WO2022233224A1 - 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法 - Google Patents

汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法 Download PDF

Info

Publication number
WO2022233224A1
WO2022233224A1 PCT/CN2022/087021 CN2022087021W WO2022233224A1 WO 2022233224 A1 WO2022233224 A1 WO 2022233224A1 CN 2022087021 W CN2022087021 W CN 2022087021W WO 2022233224 A1 WO2022233224 A1 WO 2022233224A1
Authority
WO
WIPO (PCT)
Prior art keywords
turn
wave
circularly polarized
positive
turns
Prior art date
Application number
PCT/CN2022/087021
Other languages
English (en)
French (fr)
Inventor
张跃武
田昆鹏
张骞一
查卫华
刘泓
曹晓晖
王学亮
刘东兵
李嘉敏
刘驰程
吕振
范晨
李苗叶
魏文
王梓瑞
Original Assignee
杭州核诺瓦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州核诺瓦科技有限公司 filed Critical 杭州核诺瓦科技有限公司
Priority to DE112022001528.4T priority Critical patent/DE112022001528T5/de
Publication of WO2022233224A1 publication Critical patent/WO2022233224A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings

Definitions

  • the invention provides a detection device and a detection method of electromagnetic pulse wave characteristics between turns of a rotor winding of a steam turbine generator, belonging to the technical field of detection between turns of a rotor winding of a steam turbine generator.
  • lumped parameter detection is generally used, including DC resistance, insulation resistance, AC impedance, high-frequency AC impedance, etc.; distributed parameter detection includes open transformer method, distribution Voltage method, RSO single pulse method, large coil single AC pulse test method, etc.
  • the detection of the inter-turn state of the windings is relatively rough, and only a general judgment of the cumulative characteristics of the rotor winding coils can be made. From the waveform, most of them can only be analyzed as a whole, and at most each large coil can be analyzed in detail. It can reflect the electromagnetic wave characteristics of each turn more accurately, comprehensively, completely and intuitively.
  • the purpose of the present invention is to provide a detection device and detection method for the electromagnetic pulse wave characteristics between turns of the rotor winding of a turbogenerator which can fill the above detection defects, which can clearly, simply and intuitively detect the positive and negative windings in each forward direction. Or the true electromagnetic properties of the inversely symmetrical corresponding turns are presented in a one-to-one correspondence.
  • a device for detecting the characteristics of electromagnetic pulse waves between turns of a turbine generator rotor winding includes a super-large-capacity internal resistance signal source, the super-large-capacity internal resistance signal source and a super-high-speed time sequence control. Circuit connection, the ultra-high-speed sequence control circuit is connected to the positive and negative electrodes of the rotor winding through the parasitic inductive power supply through the positive and negative load waveguides, and the positive and negative electrodes of the rotor winding are connected to the ultra-high-speed acquisition circuit through the operational amplifier circuit.
  • the super-capacity internal resistance signal source matches the average time constant of the circular polarization characteristic of each turn of the winding, and can generate the energy width of the circular polarization characteristic wave of the power that matches the full response time constant of the rotor winding;
  • the parasitic inductive power supply performs circular waveguide coupling and exchange between the input and output coupled circularly polarized waves of the positive and negative poles;
  • the positive and negative load waveguides concurrently couple the circularly polarized waves to the positive and negative electrodes of the rotor;
  • the operational amplifier circuit combines, couples and amplifies the concurrent circularly polarized transmitted and received signals
  • the ultra-high-speed acquisition circuit collects waveforms, and the collected waveforms are the combined action of a circularly polarized dual-signal emission source, an induced polarization source at each turn, a circularly polarized waveguide load formed by double symmetry, and a time constant for maintaining the energy of the signal source. waveform.
  • a super-capacity internal resistance signal source and an ultra-high-speed sequence control circuit generate a high-level abrupt electric field along the avalanche polarization edge, and a symmetrical deflection generated by a parasitic inductive power supply is provided.
  • the 180° circularly polarized electromagnetic wave is coupled to the positive and negative poles of the rotor through the positive and negative load guide lines clockwise or counterclockwise, and the first sine wave will be generated by mutual inductance of the first turn of the positive pole and the first turn of the negative pole.
