, 그리고 이를 이용한 열화 평가 및 강도 추정 방법
WO2012033264A1 (ko) 적응적 셀프 캘리브레이션이 가능한 병렬 자기 공명 영상 장치, 그 영상 방법 및 그 기록 매체
WO2019066139A1 (ko) 지상 기반 라이다, 라이다 측정오차 보정 장치 및 방법
WO2022045425A1 (ko) 역강화학습 기반 배달 수단 탐지 장치 및 방법
WO2014119817A1 (ko) 계장화 압입 시험법을 이용한 잔류응력 평가 방법과 이를 포함하는 컴퓨터 프로그램이 기록된 기록매체 및 이 기록매체가 실행되어 계장화 압입 시험을 수행하는 압입 시험장치
WO2018008881A1 (ko) 단말장치 및 서비스서버, 그 장치에 의해 수행되는 진단분석 서비스를 제공하기 위한 방법 및 프로그램과, 그 프로그램이 기록된 컴퓨터 판독 가능 기록매체
WO2018097620A1 (ko) 이상 음원 감지 방법 및 이를 수행하기 위한 장치
WO2022139111A1 (ko) 초분광 데이터에 기반하는 해상객체 인식 방법 및 시스템
WO2024106899A1 (ko) 단일 주파수 수신기에서 다중 채널에서 발생하는 신호의 차이를 감지하는 장치 및 방법
WO2021145713A1 (ko) 가상 모델 생성 장치 및 방법
WO2022220414A1 (ko) 비동기 자연 표적 영상 계측데이터와 가속도 데이터의 융합에 기초한 구조물 변위 측정 방법 및 이를 위한 시스템
WO2011068315A4 (ko) 최대 개념강도 인지기법을 이용한 최적의 데이터베이스 선택장치 및 그 방법
WO2022265200A1 (ko) 이중편파변수 기반 밝은띠 탐지 결과를 이용한 반사도 보정 방법, 이를 수행하기 위한 기록 매체 및 장치
WO2022039575A1 (ko) 딥 러닝 기반 실시간 공정 감시 시스템 및 그 방법
WO2023022305A1 (ko) 보행자 실내 위치 측위 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17776909

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22799003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22799003

Country of ref document: EP

Kind code of ref document: A1