WO2022234887A1 - 카메라 모듈의 반도체 패키지 - Google Patents

카메라 모듈의 반도체 패키지 Download PDF

Info

Publication number
WO2022234887A1
WO2022234887A1 PCT/KR2021/007999 KR2021007999W WO2022234887A1 WO 2022234887 A1 WO2022234887 A1 WO 2022234887A1 KR 2021007999 W KR2021007999 W KR 2021007999W WO 2022234887 A1 WO2022234887 A1 WO 2022234887A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge line
semiconductor package
straight edge
protrusion
terminals
Prior art date
Application number
PCT/KR2021/007999
Other languages
English (en)
French (fr)
Inventor
현경원
김동원
Original Assignee
주식회사 지니틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지니틱스 filed Critical 주식회사 지니틱스
Priority to CN202180097912.3A priority Critical patent/CN117296146A/zh
Publication of WO2022234887A1 publication Critical patent/WO2022234887A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to a semiconductor package of a camera module, and more particularly, to a shape of a semiconductor package for increasing the amount of lead in the semiconductor package.
  • FIG. 1 is a view for explaining a camera module according to an embodiment.
  • FIG. 1A is a perspective view of the camera module 1
  • FIG. 1B is a side perspective view of the housing 4 in which the lens assembly 21 is removed from the camera module 1 .
  • the camera module 1 may be, for example, a camera module included in a smartphone or a mobile phone.
  • the assembly 21 of the lens 2 may be located in the center.
  • the semiconductor package 3 and the coil 5 may be installed on the inner wall surface of the housing 4 of the camera module 1 after the lens assembly 21 is removed from the camera module 1 .
  • the semiconductor package 3 may be a VCM driving chip.
  • the lens assembly 21 may include a lens and a barrel.
  • FIG. 2 is a diagram for describing a lens aperture of a camera module and size restrictions of a semiconductor package according to an exemplary embodiment.
  • Figure 2 (a) is a plan view of the camera module (1)
  • Figure 2 (b) is a view for explaining the aperture of the lens
  • Figure 2 (c) is the semiconductor shown in Figure 1 (b)
  • FIG. 2 (d) shows the surface on which the lead ball of the semiconductor package is formed.
  • a plurality of circular pads (not shown) for coupling the semiconductor package 3 may be formed on the PCB installed on the wall surface of the camera module housing 4 .
  • the semiconductor package 3 may have, for example, six lead balls (or terminals, which may be referred to as terminals) 31 formed therein.
  • the spacing, position, and shape between the lead balls 31 may correspond to the spacing, position, and shape of the plurality of pads.
  • a lead ball and pad may generally take the form of a circle.
  • a state in which lead is deposited on one surface of the semiconductor package 3 is a semiconductor package as a finished product.
  • one side of the camera module 1 that is, one side of the wall surface of the housing 4 and The size of the reference symbol w1 indicating the minimum distance between one point of the lens 2 may be reduced.
  • the vertical length h1 in this case, the vertical length includes the height of the lead ball
  • the vertical length includes the height of the lead ball
  • a restriction arises in the increase in the height of the lead ball 31 . That is, when the lead ball 31 height is limited to a certain height, there is a problem that the method cannot be used.
  • An object of the present invention is to provide a semiconductor package capable of increasing the amount of lead in the lead ball of the semiconductor package while satisfying the minimum distance between pads.
  • a wafer level chip size package type semiconductor package 10 having a plurality of terminals 100 and 200 may be provided.
  • the semiconductor package has a long and narrow rectangular planar shape, and the plurality of terminals are composed of two rows arranged along the short side direction D1 of the semiconductor package, and each terminal has a circular body part 111 . ) and a protrusion 112 having a shape extending outward from the body portion.
  • the protrusion may include a first straight edge line 112a, and an extension line L1 of the first straight edge line may pass through the center of gravity 113 of the body part.
  • the protrusion may be formed in a counterclockwise direction with respect to the first straight edge line.
  • the protrusion may include a first straight edge line, and an extension line of the first straight edge line may pass through the center of gravity of the body part.
  • the protrusion may be formed in a clockwise direction with respect to the first straight edge line.
  • the first direction LD11 in which the virtual linear radiation is directed and the An angle between the projections of the protrusions of the terminal through which the linear radiation passes may be greater than 45° and less than 165°.
  • the protrusion may further include a second straight edge line 112b and a third straight edge line 112c.
  • the third straight edge line may be parallel to the first straight edge line, and one end point of the third straight edge line may be connected to one point of the body part. And both end points of the second straight edge are not connected to the body part among both ends of the first straight edge line 112a so that the shape of the protrusion is symmetrical to the 'C' shape. It may be connected to a non-existent point and the other end point of the third straight edge line 112c.
  • the protrusion may further include a fourth curved edge line 112d.
  • one end point of the fourth curved edge line is connected to a point not connected to the body part among both ends of the first straight edge line, and the other end point of the fourth curved edge line is the body It can be connected to a point of wealth.
  • the protrusion 112 of at least one terminal 110 among the plurality of terminals may invade the virtual dividing line 11 dividing the plurality of terminals into two columns in the semiconductor package.
  • the present invention it is possible to provide a semiconductor package capable of increasing the amount of lead in the lead ball of the semiconductor package while satisfying the minimum distance between pads.
  • FIG. 1 is a view for explaining a camera module according to an embodiment.
  • FIG. 2 is a diagram for describing a lens aperture of a camera module and size restrictions of a semiconductor package according to an exemplary embodiment.
  • FIG 3 is a bottom view of a semiconductor package according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining the form of the terminal shown in FIG. 3 .
  • 5 is a diagram for explaining a minimum distance between terminals according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining a range of an angle between a first direction to which virtual linear radiation is directed and a protrusion direction of a protrusion of a terminal through which the linear radiation passes according to an embodiment of the present invention.
  • FIG. 7 is a bottom view of a semiconductor package according to another embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the form of the terminal shown in FIG. 7 .
  • FIG 3 is a bottom view of a semiconductor package according to an embodiment of the present invention.
  • the semiconductor package 10 may be a wafer level chip size package type having a plurality of terminals 100 .
  • the semiconductor package 10 may have a planar shape of a long and narrow rectangular shape.
  • the plurality of terminals 100 may be configured in two columns arranged along the short direction D1 of the semiconductor package 10 .
  • a virtual dividing line dividing the plurality of terminals 100 into two columns (first column and second column) in the semiconductor package 10 is indicated by reference number 11 .
  • the terminal 100 may include a circular body portion and a protrusion having a shape extending outward from the body portion.
  • the protrusion of each terminal 100 may be formed such that the protrusions are disposed as a whole in a clockwise direction.
  • the shape of the terminal will be described with reference to FIG. 4 .
  • FIG. 4 is a view for explaining the form of the terminal shown in FIG. 3 .
  • Fig. 4 (a) shows the shape of the terminal according to the first embodiment
  • Fig. 4 (b) shows the shape of the terminal according to the second embodiment.
  • the terminals 100 and 110 may include a circular body portion 111 and a protrusion 112 having a shape extending outward from the body portion 111 .
  • the protrusion 112 may include a first straight edge line 112a, a second straight edge line 112b, and a third straight edge line 112c.
  • the extension line L1 of the first straight edge line 112a may pass through the center of gravity 113 of the body 111 .
  • the protrusion 112 may be formed in a counterclockwise direction with respect to the first straight edge line 112a.
  • the third straight edge line 112c is parallel to the first straight edge line 112a, and one end point of the third straight edge line 112c may be connected to a point of the body part 111. .