  • each turn of the symmetrical winding presents a double signal source and load superposition.
  • the electromagnetic pulse vibration wave characteristic waveform through the action of self-inductance and mutual inductance, can synchronously superimpose and couple the circularly polarized wave waveform formed by the current turn in time, which represents the magnetic flux that changes positively from top to bottom; for example, the current turn
  • the current turn If the sine wave is complete and the change of the wavelength time constant is small, it means that the electromagnetic characteristics of the current symmetrical turn are intact; if the current sine wave of the current turn is incomplete, and the wavelength of the sine wave superimposed before and after is greater than the standard time constant, it means that the current turn has defects, such as deformation, oil pollution, etc. Health hazards such as slot wedge loosening or displacement, and early inter-turn short circuit;
  • a positive circularly polarized and negatively polarized 180° circularly polarized unidirectional energy field is applied in a counterclockwise and reversed direction, and symmetrically collected and compared, using two circularly polarized waves in the same phase of rotation to couple the counterclockwise circular pole formed by the current turn.
  • the waveform of the chemical wave represents the magnetic flux that changes in the opposite direction from the bottom to the top; the defect turns can be repeatedly verified to determine the position of the defect in the positive and negative windings.
  • the length of the load unit per turn of the rotor is an integer multiple of the wavelength of the transmitted circularly polarized wave
  • the wavelength of the circularly polarized wave in the rotor winding is:
  • ⁇ s is the average wavelength of the circularly polarized wave in the rotor winding
  • the circumference of the single-turn rotor winding is an integer multiple of 1/2 of the wavelength of the emitted electromagnetic wave when, namely
  • the propagation coefficient T 2 can be obtained:
  • the propagation coefficient can truly reflect the time constant of the internal impedance inductance.
  • the invention can accurately measure the health status of each turn of the rotor winding of the generator, and judge whether the rotor winding of the generator has a fault and whether there is a fault trend.
  • the invention can accurately locate the rotor fault form and fault position in each turn of the rotor winding. It is an important means of non-destructive condition detection in the whole life cycle of the rotor of large-scale hidden pole type turbo-generators. It can provide accurate and clear data and key evidence for each overhaul after rotor manufacturing, factory inspection and commissioning.
  • Figure 1 is a waveform diagram of a circularly polarized wave formed by concurrently coupling out the current turn in a clockwise direction;
  • Fig. 2 is the circularly polarized wave diagram of the cumulative feedback of the circularly polarized wave waveform formed in each turn of the current coil clockwise;
  • Figure 3 is a schematic diagram of a signal source structure
  • Figure 4 is a schematic diagram of the operational amplifier, filtering, acquisition, and control circuits
  • Figure 5 is a schematic diagram of a clockwise circularly polarized wave
  • FIG. 6 is a schematic diagram of a circularly polarized wave that is deflected clockwise by 180°;
  • FIG. 7 is a schematic diagram of a counterclockwise circularly polarized wave
  • Figure 8 is a schematic diagram of the time constant of the equivalent internal resistance inductance
  • Fig. 9 is the schematic diagram of embodiment 2;
  • Fig. 10 is the schematic diagram of embodiment 2;
  • Embodiment 3 is a schematic diagram of Embodiment 3.
  • FIG. 15 is a schematic diagram of the 1# coil and the 2, 3, 4, 5, 6, 7, and 8 # coils of the full-speed 650MW rotor shown in Example 2-Example 4.
  • a device for detecting the electromagnetic pulse wave characteristics between turns of a turbine generator rotor winding includes a super-capacity internal resistance signal source, the super-capacity internal resistance signal source and a super-capacity internal resistance signal source.
  • the high-speed sequence control circuit is connected, and the ultra-high-speed sequence control circuit is connected to the positive and negative electrodes of the rotor winding through the parasitic inductive power supply through the positive and negative load waveguides, and the positive and negative electrodes of the rotor winding are connected to the ultra-high-speed acquisition circuit through the operational amplifier circuit.
