WO2022233298A1 - 一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法 - Google Patents

一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法 Download PDF

Info

Publication number
WO2022233298A1
WO2022233298A1 PCT/CN2022/090917 CN2022090917W WO2022233298A1 WO 2022233298 A1 WO2022233298 A1 WO 2022233298A1 CN 2022090917 W CN2022090917 W CN 2022090917W WO 2022233298 A1 WO2022233298 A1 WO 2022233298A1
Authority
WO
WIPO (PCT)
Prior art keywords
ttx
tetrodotoxin
puffer fish
separating
fish viscera
Prior art date
Application number
PCT/CN2022/090917
Other languages
English (en)
French (fr)
Inventor
李海航
张琳琳
张文龙
曾俊美
储志勇
叶建华
钱晓明
Original Assignee
中洋生物科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中洋生物科技(上海)股份有限公司 filed Critical 中洋生物科技(上海)股份有限公司
Priority to JP2023523323A priority Critical patent/JP7554357B2/ja
Priority to US18/003,825 priority patent/US20230257391A1/en
Priority to EP22798638.7A priority patent/EP4166559A4/en
Publication of WO2022233298A1 publication Critical patent/WO2022233298A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/529Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim forming part of bridged ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/12Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the preparation of the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/24Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the treatment of the fractions to be distributed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • B01D15/424Elution mode
    • B01D15/426Specific type of solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • B01D9/0054Use of anti-solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/14Diatomaceous earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/26Cation exchangers for chromatographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0288Applications, solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2642Aggregation, sedimentation, flocculation, precipitation or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2643Crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present disclosure relates to the technical field of extraction, separation and purification of biologically active substances in animals, and in particular, to a method for preparing tetrodobin in the viscera of puffer fish.
  • Tetrodotoxin was originally a small molecule non-protein alkaloid strong neurotoxin extracted from pufferfish (pufferfish, Lagocephalussceleratus).
  • the Japanese scholar Tawara first extracted crude toxin from the ovary of puffer fish and named it (Bane et al., 2014).
  • Yokoo obtained purified TTX crystals from the ovary of the red-fin oriental dolphin for the first time (Yokoo, 1950).
  • TTX is not only present in a variety of puffer fish, but also widely exists in nearly 140 species of animals, including vertebrates and invertebrates (Lorentz et al., 1016), such as gobies (Zhu Guoping et al., 2015 ), salamanders (Yotsu-Yamashita et al., 2012), bivalves and gastropods (Laura et al., 2019), blue-ringed octopuses (Whitelaw et al., 2019), nematodes (Vlasenko et al., 2019) , 2018), nematodes (Maojie, et al., 2020), etc. and a variety of microorganisms have been found to produce TTX (Chau et al., 2011; Magarlamov et al. 2017).
  • TTX is one of the most toxic neurotoxins known, about 1200 times more toxic to humans than cyanide, and there is no known antidote (Lago et al., 2015).
  • the LD50 values of TTX in mice were 10 ⁇ g/kg (intraperitoneal), 16 ⁇ g/kg (subcutaneous) and 332 ⁇ g/kg (oral) (Kao, 1966).
  • TTX is dose-related (Homaira et al., 2010).
  • Initial symptoms include tingling of the tongue and lips (paresthesia), followed by headache or vomiting, and may progress to muscle weakness and ataxia. In severe cases, death may result from respiratory or heart failure (Noguchi and Eebesu, 2001).
  • TTX lethal dose of TTX in humans is 1.33 ⁇ g/kg (Kasteel and westerink, 2017). Problems such as the transmission of TTX through the biological chain and the presence of TTX in a large number of marine and freshwater aquaculture animals have led people to worry and pay attention to the safety of the environment.
  • TTX is a blocker of fast voltage-gated sodium channels, which can cause nerve and muscle anesthesia.
  • TTX As a local anesthetic (Ogura and Mori, 1968), TTX has no significant cardiovascular side effects (Butterworth, 2010; Stoetzer et al., 2016) or myotoxicity (Padera et al., 2006).
  • the binding site of TTX is located outside the membrane, and it can be used in combination with other local anesthetics to produce synergistic effects (Kohane et al., 1998; Berde et al., 2011; McAlvin et al., 2015).
  • TTX anesthetic property of TTX to treat various types of pain, such as severe cancer pain (Hagen et al., 2008; 2017), or to relieve opioid withdrawal syndrome (Chen Suqing, et al., 2001; Kohane et al., 2003; Shi et al., 2009) et al.
  • TTX-treated tumor-bearing mice El-Dayem et al., 2013.
  • TTX also inhibits the mobility or invasiveness of tumor cells, preventing the metastasis of highly metastatic tumors and leukemia (Shan et al., 2014; Stock and Schwab, 2015).
  • TTX is expected to gain clinical application in many fields.
  • TTX The structure of TTX is complex and its chemical synthesis is difficult. Although the total artificial synthesis of TTX was completed as early as 2003 (Ohyabu et al., 2003). However, there are too many artificial synthesis steps, with an average of 23-67 steps, and the yield content obtained is only 0.34%-1.82% (Chau and Cuyfikub, 2011; Makarova et al., 2019). Moreover, during the synthesis process, a series of purification methods need to be developed. Therefore, laboratory synthesis of TTX and its analogs is difficult to achieve large-scale production (Chau and Cuyfikub, 2011; Bane et al., 2014; Makarova et al., 2019).
  • TTX is an aminoperhydroquinazoline compound (pKa 8.76), molecular formula is C 11 H 17 N 3 O 8 , molecular weight 319.27, has strong absorption at 190-200 nm, and contains a cage-like orthoester structure (Moczydlowski, 2013), As shown in Figure 1. Almost all carbon atoms in its molecule have asymmetric substitution, and the 1,2,3-guanidine amino group and the hydroxyl groups on C-4, C-9 and C-10 nearby are the active groups. TTX crystals are white, odorless, and have no definite melting point.
  • TTX is insoluble in water and most organic solvents, such as methanol, ethanol, and dimethyl sulfoxide, but is easily soluble in dilute acetic acid solutions, and its activity is easily destroyed in strong acid or alkali solutions (Moczydlowski, 2013).