  • the second straight edge line 112b is connected orthogonally to a point that is not connected to the body 111 among both ends of the first straight edge line 112a and the other end point of the third straight edge line 112c.
  • the angle between the first straight edge line 112a and the second straight edge line 112b may be a right angle
  • the angle between the second straight edge line 112b and the third straight edge line 112c may be a right angle.
  • the terminals 100 and 110 may include a circular body portion 111 and a protrusion 112 ′ having a shape extending outward from the body portion 111 .
  • the protrusion 112 may include a first straight edge line 112a and a fourth curved edge line 112d.
  • the extension line L1 of the first straight edge line 112a may pass through the center of gravity 113 of the body 111 .
  • the protrusion 112 ′ may be formed in a counterclockwise direction with respect to the first straight edge line 112a.
  • one end point of the fourth curved edge line 112d is connected to a point that is not connected to the body 111 among both ends of the first straight edge line 112a, and the fourth curved edge line ( The other end point of 112d) may be connected to one point of the body part 111 .
  • the fourth curved edge line 112d may be, for example, a parabola or a straight line, but is not limited thereto.
  • 5 is a diagram for explaining a minimum distance between terminals according to an embodiment of the present invention.
  • Pads of the PCB of the camera module may be disposed to correspond to the positions of the terminals 110 to 116 of the semiconductor package 10 shown in FIG. 5 .
  • the minimum distance between the pads must be ensured, and for this purpose, the minimum distance between the terminals must also be secured.
  • the terminals 110 to 116 are arranged in a zigzag, and the minimum distance (TD1) between the terminals 110 to 116 despite using the terminal having a protrusion to increase the amount of solder. ⁇ TD9) can be guaranteed.
  • FIG. 6 is a view for explaining a range of an angle between a first direction to which virtual linear radiation is directed and a protrusion direction of a protrusion of a terminal through which the linear radiation passes according to an embodiment of the present invention.
  • the virtual linear radiation L11 to L16 extends from the center of gravity 12 of the semiconductor package 10 to the center of gravity 113 to 163 of the body parts 111 to 161 of each of the plurality of terminals 110 to 160 . It may be a connecting line.
  • the first virtual linear radiation L11 is a line connecting from the center of gravity 12 of the semiconductor package 10 to the center of gravity 113 of the body 111 of the first terminal 110 .
  • the second virtual linear radiation L12 is a line connecting from the center of gravity 12 of the semiconductor package 10 to the center of gravity 123 of the body 121 of the second terminal 120 .
  • the third virtual linear radiation L13 is a line connecting from the center of gravity 12 of the semiconductor package 10 to the center of gravity 133 of the body 131 of the third terminal 130 .
  • the fourth virtual linear radiation L14 is a line connecting from the center of gravity 12 of the semiconductor package 10 to the center of gravity 143 of the body 141 of the fourth terminal 140 .
  • the fifth virtual linear radiation L15 is a line connecting from the center of gravity 12 of the semiconductor package 10 to the center of gravity 153 of the body 151 of the fifth terminal 150 .
  • the sixth virtual linear radiation L16 is a line connecting from the center of gravity 12 of the semiconductor package 10 to the center of gravity 163 of the body 161 of the sixth terminal 160 .
  • an angle between the direction in which each of the virtual linear radiations L11 to L16 is directed and the protrusion of the terminal through which the linear radiation passes may be greater than 45° and less than 165°.
  • the protrusion direction may be a direction from a point connected to the body 111 among the first straight edge lines 112a of the protrusions 112 and 112 ′ to a point not connected to the body 111 . .
  • the first angle a1 may be greater than 45° and less than 165°.
  • the first angle between the angles may be 102°.
  • the angle a2 may be greater than 45° and less than 165°.
  • the second angle between the angles may be 161°.
  • the angle a3 may be greater than 45° and less than 165°.
  • the third angle may be 47°.
  • the fourth direction LD14 to which the fourth imaginary linear radiation L14 is directed and a fourth direction D14 of the protrusion 142 of the fourth terminal 140 through which the fourth imaginary linear radiation L14 passes The angle a4 may be greater than 45° and less than 165°.
  • the fourth intervening angle may be 102°.
  • the angle a5 may be greater than 45° and less than 165°.
  • the fifth intervening angle may be 161°.
  • a sixth direction LD16 to which the sixth virtual linear radiation L16 is directed and a sixth direction D16 of the projection 162 of the sixth terminal 160 through which the sixth virtual linear radiation L16 passes The angle between the angles a6 may be greater than 45° and less than 165°.
  • the sixth angle may be 47°.
  • FIG. 7 is a bottom view of a semiconductor package according to another embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the form of the terminal shown in FIG. 7 .
  • Fig. 8(a) shows the shape of the terminal according to the third embodiment
  • Fig. 8(b) shows the shape of the terminal according to the fourth embodiment.
  • the difference between the semiconductor package 10 ′ of FIG. 7 and the semiconductor package 10 of FIG. 3 is in the shape of the terminals. That is, in FIG. 4, the protrusion 112 of the terminal 110 is formed in a counterclockwise direction with respect to the first straight edge line 112a, whereas in FIG. 8, the protrusion 252 of the terminal 250 has a straight edge. It may be formed in a clockwise direction with reference to (252a).
  • the protrusions of the terminals 210 to 260 of the semiconductor package 10 ′ may be formed so that the protrusions are disposed as if they rotate in a counterclockwise direction as a whole.
  • the terminals 200 and 250 may include a circular body part 251 and a protrusion part 252 having a shape extending outward from the body part 251 .
  • the protrusion 252 of the terminal 250 may include a first straight edge line 252a, a second straight edge line 252b, and a third straight edge line 252c.
  • the extension line L2 of the first straight edge line 252a may pass through the center of gravity 253 of the body portion 251 .
  • the protrusion 252 may be formed in a clockwise direction with respect to the first straight edge line 252a.
  • the third straight edge line 252c is parallel to the first straight edge line 252a, and one end point of the third straight edge line 252c may be connected to a point of the body part 251. .
  • the second straight edge line 252b may be connected orthogonally to a point not connected to the body 251 among both ends of the first straight edge line 252a and to the other endpoint of the third straight edge line 252c, respectively.
  • the angle between the first straight edge line 252a and the second straight edge line 252b may be a right angle
  • the angle between the second straight edge line 252b and the third straight edge line 252c may be a right angle.
  • the terminals 200 and 250 ′ may include a circular body part 251 and a protrusion part 252 ′ having a shape extending outward from the body part 251 .
  • the protrusion 252 may include a first straight edge line 252a and a fourth curved edge line 252d.
  • the extension line L2 of the first straight edge line 252a may pass through the center of gravity 253 of the body portion 251 .
  • the protrusion 252 ′ may be formed in a clockwise direction with respect to the first straight edge line 252a.
  • one end point of the fourth curved edge line 252d is connected to a point not connected to the body 251 among both ends of the first straight edge line 252a, and the fourth curved edge line ( The other end point of 252d) may be connected to one point of the body part 251 .
  • the fourth curved edge line 252d may be, for example, a parabola or a straight line, but is not limited thereto.
  • a minimum distance between terminals may be secured.
  • the angle between the direction in which the virtual linear radiation is directed and the projection direction of the protrusion of the terminal through which the linear radiation passes may be greater than 45° and less than 165°.
  • the protrusion direction may be a direction from a point connected to the body part 251 among the first straight edge lines 252a of the protrusions 252 and 252' to a point not connected to the body part 251. .
  • the reason for forming the terminals (and pads having the same shape as the terminals) in the counterclockwise or clockwise direction in the present invention described above is to secure a minimum distance between the terminals (and pads having the same shape as the terminals).
  • the other pads (and/or terminals) must also be shaped the same, since the amount of lead applied to each pad must be managed equally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