  • the super-capacity internal resistance signal source matches the average time constant of the circular polarization characteristic of each turn of the winding, and can generate the energy width of the power circular polarization characteristic wave that matches the full response time constant of the rotor winding;
  • the parasitic inductive power supply performs circular waveguide coupling and exchange between the input and output coupled circularly polarized waves of the positive and negative poles;
  • the positive and negative load waveguides concurrently couple the circularly polarized waves to the positive and negative electrodes of the rotor;
  • the operational amplifier circuit combines, couples and amplifies the concurrent circularly polarized transmitted and received signals
  • the ultra-high-speed acquisition circuit collects waveforms, and the collected waveforms are the combined action of a circularly polarized dual-signal emission source, an induced polarization source at each turn, a circularly polarized waveguide load formed by double symmetry, and a time constant for maintaining the energy of the signal source. waveform.
  • a super-capacity internal resistance signal source and an ultra-high-speed sequence control circuit generate a high-level abrupt electric field along the avalanche polarization edge, and a symmetrical deflection generated by a parasitic inductive power supply is provided.
  • the 180° circularly polarized electromagnetic wave is coupled to the positive and negative poles of the rotor through the positive and negative load guide lines clockwise or counterclockwise.
  • each turn of the symmetrical winding presents double electromagnetic pulses superimposed by the signal source and the load.
  • the wave characteristic waveform through the action of self-inductance and mutual inductance, can synchronously superimpose and couple the circularly polarized wave waveform formed by the current turn in time, which represents the magnetic flux that changes positively from top to bottom; if the current turn sine wave is complete , the change of the wavelength time constant is small, indicating that the electromagnetic characteristics of the current symmetrical turn are intact; if the current turn sine wave is incomplete, and the wavelength of the sine wave superimposed before and after is greater than the standard time constant, it means that the current turn has defects, such as deformation, oil pollution, and loose wedges. Or displacement, early turn-to-turn short circuit and other health hazards;
  • the positive circularly polarized and negatively polarized 180° circularly polarized unidirectional energy fields are applied in the opposite counterclockwise direction, and the symmetrical acquisition and comparison are performed.
  • the counterclockwise circularly polarized wave formed by coupling the current turn with two circularly polarized waves in the same phase of the rotation direction is used. , which represents the magnetic flux that changes in the reverse direction from bottom to top; the defect turns can be repeatedly verified to determine the position of the defect in the positive and negative windings.
  • the wavelength of the circularly polarized wave in the rotor winding is:
  • ⁇ s is the average wavelength of the circularly polarized wave in the rotor winding
  • the circumference of the single-turn rotor winding is an integer multiple of 1/2 of the wavelength of the emitted electromagnetic wave when, namely
  • the propagation coefficient T 2 can be obtained:
  • the propagation coefficient can truly reflect the time constant of the internal impedance inductance.
  • the invention utilizes the principle of coupling circularly polarized electromagnetic waves with the same time constant in each turn of the load coil matched in the circular waveguide and simultaneously having the characteristics of a transient pulse wave signal source for detection.
  • the time is highly correlated with the time that the circularly polarized wave passes through the physical circumference of each turn.
  • the circularly polarized wave reaches the second turn, part of the energy will return to the first turn. Similarly, the third turn will have some energy.
  • the first, second, and third turns of the positive and negative poles can all maintain the total magnetic flux that reflects the characteristics of this turn.
  • a total of 62 turns (such as 650MW full speed)
  • the forward turn-to-turn characteristic waveform of the rotor As shown in Figure 1, the counterclockwise circularly polarized waves are coupled, and the reverse inter-turn characteristic waveform can be obtained.
  • the transient wave characteristics of a 2# full-speed 650MW rotor are compared for two overhauls.
  • the light color is the waveform of each turn of the normal rotor, and the dark color is the waveform of each turn after oil pollution.
  • the annual A-modified transient wave characteristic results of a 2# full-speed 390H rotor.