  • TTX is positively charged in neutral solution, and under mildly acidic conditions, orthoester, lactone form, 4-epi TTX and 4,9-anhydro TTX coexist (Nishikawa and Isobe, 2013).
  • TTX The structure and properties of TTX are very unique, and it is difficult to extract, separate and purify and prepare high-purity TTX from biological materials by conventional separation and purification methods of natural alkaloids (Makarova et al., 2019). Initially, Tawara (1909) isolated TTX from aqueous extracts of puffer fish ovaries by lead acetate precipitation, but with a purity of only 0.2%-4% (Moczydlowski, 2013). Despite many attempts, it was not until the early 1950s that the crude toxin was successfully treated by Yokoo with phosphotungstic acid, mercury picrate, picric acid, and phenylhydrazine, followed by alumina column chromatography and recrystallization.
  • Tsuda and Kawamura used 1000kg of puffer fish ovaries as raw materials to separate and purify TTX by potato starch partition chromatography, activated carbon adsorption chromatography, and filter paper chromatography (Tsuda and Kawamura, 1952).
  • the process of preparing TTX generally includes using puffer fish visceral tissue as raw material, using acetic acid aqueous solution as extraction solvent, and then using ultrasonic wave or/and heating to assist extraction.
  • the extract was purified by cation exchange column chromatography-activated carbon column, acid-dissolved and alkali precipitation to precipitate TTX, and finally purified and recrystallized by preparative high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the purpose of the present disclosure is to provide a method for extracting, separating and preparing high-purity tetrodotoxin from puffer fish viscera with high extraction efficiency, low equipment investment and simple operation.
  • a method for extracting and preparing high-purity tetrodotoxin from puffer fish viscera comprising the following steps:
  • TTX extract of the above (2) is concentrated under reduced pressure to the water phase in a vacuum concentrator, and ethanol is recovered for repeated use.
  • the aqueous phase is extracted with an organic solvent to remove fat-soluble substances, and the obtained aqueous phase is a TTX extraction concentrate.
  • TTX extraction concentrate obtained in the above (3) is separated by pretreated ion exchange resin column chromatography. After sample loading, the impurities were eluted with neutral ammonium salt and water successively, and then TTX was eluted with acidic alcohol. The eluate containing TTX was collected, concentrated to a small volume with a nanofiltration concentrator, and then concentrated to dryness with a vacuum concentrator. Obtain crude TTX.
  • TTX The crude TTX obtained in the above (4) is repeatedly acid-dissolved and alkali-precipitated or crystallized with water and an organic solvent to obtain high-purity TTX.
  • the purity of TTX was more than 98% by HPLC analysis.
  • the puffer fish viscera is puffer fish ovary or liver. After cutting the ovary or liver into small pieces, 2.0 times the volume of 95% acidic alcohol is added, and the puffer fish viscera is mixed in a homogenizer. The tissue was homogenized.
  • the flow aid or filter aid added in the homogenate is diatomaceous earth.
  • step (3) the TTX extract is concentrated under reduced pressure to an aqueous phase with a vacuum concentrator, and ethanol is recovered for reuse.
  • the aqueous phase is extracted with an organic solvent to remove fat-soluble substances, and the obtained aqueous phase is an aqueous TTX solution.
  • the TTX aqueous solution is separated by column chromatography with pre-treated or regenerated D-152 weakly acidic cation exchange resin. After loading, the impurities were sequentially eluted with neutral ammonium salt, pure water, low-concentration acetic acid (0.1-1.0%) solution and higher-concentration acetic acid solution, and then TTX was eluted with 3-5% acetic acid solution.
  • step (5) the eluate of the TTX is concentrated to a small volume by a nanofiltration membrane concentrator with a molecular weight cut-off of 100-300, and then the concentrated solution is further evaporated to dryness by a vacuum concentrator.
  • the obtained concentrate was eluted with basic alcohol and basic water, dissolved with acid water to remove insolubles, the solution was adjusted to basic (pH8-9), and crystallized in a 4°C refrigerator to obtain high-purity TTX.
  • the present disclosure has the following advantages:
  • the TTX extraction and separation preparation method of the present disclosure wherein the extraction step adopts a new high-efficiency and energy-saving column chromatography extraction method, the extraction process is completed in one step, and the extraction efficiency is high.
  • the TTX in the raw material can be completely extracted with 7 times the volume of extraction solvent.
  • the extraction solvent adopts high-concentration acidic alcohol for column chromatography extraction, and the extraction solution contains few water-soluble impurities and does not contain macromolecular water-soluble substances such as proteins, which greatly simplifies the subsequent TTX. separation and purification. At the same time, the extraction solvent can be recovered and reused.
  • the TTX extraction and separation preparation method of the present disclosure has the advantages of simple process, few steps, high recovery rate of separation and purification, and high overall yield of pure TTX product. At the same time, the preparation cost of TTX is low.
  • the equipment used is conventional equipment such as common chromatography column and concentration, and the equipment investment is very low.
  • the extraction and separation and purification processes are all carried out at room temperature; the amount of organic solvent is small, and it can be recycled and reused, saving energy and environmental protection.
  • Figure 1 is a process flow diagram of the TTX extraction, separation and preparation of the present disclosure.
  • the TTX extract is concentrated under reduced pressure to the water phase, and the recovered ethanol can be reused.
  • the concentrate is extracted with 1/2-1/10 volume of ethyl acetate to remove low polarity impurities to obtain TTX extraction concentrate.
  • the extraction concentrate containing 1168 mg of TTX was obtained, and the recovery rate of TTX was 90.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种从河豚内脏提取和分离高纯度河豚毒素(tetrodotoxin,简称TTX)的方法,包括以下步骤:向河豚内脏加入酸性醇匀浆、加入一定量的助流动剂搅拌均匀后,装入层析柱中,用同一酸性醇洗脱,收集含TTX的洗脱液,减压浓缩得到TTX浓缩液;进一步用离子交换树脂柱层析分离,收集含TTX高的洗脱液,用纳滤膜浓缩或减压蒸干,得到TTX粗品;TTX粗品通过溶剂沉淀和结晶得到纯度大于98%的TTX。