복수 개의 터미널들을 갖는 웨이퍼 레벨 칩 사이즈 패키치 타입의 반도체 패키지로서, 상기 반도체 패키지는 길고 좁은 직사각형 형상의 평면 모양을 가지며, 상기 복수 개의 터미널들은 상기 반도체 패키지의 짧은 쪽 방향을 따라 배치된 2개의 열로 구성되며, 각각의 상기 터미널은 원형의 몸체부와 상기 몸체부로부터 바깥쪽으로 뻗어 나온 형상의 돌출부를 포함하는, 반도체 패키지를 공개한다.

Description

카메라 모듈의 반도체 패키지
본 발명은 카메라 모듈의 반도체 패키지에 관한 것으로 특히 반도체 패키지의 납량을 증가시키기 위한 반도체 패키지의 형상에 관한 것이다.
도 1은 일 실시예에 따른 카메라 모듈을 설명하기 위한 도면이다.
도 1의 (a)는 카메라 모듈(1)의 사시도이고, 도 1의 (b)는 카메라 모듈(1)에서 렌즈 어셈블리(21)를 제거한 하우징(4)의 측면 사시도이다.
카메라 모듈(1)은 예컨대, 스마트폰 또는 휴대폰에 포함되는 카메라 모듈일 수 있다.
카메라 모듈(1)은 가운데에 렌즈(2)의 어셈블리(21)가 위치할 수 있다. 도 1의 (b)를 참조하면, 카메라 모듈(1)에서 렌즈 어셈블리(21)를 제거한 카메라 모듈(1)의 하우징(4) 내부 벽면에는 반도체 패키지(3) 및 코일(5)이 설치될 수 있다. 예컨대, 반도체 패키지(3)는 VCM 구동칩일 수 있다.
이때, 상기 렌즈의 어셈블리(21)는 렌즈, 및 경통을 포함할 수 있다.
도 2는 일 실시예에 따른 카메라 모듈의 렌즈 구경과 반도체 패키지의 크기 제약을 설명하기 위한 도면이다.
도 2의 (a)는 카메라 모듈(1)의 평면도이고, 도 2의 (b)는 렌즈의 구경을 설명하기 위한 도면이며, 도 2의 (c)는 도 1의 (b)에 도시한 반도체 패키지만을 확대하여 나타낸 것으로서 카메라 모듈 하우징(4) 내부에서 코일이 형성된 면을 바라본 도면이며, 도 2의 (d)는 반도체 패키지의 납볼이 형성된 면을 나타낸 것이다.
이하, 도 1 및 도 2를 함께 참조하여 설명한다.
카메라 모듈 하우징(4)의 벽면에 설치된 PCB에는 반도체 패키지(3)가 결합되기 위한 복수 개의 원형 패드들(미도시)이 형성되어 있을 수 있다.
그리고 도 2의 (d)를 참조하면, 반도체 패키지(3)에는 예컨대, 6개의 납볼(또는 단자, 터미널로 지칭될 수 있음)(31)이 형성되어 있을 수 있다. 이때, 납볼(31)들 간의 간격, 위치, 및 모양은 상기 복수 개의 패드들의 간격, 위치, 및 모양에 대응될 수 있다. 예컨대, 일반적으로 납볼 및 패드는 원형의 형태를 취할 수 있다.
반도체 패키지(3)의 일 면에 납이 묻어있는 상태(즉, 납볼이 형성된 상태)가 완제품으로서의 반도체 패키지이다.
이때, 반도체 패키지(3)의 납볼(31)의 납량을 증가시킬 필요가 있다. 이를 위하여, 납볼(31)의 높이를 증가시키는 방법을 이용할 수 있다.
그러나, 도 2의 (a) 및 (b)를 참조하면, 최근 렌즈(2)의 구경(Lens_d)이 점차 커짐에 따라 카메라 모듈(1)의 일 변 즉, 하우징(4) 벽면의 일 변과 렌즈(2)의 일 지점의 최소간격을 나타내는 참조부호 w1의 크기가 줄어들 수 있다.
이에 따라 도 2의 (c)와 같이 반도체 패키지(3)의 세로 길이(h1)(이때, 세로 길이는 납볼의 높이를 포함한다)의 증가에 제약이 발생하므로, 도 2의 (d)와 같이 납볼(31)의 높이 증가에 제약이 생긴다. 즉, 납볼(31) 높이가 일정 높이까지 제한되는 경우 상기 방법을 이용할 수 없다는 문제가 있다.
다른 방법으로, 상기 원형 패드의 직경을 증가시키는 방법이 있을 수 있다.
그러나 도 1의 (b)에 표시한 최근 카메라 모듈(1)의 전체 높이(H)가 감소되는 추세에 있으며, 도 2의 (c)에 표시한 바와 같이 코일(5) 영역 확보를 위해 반도체 패키지(3)의 단축(h2)이 축소되어야 하므로 납볼(31)의 직경 증가에 제약이 발생한다.
또한, PCB의 패드 간 최소 거리가 제한되어 있을 때 문제가 생길 수 있다. 즉, 패드의 직경을 증가시키면 모든 방향으로 사이즈가 커지기 때문에, 충족시켜야 하는 패드 간 최소 거리를 충족시키지 못할 수 있다.
본 발명에서는 패드간 최소 거리를 충족시키면서도 반도체 패키지의 납볼의 납량을 증가시킬 수 있는 반도체 패키지를 제공하고자 한다.
본 발명의 일 관점에 따라 복수 개의 터미널들(100, 200)을 갖는 웨이퍼 레벨 칩 사이즈 패키치 타입의 반도체 패키지(10)가 제공될 수 있다. 상기 반도체 패키지는 길고 좁은 직사각형 형상의 평면 모양을 가지며, 상기 복수 개의 터미널들은 상기 반도체 패키지의 짧은 쪽 방향(D1)을 따라 배치된 2개의 열로 구성되며, 각각의 상기 터미널은 원형의 몸체부(111)와 상기 몸체부로부터 바깥쪽으로 뻗어 나온 형상의 돌출부(112)를 포함한다.
이때, 상기 돌출부는 제1직선형 가장자리 라인(112a)를 포함하고, 상기 제1직선형 가장자리 라인의 연장선(L1)은 상기 몸체부의 무게중심(113)을 통과할 수 있다. 그리고 상기 돌출부는, 상기 제1직선형 가장자리 라인을 기준으로 하여 반시계 방향에 형성되어 있을 수 있다.
이때, 상기 돌출부는 제1직선형 가장자리 라인을 포함하고, 상기 제1직선형 가장자리 라인의 연장선은 상기 몸체부의 무게중심을 통과할 수 있다. 그리고 상기 돌출부는, 상기 제1직선형 가장자리 라인을 기준으로 하여 시계 방향에 형성되어 있을 수 있다.
