WO2022233245A1 - 一种高压电脉冲消融与电生理记录仪协同工作的装置 - Google Patents

一种高压电脉冲消融与电生理记录仪协同工作的装置 Download PDF

Info

Publication number
WO2022233245A1
WO2022233245A1 PCT/CN2022/088712 CN2022088712W WO2022233245A1 WO 2022233245 A1 WO2022233245 A1 WO 2022233245A1 CN 2022088712 W CN2022088712 W CN 2022088712W WO 2022233245 A1 WO2022233245 A1 WO 2022233245A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch
pulse
switch unit
power supply
Prior art date
Application number
PCT/CN2022/088712
Other languages
English (en)
French (fr)
Inventor
陈树国
张娟凤
朱云刚
陈文海
Original Assignee
上海玄宇医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海玄宇医疗器械有限公司 filed Critical 上海玄宇医疗器械有限公司
Publication of WO2022233245A1 publication Critical patent/WO2022233245A1/zh
Priority to US18/501,680 priority Critical patent/US20240065758A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00973Surgical instruments, devices or methods, e.g. tourniquets pedal-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • A61B2018/00178Electrical connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00357Endocardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00613Irreversible electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00732Frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00767Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/124Generators therefor switching the output to different electrodes, e.g. sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods

Definitions

  • the invention relates to the field of medical equipment, in particular to a device for cooperating with a high-voltage electric pulse ablation and an electrophysiological recorder.
  • Atrial fibrillation is the most common cardiac arrhythmia, with an incidence of approximately 2%, and its incidence increases with age.
  • the most serious complication of atrial fibrillation is thromboembolism, which can lead to stroke, myocardial infarction, etc.
  • stroke is the most common complication of atrial fibrillation death.
  • Atrial fibrillation Current Understanding and Treatment Recommendations-2015
  • drug therapy includes antiarrhythmic therapy and anticoagulation therapy.
  • antiarrhythmic therapy is to prevent the occurrence of atrial fibrillation, control rapid heart rate during atrial fibrillation, remove atrial fibrillation and maintain sinus heart rate. Gaoxin, Betaloc, Dalong, etc.
  • anticoagulation therapy is to prevent the formation of mural thrombus in the atrium, and to prevent the shedding of the mural thrombus in the atrium from causing embolism of other organs, especially cerebral embolism.
  • the commonly used drug is warfarin.
  • Non-drug treatments for atrial fibrillation include ablation therapy, surgery, and pacing therapy. They are suitable for patients who are ineffective or unsuitable for drug therapy. Successful ablation and surgery can cure atrial fibrillation.
  • catheter ablation is an effective means of restoring and maintaining sinus rhythm in patients with atrial fibrillation.
  • Catheter ablation is dominated by radiofrequency energy, but there are other energy sources (including cryo, ultrasound, and laser ablation, etc.).
  • these ablation methods based on heat/cold energy conduction have certain limitations. They lack selectivity in the destruction of the tissue in the ablation area, and depend on the ablation force of the catheter to the ablation tissue, so the adjacent esophagus, coronary arteries and Damage to the phrenic nerve, etc. This leads to certain complications in the perioperative period, and some patients will relapse due to the effect of the catheter and the depth of the lesion.
  • the recurrence rate of radiofrequency ablation is 20-40%
  • the recurrence rate of cryoablation is 10-30%;
  • pulsed electric field ablation in the field of cardiac ablation has been explored at home and abroad, and promising results have been achieved.
  • pulsed electric field energy forms irreversible micropores on the cell membrane through instantaneous discharge, causing cell apoptosis and achieving the purpose of non-thermal ablation, also known as irreversible electroporation.
  • electroporation ablation has been used as an effective means to destroy malignant tumor tissue. Pulsed electric field ablation can theoretically damage cardiomyocytes without heating the tissue, with cell/tissue selectivity, protecting critical structures surrounding the ablated tissue.
  • pulse ablation is a non-thermal biological ablation, which is different from radiofrequency, cryotherapy, microwave, and ultrasound, and can effectively avoid damage to blood vessels, nerves, and esophagus.
  • High-voltage pulse ablation technology is the future development direction of ablation technology in the medical field. Real-time monitoring of the ablation effect of high-voltage electrical pulses is the trend of future development and a problem that needs to be solved urgently.
  • the most common practice of electrophysiological ablation today is to connect the mapping catheter to observe, collect, display and store the cardiac electrophysiological signals during the electrophysiological ablation process in real time through the electrophysiological recorder. This has the following disadvantages: the mapping catheter cannot measure the actual ablation.
  • the ECG potential signal at the tissue position has a certain deviation from the actual ablation tissue position; the high-voltage electrical pulse signal will enter the electrophysiological recorder, causing the ECG potential signal to be disturbed and cannot reflect the real ablation effect; the high-voltage electrical pulse signal enters the electrophysiological recorder.
  • the physiological recorder may damage the electrophysiological recorder.
  • the technical problem to be solved by the present invention is how to design and develop a device for cooperating with a high-voltage electrical pulse ablation and an electrophysiological recorder, which can overcome the deviation of the measurement position of the mapping catheter and the high voltage.
  • the present invention provides a device for designing and developing a high-voltage electrical pulse ablation and an electrophysiological recorder to work together, including a high-voltage power supply, an energy storage capacitor, a discharge circuit, and a high-frequency high-voltage pulse signal generating circuit.
  • switch matrix circuit control system; wherein, the energy storage capacitor is respectively connected with the high-voltage power supply, the discharge circuit and the high-frequency high-voltage pulse signal generating circuit; the switch matrix is respectively connected with the high-frequency high-voltage pulse signal The signal generating circuit, the catheter and the electrophysiological recorder are connected; the control system is respectively connected with the high-voltage power supply, the discharge circuit, the high-frequency high-voltage pulse signal generating circuit, the switch matrix circuit, the ECG signal monitoring and the feet Footswitch connection.
  • the positive electrode of the high-voltage power supply is connected to the first end of the energy storage capacitor, and the negative electrode of the high-voltage power supply is connected to the second end of the energy storage capacitor;
  • the first end of the discharge circuit is connected to the first end of the energy storage capacitor, and the second end of the discharge circuit is connected to the second end of the energy storage capacitor;
  • the first input end of the high-frequency high-voltage pulse signal generating circuit is connected to the first end of the energy storage capacitor, and the second input end of the high-frequency high-voltage pulse signal generating circuit is connected to the second end of the energy storage capacitor connection, the output end of the high-frequency high-voltage pulse signal generating circuit is connected with the input end of the switch matrix circuit;
  • the first output end of the switch matrix circuit is connected to the catheter, and the second output end of the switch matrix circuit is connected to the electrophysiological recorder;
  • the control system is connected with the high-voltage power supply through RS232 or RS485, and is used to control the output value of the high-voltage power supply output DC voltage and the DC voltage output value to feed back to the control system;
  • the control system is connected to the discharge circuit, and controls the discharge circuit to discharge the energy stored in the energy storage capacitor through a control discharge signal;
  • the control system is connected with the high-frequency high-voltage pulse signal generating circuit, and is used for controlling the output and closing of the pulse voltage and collecting the signals of the pulse voltage and the pulse current;
  • the control system is connected with the switch matrix circuit, and controls the switch matrix circuit to work according to requirements through a control signal;
  • the control system is connected to the ECG signal monitoring device, and is used for receiving a trigger signal sent after the ECG signal monitoring device monitors the R wave;
  • the control system is connected with the foot switch, and is used for detecting the signal of the foot switch to control the output of high-voltage electrical pulses.
  • the high-frequency high-voltage pulse signal generating circuit includes two DC high-voltage source interfaces, four pulse-width-modulated driving signal interfaces, four switching units, and two pulse output interfaces;
  • the two DC high-voltage source interfaces are divided into two parts. are the power supply positive interface and the power supply negative interface;
  • the four pulse width modulated driving signal interfaces are respectively the first driving signal interface, the second driving signal interface, the third driving signal interface and the fourth driving signal interface;