  • the 1-5# coils are normal, and the 6# coils have winding deformation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明提供一种汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法,属于汽轮发电机转子绕组匝间检测技术领域。本发明通过信号源、时序控制电路产生雪崩极化沿的高位突变电场,通过寄生感性电源产生的对称偏转180°圆极化电磁波,经正负极负载导波线,顺时针或逆时针耦合到正负极上,依次会有正极第一匝与负极第一匝互感产生第一个正弦波,时间顺延会有能量返回感性寄生电源且依次传导到第二匝;感性电源及第二匝又开始圆极化反馈能量回第一匝;依次每匝互相逐级回馈、叠加,每耦合匝均表现出相同时间常数的正弦波。可清晰、简单、直观地将正负极绕组每顺向或逆向对称对应匝的真实电磁特性一一对应地呈现出来。

Description

汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法 技术领域:
本发明提供一种汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法,属于汽轮发电机转子绕组匝间检测技术领域。
背景技术:
现有国内外对于隐极式大型汽轮发电机转子绕组状态检测,普遍采用集总参数检测,有直流电阻、绝缘电阻、交流阻抗、高频交流阻抗等;分布参数检测有开口变压器法、分布电压法、RSO单脉冲法、大线圈单个交流脉冲测试法等。对于绕组匝间状态的检测均比较粗糙,只能对转子绕组线圈有个大概的累积特性判断,从波形上绝大多数只能整体分析,最多对每个大线圈进行较细致的分析,无法针对性地对每一匝的电磁波特性进行更精准、全面、完整、直观的体现。现阶段没有针对每匝绕组的耦合电磁波特性相应理论及针对性的检测手段。无法做到有的放矢的精准波形数据分析。
发明内容:
本发明的目的是提供一种能填补上述检测缺陷的汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法,其可清晰、简单、直观地将正负极绕组每顺向或逆向对称对应匝的真实电磁特性一一对应地呈现出来。
为实现上述目的,本发明所述的一种汽轮发电机转子绕组匝间电磁脉振波特性检测装置,包括超大容量内阻信号源,所述超大容量内阻信号源与超高速时序控制电路连接,超高速时序控制电路通过寄生感性电源经正负极负载导波线与转子绕组正负极连接,转子绕组正负极通过运放电路与超高速采集电路连接。
优选的,所述超大容量内阻信号源与每匝绕组圆极化特性平均时间常数匹配,且能产生与转子绕组全程响应时间常数匹配的功率圆极化特性波的能量宽度;
所述寄生感性电源将正负两极的输入输出耦合圆极化波进行圆波导耦合交换;
所述正负极负载导波线将圆极化波并发耦合到转子正负极上;
所述运放电路将并发圆极化发射及接收的信号合并耦合放大;
所述超高速采集电路采集波形,采集的波形为圆极化双信号发射源、每匝处处感生极化源、双对称组合成的圆极化波导负载、信号源能量维持的时间常数组合作用的波形。
提供一种汽轮发电机转子绕组匝间电磁脉振波特性检测方法,超大容量内阻信号源、超高速时序控制电路产生雪崩极化沿的高位突变电场,通过寄生感性电源产生的对称偏转180°圆极化电磁波,经正负极负载导波线,顺时针或逆时针耦合到转子正负极上,依次会有正极第一匝与负极第一匝互感产生第一个正弦波,时间顺延会有能量返回感性寄生电源,同时会 有能量依次传导到第二匝;寄生感性电源及第二匝又开始圆极化反馈能量回馈;依次每匝互相逐级回馈、叠加;每耦合匝均表现出相同时间常数的正弦波。
优选的,在顺时针维持正极圆极化发送及负极偏转180°圆极化发送单向能量场时间同时大于转子绕组全长导波时间时,每匝对称绕组均呈现信号源及负载叠加的双重电磁脉振波特性波形,通过自感及互感作用,在时间上可同步叠加耦合出当前匝形成的圆极化波波形,表征的是由上而下正向变化的磁通;如当前匝正弦波完整,波长时间常数变化小,则说明当前对称匝电磁特性完好;如当前匝正弦波不完整,与前后叠加的正弦波波长大于标准时间常数,说明当前匝存在缺陷,存在变形、油污、槽楔松动或位移、早期匝间短路等健康隐患;