이때, 상기 반도체 패키지의 무게 중심(12)으로부터 상기 복수 개의 터미널 각각의 몸체부의 무게 중심까지 연결하는 가상의 직선형 방사선(L11)에 대하여, 상기 가상의 직선형 방사선이 향하는 제1방향(LD11)과 상기 직선형 방사선이 통과하는 상기 터미널의 돌출부의 돌출방향의 사잇각은 45°보다 크고 165°보다 작을 수 있다.
이때, 상기 돌출부는 제2직선형 가장자리 라인(112b), 및 제3직선형 가장자리 라인(112c)를 더 포함할 수 있다. 그리고 상기 제3직선형 가장자리 라인은 상기 제1직선형 가장자리 라인과 평행하고, 상기 제3직선형 가장자리 라인의 일 끝지점은 상기 몸체부의 일 지점에 연결되어 있을 수 있다. 그리고 상기 제2직선형 가장지리의 양 끝지점은, 상기 돌출부의 형태가 'ㄷ'자 형태와 좌우대칭된 형태가 되도록 상기 제1직선형 가장자리 라인(112a)의 양 끝지점 중 상기 몸체부와 연결되지 않은 지점 및 상기 제3직선형 가장자리 라인(112c)의 타 끝지점에 연결될 수 있다.
이때, 상기 돌출부는 제4곡선형 가장자리 라인(112d)를 더 포함할 수 있다. 그리고 상기 제4곡선형 가장자리 라인의 일 끝지점은 상기 제1직선형 가장자리 라인의 양 끝지점 중 상기 몸체부와 연결되지 않은 지점과 연결되고, 상기 제4곡선형 가장자리 라인의 타 끝지점은 상기 몸체부의 일 지점에 연결될 수 있다.
이때, 상기 복수 개의 터미널들 중 적어도 하나의 터미널(110)의 돌출부(112)는 상기 반도체 패키지에서 상기 복수 개의 터미널들을 2개의 열로 구분하는 가상의 구분선(11)을 침범할 수 있다.
본 발명에 따르면, 패드간 최소 거리를 충족시키면서도 반도체 패키지의 납볼의 납량을 증가시킬 수 있는 반도체 패키지를 제공할 수 있다.
도 1은 일 실시예에 따른 카메라 모듈을 설명하기 위한 도면이다.
도 2는 일 실시예에 따른 카메라 모듈의 렌즈 구경과 반도체 패키지의 크기 제약을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 반도체 패키지의 저면도를 나타낸 것이다.
도 4는 도 3에 도시한 터미널의 형태를 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시예에 따라 터미널들 간의 최소 거리를 설명하기 위한 도면이다.
도 6은 본 발명의 일 실시예에 따라 가상의 직선형 방사선이 향하는 제1방향과 상기 직선형 방사선이 통과하는 터미널의 돌출부의 돌출방향의 사잇각의 범위를 설명하기 위한 도면이다.
도 7은 본 발명의 다른 실시예에 따른 반도체 패키지의 저면도를 나타낸 것이다.
도 8은 도 7에 도시한 터미널의 형태를 설명하기 위한 도면이다.
이하, 본 발명의 실시예를 첨부한 도면을 참고하여 설명한다. 그러나 본 발명은 본 명세서에서 설명하는 실시예에 한정되지 않으며 여러 가지 다른 형태로 구현될 수 있다. 본 명세서에서 사용되는 용어는 실시예의 이해를 돕기 위한 것이며, 본 발명의 범위를 한정하고자 의도된 것이 아니다. 또한, 이하에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
도 3은 본 발명의 일 실시예에 따른 반도체 패키지의 저면도를 나타낸 것이다.
반도체 패키지(10)는 복수 개의 터미널들(100)을 갖는 웨이퍼 레벨 칩 사이즈 패키치 타입일 수 있다.
반도체 패키지(10)는 길고 좁은 직사각형 형상의 평면 모양을 가질 수 있다.
복수 개의 터미널들(100)은 반도체 패키지(10)의 짧은 쪽 방향(D1)을 따라 배치된 2개의 열로 구성될 수 있다.
이때, 반도체 패키지(10)에서 복수 개의 터미널들(100)을 2개의 열(제1열, 제2열)로 구분하는 가상의 구분선을 참조번호 11로 나타냈다.
그리고 반도체 패키지(10)의 무게 중심은 참조번호 12로 나타냈다.
터미널(100)은 원형의 몸체부와 상기 몸체부로부터 바깥쪽으로 뻗어 나온 형상의 돌출부를 포함할 수 있다. 이때, 반도체 패키지(10)에서 각 터미널(100)의 돌출부는 돌출부들이 전체적으로 시계방향을 따라 회전하듯 배치되도록 형성될 수 있다. 이하, 도 4를 참조하여 터미널의 형태를 설명한다.
도 4는 도 3에 도시한 터미널의 형태를 설명하기 위한 도면이다.
도 4의 (a)는 제1실시예에 따른 터미널의 형태를 나타낸 것이고, 도 4의 (b)는 제2실시예에 따른 터미널의 형태를 나타낸 것이다.
먼저, 도 4의 (a)를 기준으로 터미널의 형태를 설명한다.
터미널(100, 110)은 원형의 몸체부(111)와 몸체부(111)로부터 바깥쪽으로 뻗어 나온 형상의 돌출부(112)를 포함할 수 있다.
돌출부(112)는 제1직선형 가장자리 라인(112a), 제2직선형 가장자리 라인(112b), 및 제3직선형 가장자리 라인(112c)를 포함할 수 있다.
제1직선형 가장자리 라인(112a)의 연장선(L1)은 몸체부(111)의 무게중심(113)을 통과할 수 있다.
돌출부(112)는, 제1직선형 가장자리 라인(112a)를 기준으로 하여 반시계 방향에 형성될 수 있다.
이때, 제3직선형 가장자리 라인(112c)는 제1직선형 가장자리 라인(112a)와 평행하고, 제3직선형 가장자리 라인(112c)의 일 끝지점은 몸체부(111)의 일 지점에 연결되어 있을 수 있다.