  • the four said The switch units are respectively a first switch unit, a second switch unit, a third switch unit and a fourth switch unit;
  • the two pulse output interfaces are respectively a first pulse output interface and a second pulse output interface.
  • switch units are connected in series, one end of the first switch unit is connected to the positive interface of the power supply, the other end of the first switch unit is connected to one end of the fourth switch unit, the first pulse output interface is connected, one end of the second switch unit is connected to the positive power supply interface, the other end of the second switch unit is connected to one end of the third switch unit and the second pulse output interface , the other end of the third switch unit is connected to the negative electrode interface of the power supply, and the other end of the fourth switch unit is connected to the negative electrode interface.
  • each of the switch units includes an equal number of switch elements
  • each of the switch units includes a switch element.
  • each of the switching elements only uses an IGBT, or only a high-voltage MOS transistor.
  • each of the switching elements adopts an IGBT or a high-voltage MOS transistor with the same parameters.
  • the IGBT is an N-channel IGBT or the high-voltage MOS transistor is a silicon carbide N-channel MOS transistor.
  • the gate of the IGBT is used as the control electrode of the switching unit, the emitter of the IGBT of the first switching unit is connected to the collector of the IGBT of the fourth switching unit, and the IGBT of the second switching unit is connected.
  • the emitter of the IGBT is connected to the collector of the IGBT of the third switching unit, or the gate of the high-voltage MOS tube is used as the control electrode of the switching unit, and the source of the high-voltage MOS tube of the first switching unit is connected to the The drain of the high-voltage MOS transistor of the fourth switch unit is connected, and the source of the high-voltage MOS transistor of the second switch unit is connected to the drain of the high-voltage MOS transistor of the third switch unit.
  • first drive signal interface is connected to the control electrode of the first switch unit
  • second drive signal interface is connected to the control electrode of the second switch unit
  • third drive signal interface is connected to the control electrode of the second switch unit.
  • control electrode of the third switch unit is connected
  • fourth driving signal interface is connected to the control electrode of the fourth switch unit.
  • the switch matrix circuit includes N high-voltage relay groups, N ⁇ 2; the N high-voltage relay groups are connected to the N channels of the electrophysiological recorder in a one-to-one correspondence, and the N high-voltage relay groups are connected to The N electrodes of the conduit are connected in a one-to-one correspondence; each of the high-voltage relay groups is composed of two high-voltage relays connected in series, which are a first high-voltage relay and a second high-voltage relay; the high-voltage relays use the same parameters. SPDT type high voltage vacuum relay.
  • the normally closed contact of the first high-voltage relay is connected to the first pulse output interface
  • the normally open contact of the first high-voltage relay is connected to the second pulse output interface
  • the first high-voltage relay is connected to the second pulse output interface.
  • the common terminal of the relay is connected to the normally open contact of the second high voltage relay
  • the normally closed contact of the second high voltage relay is connected to one channel of the electrophysiological recorder
  • the common terminal of the second high voltage relay is connected with one electrode of the catheter
  • the control system is connected with the switch matrix circuit for controlling the on-off of the high-voltage relay.
  • the catheter can be used as both a high-voltage electrical pulse ablation catheter and a mapping catheter;
  • the cardiac electrophysiological signals during electrophysiological ablation can be collected, displayed and stored in real time at the same position of tissue ablation;
  • FIG. 1 is a schematic structural diagram of a preferred embodiment of the present invention.
  • FIG. 2 is a circuit schematic diagram of a high-frequency high-voltage pulse signal generating circuit according to a preferred embodiment of the present invention
  • FIG. 3 is a circuit schematic diagram of a switch matrix circuit according to a preferred embodiment of the present invention.
  • 11-high voltage power supply 12-storage capacitor, 13-discharge circuit, 14-high-frequency high-voltage pulse signal generating circuit, 15-switch matrix circuit, 16-catheter, 17-control system, 18-electrophysiological recorder, 19- Foot switch, 20- ECG signal monitoring device.
  • a device for cooperating with high-voltage electrical pulse ablation and an electrophysiological recorder includes a high-voltage power supply 11 , an energy storage capacitor 12 , a discharge circuit 13 , a high-frequency high-voltage pulse signal generating circuit 14 , and a switch matrix circuit 15 , control system 17; the positive pole of the high voltage power supply 11 is connected to the first end of the energy storage capacitor 12, the negative pole of the high voltage power supply 11 is connected to the second end of the energy storage capacitor 12; the first end of the discharge circuit 13 is connected to the energy storage capacitor 12.
  • the first end is connected, the second end of the discharge circuit 13 is connected with the second end of the energy storage capacitor 12; the first input end of the high frequency high voltage pulse signal generating circuit 14 is connected with the first end of the energy storage capacitor 12, the high frequency high voltage
  • the second input end of the pulse signal generating circuit 14 is connected with the second end of the energy storage capacitor 12, the output end of the high frequency high voltage pulse signal generating circuit 14 is connected with the input end of the switch matrix circuit 15; the first output of the switch matrix circuit 15 The end is connected to the catheter 16, and the second output end of the switch matrix circuit 15 is connected to the electrophysiological recorder 18;
  • the control system 17 is connected with the high-voltage power supply 11 through RS232 or RS485, and is used to control the output value of the DC voltage output by the high-voltage power supply 11 and feedback the output value of the DC voltage to the control system; the control system 17 is connected with the discharge circuit 13, and the discharge is controlled by the control discharge signal
  • the circuit 13 discharges the energy stored in the energy storage capacitor 12; the control system 17 is connected to the high-frequency high-voltage pulse signal generating circuit 14 for controlling the output and closing of the pulse voltage and collecting the signals of the pulse voltage and pulse current; the control system 17 is connected with the heart
  • the electrical signal monitoring device 20 is connected to receive a trigger signal sent by the ECG signal monitoring device 20 after monitoring the R wave; the control system 17 is connected to the foot switch 19 for detecting the signal of the foot switch 19 to control the output high voltage Electric pulse; the control system 17 is connected with the switch matrix circuit 15, and the control system controls the switch matrix circuit to work according to the requirements through the control signal.
  • FIG. 2 it is a circuit schematic diagram of the high-frequency high-voltage pulse signal generating circuit 14, including two DC high-voltage source interfaces, namely VDC+ interface and VDC- interface; four pulse-width modulated driving signal interfaces, namely DRIVE1, DRIVE2 , DRIVE3, DRIVE4; four switch units, namely the first switch unit, the second switch unit, the third switch unit, the fourth switch unit; two pulse output interfaces; two pulse output interfaces, namely OUT1, OUT2; four
  • the switch units are connected in series, one end of the first switch unit is connected to the VDC+ interface, the other end of the first switch unit is connected to one end of the fourth switch unit, OUT1, one end of the second switch unit is connected to the VDC+ interface, and the second switch unit is connected to the VDC+ interface.
  • the other end of the third switch unit is connected to one end of the third switch unit, OUT2, the other end of the third switch unit is connected to the VDC-interface, and the other end of
  • the switch unit adopts an IGBT with the same parameters, and the IGBT is an N-channel IGBT, the gate of the IGBT is used as the control electrode of the switch unit, the emitter of IGBT1 is connected to the collector of IGBT4, and the emitter of IGBT2 is connected to the collector of IGBT3. electrode connection.
  • DRIVE1 is connected to the control electrode of the first switching unit
  • DRIVE2 is connected to the control electrode of the second switching unit
  • DRIVE3 is connected to the control electrode of the third switching unit
  • DRIVE4 is connected to the control electrode of the fourth switching unit.
  • FIG. 3 it is a circuit schematic diagram of the switch matrix circuit 15 of this embodiment, including N high-voltage relay groups, N ⁇ 2, and each high-voltage relay group has four interfaces, which are respectively connected with the high-frequency high-voltage pulse signal generating circuit OUT1, OUT2 of 14, the channel of the electrophysiological recorder 18 and the electrode of the catheter 16 are connected, and the high-voltage relay adopts the SPDT type high-voltage vacuum relay with the same parameters.