Description

一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法
相关申请的交叉引用
本公开要求于2021年05月04日提交中国专利局的申请号为“CN202110487094.X”名称为“一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种动物体内生物活性物质的提取和分离纯化技术领域,尤其涉及河豚内脏中河豚素的制备方法。
背景技术
河豚毒素(Tetrodotoxin,TTX)最初是从河豚鱼(pufferfish,Lagocephalussceleratus)中提取的小分子非蛋白生物碱类强神经毒素。1909年,日本学者Tawara首次从河豚鱼卵巢中提取出粗毒素并命名(Bane et al.,2014)1950年Yokoo首次从红鳍东方豚卵巢中获得纯化的TTX结晶(Yokoo,1950)。1964年,TTX的分子式(C 11H 17N 3O 8)和化学结构得以确定(Buchwald et al.,1964;Woodward and Gougoutas,1964;Tsuda and Ikumaet al.,1964)。在很长一段时间里,河豚毒素被认为是河豚鱼体内特有的毒性物质,直到1964年,美国科学家Mosher等从加利福尼亚蝾螈(Tarichatorosa)中分离得到TTX(Mosher et al.,1964),才改变了这一说法。迄今的研究表明,TTX不仅存在于多种河豚鱼体内,还广泛存在于近140种动物中,包括脊椎动物和无脊椎动物(Lorentz et al.,1016),如虾虎鱼(朱国萍等,2015)、蝾螈(Yotsu-Yamashita et al.,2012)、双壳类和腹足类(Laura et al.,2019)、蓝环章鱼(Whitelaw et al.,2019)、纽虫(Vlasenko et al.,2018)、线虫(毛婕,等,2020)等.而且已经发现多种微生物可产生TTX(Chau et al.,2011;Magarlamov et al.2017)。
TTX是已知的毒性最强的神经毒素之一,它对人类的毒性是氰化物的1200倍左右,而且没有已知的解毒剂(Lago et al.,2015)。TTX对小鼠的LD 50值为10μg/kg(腹膜内)、16μg/kg(皮下)和332μg/kg(口服)(Kao,1966)。人体 摄入TTX后,中毒症状的严重程度与剂量有关(Homaira et al.,2010)。最初症状包括舌头和嘴唇发麻(感觉异常),然后出现头痛或呕吐,并可能发展为肌肉无力和共济失调。在严重的情况下,可能由于呼吸或心力衰竭而导致死亡(Noguchi and Eebesu,2001)。TTX对人的致死剂量是1.33μg/kg(Kasteel and westerink,2017)。TTX通过生物链传递和大量海洋与淡水养殖动物中含有TTX等问题,导致人们对环境的安全的忧虑和重视。
TTX是快速电压门控钠通道的阻断剂,能引起神经和肌肉麻醉,在医疗上可用于癌症和外科手术等各种病人的局部麻醉和无成瘾性镇痛等。TTX作为局部麻醉剂(Ogura and Mori,1968),它没有明显的心血管副作用(Butterworth,2010;Stoetzer et al.,2016)或肌毒性(Padera et al.,2006)。与临床上常用的局部麻醉剂不同的是TTX的结合位点位于膜外,它能与其它局部麻醉剂组合使用产生协同效应(Kohane et al.,1998;Berde et al.,2011;McAlvin et al.,2015)。研究人员也正在利用TTX的麻醉特性来治疗各种类型的疼痛,如严重的癌症疼痛(Hagen et al.,2008;2017),或缓解阿片类药物戒断综合征(陈素青,等,2001;Kohane et al.,2003;Shi et al.,2009)等。此外,研究发现在TTX处理的荷瘤小鼠中,肿瘤生长明显减少(El-Dayem et al.,2013)。TTX还能抑制肿瘤细胞的移动性或侵袭性,防止高转移性肿瘤和白血病的转移(Shan et al.,2014;Stock and Schwab,2015)。TTX可望在多个领域获得临床应用。
TTX的结构复杂,化学合成难度大。虽然早在2003年就完成了TTX的全人工合成(Ohyabu et al.,2003)。但人工合成的步骤太多,平均需要23-67个步骤,获得的产率含量仅有0.34%-1.82%(Chau and Cuyfikub,2011;Makarova et al.,2019)。而且在合成过程中,需要开发系列纯化方法。因此,实验室合成TTX及其类似物难以实现大规模生产(Chau and Cuyfikub,2011;Bane et al.,2014;Makarova et al.,2019)。虽然有多种微生物可以产生TTX,但产量非常低(Lago et al.,2015),其产生机制尚不清楚,提高其产量和开发纯化方法都是待解决的难题(刘燕婷,等,2008)。因此,从动物组织中提取制备TTX,是目前TTX主要来源。
TTX为氨基全氢喹唑啉化合物(pKa 8.76),分子式为C 11H 17N 3O 8,分子量319.27,在190-200nm有较强吸收,含有一个笼形原酸酯结构(Moczydlowski, 2013),如图1所示。其分子中几乎所有碳原子都具有不对称取代,以1,2,3-胍氨基及其附近的的C-4、C-9、C-10上的羟基为活性基团。TTX晶体呈白色,无臭,没有确定的熔点,220℃以上逐渐炭化(崔建洲,等,2005),但即使在300℃也不熔化(Tsuda and Kawamura,1952)。纯TTX不溶于水和大多数有机溶剂,如甲醇、乙醇和二甲基亚砜,易溶于稀醋酸溶液,在强酸或强碱溶液中活性易受破坏(Moczydlowski,2013)。TTX在中性溶液中带正电荷,在弱酸性条件下,原酸酯、内酯形式、4-epi TTX和4,9-anhydro TTX共存(Nishikawa and Isobe,2013)。
Figure PCTCN2022090917-appb-000001
式1河豚毒素(TTX)的结构式
TTX的结构与性质很独特,很难用常规的天然生物碱类物质的分离纯化方法从生物材料中提取、分离纯化和制备高纯度的TTX(Makarova et al.,2019)。最初,Tawara(1909年)用醋酸铅沉淀法从河豚卵巢的水提取物中分离出TTX,但纯度仅0.2%-4%(Moczydlowski,2013)。尽管进行了许多尝试,直到20世纪50年代初,Yokoo将粗毒素用磷钨酸、苦味酸汞、苦酮酸和苯肼等连续处理后,再经过氧化铝柱色谱和重结晶,才实现了纯晶态TTX的制备(Yokoo,1950)。随后,Tsuda和Kawamura以1000kg河豚卵巢为原料,用马铃薯淀粉分配层析,活性炭吸附层析,滤纸层析法分离纯化TTX(Tsuda and Kawamura,1952)。
目前,制备TTX的工艺一般包括,以河豚鱼内脏组织为原料,用乙酸水溶液为提取溶剂,再用超声波或/和加热辅助提取。提取物经阳离子交换柱层析-活性炭柱纯化,酸溶碱沉使TTX析出,最后用制备型高效液相色谱(HPLC)纯化和重结晶。主要有关TTX的提取及纯化方法的报道总结如表2。
表2文献报道的TTX提取及纯化工艺
Figure PCTCN2022090917-appb-000002
Figure PCTCN2022090917-appb-000003
然而,这些提取和分离制备方法存在以下几个方面的问题:
1)提取效率低。TTX很难从组织中提取出来和提取干净,用传统的浸泡提取、或超声波辅助的提取方法提取效率低、提取溶剂用量大。
2)提取溶剂多数用酸性水,导致提取液中含大量的蛋白质等水溶性物质,使后续的TTX分离纯化过程需要除去蛋白质,难以分离纯化。同时分离纯化的步骤多,回收率很低。
3)大部分报道限于实验室研究,实验方法和结果没有经过检验。难以重复和用于TTX的生产。
因此,开发简单高效合的能用于大量制备的TTX提取分离和纯化方法与工艺十分重要。
参考文献
陈素青,任雷鸣,黄致强.河豚毒素对大鼠和小鼠纳洛酮催促吗啡戒断症状的影响[J].中国药理学与毒理学杂志,2001(06):434-440.
崔建洲,宫庆礼,顾谦群,等.一种高效制备河豚毒素(TTX)方法的研究[J].高技术通讯,2005(4):89-94.
邓兴朝,黄连生,陈欢,等.一种河豚毒素提取纯化方法:CN108586475A[P].2018-09-28.
黄枝梅.河豚毒素的提取和分离纯化工艺研究[D].福建农林大学,2010.
刘燕婷,雷红涛,钟青萍.河豚毒素的研究进展[J].食品研究与开发,2008(02):156-160.
毛婕,龚小玲,鲍宝龙.东海区黄鳍东方鲀寄生异尖线虫的鉴定及河鲀毒素检测[J].上海海洋大学学报,2020:1-9.
苏捷,刘智禹,黄枝梅.河豚毒素的分离纯化研究[J].福建水产,2010(4):56-59.
孙博伦.织纹螺中河豚毒素的提取、纯化与制备技术研究[D].浙江海洋大学,2018.
谭桂莉,林国友.河豚毒素的HPLC方法检测[J].企业科技与发展,2011(13):26-28.
王秀菊,丁亚民,尹志勇.一种高纯度河豚毒素的提取方法:CN102584843A[P].2012-07-18.
杨育晖.一种提取和初步纯化河豚毒素的方法:CN104311569A[P].2015-01-28.
易瑞灶,许晨,洪专,等.河豚毒素高纯单体规模化制备方法:CN1385431[P].2002-12-18.
张小军,陈思,曾军杰,等.一种高效提取河豚毒素的方法:CN107641128B[P].2020-03-17.
钟馨稼,刘延东.一种制备河豚毒素的方法:WO2016061874A1[P].2016-04-28.