优选的,在逆时针反方向施加正极圆极化及负极偏转180°圆极化单向能量场,对称采集比较,利用旋转方向同相的两个圆极化波耦合当前匝形成的逆时针圆极化波波形,表征的是自下向上反向变化的磁通;可重复验证缺陷匝,判断出缺陷在正负极绕组的位置。
优选的,当转子每匝负载单位长度为发送圆极化波波长整数倍时,
被测转子负载为电介质材料(u r=1),可知电磁波的衰减常数和相位常数为:
Figure PCTCN2022087021-appb-000001
其中α s为衰减常数;β s为相位常数;c为真空光速;f为生成的电磁波频率;ε 0为自由空间介电常数即10 -9/36πF/m;ε r为每匝绕组相对介电常数,所述ε r=ε′ r-jε″ r,ε′ r为每匝绕组相对介电常数实部,ε″ r为每匝绕组相对介电常数虚部;
转子绕组中圆极化波的波长为:
Figure PCTCN2022087021-appb-000002
式中,λ0=c/f为圆极化波的自由空间波长;λ s为转子绕组中圆极化波的平均波长;当单匝转子绕组周长为发射电磁波的波长1/2的整数倍时,即
Figure PCTCN2022087021-appb-000003
式中n为正整数,可得传播系数T 2
Figure PCTCN2022087021-appb-000004
所述传播系数可以真实地反映内阻感抗时间常数。
有益效果:
本发明可以准确测量发电机转子绕组每匝的健康状况,判断发电机转子绕组是否发生了故障、以及是否存在故障趋势,本发明可以将转子故障形式、故障位置,准确定位在转子绕组每一匝上,是大型隐极式汽轮发电机转子全寿命周期无损状态检测的重要手段,在转子制造、出厂检验、投运后每次大修均可提供准确、清晰的数据及关键证据。
附图说明:
图1是顺时针在时间上可并发耦合出当前匝形成的圆极化波波形图;
图2是顺时针在当前线圈每匝形成的圆极化波波形累加反馈的圆极化波图;
图3是信号源结构示意图;
图4是运放、滤波、采集、控制电路示意图;
图5是顺时针圆极化波示意图;
图6是顺时针偏转180°圆极化波示意图;
图7是逆时针圆极化波示意图;
图8是等效内阻感抗时间常数示意图;
图9是实施例2示意图;
图10是实施例2示意图;
图11是实施例3示意图;
图12是实施例4示意图;
图13是实施例5示意图;
图14是实施例6示意图;
图15是实施例2-实施例4所示全速650MW转子1#线圈与2、3、4、5、6、7、8#线圈示意图。
具体实施方式:
实施例1
如图1-8所示,本发明所述的一种汽轮发电机转子绕组匝间电磁脉振波特性检测装置,包括超大容量内阻信号源,所述超大容量内阻信号源与超高速时序控制电路连接,超高速时序控制电路通过寄生感性电源经正负极负载导波线与转子绕组正负极连接,转子绕组正负极通过运放电路与超高速采集电路连接。
所述超大容量内阻信号源与每匝绕组圆极化特性平均时间常数匹配,且能产生与转子绕组全程响应时间常数匹配的功率圆极化特性波的能量宽度;
所述寄生感性电源将正负两极的输入输出耦合圆极化波进行圆波导耦合交换;
所述正负极负载导波线将圆极化波并发耦合到转子正负极上;
所述运放电路将并发圆极化发射及接收的信号合并耦合放大;
所述超高速采集电路采集波形,采集的波形为圆极化双信号发射源、每匝处处感生极化源、双对称组合成的圆极化波导负载、信号源能量维持的时间常数组合作用的波形。
提供一种汽轮发电机转子绕组匝间电磁脉振波特性检测方法,超大容量内阻信号源、超高速时序控制电路产生雪崩极化沿的高位突变电场,通过寄生感性电源产生的对称偏转180°圆极化电磁波,经正负极负载导波线,顺时针或逆时针耦合到转子正负极上,依次会有正极第一匝与负极第一匝互感产生第一个正弦波,会有能量返回感性寄生电源,同时会有能量依次传导到第二匝;寄生感性电源及第二匝又开始圆极化反馈能量回馈;依次每匝互相逐级回馈、叠加;每耦合匝均表现出相同时间常数的正弦波。