  • high-voltage relay REL_1A and high-voltage relay REL_1B form one of the high-voltage relay groups.
  • OUT1 is connected
  • the NO terminal of the high-voltage relay REL_1A is connected to the OUT2 of the high-frequency high-voltage pulse signal generating circuit 14
  • the NC terminal of the high-voltage relay REL_1B is connected to the CH1 terminal of the electrophysiological recorder 18, and the COM terminal of the high-voltage relay REL_1B is connected to The electrode 1 end of the catheter 16 is connected.
  • the high-voltage relay REL_2A and the high-voltage relay REL_2B form one of the high-voltage relay groups.
  • the COM terminal of the high-voltage relay REL_2A is connected to the NO terminal of the high-voltage relay REL_2B, and the NC terminal of the high-voltage relay REL_2A is connected to the OUT1 of the high-frequency high-voltage pulse signal generating circuit 14.
  • the high-voltage relay The NO terminal of REL_2A is connected to the OUT2 of the high-frequency high-voltage pulse signal generating circuit 14 , the NC terminal of the high-voltage relay REL_2B is connected to the CH2 terminal of the electrophysiological recorder 18 , and the COM terminal of the high-voltage relay REL_2B is connected to the electrode 2 of the catheter 16 end connection.
  • the high-voltage relay REL_3A and the high-voltage relay REL_3B form one of the high-voltage relay groups.
  • the COM terminal of the high-voltage relay REL_3A is connected to the NO terminal of the high-voltage relay REL_3B, and the NC terminal of the high-voltage relay REL_3A is connected to the OUT1 of the high-frequency high-voltage pulse signal generating circuit 14.
  • the NO terminal of the high-voltage relay REL_3A is connected to the OUT2 of the high-frequency high-voltage pulse signal generating circuit 14
  • the NC terminal of the high-voltage relay REL_3B is connected to the CH3 terminal of the electrophysiological recorder 18
  • the COM terminal of the high-voltage relay REL_3B is connected to the catheter 16 3 terminals of the electrodes are connected.
  • the high-voltage relay REL_nA and the high-voltage relay REL_nB form one of the high-voltage relay groups, n ⁇ 2, the COM terminal of the high-voltage relay REL_nA is connected to the NO terminal of the high-voltage relay REL_nB, and the NC terminal of the high-voltage relay REL_nA is connected to the high-frequency high-voltage pulse.
  • the OUT1 end of the signal generating circuit 14 is connected, the NO end of the high-voltage relay REL_nA is connected with the OUT2 end of the high-frequency high-voltage pulse signal generating circuit 14, and the NC end of the high-voltage relay REL_nB is connected with the electrophysiological recorder 18.
  • the CHn end of the ECG channel Connected, the COM terminal of the high voltage relay REL_1B is connected to the electrode n terminal of the conduit 16 .
  • the catheter can have the functions of an ablation catheter and a mapping catheter at the same time.
  • the specific process is that in the high-voltage electrical pulse ablation process, the catheter is used for pulse ablation and acts as a pulse ablation catheter. At this time, electrophysiological recording is performed.
  • the instrument 18 does not collect, display and store cardiac electrophysiological signals through the catheter; when the pulse ablation ends, the catheter automatically switches to connect to the electrophysiological recorder 18, and the catheter acts as a mapping catheter for real-time acquisition, display and storage of cardiac electrophysiological signals, Avoid manual replacement of switching catheters for ablation and mapping during surgery.
  • the electrode 1, electrode 3, electrode 5, ..., electrode n1 of the catheter 16 are connected to OUT1
  • the electrode 2, electrode 4, electrode 6, ..., electrode n2 of the catheter 16 is connected to OUT2 (n1 is an odd number less than n, n2 is an even number less than n).
  • the NC terminals of the high-voltage relays REL_1A, REL_2A, REL_3A...REL_nA are connected to the OUT1 interface
  • the NO terminals of the high-voltage relays REL_1A, REL_2A, REL_3A...REL_nA are connected to the OUT2 interface.
  • the COM terminals of the high voltage relays REL_1A, REL_2A, REL_3A...REL_nA are respectively connected with the NO terminals of the high voltage relays REL_1B, REL_2B, REL_3B...REL_nB.
  • the NC terminals of the high voltage relays REL_1B, REL_2B, REL_3B...REL_nB are respectively connected with the in vivo ECG channels CH1, CH2, CH3...CHn of the electrophysiological recorder 18, where n is the maximum number of channels supported by the electrophysiological recorder 18.
  • the COM terminals of the high voltage relays REL_1B, REL_2B, REL_3B...REL_nB are respectively connected to the electrode 1, the electrode 2, the electrode 3...the electrode n of the catheter.
  • the electrophysiological recorder 18 observes, collects, displays and stores the electrophysiological signals of the heart before ablation through the catheter 16 in real time.
  • the control system 17 controls the high-voltage relays REL_2A, REL_4A, REL_6A... REL_n2A coils to be electrically pulled in and connect the COM terminal to the NO terminal.
  • the ECG signal monitoring device 20 monitors that the R wave is delayed for a period of time and sends a trigger signal to the control system 17, and then sends a trigger signal at an interval of one heartbeat cycle, that is, to ensure that the high-voltage electrical pulse is output within the refractory period and is an interval of one.
  • the high-voltage pulse signal is output in the heartbeat cycle; then the control system 17 is ready to output the high-voltage pulse signal according to the trigger signal input by the ECG signal monitoring device 20, and waits for the foot pedal signal; when the foot switch 19 is stepped on, the high-voltage relays REL_1B, REL_2B, REL_3B ...The REL_nB coil is powered and the COM terminal is connected to the NO terminal.
  • the high-frequency high-voltage pulse signal generating circuit 14 outputs the high-voltage pulse signal and sends it to the catheter 16 through the switch matrix circuit 15 for tissue ablation; when the foot switch 19 is released , high-voltage relays REL_1B, REL_2B, REL_3B...
  • REL_nB coils are disconnected when power is lost, the COM terminal is connected to the NC terminal, and the electrophysiological recorder 18 observes, collects, displays and stores the cardiac electrophysiological signals after ablation in real time; step on the pedal again
  • the switch 19 the high-voltage relays REL_1B, REL_2B, REL_3B... REL_nB coils are energized and closed, the COM terminal is connected to the NO terminal, and the high-frequency high-voltage pulse signal generating circuit 14 outputs the high-voltage pulse signal through the switch matrix circuit 15.
  • the high-voltage relays REL_1B, REL_2B, REL_3B... REL_nB coils are powered off and disconnected, the COM terminal is connected to the NC terminal, and the electrophysiological recorder 18 continues to detect the ECG after ablation through the catheter 16 the potential signal, and so on
  • the electrophysiological recorder 18 observes, collects, displays and stores the electrophysiological signals of the heart before ablation in real time, and the control system 17 controls the high-voltage relays REL_2A, REL_4A, REL_6A...
  • the COM terminal is connected with the NO terminal; after that, the ECG signal monitoring device 20 monitors the R wave to delay a period of time and sends a trigger signal to the control system 17, and then sends a trigger signal every one heartbeat cycle, that is, to ensure that the high-voltage electrical pulse is not
  • the high-voltage pulse signal is output within the response period and is output at an interval of a heartbeat cycle; then the control system 17 is ready to output the high-voltage pulse signal according to the trigger signal input by the ECG signal monitoring device 20, and waits for the foot pedal signal; when the foot switch 19 is stepped on , the high-voltage relays REL_1B, REL_2B, REL_3B...
  • the COM terminal is connected to the NO terminal, the high-frequency high-voltage pulse signal generating circuit 14 outputs the high-voltage pulse signal and is sent to the catheter 16 through the switch matrix circuit 15 for tissue ablation ;In the interval of heartbeat cycles, the high-voltage relays REL_1B, REL_2B, REL_3B... When the R-wave signal is detected, the high-voltage relays REL_1B, REL_2B, REL_3B... REL_nB coils are electrically pulled in, the COM terminal is connected to the NO terminal, and the high-frequency high-voltage pulse signal generating circuit 14 outputs the high-voltage pulse signal through the switch matrix circuit 15. Continue to deliver to the catheter 16 for tissue ablation; disconnect the high-voltage relays REL_1B, REL_2B, REL_3B... Display and store cardiac electrophysiological signals after ablation, and so on
  • each switching element adopts a high-voltage MOS transistor with the same parameters, and the high-voltage MOS transistor is a silicon carbide N-channel MOS transistor; the gate of the high-voltage MOS transistor is used as the control electrode of the switching unit, and the first switching unit
  • the source of the high-voltage MOS transistor is connected to the drain of the high-voltage MOS transistor of the fourth switch unit, and the source of the high-voltage MOS transistor of the second switch unit is connected to the drain of the high-voltage MOS transistor of the third switch unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种高压电脉冲消融与电生理记录仪协同工作的装置,涉及医疗器械领域,包括高压电源(11)、储能电容(12)、放电电路(13)、高频高压脉冲信号发生电路(14)、开关矩阵电路(15)、控制系统(17);储能电容(12)分别与高压电源(11)、放电电路(13)和高频高压脉冲信号发生电路(14)连接;开关矩阵电路(15)分别与高频高压脉冲信号发生电路(14)、导管(16)和电生理记录仪(18)连接;控制系统(17)分别与高压电源(11)、放电电路(13)、高频高压脉冲信号发生电路(14)、开关矩阵电路(15)、心电信号监测装置(20)和脚踏开关(19)连接。该装置可以在电生理消融过程中通过消融导管实时观察采集、显示和存储心脏电生理信号,并且生理信号不会受到高压电脉冲信号的干扰导致有用信号被覆盖,测量结果真实有效。