曾军杰,张小军,陈思,等.一种制备高纯河豚毒素的方法:CN107880054A[P].2018-04-06.
赵东豪,王旭峰,王强,等.一种河豚毒素标准生物样品的制备方法:CN109142602A[P].2019-01-04.
朱国萍,疗建萌,伍彬,等.犬牙僵虾虎鱼体内河豚毒素季节性变化规律[J].海洋环境科学,2015,34(01):66-69.
Bane V,Lehane M,Dikshit M.Tetrodotoxin:chemistry,toxicity,source,distribution and detection[J].Toxins,2014,6(2):693-755.
Berde C,Athiraman U,Yahalom B,et al.Tetrodotoxin-Bupivacaine-Epinephrine Combinations for Prolonged Local Anesthesia[J].Marine Drugs,2011,9:2717-2728.
Buchwald H D,Durham L,Fischer H G,et al.Identity of tarichatoxin and tetrodotoxin[J].Science,1964,143(3605),474-475.
Butterworth J F.Models and mechanisms of local anesthetic cardiac toxicity:a review[J].Regional Anesthesia and Pain Medicine,2010,35(2):167-176.
Chau J,Ciufolin M A.The chemical synthesis of tetrodotoxin:An ongoing quest[J].Marine Drugs,2011,9:2046-2074.
Chau R,Kalaitzis J A,Neilan B A.On the origins and biosynthesis of tetrodotoxin[J].Aquatic Toxicology,2011,104:61-72.
El-Dayem S M A,Fouda F M,Ali E H A,et al.The antitumor effects of tetrodotoxin and/or doxorubicin on Ehrlich ascites carcinoma-bearing female mice[J].Toxicology and Industrial Health,2013,29:404-417.
Hagen N A,Souich P D,Lapointe B,et al.Tetrodotoxin for moderate to severe cancer pain:A randomized,double blind,parallel design multicenter study[J].Journal of Pain and Symptom Management,2008,35:420-429.
Hagen N A,Cantin L,Constant J,et al.Tetrodotoxin for Moderate to Severe Cancer-Related Pain:A Multicentre,Randomized,Double-Blind,Placebo-Controlled,Parallel-Design Trial[J].Pain Research&Management,2017,2017:1-7.
Homaira N,Rahman M,Luby S P,et al.Multiple outbreaks of puffer fish intoxication in Bangladesh,2008[J].The American Journal of Tropical Medicine and Hygiene,2010,83:440-444.
Kohane D,Smith S,Louis D,et al.Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres[J].Pain,2003,104:415-421.
Kohane D S,Yieh J,Lu N T,et al.A Re-examination of Tetrodotoxin for Prolonged Duration Local Anesthesia[J].Anesthesiology,1998,89,119-131.
Kao C Y.Tetrodotoxin,saxitoxin and their significance in the study of excitation phenomena[J].Pharmacological Reviews,1966,18:997-1049.
Kasteel E E J,Westerink R H S.Comparison of the acute inhibitory effects of Tetrodotoxin(TTX)in rat and human neuronal networks for risk assessment purposes[J].Toxicology Letters,2017,270:12-16.
Lago J,
Figure PCTCN2022090917-appb-000004
L P,Blanco L,et al.Tetrodotoxin,an Extremely Potent Marine Neurotoxin:Distribution,Toxicity,Origin and Therapeutical Uses[J].Marine Drugs,2015,13:6384-6406.
Laura B,Michael J B,Kirsty F S,et al.Tetrodotoxin in marine bivalves and edible gastropods:A mini-review[J].Chemosphere,2019,236:1-10.
Lorentz M N,Stokes A N,
Figure PCTCN2022090917-appb-000005
D C,et al.Tetrodotoxin[J].Current Biology,2016,26(19):870-872.
Magarlamov T Y,Melnikova D I,Chernyshev A V.Tetrodotoxin-Producing Bacteria:Detection,Distribution and Migration of the Toxin in Aquatic Systems[J].Toxins,2017,9(5):1-20.
Makarova M,Rycek L,Hajicek J,et al.Tetrodotoxin:History,Biology,and Synthesis[J].AngewandteChemie International Edition,2019,58(51):18338-18387.
McAlvin J B,Yhang C,Dohlman J C.Corneal Anesthesia with Site 1 Sodium Channel Blockers and Dexmedetomidine[J].Investigative Ophthalmology&Visual Science,2015,56:3820-3826.
Moczydlowski E G.The molecular mystique of tetrodotoxin[J].Toxicon,2013,63:165-183.
Nishikawa T,Isobe M.Synthesis of Tetrodotoxin,a Classic but Still Fascinating Natural Product[J].The Chemical Record,2013,13:286-302.
Noguchi T,Ebesu J S M.Puffer poisoning:Epidemiology and treatment[J].Toxin Reviews,2001,20:1-10.
Ogura Y,Mori Y.Mechanism of local anesthetic action of crystalline tetrodotoxin and its derivatives[J].European Journal of Pharmacology,1968,3(1):58-67.
Ohyabu N,Nishikawa T,Isobe M.First asymmetric total synthesis of tetrodotoxin[J].Journal of the American Chemical Society,2003,125(29):8798-8805.
Padera R F,Tse J Y,Bellas E,et al.Tetrodotoxin for prolonged local anesthesia with minimal myotoxicity[J].Muscle Nerve,2006,34:747-753.
Shan B,Dong M,Tang H,et al.Voltage-gated sodium channels were differentially expressed in human normal prostate,benign prostatic hyperplasia and prostate cancer cells[J].Oncology Letters,2014,8:345-350.