제2직선형 가장자리 라인(112b)은 제1직선형 가장자리 라인(112a)의 양 끝지점 중 몸체부(111)와 연결되지 않은 지점 및 제3직선형 가장자리 라인(112c)의 타 끝지점에 각각 직교하여 연결될 수 있다. 즉, 제1직선형 가장자리 라인(112a)와 제2직선형 가장자리 라인(112b) 사잇각은 직각이고, 제2직선형 가장자리 라인(112b)와 제3직선형 가장자리 라인(112c)의 사잇각은 직각일 수 있다.
이하, 도 4의 (b)를 기준으로 터미널의 형태를 설명한다.
터미널(100, 110)은 원형의 몸체부(111)와 몸체부(111)로부터 바깥쪽으로 뻗어 나온 형상의 돌출부(112')를 포함할 수 있다.
돌출부(112)는 제1직선형 가장자리 라인(112a), 및 제4곡선형 가장자리 라인(112d)를 포함할 수 있다.
제1직선형 가장자리 라인(112a)의 연장선(L1)은 몸체부(111)의 무게중심(113)을 통과할 수 있다.
돌출부(112')는, 제1직선형 가장자리 라인(112a)를 기준으로 하여 반시계 방향에 형성될 수 있다.
이때, 제4곡선형 가장자리 라인(112d)의 일 끝지점은 제1직선형 가장자리 라인(112a)의 양 끝지점 중 몸체부(111)와 연결되지 않은 지점과 연결되고, 제4곡선형 가장자리 라인(112d)의 타 끝지점은 몸체부(111)의 일 지점에 연결될 수 있다.
이때, 제4곡선형 가장자리 라인(112d)는 예컨대 포물선, 또는 직선일 수 있으며, 이에 제한되지는 않는다.
도 5는 본 발명의 일 실시예에 따라 터미널들 간의 최소 거리를 설명하기 위한 도면이다.
도 5에 도시한 반도체 패키지(10)의 각 터미널(110~116)의 위치와 대응되도록 카메라 모듈(미도시)의 PCB의 패드들이 배치될 수 있다. 이때, 상술한 바와 같이 패드들 간의 최소 거리가 보장되어야 하며, 이를 위해서는 터미널들 간의 최소 거리 또한 확보되어야 한다.
도 2를 통해 상술한 바와 같은 터미널들(납볼들)의 배치에서는 납량을 증가시키면 터미널들 간의 최소 거리가 보장되지 않는 문제가 있다. 그러나 도 5와 같이 본 발명에 따르면, 터미널들(110~116)이 지그재그로 배치되어 있으며, 납량을 증가시키기 위해 돌출부가 형성된 터미널을 이용함에도 불구하고 터미널들(110~116)간의 최소 거리(TD1~TD9)가 보장될 수 있다.
도 6은 본 발명의 일 실시예에 따라 가상의 직선형 방사선이 향하는 제1방향과 상기 직선형 방사선이 통과하는 터미널의 돌출부의 돌출방향의 사잇각의 범위를 설명하기 위한 도면이다.
이하, 도 5 및 도 6을 함께 참조하여 설명한다.
상기 가상의 직선형 방사선(L11~L16)은, 반도체 패키지(10)의 무게 중심(12)으로부터 복수 개의 터미널(110~160) 각각의 몸체부(111~161)의 무게 중심(113~163)까지 연결하는 선일 수 있다.
예컨대, 제1가상의 직선형 방사선(L11)은 반도체 패키지(10)의 무게 중심(12)으로부터 제1터미널(110)의 몸체부(111)의 무게 중심(113)까지 연결하는 선이다.
제2가상의 직선형 방사선(L12)은 반도체 패키지(10)의 무게 중심(12)으로부터 제2터미널(120)의 몸체부(121)의 무게 중심(123)까지 연결하는 선이다.
제3가상의 직선형 방사선(L13)은 반도체 패키지(10)의 무게 중심(12)으로부터 제3터미널(130)의 몸체부(131)의 무게 중심(133)까지 연결하는 선이다.
제4가상의 직선형 방사선(L14)은 반도체 패키지(10)의 무게 중심(12)으로부터 제4터미널(140)의 몸체부(141)의 무게 중심(143)까지 연결하는 선이다.
제5가상의 직선형 방사선(L15)은 반도체 패키지(10)의 무게 중심(12)으로부터 제5터미널(150)의 몸체부(151)의 무게 중심(153)까지 연결하는 선이다.
제6가상의 직선형 방사선(L16)은 반도체 패키지(10)의 무게 중심(12)으로부터 제6터미널(160)의 몸체부(161)의 무게 중심(163)까지 연결하는 선이다.
이때, 상기 각각의 가상의 직선형 방사선(L11~L16)이 향하는 방향과 상기 직선형 방사선이 통과하는 상기 터미널의 돌출부의 사잇각은 45°보다 크고 165°보다 작을 수 있다. 이때, 상기 돌출방향은 상기 돌출부(112, 112')의 제1직선형 가장자리 라인(112a) 중 몸체부(111)와 연결된 지점에서 상기 몸체부(111)와 연결되지 않은 지점으로 향하는 방향일 수 있다.
예컨대, 제1가상의 직선형 방사선(L11)이 향하는 제1방향(LD11)과 제1가상의 직선형 방사선(L11)이 통과하는 제1터미널(110)의 돌출부(112)의 돌출방향(D11)의 제1사잇각(a1)은 45°보다 크고 165°보다 작을 수 있다. 예컨대, 상기 제1사잇각은 102° 일 수 있다.
제2가상의 직선형 방사선(L12)이 향하는 제2방향(LD12)와 제2가상의 직선형 방사선(L12)가 통과하는 제2터미널(120)의 돌출부(122)의 돌출방향(D12)의 제2사잇각(a2)은 45°보다 크고 165°보다 작을 수 있다. 예컨대, 상기 제2사잇각은 161° 일 수 있다.
제3가상의 직선형 방사선(L13)이 향하는 제3방향(LD13)와 제3가상의 직선형 방사선(L13)이 통과하는 제3터미널(130)의 돌출부(132)의 돌출방향(D13)의 제3사잇각(a3)은 45°보다 크고 165°보다 작을 수 있다. 예컨대, 상기 제3사잇각은 47° 일 수 있다.
제4가상의 직선형 방사선(L14)이 향하는 제4방향(LD14)와 제4가상의 직선형 방사선(L14)이 통과하는 제4터미널(140)의 돌출부(142)의 돌출방향(D14)의 제4사잇각(a4)은 45°보다 크고 165°보다 작을 수 있다. 예컨대, 상기 제4사잇각은 102° 일 수 있다.