Description

一种高压电脉冲消融与电生理记录仪协同工作的装置 技术领域
本发明涉及医疗器械领域,尤其涉及一种高压电脉冲消融与电生理记录仪协同工作的装置。
背景技术
心房颤动(房颤)是最常见的心律失常,其发病率约为2%,且随着年龄增加其发病率逐渐升高。房颤最严重的并发症是血栓栓塞,可导致卒中、心肌梗死等,其中脑卒中是房颤死亡最常见的并发症。
治疗房颤的方法有两大类,即药物治疗和非药物治疗。根据中华医学会心电生理和起搏分会发表的《心房颤动:目前的认识和治疗建议-2015》可知,目前房颤的药物治疗主要包括:控制心室率、恢复并维持窦性心律和抗血栓治疗。其中药物治疗又包括抗心律失常治疗和抗凝治疗,抗心律失常治疗的目的是预防房颤的发生、控制房颤时快心率和去除房颤并维持窦性心率,常用药物有心律平、地高辛、倍他乐克、可达龙等。抗凝治疗的目的是防止心房内形成附壁血栓,预防心房内附壁血栓脱落造成其他脏器柱栓塞,特别是脑栓塞,常用药物是华法林。
房颤非药物治疗包括消融治疗、外科手术治疗和起搏治疗等,其适用于药物方法治疗房颤效果不佳或不适合药物治疗的病人,成功的消融治疗和外科手术治疗可以治愈房颤。
目前,导管消融是房颤患者恢复和维持窦性心律的有效手段。导管消融以射频能量为主,但也有其他能源(包括冷冻、超声和激光消融等)。然而,这些基于热/冷能量传导方式的消融具有一定局限性,其对消融区域组织的破坏缺乏选择性,且依赖于导管对消融组织的贴靠力,所以可能对邻近的食管、冠状动脉和膈神经等造成损伤。导致手术围术期存在一定并发症,且因为导管贴靠效果和病灶深度等原因,部分患者会复发。据报道,射频消融的复发率在20~40%,冷冻消融的复发率在10~30%;
近年来,国内外已经开始探索脉冲电场消融在心脏消融领域中的应用,并且取得了可喜的结果。与传统能量不同,脉冲电场能量通过瞬间放电在细胞膜上形成不可逆的微孔,造成细胞凋亡,达到非热消融的目的,也被称为不可逆电穿孔。目前,电穿孔消融已被用作一种破坏恶性肿瘤组织的有效手段。脉冲电场消融理论上可在不加热组织的情况下损伤心肌细胞,并具有细胞/组织选择性,保护消融组织周围关键结构。
脉冲消融其原理为通过短暂的直流高压脉冲可以在数厘米范围内形成几百伏特的电场,这个电场在细胞膜上产生破坏形成穿孔。如果在细胞膜处形成的电场大于阈值, 则形成的电穿孔不可逆,保持气孔的开放,从而导致细胞坏死或凋亡。因此,脉冲消融是一种非热生物学消融,与射频、冷冻、微波、超声不同,能够有效避免血管,神经,食道的损伤。
高压脉冲消融技术是未来医疗领域消融技术发展的方向,实时监测高压电脉冲的消融效果这是未来发展的趋势也是急需解决的一个难题。现今电生理消融最常用的做法是接入标测导管通过电生理记录仪实时观察采集、显示和存储电生理消融过程中心脏电生理信号,这样有以下几个弊端:标测导管不能测量实际消融组织位置的心电电位信号,与实际消融组织位置有一定的偏差;高压电脉冲信号会进入电生理记录仪导致心电电位信号被干扰不能反映真实的消融效果;高压电脉冲信号进入电生理记录仪可能会损坏电生理记录仪。
因此,本领域的技术人员致力于开发一种高压电脉冲消融与电生理记录仪协同工作的装置,在电生理消融过程中实时观察采集、显示和存储心脏电生理信号,且不会受到高压电脉冲信号的干扰导致有用信号被覆盖,测量结果真实有效。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是如何设计一种开发一种高压电脉冲消融与电生理记录仪协同工作的装置,可以克服标测导管测量位置有偏差以及高压脉冲信号干扰电生理记录仪的信号甚至使其损坏的问题。
为实现上述目的,本发明提供了一种设计一种开发一种高压电脉冲消融与电生理记录仪协同工作的装置,包括高压电源、储能电容、放电电路、高频高压脉冲信号发生电路、开关矩阵电路、控制系统;其中,所述储能电容分别与所述高压电源、所述放电电路和所述高频高压脉冲信号发生电路连接;所述开关矩阵分别与所述高频高压脉冲信号发生电路、导管和电生理记录仪连接;所述控制系统分别与所述高压电源、所述放电电路、所述高频高压脉冲信号发生电路、所述开关矩阵电路、心电信号监测和脚踏开关连接。
进一步地,所述高压电源的正极与所述储能电容的第一端连接,所述高压电源的负极与所述储能电容的第二端连接;
所述放电电路的第一端与所述储能电容的第一端连接,所述放电电路的第二端与所述储能电容的第二端连接;
所述高频高压脉冲信号发生电路的第一输入端与所述储能电容的第一端连接,所述高频高压脉冲信号发生电路的第二输入端与所述储能电容的第二端连接,所述高频高压脉冲信号发生电路的输出端与所述开关矩阵电路的输入端连接;
所述开关矩阵电路的第一输出端与导管连接,所述开关矩阵电路的第二输出端与电生理记录仪连接;
所述控制系统与所述高压电源通过RS232或者RS485连接,用于控制所述高压电 源输出直流电压的输出值以及直流电压输出值反馈给所述控制系统;
所述控制系统与所述放电电路连接,通过控制放电信号控制所述放电电路泄放所述储能电容储存的能量;
所述控制系统与所述高频高压脉冲信号发生电路连接,用于控制脉冲电压的输出与关闭以及采集脉冲电压和脉冲电流的信号;
所述控制系统与所述开关矩阵电路连接,通过控制信号控制所述开关矩阵电路按照要求进行工作;
所述控制系统与所述心电信号监测装置连接,用于接收所述心电信号监测装置监测到R波后发送的触发信号;
所述控制系统与所述脚踏开关连接,用于检测所述脚踏开关的信号以控制输出高压电脉冲。
进一步地,所述高频高压脉冲信号发生电路包括两个直流高压源接口、四个脉宽调制的驱动信号接口、四个开关单元、两个脉冲输出接口;两个所述直流高压源接口分为电源正极接口和电源负极接口;四个所述脉宽调制的驱动信号接口分别为第一驱动信号接口、第二驱动信号接口、第三驱动信号接口、第四驱动信号接口;四个所述开关单元分别为第一开关单元、第二开关单元、第三开关单元、第四开关单元;两个所述脉冲输出接口分别为第一脉冲输出接口、第二脉冲输出接口。
进一步地,四个所述开关单元串行连接,所述第一开关单元的一端与所述电源正极接口连接,所述第一开关单元的另一端与所述第四开关单元的一端、所述第一脉冲输出接口连接,所述第二开关单元的一端与所述电源正极接口连接,所述第二开关单元的另一端与所述第三开关单元的一端、所述第二脉冲输出接口连接,所述第三开关单元的另一端与所述电源负极接口连接,所述第四开关单元的另一端与所述负极接口连接。
进一步地,每个所述开关单元均包括相等数量的开关元件;
进一步地,每个所述开关单元均包括一个开关元件。
进一步地,每个所述开关元件只采用IGBT,或只采用高压MOS管。
进一步地,每个所述开关元件采用参数相同的IGBT或高压MOS管。
进一步地,所述IGBT为N沟道IGBT或高压MOS管为碳化硅N沟道MOS管。