Shi J,Liu T T,Wang X,et al.Tetrodotoxin reduces cue-induced drug craving and anxiety in abstinent heroin addicts[J].Pharmacology,Biochemistry and Behavior,2009,92:603-607.
Stock C,Schwab A.Ion channels and transporters in metastasis[J].Biochimica et Biophysica Acta,2015,1848:2638-2646.
Stoetzer C,Doll T,Stueber T,et al.Tetrodotoxin-sensitiveα-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium  currents by local anesthetics[J].NaunynSchmiedebergs Archives of Pharmacology,2016,389:625-636.
Tsuda K,Ikuma S,Kawamura M,et al.Tetrodotoxin.VII.On the structures of tetrodotoxin and its derivatives[J].The Pharmaceutical Society of Japan,1964,12,1357-137.
Tsuda K,Kawamura M.The Constituents of the Ovaries of Globefish.VII.Purification of Tetrodotoxin by Chromatography(2)[J].The Pharmaceutical Society of Japan,1952,72:771-773.
Vlasenko A E,Velansky P V,Chernyshev A V,et al.Tetrodotoxin and its analogues profile in nemertean species from the sea of Japan[J].Toxicon:Official Journal of the International Society on Toxinology,2018,156:48-51.
Whitelaw B L,Cooke I R,Finn J,et al.The evolution and origin of tetrodotoxin acquisition in the blue-ringed octopus(genus Hapalochlaena)[J].Aquatic Toxicology(Amsterdam,Netherlands),2019,206:114-122.
Wood S A,Taylor D I,McNabb P,et al.Tetrodotoxin concentrations in Pleurobranchaeamaculata:Temporal,spatial and individual variability from New Zealand populations[J].Marine Drugs,2012,10:163-176.
Woodward R B,Gougoutas J Z.The structure of tetrodotoxin[J].Journal of the American Chemical Society,1964,9,49-74.
Yokoo A.Study on chemical purification of tetrodotoxin(3)purification of spheroidine[J].Journal of the Chemical Society,Japan,1950,71,590-592.
Yotsu-Yamashita M,Gilhen J,Russell R W,et al.Variability of tetrodotoxin and of its analogues in the red-spotted newt,Notophthalmusviridescens(Amphibia:Urodela:Salamandridae)[J].Toxicon,2012,59:257-264.
Zhou M Q,Shum F H K.Method of extracting tetrodotoxin:US6552191B1[P].2003-04-22.
发明内容
本公开的目的是,提供一种提取效率高、设备投资低、操作简便的从河豚内脏提取和分离制备高纯度河豚毒素的方法。
为达到以上技术目的,本公开采用的技术方案如下:
一种从河豚内脏中提取和制备高纯度河豚毒素的方法,其包括以下步骤:
(1)将新鲜或解冻的河豚内脏组织切成小块,加入一定量体积的酸性醇在匀浆机中匀浆;
(2)在上述(1)获得的匀浆液中加入一定量的助流动剂或助滤剂,搅拌混合均匀后、按柱层析的装柱方法将提取物装入层析柱中;静置一定时间后,用上述同样的酸性醇按柱层析洗脱的方法将材料中的杂质和TTX先后洗脱出来。用HPLC测定洗脱液中的TTX含量,至洗脱液中无TTX为止。收集含TTX的洗脱液为TTX提取液。
(3)将上述(2)的TTX提取液在真空浓缩仪中减压浓缩至水相,回收乙醇用于重复使用。水相用有机溶剂萃取除去脂溶性物质,得到的水相为TTX提取浓缩液。
(4)上述(3)中得到的TTX提取浓缩液用预处理好的离子交换树脂柱层析分离。样品上样后,先后用中性铵盐和水洗脱杂质,再用酸性醇洗脱TTX。收集含TTX的洗脱液,用纳滤浓缩仪浓缩至小体积,再用真空浓缩仪浓缩干。得到TTX粗品。
(5)上述(4)中得到的TTX粗品,用水和有机溶剂多次反复酸溶碱沉或结晶,得到高纯度的TTX。TTX经HPLC分析,纯度为98%以上。
在一些实施方式中,步骤(1)中,所述河豚内脏为河豚卵巢或肝脏,将卵巢或肝脏切成小块后,加入2.0倍体积的95%酸性醇,在匀浆机中将河豚内脏组织打成匀浆。
在一些实施方式中,步骤(2)中,所述的在匀浆中加入的助流动剂或助滤剂为硅藻土。在河豚内脏组织匀浆中加入内脏重量0.5-1.0倍重量的硅藻土,搅拌混合均匀后,将混合物缓慢流入层析柱中。静置1小时待材料中的TTX全部溶解后,用95%酸性醇洗脱提取其中的TTX,至洗脱液中无TTX为止。
在一些实施方式中,步骤(3)中,将TTX提取液用真空浓缩仪减压浓缩至水相,回收乙醇用于重复使用。水相用有机溶剂萃取除去脂溶性物质,得到的水相为TTX水溶液。
在一些实施方式中,步骤(4)中,所述的TTX水溶液用预先处理好或再生好的D-152弱酸性阳离子交换树脂柱层析分离。上样后,依次用中性铵盐、纯水、低浓度醋酸(0.1-1.0%)溶液和较高浓度的醋酸溶液洗脱杂质,然后用3-5%醋酸 溶液洗脱TTX。
在一些实施方式中,步骤(5)中,所述的TTX的洗脱液用截留分子量为100-300纳滤膜浓缩仪浓缩至小体积,再用真空浓缩仪进一步将浓缩液蒸干。获得的浓缩物用碱性醇和碱性水洗脱杂质,用酸水溶解除去不溶物,将溶液调至碱性(pH8-9),置于4℃冰箱内结晶,得到高纯度的TTX。
与现有技术相比较,本公开具有如下优势:
1)本公开的TTX提取和分离制备方法,其中的提取步骤采用高效节能的柱层析提取新方法,提取过程一步完成,提取效率高。用7倍体积的提取溶剂可将原料中的TTX全部提取干净。
2)本公开的TTX提取和分离制备方法,提取溶剂采用高浓度的酸性醇进行柱层析提取,提取液中水溶性杂质少,不含蛋白质等大分子水溶性物质,大大简化了后续的TTX的分离纯化。同时,提取溶剂可回收,重复使用。
3)本公开的TTX提取和分离制备方法,过程简单,步骤少,分离纯化的回收率高,TTX纯品的总体得率高。同时TTX的制备成本低。
4)本公开的TTX提取和分离制备方法,所用设备为普通的层析柱和浓缩等常规设备,设备投资很低。
5)本公开的TTX提取和分离制备方法,提取和分离纯化过程全部在室温下进行;有机溶剂用量少,且可以回收重复使用,节能环保。
附图说明
为了易于说明,本公开由下述的实施及附图作以详细描述。
图1本公开的TTX提取分离和制备的工艺流程图。
图2制备的TTX样品的HPLC分析。
具体实施方式
本公开的“高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法”工艺流程如下:
(1)的河豚卵巢15千克用清水漂洗和除杂后,用绞肉机搅碎,加入河豚卵巢重量的2-3倍酸性(1%醋酸)无水乙醇和0.6倍的硅藻土搅拌均匀,均匀装入
Figure PCTCN2022090917-appb-000006
的层析柱中,静置1小时后,用酸性乙醇洗脱,直至层析洗脱液中无TTX为止。收集层析洗脱液即为TTX提取液。得含TTX1236.0mg的提取液,TTX提取率96%。
(2)TTX提取液减压浓缩至水相,回收的乙醇可重复使用。浓缩液用1/2-1/10体积的醋酸乙酯萃取除去低极性杂质得TTX提取浓缩液。得含TTX 1168mg的提取浓缩液,TTX回收率90.5%。
(3)15千克河豚卵巢提取浓缩液用D-152弱酸性阳离子交换树脂柱层析
Figure PCTCN2022090917-appb-000007
分离,上样后先后用0.2%磷酸铵溶液、纯水和0.5%醋酸水各洗脱3BV,洗去杂质。然后用2%醋酸水溶液洗脱至无TTX,TTX的回收率为93.6%。收集TTX集中段,用纳滤浓缩至小体积,减压浓缩干,得TTX粗品,TTX的回收率为90.4%。TTX含量低的洗脱相再用D-152弱酸性阳离子交换树脂柱层析浓缩回收TTX。
(4)粗品用碱性乙醇和碱性水洗脱3次,沉淀反复用酸溶碱沉3次,得纯化的TTX,TTX的回收率为80.7%。
(5)X用HPLC分析和测定含量,得TTX 815.6mg。HPLC分析,TTX纯度≥98%(如图2)。TTX的总回收率为63.3%。