제5가상의 직선형 방사선(L15)이 향하는 제5방향(LD15)와 제5가상의 직선형 방사선(L15)이 통과하는 제5터미널(150)의 돌출부(152)의 돌출방향(D15)의 제5사잇각(a5)은 45°보다 크고 165°보다 작을 수 있다. 예컨대, 상기 제5사잇각은 161° 일 수 있다.
제6가상의 직선형 방사선(L16)이 향하는 제6방향(LD16)와 제6가상의 직선형 방사선(L16)이 통과하는 제6터미널(160)의 돌출부(162)의 돌출방향(D16)의 제6사잇각(a6)은 45°보다 크고 165°보다 작을 수 있다. 예컨대, 상기 제6사잇각은 47° 일 수 있다.
도 7은 본 발명의 다른 실시예에 따른 반도체 패키지의 저면도를 나타낸 것이다.
도 8은 도 7에 도시한 터미널의 형태를 설명하기 위한 도면이다.
도 8의 (a)는 제3실시예에 따른 터미널의 형태를 나타낸 것이고, 도 8의 (b)는 제4실시예에 따른 터미널의 형태를 나타낸 것이다.
이하, 도 3, 도 4, 도 7, 및 도 8을 함께 참조하여 설명한다.
도 7의 반도체 패키지(10')와 도 3의 반도체 패키지(10)의 차이는 터미널들의 형태에 있다. 즉, 도 4에서 터미널(110)의 돌출부(112)는 제1직선형 가장자리 라인(112a)를 기준으로 하여 반시계방향에 형성되는 반면, 도 8에서 터미널(250)의 돌출부(252)는 직선형 가장자리(252a)를 기준으로 하여 시계방향에 형성될 수 있다.
이때, 도 7에서 반도체 패키지(10')의 터미널들(210~260)의 돌출부는 돌출부들이 전체적으로 반시계방향을 따라 회전하듯 배치되도록 형성될 수 있다.
도 8의 (a)를 참조하면, 터미널(200, 250)은 원형의 몸체부(251)와 몸체부(251)로부터 바깥쪽으로 뻗어 나온 형상의 돌출부(252)를 포함할 수 있다.
터미널(250)의 돌출부(252)는 제1직선형 가장자리 라인(252a), 제2직선형 가장자리 라인(252b), 및 제3직선형 가장자리 라인(252c)를 포함할 수 있다.
제1직선형 가장자리 라인(252a)의 연장선(L2)은 몸체부(251)의 무게중심(253)을 통과할 수 있다.
돌출부(252)는, 제1직선형 가장자리 라인(252a)를 기준으로 하여 시계 방향에 형성될 수 있다.
이때, 제3직선형 가장자리 라인(252c)는 제1직선형 가장자리 라인(252a)와 평행하고, 제3직선형 가장자리 라인(252c)의 일 끝지점은 몸체부(251)의 일 지점에 연결되어 있을 수 있다.
제2직선형 가장자리 라인(252b)은 제1직선형 가장자리 라인(252a)의 양 끝지점 중 몸체부(251)와 연결되지 않은 지점 및 제3직선형 가장자리 라인(252c)의 타 끝지점에 각각 직교하여 연결될 수 있다. 즉, 제1직선형 가장자리 라인(252a)와 제2직선형 가장자리 라인(252b) 사잇각은 직각이고, 제2직선형 가장자리 라인(252b)와 제3직선형 가장자리 라인(252c)의 사잇각은 직각일 수 있다.
도 8의 (b)를 참조하면, 터미널(200, 250')은 원형의 몸체부(251)와 몸체부(251)로부터 바깥쪽으로 뻗어 나온 형상의 돌출부(252')를 포함할 수 있다.
돌출부(252)는 제1직선형 가장자리 라인(252a), 및 제4곡선형 가장자리 라인(252d)를 포함할 수 있다.
제1직선형 가장자리 라인(252a)의 연장선(L2)은 몸체부(251)의 무게중심(253)을 통과할 수 있다.
돌출부(252')는, 제1직선형 가장자리 라인(252a)를 기준으로 하여 시계 방향에 형성될 수 있다.
이때, 제4곡선형 가장자리 라인(252d)의 일 끝지점은 제1직선형 가장자리 라인(252a)의 양 끝지점 중 몸체부(251)와 연결되지 않은 지점과 연결되고, 제4곡선형 가장자리 라인(252d)의 타 끝지점은 몸체부(251)의 일 지점에 연결될 수 있다.
이때, 제4곡선형 가장자리 라인(252d)는 예컨대 포물선, 또는 직선일 수 있으며, 이에 제한되지는 않는다.
도 7의 실시예에서도 도 5의 실시예와 같이 터미널들 간의 최소 거리가 확보될 수 있다.
도 7에서도 가상의 직선형 방사선이 향하는 방향과 상기 직선형 방사선이 통과하는 터미널의 돌출부의 돌출방향의 사잇각은 45°보다 크고 165°보다 작을 수 있다.
이때, 상기 돌출방향은 상기 돌출부(252, 252')의 제1직선형 가장자리 라인(252a) 중 몸체부(251)와 연결된 지점에서 상기 몸체부(251)와 연결되지 않은 지점으로 향하는 방향일 수 있다.
상술한 본 발명에서 터미널들( 및 터미널들과 동일한 형상의 패드)을 반시계 방향 또는 시계방향으로 형성시키는 이유는 터미널( 및 터미널들과 동일한 형상의 패드)들 간의 최소 거리를 확보하기 위함이다.
또한, 한 개의 패드( 및/또는 터미널)의 모양이 정해지면 다른 패드( 및/또는 터미널)들도 동일한 모양으로 해야 하는데, 이는 각 패드에 붙이는 납의 양을 모두 동일하게 관리해야 하기 때문이다.
상술한 본 발명의 실시예들을 이용하여, 본 발명의 기술 분야에 속하는 자들은 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에 다양한 변경 및 수정을 용이하게 실시할 수 있을 것이다. 특허청구범위의 각 청구항의 내용은 본 명세서를 통해 이해할 수 있는 범위 내에서 인용관계가 없는 다른 청구항에 결합될 수 있다.