进一步地,所述IGBT的栅极作为所述开关单元的控制极,所述第一开关单元的IGBT的发射极与所述第四开关单元的IGBT的集电极连接,所述第二开关单元的IGBT的发射极与所述第三开关单元IGBT的集电极连接,或者,所述高压MOS管的栅极作为所述开关单元的控制极,所述第一开关单元的高压MOS管的源极与所述第四开关单元的高压MOS管的漏极连接,所述第二开关单元的高压MOS管的源极与所述第三开关单元的高压MOS管的漏极连接。
进一步地,所述第一驱动信号接口与所述第一开关单元的控制极连接,所述第二 驱动信号接口与所述第二开关单元的控制极连接,所述第三驱动信号接口与所述第三开关单元的控制极连接,所述第四驱动信号接口与所述第四开关单元的控制极连接。
进一步地,所述开关矩阵电路包括N个高压继电器组,N≥2;N个所述高压继电器组与所述电生理记录仪的N个通道一一对应连接,N个所述高压继电器组与所述导管的N个电极一一对应连接;每个所述高压继电器组由两个串行连接的高压继电器组成,分别为第一高压继电器和第二高压继电器;所述高压继电器采用参数相同的SPDT型高压真空继电器。
进一步地,所述第一高压继电器的常闭触点与所述第一脉冲输出接口连接,所述第一高压继电器的常开触点与所述第二脉冲输出接口连接,所述第一高压继电器的公共端与所述第二高压继电器的常开触点连接,所述第二高压继电器的常闭触点与所述电生理记录仪的一个道道连接,所述第二高压继电器的公共端与所述导管的一个电极连接;所述控制系统与所述开关矩阵电路连接,用于控制所述高压继电器的通断电。
本发明与现有技术相比较,具有如下显而易见的实质性特点和显著优点:
1、导管既能作为高压电脉冲消融导管使用也能作为标测导管使用;
2、可以在组织消融相同的位置实时采集、显示和存储电生理消融过程中心脏电生理信号;
3、可以实时观察采集、显示和存储电生理消融过程中心脏电生理信号;
4、在电生理消融过程中实时观察采集、显示和存储心脏电生理信号不会受到高压电脉冲信号的干扰导致有用信号被覆盖,测量结果真实有效。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的结构原理图;
图2是本发明的一个较佳实施例的高频高压脉冲信号发生电路的电路原理图;
图3是本发明的一个较佳实施例的开关矩阵电路的电路原理图。
其中,11-高压电源,12-储能电容,13-放电电路,14-高频高压脉冲信号发生电路,15-开关矩阵电路,16-导管,17-控制系统,18-电生理记录仪,19-脚踏开关,20-心电信号监测装置。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以 相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图1所示,一种高压电脉冲消融与电生理记录仪协同工作的装置,包括高压电源11、储能电容12、放电电路13、高频高压脉冲信号发生电路14、开关矩阵电路15、控制系统17;高压电源11的正极与储能电容12的第一端连接,高压电源11的负极与储能电容12的第二端连接;放电电路13的第一端与储能电容12的第一端连接,放电电路13的第二端与储能电容12的第二端连接;高频高压脉冲信号发生电路14的第一输入端与储能电容12的第一端连接,高频高压脉冲信号发生电路14的第二输入端与储能电容12的第二端连接,高频高压脉冲信号发生电路14的输出端与开关矩阵电路15的输入端连接;开关矩阵电路15的第一输出端与导管16连接,开关矩阵电路15的第二输出端与电生理记录仪18连接;
控制系统17与高压电源11通过RS232或者RS485连接,用于控制高压电源11输出直流电压的输出值以及直流电压输出值反馈给控制系统;控制系统17与放电电路13连接,通过控制放电信号控制放电电路13泄放储能电容12储存的能量;控制系统17与高频高压脉冲信号发生电路14连接,用于控制脉冲电压的输出与关闭以及采集脉冲电压和脉冲电流的信号;控制系统17与心电信号监测装置20连接,用于接收心电信号监测装置20监测到R波后发送的触发信号;控制系统17与脚踏开关19连接,用于检测脚踏开关19的信号以控制输出高压电脉冲;控制系统17与开关矩阵电路15连接,控制系统通过控制信号控制开关矩阵电路按照要求进行工作。
如图2所示,为高频高压脉冲信号发生电路14的电路原理图,包括两个直流高压源接口,即VDC+接口、VDC-接口;四个脉宽调制的驱动信号接口,即DRIVE1、DRIVE2、DRIVE3、DRIVE4;四个开关单元,即第一开关单元、第二开关单元、第三开关单元、第四开关单元;两个脉冲输出接口;两个脉冲输出接口,即OUT1、OUT2;四个开关单元串行连接,第一开关单元的一端与VDC+接口连接,第一开关单元的另一端与第四开关单元的一端、OUT1连接,第二开关单元的一端与VDC+接口连接,第二开关单元的另一端与第三开关单元的一端、OUT2连接,第三开关单元的另一端与VDC-接口连接,第四开关单元的另一端与VDC-接口连接。
本实施例中开关单元采用参数相同的IGBT,且IGBT为N沟道IGBT,IGBT的栅极作为开关单元的控制极,IGBT1的发射极与IGBT4的集电极连接,IGBT2的发射极与IGBT3的集电极连接。
DRIVE1与第一开关单元的控制极连接,DRIVE2与第二开关单元的控制极连接,DRIVE3与第三开关单元的控制极连接,DRIVE4与第四开关单元的控制极连接。
如图3所示,是本实施例的开关矩阵电路15的电路原理图,包括N个高压继电器组,N≥2,每个高压继电器组有四个接口,分别与高频高压脉冲信号发生电路14 的OUT1、OUT2、电生理记录仪18的通道和导管16的电极连接,高压继电器采用参数相同的SPDT型高压真空继电器。
详细地说,高压继电器REL_1A和高压继电器REL_1B组成其中一组高压继电器组,高压继电器REL_1A的COM端与高压继电器REL_1B的NO端连接,高压继电器REL_1A的NC端与高频高压脉冲信号发生电路14的OUT1连接,高压继电器REL_1A的NO端与高频高压脉冲信号发生电路14的OUT2连接,高压继电器REL_1B的NC端与电生理记录仪18的体内心电通道CH1端连接,高压继电器REL_1B的COM端与导管16的电极1端连接。
高压继电器REL_2A和高压继电器REL_2B组成其中一组高压继电器组,高压继电器REL_2A的COM端与高压继电器REL_2B的NO连接,高压继电器REL_2A的NC端与高频高压脉冲信号发生电路14的OUT1连接,高压继电器REL_2A的NO端与高频高压脉冲信号发生电路14的OUT2连接,高压继电器REL_2B的NC端与电生理记录仪18的体内心电通道CH2端连接,高压继电器REL_2B的COM端与导管16的电极2端连接。