Claims (10)

  1. 一种高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于包括以下步骤:
    (1)将新鲜或解冻的河豚内脏组织切成小块,加入一定量体积的酸性醇在匀浆机中匀浆;
    (2)在上述(1)获得的匀浆液中加入一定量的助流动剂或助滤剂,搅拌混合均匀后、按柱层析装柱的方法装入层析柱中;静置一定时间后,用上述同样的酸性醇按柱层析洗脱的方法将材料中的TTX完全洗脱出来,用HPLC测定洗脱液中的TTX含量,至洗脱液中无TTX为止,收集含TTX的洗脱液为提取液;
    (3)将上述(2)的TTX提取液在真空浓缩仪中减压浓缩至水相,回收乙醇用于重复使用,水相用有机溶剂萃取除去脂溶性物质,得到的水相为TTX提取浓缩液;
    (4)上述(3)中得到的TTX提取浓缩液用预处理好的离子交换树脂柱层析分离,样品上样后,先用中性铵盐和纯水洗脱杂质,然后用酸性水溶液洗脱TTX,收集TTX含量高的洗脱液相,纳滤浓缩或减压浓缩至干,得TTX粗品;
    (5)TTX粗品在水溶液或有机溶剂中反复多次酸溶碱沉或结晶,得到高纯度的TTX,TTX经HPLC分析纯度均为98%以上。
  2. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于:步骤(1)中,所述河豚内脏为含河豚毒素的河豚卵巢、肝脏或皮肤等组织。
  3. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于:步骤(1)中所述的酸性醇为50%以上的低级脂肪醇,包括甲醇、乙醇、乙二醇等。
  4. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于:步骤(2)中所述的助流动剂或助滤剂是为了提高液体在动物组织匀浆中的流动性的物质,包括硅藻土、珍珠岩和酸性白土等矿物质类、锯屑、纤维素和活性炭类等,添加量为河豚内脏重量的0.5-2.0倍。
  5. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法, 其特征在于:步骤(2)中所述,匀浆液中加入助流动剂,搅拌混合均匀后的装柱、杂质洗脱和TTX洗脱方法和过程完全按照柱层析的方法进行。
  6. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于:步骤(3)所述,TTX提取液在真空浓缩仪中,约65℃下减压浓缩至水相,回收的乙醇重复用于TTX的提取。
  7. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于:步骤(3)所述,水相用有机溶剂萃取除去脂溶性物质,所用的有机溶剂为石油醚、醋酸乙酯等可与水溶液萃取的有机溶剂,萃取后得到的水相为TTX提取浓缩液。
  8. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于:步骤(4)所述,提取液浓缩用预处理好的离子交换树脂柱层析分离,所述离子交换树脂为D-152型弱酸性离子交换树脂等。
  9. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于:步骤(4)所述,从阳离子交换树脂柱层析分离得到的TTX的洗脱液用纳滤膜浓缩至小体积,所述纳滤浓缩膜为截留分子量少于300道尔顿(通常截留分子量100~200道尔顿)的纳滤膜。
  10. 如权利要求1所述的高效的从河豚鱼内脏提取和分离制备河豚毒素的方法,其特征在于:步骤(5)所述,TTX粗品的酸溶碱沉或结晶,所述酸为1%左右的醋酸或磷酸等弱酸;所述碱为氨水等弱碱性溶液,pH值为7~10。
PCT/CN2022/090917 2021-05-04 2022-05-05 一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法 WO2022233298A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023523323A JP7554357B2 (ja) 2021-05-04 2022-05-05 フグ内臓由来の高純度テトロドトキシンの効率的な抽出、分離、調製の方法
US18/003,825 US20230257391A1 (en) 2021-05-04 2022-05-05 Method for efficiently extracting and separating high-purity tetrodotoxin from pufferfish viscera
EP22798638.7A EP4166559A4 (en) 2021-05-04 2022-05-05 METHOD FOR EFFICIENT EXTRACTION AND SEPARATION OF HIGH PURITY TETRODOTOXIN FROM BUFFERFISH GUTS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110487094.X 2021-05-04
CN202110487094.XA CN113321661B (zh) 2021-05-04 2021-05-04 一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法

Publications (1)

Publication Number Publication Date
WO2022233298A1 true WO2022233298A1 (zh) 2022-11-10

Family

ID=77414330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090917 WO2022233298A1 (zh) 2021-05-04 2022-05-05 一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法

Country Status (5)

Country Link
US (1) US20230257391A1 (zh)
EP (1) EP4166559A4 (zh)
JP (1) JP7554357B2 (zh)
CN (1) CN113321661B (zh)
WO (1) WO2022233298A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321661B (zh) * 2021-05-04 2022-04-12 中洋生物科技(上海)股份有限公司 一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3910331B1 (zh) * 1961-02-22 1964-06-11
CN1385431A (zh) 2002-06-24 2002-12-18 厦门一元生物工程有限公司 河豚毒素高纯单体规模化制备方法
US6552191B1 (en) 2000-09-18 2003-04-22 Wex Medical Instrumentation Co., Ltd. Method of extracting tetrodotoxin
CN101317846A (zh) * 2008-05-28 2008-12-10 王开业 一种用于戒毒、镇痛的河豚毒素制剂
CN101891751A (zh) * 2008-06-18 2010-11-24 上海亿年生物科技有限公司 一种河豚毒素的制备方法
CN102584843A (zh) 2011-01-18 2012-07-18 王秀菊 一种高纯度河豚毒素的提取方法
CN104311569A (zh) 2014-09-05 2015-01-28 无锡科奥美萃生物科技有限公司 一种提取和初步纯化河豚毒素的方法
WO2016061874A1 (zh) 2014-10-19 2016-04-28 钟馨稼 一种制备河豚毒素的方法
CN107641128A (zh) 2017-10-09 2018-01-30 浙江省海洋水产研究所 一种高效提取河豚毒素的方法
CN107880054A (zh) 2017-10-09 2018-04-06 浙江省海洋水产研究所 一种制备高纯河豚毒素的方法
CN108586475A (zh) 2018-03-17 2018-09-28 深圳瑞达生物股份有限公司 一种河豚毒素提取纯化方法
CN109142602A (zh) 2018-07-27 2019-01-04 中国水产科学研究院南海水产研究所 一种河豚毒素标准生物样品的制备方法
CN113321661A (zh) * 2021-05-04 2021-08-31 中洋生物科技(上海)股份有限公司 一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1187356C (zh) 2000-11-22 2005-02-02 南宁枫叶药业有限公司 高获得率提取替曲朵辛的系统
CN1241927C (zh) * 2003-06-24 2006-02-15 中国海洋大学 高效液相法精制河豚毒素的方法
CN111117917B (zh) 2019-12-30 2022-05-27 浙江万里学院 原代产河豚毒素的河豚共栖菌及其应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3910331B1 (zh) * 1961-02-22 1964-06-11
US6552191B1 (en) 2000-09-18 2003-04-22 Wex Medical Instrumentation Co., Ltd. Method of extracting tetrodotoxin
CN1385431A (zh) 2002-06-24 2002-12-18 厦门一元生物工程有限公司 河豚毒素高纯单体规模化制备方法
CN101317846A (zh) * 2008-05-28 2008-12-10 王开业 一种用于戒毒、镇痛的河豚毒素制剂
CN101891751A (zh) * 2008-06-18 2010-11-24 上海亿年生物科技有限公司 一种河豚毒素的制备方法
CN102584843A (zh) 2011-01-18 2012-07-18 王秀菊 一种高纯度河豚毒素的提取方法
CN104311569A (zh) 2014-09-05 2015-01-28 无锡科奥美萃生物科技有限公司 一种提取和初步纯化河豚毒素的方法
WO2016061874A1 (zh) 2014-10-19 2016-04-28 钟馨稼 一种制备河豚毒素的方法
CN107641128A (zh) 2017-10-09 2018-01-30 浙江省海洋水产研究所 一种高效提取河豚毒素的方法
CN107880054A (zh) 2017-10-09 2018-04-06 浙江省海洋水产研究所 一种制备高纯河豚毒素的方法
CN108586475A (zh) 2018-03-17 2018-09-28 深圳瑞达生物股份有限公司 一种河豚毒素提取纯化方法
CN109142602A (zh) 2018-07-27 2019-01-04 中国水产科学研究院南海水产研究所 一种河豚毒素标准生物样品的制备方法
CN113321661A (zh) * 2021-05-04 2021-08-31 中洋生物科技(上海)股份有限公司 一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法