Claims (8)

  1. 복수 개의 터미널들(100)을 갖는 웨이퍼 레벨 칩 사이즈 패키치 타입의 반도체 패키지(10)로서,
    상기 반도체 패키지는 길고 좁은 직사각형 형상의 평면 모양을 가지며,
    상기 복수 개의 터미널들은 상기 반도체 패키지의 짧은 쪽 방향(D1)을 따라 배치된 2개의 열로 구성되며,
    각각의 상기 터미널은 원형의 몸체부(111)와 상기 몸체부로부터 바깥쪽으로 뻗어 나온 형상의 돌출부(112)를 포함하는,
    반도체 패키지.
  2. 제1항에 있어서,
    상기 돌출부는 제1직선형 가장자리 라인(112a)를 포함하고, 상기 제1직선형 가장자리 라인의 연장선(L1)은 상기 몸체부의 무게중심(113)을 통과하며,
    상기 돌출부는, 상기 제1직선형 가장자리 라인을 기준으로 하여 반시계 방향에 형성되어 있는,
    반도체 패키지.
  3. 제1항에 있어서,
    상기 돌출부는 제1직선형 가장자리 라인을 포함하고, 상기 제1직선형 가장자리 라인의 연장선은 상기 몸체부의 무게중심을 통과하며,
    상기 돌출부는, 상기 제1직선형 가장자리 라인을 기준으로 하여 시계 방향에 형성되어 있는,
    반도체 패키지.
  4. 제2항 또는 제3항에 있어서,
    상기 반도체 패키지의 무게 중심(12)으로부터 상기 복수 개의 터미널 각각의 몸체부의 무게 중심까지 연결하는 가상의 직선형 방사선(L11)에 대하여,
    상기 가상의 직선형 방사선이 향하는 제1방향(LD11)과 상기 직선형 방사선이 통과하는 상기 터미널의 돌출부의 돌출방향의 사잇각은 45°보다 크고 165°보다 작은 것을 특징으로 하는,
    반도체 패키지.
  5. 제2항에 있어서,
    상기 돌출부는 제2직선형 가장자리 라인(112b), 및 제3직선형 가장자리 라인(112c)를 더 포함하며,
    상기 제3직선형 가장자리 라인은 상기 제1직선형 가장자리 라인과 평행하고, 상기 제3직선형 가장자리 라인의 일 끝지점은 상기 몸체부의 일 지점에 연결되어 있으며,
    상기 제2직선형 가장자리 라인은 상기 제1직선형 가장자리 라인(112a)의 양 끝지점 중 상기 몸체부와 연결되지 않은 지점 및 상기 제3직선형 가장자리 라인(112c)의 타 끝지점에 각각 직교하여 연결되어 있는,
    반도체 패키지.
  6. 제2항에 있어서,
    상기 돌출부는 제4곡선형 가장자리 라인(112d)를 더 포함하며,
    상기 제4곡선형 가장자리 라인의 일 끝지점은 상기 제1직선형 가장자리 라인의 양 끝지점 중 상기 몸체부와 연결되지 않은 지점과 연결되고, 상기 제4곡선형 가장자리 라인의 타 끝지점은 상기 몸체부의 일 지점에 연결되는,
    반도체 패키지.
  7. 제1항에 있어서, 상기 복수 개의 터미널들 중 적어도 하나의 터미널(110)의 돌출부(112)는 상기 반도체 패키지에서 상기 복수 개의 터미널들을 2개의 열로 구분하는 가상의 구분선(11)을 침범하는, 반도체 패키지.
  8. 제1항에 있어서, 상기 복수 개의 터미널들 중 적어도 하나의 터미널(110)의 돌출부(112)는 상기 반도체 패키지의 짧은 폭과 긴 폭 중 상기 짧은 폭을 1/2로 나누는 가상의 구분선(11)과 오버랩되는 것을 특징으로 하는, 반도체 패키지.
PCT/KR2021/007999 2021-05-06 2021-06-25 카메라 모듈의 반도체 패키지 WO2022234887A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180097912.3A CN117296146A (zh) 2021-05-06 2021-06-25 相机模块的半导体封装件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0058848 2021-05-06
KR1020210058848A KR102515126B1 (ko) 2021-05-06 2021-05-06 카메라 모듈의 반도체 패키지