高压继电器REL_3A和高压继电器REL_3B组成其中一组高压继电器组,高压继电器REL_3A的COM端与高压继电器REL_3B的NO端相连接,高压继电器REL_3A的NC端与高频高压脉冲信号发生电路14的OUT1连接,高压继电器REL_3A的NO端与高频高压脉冲信号发生电路14的OUT2连接,高压继电器REL_3B的NC端与电生理记录仪18的体内心电通道CH3端相连接,高压继电器REL_3B的COM端与导管16的电极3端相连接。
以此类推,高压继电器REL_nA和高压继电器REL_nB组成其中一组高压继电器组,n≥2,高压继电器REL_nA的COM端与高压继电器REL_nB的NO端相连接,高压继电器REL_nA的NC端与高频高压脉冲信号发生电路14的OUT1端相连接,高压继电器REL_nA的NO端与高频高压脉冲信号发生电路14的OUT2端相连接,高压继电器REL_nB的NC端与电生理记录仪18的体内心电通道CHn端相连接,高压继电器REL_1B的COM端与导管16的电极n端相连接。
采用本实施例的装置能够使导管同时兼具消融导管和标测导管的功能,具体过程为在高压电脉冲消融过程中,导管用于脉冲消融,充当脉冲消融导管功能,此时电生理记录仪18不通过导管采集、显示和存储心脏电生理信号;当脉冲消融结束时,导管自动切换连接电生理记录仪18,导管作为标测导管,用于实时采集、显示和存储心脏电生理信号,避免术中术者人工更换切换导管进行消融和标测。
下面详细地说明导管16切换的方案。
本实施例的一个方案中,以导管16的电极1、电极3、电极5、……、电极n1接OUT1,导管16的电极2、电极4、电极6、……、电极n2接OUT2为例(n1为小于n的奇数,n2为小于n的偶数)。高压继电器REL_1A、REL_2A、REL_3A……REL_nA 的NC端都接入OUT1接口,高压继电器REL_1A、REL_2A、REL_3A……REL_nA的NO端都接入OUT2接口。高压继电器REL_1A、REL_2A、REL_3A……REL_nA的COM端分别与高压继电器REL_1B、REL_2B、REL_3B……REL_nB的NO端连接。高压继电器REL_1B、REL_2B、REL_3B……REL_nB的NC端分别与电生理记录仪18的体内心电通道CH1、CH2、CH3……CHn连接,n为电生理记录仪18支持的最大通道数。高压继电器REL_1B、REL_2B、REL_3B……REL_nB的COM端分别与导管的电极1、电极2、电极3……电极n连接。首先电生理记录仪18通过导管16实时观察采集、显示和存储消融前心脏电生理信号,控制系统17控制高压继电器REL_2A、REL_4A、REL_6A……REL_n2A线圈得电吸合,将COM端与NO端连接;之后心电信号监测装置20监测到R波延时一段时间给控制系统17发送触发信号,间隔一个心跳周期再发送触发信号,即保证高压电脉冲是在不应期内输出并且是间隔一个心跳周期输出高压脉冲信号;然后控制系统17根据心电信号监测装置20输入的触发信号准备好输出高压脉冲信号,等待脚踏信号;当脚踏开关19踩下后,高压继电器REL_1B、REL_2B、REL_3B……REL_nB线圈得电吸合COM端与NO端相连接,高频高压脉冲信号发生电路14输出高压脉冲信号通过开关矩阵电路15输送到导管16上进行组织消融;当脚踏开关19松开后,高压继电器REL_1B、REL_2B、REL_3B……REL_nB线圈失电断开,COM端与NC端相连接,电生理记录仪18实时观察采集、显示和存储消融后的心脏电生理信号;再踩下脚踏开关19,高压继电器REL_1B、REL_2B、REL_3B……REL_nB线圈得电吸合,COM端与NO端相连接,高频高压脉冲信号发生电路14输出高压脉冲信号通过开关矩阵电路15继续输送到导管16上进行组织消融;松开脚踏开关19,高压继电器REL_1B、REL_2B、REL_3B……REL_nB线圈失电断开,COM端与NC端相连接,电生理记录仪18通过导管16继续检测消融后的心电的电位信号,如此循环往复
在本实施例的另一个方案中,首先电生理记录仪18实时观察采集、显示和存储消融前心脏电生理信号,控制系统17控制高压继电器REL_2A、REL_4A、REL_6A……REL_n2A线圈得电吸合,将COM端与NO端相连接;之后心电信号监测装置20监测到R波延时一段时间给控制系统17发送触发信号,间隔一个心跳周期再发送触发信号,即保证高压电脉冲是在不应期内输出并且是间隔一个心跳周期输出高压脉冲信号;然后控制系统17根据心电信号监测装置20输入的触发信号准备好输出高压脉冲信号,等待脚踏信号;当脚踏开关19踩下后,高压继电器REL_1B、REL_2B、REL_3B……REL_nB线圈得电吸合,COM端与NO端相连接,高频高压脉冲信号发生电路14输出高压脉冲信号通过开关矩阵电路15输送到导管16上进行组织消融;在间隔的心跳周期中将高压继电器REL_1B、REL_2B、REL_3B……REL_nB线圈失电断开,COM端与NC端相连接,电生理记录仪18实时观察采集、显示和存储消融后的心脏电生理信号;当检测到R波信号后高压继电器REL_1B、REL_2B、REL_3B…… REL_nB线圈得电吸合,COM端与NO端相连接,高频高压脉冲信号发生电路14输出高压脉冲信号通过开关矩阵电路15继续输送到导管16上进行组织消融;在间隔的心跳周期中将高压继电器REL_1B、REL_2B、REL_3B……REL_nB线圈失电断开,COM端与NC端相连接,电生理记录仪18实时观察采集、显示和存储消融后的心脏电生理信号,如此循环往复
在另一实施例中,每个开关元件采用参数相同的高压MOS管,且高压MOS管为碳化硅N沟道MOS管;高压MOS管的栅极作为开关单元的控制极,第一开关单元的高压MOS管的源极与第四开关单元的高压MOS管的漏极连接,第二开关单元的高压MOS管的源极与第三开关单元的高压MOS管的漏极连接。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,包括高压电源、储能电容、放电电路、高频高压脉冲信号发生电路、开关矩阵电路、控制系统;其中,所述储能电容分别与所述高压电源、所述放电电路和所述高频高压脉冲信号发生电路连接;所述开关矩阵分别与所述高频高压脉冲信号发生电路、导管和电生理记录仪连接;所述控制系统分别与所述高压电源、所述放电电路、所述高频高压脉冲信号发生电路、所述开关矩阵电路、心电信号监测和脚踏开关连接。
  2. 如权利要求1所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,所述高压电源的正极与所述储能电容的第一端连接,所述高压电源的负极与所述储能电容的第二端连接;