Non-Patent Citations (46)

* Cited by examiner, † Cited by third party
Title
BANE VLEHANE MDIKSHIT M: "Tetrodotoxin: chemistry, toxicity, source, distribution and detection", TOXINS, vol. 6, no. 2, 2014, pages 693 - 755
BERDE C, ATHIRAMAN U, YAHALOM B: "Tetrodotoxin-Bupivacaine-Epinephrine Combinations for Prolonged Local Anesthesia", MARINE DRUGS, vol. 9, 2011, pages 2717 - 2728, XP055123244, DOI: 10.3390/md9122717
BUCHWALD H DDURHAM LFISCHER H G ET AL.: "Identity of tarichatoxin and tetrodotoxin", SCIENCE, vol. 143, no. 3605, 1964, pages 474 - 475
BUTTERWORTH J F.: "Models and mechanisms of local anesthetic cardiac toxicity: a review", REGIONAL ANESTHESIA AND PAIN MEDICINE, vol. 35, no. 2, 2010, pages 167 - 176
CHAU J, CIUFOLIN M A: "The chemical synthesis of tetrodotoxin: An ongoing quest", MARINE DRUGS, vol. 9, 2011, pages 2046 - 2074
CHAU R, KALAITZIS J A, NEILAN B A: " On the origins and biosynthesis of tetrodotoxin", AQUATIC TOXICOLOGY, vol. 104, 2011, pages 61 - 72
CHEN SUQINGREN LEIMINGHUANG ZHIQIANG: "Effect of tetrodotoxin on naloxone-precipitated withdraw syndrome in morphine-dependent rats and mice", CHINESE JOURNAL OF PHARMACOLOGY AND TOXICOLOGY, no. 06, 2001, pages 434 - 440
CUI JIANZHOUGONG QINGLINGU QIANQUN ET AL.: "Studies on the preparation and purification of tetrodotoxin (TTX) by high performance liquid chromatography", HIGH TECHNOLOGY LETTERS, no. 4, 2005, pages 89 - 94
EL-DAYEM S M AFOUDA F MALI E H A ET AL.: "The antitumor effects of tetrodotoxin and/or doxorubicin on Ehrlich ascites carcinoma-bearing female mice", TOXICOLOGY AND INDUSTRIAL HEALTH, vol. 29, 2013, pages 404 - 417
HAGEN N ACANTIN LCONSTANT J ET AL.: "Tetrodotoxin for Moderate to Severe Cancer-Related Pain: A Multicentre, Randomized, Double-Blind, Placebo-Controlled, Parallel-Design Trial", PAIN RESEARCH & MANAGEMENT, vol. 2017, 2017, pages 1 - 7, XP055636697, DOI: 10.1155/2017/7212713
HAGEN N ASOUICH P DLAPOINTE B ET AL.: "Tetrodotoxin for moderate to severe cancer pain: A randomized, double blind, parallel design multicenter study", JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, vol. 35, 2008, pages 420 - 429, XP022552087
HOMAIRA NRAHMAN MLUBY S P ET AL.: "Multiple outbreaks of puffer fish intoxication in Bangladesh, 2008", THE AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, vol. 83, 2010, pages 440 - 444
KAO C Y: " Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena", PHARMACOLOGICAL REVIEWS, vol. 18, 1966, pages 997 - 1049, XP009010277
KASTEEL E E JWESTERINK R H S: "Comparison of the acute inhibitory effects of Tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes", TOXICOLOGY LETTERS, vol. 270, 2017, pages 12 - 16
KOHANE D S, YIEH J, LU N T: "A Re-examination of Tetrodotoxin for Prolonged Duration Local Anesthesia", ANESTHESIOLOGY, vol. 89, 1998, pages 119 - 131
KOHANE D, SMITH S, LOUIS D: " Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres", PAIN, vol. 104, 2003, pages 415 - 421, XP002584889, DOI: 10.1016/S0304-3959(03)00049-6
LAGO JRODNGUEZ L PBLANCO L ET AL.: "Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses", MARINE DRUGS, vol. 13, 2015, pages 6384 - 6406
LAURA B, MICHAEL J B, KIRSTY F S: "Tetrodotoxin in marine bivalves and edible gastropods: A mini-review", CHEMOSPHERE, vol. 236, 2019, pages 1 - 10, XP085853043, DOI: 10.1016/j.chemosphere.2019.124404
LIU YANTINGLEI HONGTAOZHONG QINGPING: "Trend on the study of tetrodotoxin", FOOD RESEARCH AND DEVELOPMENT, no. 02, 2008, pages 156 - 160
LORENTZ M NSTOKES A NROΒLER D C ET AL.: "Tetrodotoxin", CURRENT BIOLOGY, vol. 26, no. 19, 2016, pages 870 - 872, XP029762794, DOI: 10.1016/j.cub.2016.05.067
MAGARLAMOV T Y, MELNIKOVA D I, CHERNYSHEV A V: "Tetrodotoxin-Producing Bacteria: Detection, Distribution and Migration of the Toxin in Aquatic Systems", TOXINS, vol. 9, no. 5, 2017, pages 1 - 20
MAKAROVA M, RYCEK L, HAJICEK J: " Tetrodotoxin: History, Biology, and Synthesis", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 58, no. 51, 2019, pages 18338 - 18387
MAO JIEGONG XIAOLINGBAO BAOLONG: "Identification of TTX and anisakis parasites in Takifugu xanthopterus from the East China Sea", JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2020, pages 1 - 9
MCALVIN J BYHANG CDOHLMAN J C: "Corneal Anesthesia with Site 1 Sodium Channel Blockers and Dexmedetomidine", INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, vol. 56, 2015, pages 3820 - 3826
MOCZYDLOWSKI E G: "The molecular mystique of tetrodotoxin", TOXICON, vol. 63, 2013, pages 165 - 183, XP028968831, DOI: 10.1016/j.toxicon.2012.11.026
NISHIKAWA T, ISOBE M: "Synthesis of Tetrodotoxin, a Classic but Still Fascinating Natural Product", THE CHEMICAL RECORD, vol. 13, 2013, pages 286 - 302
NOGUCHI TEBESU J S M: "Puffer poisoning: Epidemiology and treatment", TOXIN REVIEWS, vol. 20, 2001, pages 1 - 10
OGURA YMORI Y: "Mechanism of local anesthetic action of crystalline tetrodotoxin and its derivatives", EUROPEAN JOURNAL OF PHARMACOLOGY, vol. 3, no. 1, 1968, pages 58 - 67, XP025489011, DOI: 10.1016/0014-2999(68)90049-6
OHYABU N, NISHIKAWA T, ISOBE M: "First asymmetric total synthesis of tetrodotoxin", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 125, no. 29, 2003, pages 8798 - 8805, XP002461488, DOI: 10.1021/ja0342998
PADERA R F, TSE J Y, BELLAS E: "Tetrodotoxin for prolonged local anesthesia with minimal myotoxicity", MUSCLE NERVE, vol. 34, 2006, pages 747 - 753
See also references of EP4166559A4
SHAN BDONG MTANG H ET AL.: "Voltage-gated sodium channels were differentially expressed in human normal prostate, benign prostatic hyperplasia and prostate cancer cells", ONCOLOGY LETTERS, vol. 8, 2014, pages 345 - 350
SHI JLIU T TWANG X ET AL.: "Tetrodotoxin reduces cue-induced drug craving and anxiety in abstinent heroin addicts", PHARMACOLOGY, BIOCHEMISTRY AND BEHAVIOR, vol. 92, 2009, pages 603 - 607, XP026084008, DOI: 10.1016/j.pbb.2009.02.013
STOCK C, SCHWAB A: " Ion channels and transporters in metastasis", BIOPHYSICA ACTA, vol. 1848, 2015, pages 2638 - 2646
STOETZER CDOLL TSTUEBER T ET AL.: "Tetrodotoxin-sensitive a-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics", NAUNYN SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, vol. 389, 2016, pages 625 - 636, XP035867014, DOI: 10.1007/s00210-016-1231-9
SU JIELIU ZHIYUHUANG ZHIMEI: "A research on tetrodotoxin purification", JOURNAL OF FUJIAN FISHERIES, no. 4, 2010, pages 56 - 59
TAN GUILILIN GUOYOU: "HPLC detection of tetrodotoxin", ENTERPRISE SCIENCE AND TECHNOLOGY & DEVELOPMENT, no. 13, 2011, pages 26 - 28
TSUDA K, KAWAMURA M: "The Constituents of the Ovaries of Globefish. VII. Purification of Tetrodotoxin by Chromatography (2)", THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 72, 1952, pages 771 - 773
TSUDA KIKUMA SKAWAMURA M ET AL.: "Tetrodotoxin. VII. On the structures of tetrodotoxin and its derivatives", THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 12, 1964, pages 1357 - 137
VLASENKO A EVELANSKY P VCHERNYSHEV A V ET AL.: "Tetrodotoxin and its analogues profile in nemertean species from the sea of Japan", TOXICON: OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY ON TOXINOLOGY, vol. 156, 2018, pages 48 - 51, XP085545968, DOI: 10.1016/j.toxicon.2018.11.006
WHITELAW B LCOOKE I RFINN J ET AL.: "The evolution and origin of tetrodotoxin acquisition in the blue-ringed octopus (genus Hapalochlaena", AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS, vol. 206, 2019, pages 114 - 122
WOOD S ATAYLOR D IMCNABB P ET AL.: "Tetrodotoxin concentrations in Pleurobranchaea maculata: Temporal, spatial and individual variability from New Zealand populations", MARINE DRUGS, vol. 10, 2012, pages 163 - 176
WOODWARD R B, GOUGOUTAS J Z: "The structure of tetrodotoxin", AMERICAN CHEMICAL SOCIETY, vol. 9, 1964, pages 49 - 74, XP001248779
YOKOO A: "Study on chemical purification of tetrodotoxin (3) purification of spheroidine", JOURNAL OF THE CHEMICAL SOCIETY, JAPAN, vol. 71, 1950, pages 590 - 592
YOTSU-YAMASHITA M, GILHEN J, RUSSELL R W: " Variability of tetrodotoxin and of its analogues in the red-spotted newt, Notophthalmus viridescens (Amphibia: Urodela: Salamandridae)", TOXICON, vol. 59, 2012, pages 257 - 264
ZHU GUOPINGLIAO JIANMENGWU BIN ET AL.: "The seasonal variation of tetrodotoxin in Amoya caninus", MARINE ENVIRONMENTAL SCIENCE, vol. 34, no. 01, 2015, pages 66 - 69