Publications (1)

Publication Number Publication Date
WO2022234887A1 true WO2022234887A1 (ko) 2022-11-10

Family

ID=83932138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007999 WO2022234887A1 (ko) 2021-05-06 2021-06-25 카메라 모듈의 반도체 패키지

Country Status (3)

Country Link
KR (1) KR102515126B1 (ko)
CN (1) CN117296146A (ko)
WO (1) WO2022234887A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036493A (ko) * 1997-10-27 1999-05-25 사와무라 시코 수지밀봉형 반도체장치 및 그 제조방법
KR20000005426A (ko) * 1996-04-02 2000-01-25 마이크론 테크놀로지 인코포레이티드 반도체 장치, 반도체 장치 제조 프로세스, 다이 입출력 패턴 재구성 방법 및 다이 적응성 반도체 장치어셈블리 설계 방법
KR20030022088A (ko) * 2001-09-07 2003-03-15 닛본 덴기 가부시끼가이샤 반도체장치 및 그 제조방법
KR100686986B1 (ko) * 2004-03-15 2007-02-26 야마하 가부시키가이샤 반도체 소자 및 그 웨이퍼 레벨 칩 사이즈 패키지
JP2015228472A (ja) * 2014-06-03 2015-12-17 株式会社ソシオネクスト 半導体装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000005426A (ko) * 1996-04-02 2000-01-25 마이크론 테크놀로지 인코포레이티드 반도체 장치, 반도체 장치 제조 프로세스, 다이 입출력 패턴 재구성 방법 및 다이 적응성 반도체 장치어셈블리 설계 방법
KR19990036493A (ko) * 1997-10-27 1999-05-25 사와무라 시코 수지밀봉형 반도체장치 및 그 제조방법
KR20030022088A (ko) * 2001-09-07 2003-03-15 닛본 덴기 가부시끼가이샤 반도체장치 및 그 제조방법
KR100686986B1 (ko) * 2004-03-15 2007-02-26 야마하 가부시키가이샤 반도체 소자 및 그 웨이퍼 레벨 칩 사이즈 패키지
JP2015228472A (ja) * 2014-06-03 2015-12-17 株式会社ソシオネクスト 半導体装置およびその製造方法

Also Published As

Publication number Publication date
CN117296146A (zh) 2023-12-26
KR20220151511A (ko) 2022-11-15
KR102515126B1 (ko) 2023-03-29

Similar Documents

Publication Publication Date Title
WO2014010865A1 (en) Camera module
TWI387162B (zh) 具有直角接點尾線之電連接器系統
WO2020045960A1 (ko) 센서 구동 장치 및 카메라 모듈
WO2019088788A1 (ko) 필름 안테나 및 이를 포함하는 디스플레이 장치
WO2013191359A1 (en) Camera module
WO2014035038A1 (en) Voice coil motor
WO2021071144A1 (ko) 적층형 공통 모드 필터
WO2020122462A1 (ko) 모터
WO2022234887A1 (ko) 카메라 모듈의 반도체 패키지
WO2012008700A2 (en) Linear vibrator
WO2017164435A1 (ko) 렌즈 구동 장치
WO2018147670A1 (ko) 액체 렌즈를 포함하는 카메라 모듈 및 광학 기기
WO2010104221A1 (ko) 포인팅 장치 및 이를 갖는 전자 장치
WO2020138626A1 (ko) 카메라 모듈의 위치 보정용 기판 어셈블리, 이의 제조방법 및 이를 포함하는 카메라 모듈
WO2012008695A2 (ko) 소형 입체영상 촬영장치
WO2020230945A1 (ko) 스프링 콘택트 및 스프링 콘택트 내장 소켓
WO2021261922A1 (ko) 카메라 모듈
WO2020149701A1 (ko) 센서 구동 장치 및 카메라 모듈
WO2010047503A9 (ko) 박형 수지보호 센서 소자
WO2016144122A1 (ko) 안테나 모듈 및 이를 구비하는 휴대 단말
WO2019194541A1 (ko) 렌즈구동장치 및 이를 포함하는 카메라장치
WO2016047911A1 (ko) 컨택트 어레이의 구조가 개선된 리셉터클 커넥터
WO2023277669A1 (ko) 카메라 모듈
WO2022260440A1 (ko) 카메라 모듈
WO2017164434A1 (ko) 렌즈 구동 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097912.3

Country of ref document: CN

Ref document number: 18289620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939895

Country of ref document: EP

Kind code of ref document: A1