    所述放电电路的第一端与所述储能电容的第一端连接,所述放电电路的第二端与所述储能电容的第二端连接;
    所述高频高压脉冲信号发生电路的第一输入端与所述储能电容的第一端连接,所述高频高压脉冲信号发生电路的第二输入端与所述储能电容的第二端连接,所述高频高压脉冲信号发生电路的输出端与所述开关矩阵电路的输入端连接;
    所述开关矩阵电路的第一输出端与所述导管连接,所述开关矩阵电路的第二输出端与所述电生理记录仪连接;
    所述控制系统与所述高压电源通过RS232或者RS485连接,用于控制所述高压电源输出直流电压的输出值以及直流电压输出值反馈给控制系统;
    所述控制系统与所述放电电路连接,通过控制放电信号控制所述放电电路泄放所述储能电容储存的能量;
    所述控制系统与所述高频高压脉冲信号发生电路连接,用于控制脉冲电压的输出与关闭以及采集脉冲电压和脉冲电流的信号;
    所述控制系统与所述开关矩阵电路连接,通过控制信号控制所述开关矩阵电路按照要求进行工作;
    所述控制系统与所述心电信号监测装置连接,用于接收所述心电信号监测装置监测到R波后发送的触发信号;
    所述控制系统与所述脚踏开关连接,用于检测所述脚踏开关的信号以控制输出高压电脉冲。
  3. 如权利要求2所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,所述高频高压脉冲信号发生电路包括两个直流高压源接口、四个脉宽调制的驱 动信号接口、四个开关单元、两个脉冲输出接口;两个所述直流高压源接口分为电源正极接口和电源负极接口;四个所述脉宽调制的驱动信号接口分别为第一驱动信号接口、第二驱动信号接口、第三驱动信号接口、第四驱动信号接口;四个所述开关单元分别为第一开关单元、第二开关单元、第三开关单元、第四开关单元;两个所述脉冲输出接口分别为第一脉冲输出接口、第二脉冲输出接口;四个所述开关单元串行连接,即所述第一开关单元的一端与所述电源正极接口连接,所述第一开关单元的另一端与所述第四开关单元的一端、所述第一脉冲输出接口连接,所述第二开关单元的一端与所述电源正极接口连接,所述第二开关单元的另一端与所述第三开关单元的一端、所述第二脉冲输出接口连接,所述第三开关单元的另一端与所述电源负极接口连接,所述第四开关单元的另一端与所述电源负极接口连接;每个所述开关单元均包括一个开关元件。
  4. 如权利要求3所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,每个所述开关元件均为IGBT,所述IGBT的栅极作为所述开关单元的控制极,所述第一开关单元的IGBT的发射极与所述第四开关单元的IGBT的集电极连接,所述第二开关单元的IGBT的发射极与所述第三开关单元IGBT的集电极连接。
  5. 如权利要求3所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,每个所述开关元件均为高压MOS管,所述高压MOS管的栅极作为所述开关单元的控制极,所述第一开关单元的高压MOS管的源极与所述第四开关单元的高压MOS管的漏极连接,所述第二开关单元的高压MOS管的源极与所述第三开关单元的高压MOS管的漏极连接。
  6. 如权利要求4所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,所述IGBT为N沟道IGBT。
  7. 如权利要求5所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,所述高压MOS管为碳化硅N沟道MOS管。
  8. 如权利要求4或5所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,所述第一驱动信号接口与所述第一开关单元的控制极连接,所述第二驱动信号接口与所述第二开关单元的控制极连接,所述第三驱动信号接口与所述第三开关单元的控制极连接,所述第四驱动信号接口与所述第四开关单元的控制极连接。
  9. 如权利要求8所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征 在于,所述开关矩阵电路包括N个高压继电器组,N≥2;N个所述高压继电器组与所述电生理记录仪的N个通道一一对应连接,N个所述高压继电器组与所述导管的N个电极一一对应连接;每个所述高压继电器组由两个串行连接的高压继电器组成,分别为第一高压继电器和第二高压继电器;所述高压继电器采用参数相同的SPDT型高压真空继电器。
  10. 如权利要求9所述的高压电脉冲消融与电生理记录仪协同工作的装置,其特征在于,所述第一高压继电器的常闭触点与所述第一脉冲输出接口连接,所述第一高压继电器的常开触点与所述第二脉冲输出接口连接,所述第一高压继电器的公共端与所述第二高压继电器的常开触点连接,所述第二高压继电器的常闭触点与所述电生理记录仪的一个道道连接,所述第二高压继电器的公共端与所述导管的一个电极连接;所述控制系统与所述开关矩阵电路连接,用于控制所述高压继电器的通断电。
PCT/CN2022/088712 2021-05-06 2022-04-24 一种高压电脉冲消融与电生理记录仪协同工作的装置 WO2022233245A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/501,680 US20240065758A1 (en) 2021-05-06 2023-11-03 Apparatus with collaborative operation between high-voltage pulse field ablation and electrophysiological recording system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110490410.9A CN113180818B (zh) 2021-05-06 2021-05-06 一种高压电脉冲消融与电生理记录仪协同工作的装置
CN202110490410.9 2021-05-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/501,680 Continuation-In-Part US20240065758A1 (en) 2021-05-06 2023-11-03 Apparatus with collaborative operation between high-voltage pulse field ablation and electrophysiological recording system