Also Published As

Publication number Publication date
EP4166559A4 (en) 2024-01-31
US20230257391A1 (en) 2023-08-17
EP4166559A1 (en) 2023-04-19
JP2023532153A (ja) 2023-07-26
CN113321661A (zh) 2021-08-31
CN113321661B (zh) 2022-04-12
JP7554357B2 (ja) 2024-09-19

Similar Documents

Publication Publication Date Title
Tang et al. Rapid in vivo determination of fluoroquinolones in cultured puffer fish (Takifugu obscurus) muscle by solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry
De Castro et al. Reduced triphosphopyridinenucleotide requirement for the enzymatic formation of 3-hydroxykynurenine from L-kynurenine
WO2022233298A1 (zh) 一种高效的从河豚内脏提取和分离制备高纯度河豚毒素的方法
Hussein Anti-inflammatory effect of natural heterocycle glucoside vicine obtained from Vicia faba L. its aglucone (divicine) their effect on some oxidative stress biomarkers in Albino rats
Yasumoto et al. Properties and sugar components of asterosaponin A isolated from starfish
US6552191B1 (en) Method of extracting tetrodotoxin
Yu et al. Protective function on liver and proteomic analysis of the improvement mechanism of Sedum sarmentosum Bunge extract on nonalcoholic fatty liver disease in Nile tilapia
CN108864021A (zh) 一种利用锌盐制备高纯度木犀草素的方法
CN102796189B (zh) 一种硫酸鱼精蛋白的制备方法
CN110372732B (zh) 白坚木碱-喹啉型二聚吲哚生物碱化合物及其应用
CN108503678A (zh) 一种环烯醚萜类化合物及其制备方法和应用
SK19882000A3 (sk) Spôsob výroby aloínu extrakciou
CN113861253B (zh) 一种京尼平苷酸单体的制备方法及应用
CN108998427B (zh) 一种酚氧化酶活性蛋白的制备方法
CN102477041A (zh) 一种盐酸千金藤素的制备方法
Hegyeli et al. On the chemistry of the thymus gland
WO2004064852B1 (en) Standardised steroid saponin mixture, a method of its obtaining and application
CN108129538B (zh) 一种从全蝎中提取抗菌化合物的方法
Li et al. Chemical constituents and antioxidant activities of waste liquid extract from Apostichopus japonicus Selenka processing
Majak et al. A new glycoside of 3-nitropropanol from Astragalus miser var. serotinus
BG66818B1 (bg) Състав на екстракт от hippeastrum papilio за производство на лекарствени средства и хранителни добавки
CN102755359A (zh) 一种沙棘提取物及其制备方法与在抑制脂肪酸合酶活性中的应用
JP4087589B2 (ja) カンプトテシンの製造方法
JPH0672885A (ja) トポイソメラーゼ阻害剤
EP3090742A1 (en) Use of compounds produced from arrabidaea brachypoda extracts as anti-ulcerogenic agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023523323

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022798638

Country of ref document: EP

Effective date: 20221229

NENP Non-entry into the national phase

Ref country code: DE