Publications (1)

Publication Number Publication Date
WO2022233245A1 true WO2022233245A1 (zh) 2022-11-10

Family

ID=76983726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088712 WO2022233245A1 (zh) 2021-05-06 2022-04-24 一种高压电脉冲消融与电生理记录仪协同工作的装置

Country Status (3)

Country Link
US (1) US20240065758A1 (zh)
CN (1) CN113180818B (zh)
WO (1) WO2022233245A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116458993A (zh) * 2023-04-19 2023-07-21 上海玮启医疗器械有限公司 一种脉冲消融控制系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113180818B (zh) * 2021-05-06 2024-03-15 上海玄宇医疗器械有限公司 一种高压电脉冲消融与电生理记录仪协同工作的装置
CN113842150A (zh) * 2021-09-24 2021-12-28 北京三春晖医疗器械有限公司 一种r波采集方法和系统
CN114587562B (zh) * 2021-12-03 2022-09-02 杭州睿笛生物科技有限公司 一种用于脉冲消融的闭环控制系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9987081B1 (en) * 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US20180221085A1 (en) * 2017-02-03 2018-08-09 St. Jude Medical, Cardiology Division, Inc. Electronic switchbox
CN109481010A (zh) * 2018-12-29 2019-03-19 天津美电医疗科技有限公司 一种电消融装置
CN109820592A (zh) * 2018-12-31 2019-05-31 杭州睿笛生物科技有限公司 一种基于心电波形的自适应脉冲消融仪
CN110693605A (zh) * 2019-09-29 2020-01-17 四川锦江电子科技有限公司 一种用于心脏消融的高压脉冲系统
CN111387970A (zh) * 2020-03-26 2020-07-10 苏州市东方电子仪器厂 食管心脏电生理导管中刺激电极和记录电极共用技术
CN111839719A (zh) * 2020-08-31 2020-10-30 赛诺微医疗科技(浙江)有限公司 一种用于不可逆电穿孔消融的心电同步输出装置及方法
CN112022331A (zh) * 2020-08-31 2020-12-04 天津市鹰泰利安康医疗科技有限责任公司 不可逆电穿孔消融系统
CN113180818A (zh) * 2021-05-06 2021-07-30 上海玄宇医疗器械有限公司 一种高压电脉冲消融与电生理记录仪协同工作的装置
CN114041873A (zh) * 2021-11-10 2022-02-15 上海玄宇医疗器械有限公司 一种不对称波形的高频不可逆电穿孔脉冲消融装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202458657U (zh) * 2011-09-06 2012-10-03 上海理工大学 不可逆电子穿孔仪电路
CN106388932B (zh) * 2016-07-12 2017-10-10 上海睿刀医疗科技有限公司 不可逆电穿孔设备
CN110946642A (zh) * 2019-12-13 2020-04-03 天津市鹰泰利安康医疗科技有限责任公司 一种高频双极性不可恢复电穿孔系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180221085A1 (en) * 2017-02-03 2018-08-09 St. Jude Medical, Cardiology Division, Inc. Electronic switchbox
US9987081B1 (en) * 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
CN109481010A (zh) * 2018-12-29 2019-03-19 天津美电医疗科技有限公司 一种电消融装置
CN109820592A (zh) * 2018-12-31 2019-05-31 杭州睿笛生物科技有限公司 一种基于心电波形的自适应脉冲消融仪
WO2020140440A1 (zh) * 2018-12-31 2020-07-09 杭州睿笛生物科技有限公司 一种基于心电波形的自适应脉冲消融仪
CN110693605A (zh) * 2019-09-29 2020-01-17 四川锦江电子科技有限公司 一种用于心脏消融的高压脉冲系统
CN111387970A (zh) * 2020-03-26 2020-07-10 苏州市东方电子仪器厂 食管心脏电生理导管中刺激电极和记录电极共用技术
CN111839719A (zh) * 2020-08-31 2020-10-30 赛诺微医疗科技(浙江)有限公司 一种用于不可逆电穿孔消融的心电同步输出装置及方法
CN112022331A (zh) * 2020-08-31 2020-12-04 天津市鹰泰利安康医疗科技有限责任公司 不可逆电穿孔消融系统
CN113180818A (zh) * 2021-05-06 2021-07-30 上海玄宇医疗器械有限公司 一种高压电脉冲消融与电生理记录仪协同工作的装置
CN114041873A (zh) * 2021-11-10 2022-02-15 上海玄宇医疗器械有限公司 一种不对称波形的高频不可逆电穿孔脉冲消融装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116458993A (zh) * 2023-04-19 2023-07-21 上海玮启医疗器械有限公司 一种脉冲消融控制系统

Also Published As

Publication number Publication date
US20240065758A1 (en) 2024-02-29
CN113180818B (zh) 2024-03-15
CN113180818A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2022233245A1 (zh) 一种高压电脉冲消融与电生理记录仪协同工作的装置
US11701169B2 (en) Cardiac pulsed field ablation
US11357978B2 (en) Systems, devices, and methods for signal generation
US20210045798A1 (en) Systems, devices, and methods for ablation using surgical clamps
US20230248412A1 (en) Generating irreversible electroporation and radiofrequency-abaltion (ire/rfa) waveforms
US20200297418A1 (en) Intracardiac tools and methods for delivery of electroporation therapies
CN112022331A (zh) 不可逆电穿孔消融系统
CN114041873B (zh) 一种不对称波形的高频不可逆电穿孔脉冲消融装置
CN111728693A (zh) 一种采用脉冲电场消融技术治疗心律失常的系统
WO2023098896A1 (zh) 一种用于脉冲消融的闭环控制系统
EP3753516A1 (en) Electroporation device
CN113017822A (zh) 一种功率控制系统
Borggrefe et al. Catheter ablation using radiofrequency energy
US20230200893A1 (en) System for irreversible electroporation
CN111437513B (zh) 多模式高压超短脉冲电场房颤治疗电极及治疗设备
CN116058952A (zh) 一种开放式单极脉冲电场消融仪
CN115462894A (zh) 希氏束邻近心肌组织起源的快速心律失常消融系统
CN115281822A (zh) 心脏消融脉冲电场控制装置、控制方法及操作方法
CN213963615U (zh) 一种用于心率失常治疗的消融导管
CN115670640A (zh) 一种高压电脉冲消融与电生理记录仪协同装置
US20220346857A1 (en) Tissue ablation using high-frequency unipolar ire
WO2023147245A1 (en) Tissue modification systems and methods and signal generators for use therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798586

Country of ref document: EP

Kind code of ref document: A1