在顺时针维持正极圆极化发送及负极偏转180°圆极化发送单向能量场时间同时大于转子绕组全长导波时间时,每匝对称绕组均呈现信号源及负载叠加的双重电磁脉振波特性波形,通过自感及互感作用,在时间上可同步叠加耦合出当前匝形成的圆极化波波形,表征的是由上而下正向变化的磁通;如当前匝正弦波完整,波长时间常数变化小,则说明当前对称匝电磁特性完好;如当前匝正弦波不完整,与前后叠加的正弦波波长大于标准时间常数,说明当前匝存在缺陷,存在变形、油污、槽楔松动或位移、早期匝间短路等健康隐患;
在逆时针反方向施加正极圆极化及负极偏转180°圆极化单向能量场,对称采集比较,利用旋转方向同相的两个圆极化波耦合当前匝形成的逆时针圆极化波波形,表征的是自下向上反向变化的磁通;可重复验证缺陷匝,判断出缺陷在正负极绕组的位置。
当转子每匝负载单位长度为发送圆极化波波长整数倍时,
被测转子负载为电介质材料(ur=1),可知电磁波的衰减常数和相位常数为:
Figure PCTCN2022087021-appb-000005
其中α s为衰减常数;β s为相位常数;c为真空光速;f为生成的电磁波频率;ε 0为自由空间介电常数即10 -9/36πF/m;ε r为每匝绕组相对介电常数,所述ε r=ε′ r-jε″ r,ε′ r为每匝绕组相对介电常数实部,ε″ r为每匝绕组相对介电常数虚部;
转子绕组中圆极化波的波长为:
Figure PCTCN2022087021-appb-000006
式中,λ0=c/f为圆极化波的自由空间波长;λ s为转子绕组中圆极化波的平均波长;当单匝转子绕组周长为发射电磁波的波长1/2的整数倍时,即
Figure PCTCN2022087021-appb-000007
式中n为正整数,可得传播系数T 2
Figure PCTCN2022087021-appb-000008
所述传播系数可以真实地反映内阻感抗时间常数。
本发明利用同时间常数耦合圆极化电磁波在圆波导匹配的每匝负载线圈,同时具有瞬态脉振波信号源特性这一原理进行检测,由于在每匝形成的单向变化磁通作用的时间与圆极化波经过每匝的物理周长的时间具有高度相关性,会形成圆极化波在到达第二匝时,会有部分能量返回第一匝,同理第三匝会有部分能量返回第二匝,再返回第一匝,即始终保持第一匝的磁通总量保持不变,第二匝磁通总量亦保持不变,信号发射源持续保持圆极化波的极化方向不变,顺时针或逆时针,就可以同时使得正负极第一匝,第二匝,第三匝均保持体现本匝特征的总磁通量,依次,可得到共62匝(如650MW全速转子)的正向匝间特征波形。如图1所示,逆时针圆极化波耦合,可得出反向匝间特征波形。
实施例2:
全速650MW转子1#线圈与2#线圈过桥线位置为图15中A及a处;
如图9所示,某1#全速650MW健康转子1-8#线圈全部62匝均清晰可见。1#线圈与2#线圈过桥线特征明显,转子每匝瞬态波特性健康。
如图10所示,某2#全速650MW健康转子1-8#线圈全部62匝均清晰可见。1#线圈与2#线圈过桥线特征明显,转子每匝瞬态波特性健康。
实施例3:
全速650MW转子1#线圈与2#线圈过桥线位置为图15中A及a处;
如图11所示,某2#全速650MW亚健康转子1-8#线圈全部62匝除1#线圈5、6匝合并为1个正弦波外,其余均清晰可见。1#线圈与2#线圈过桥线特征不明显,2#线圈1、2匝正弦波相对于上个周期振幅过大,判断存在油污,需要进行必要清除工作。
实施例4:
全速650MW转子1#线圈与2#线圈过桥线位置为图15中A及a处;
如图12所示,某2#全速650MW转子两次大修瞬态波特性比较。浅色为正常转子每匝波形,深色为进油污后每匝波形。
说明:1#线圈第1-3匝完全重合,1#线圈第4-5匝趋势呈现分离,1#线圈第6匝完全消失,2#线圈第1匝存在相位差,2#线圈第2匝开始,直到8#线圈第8匝,均正常。可分析出1#线圈5、6匝及2#线圈1匝处存在油污,位置在1#线圈与2#线圈的过桥线处,事后检修处理结果验证测试完全正确。
实施例5:
如图13所示,某2#全速390H转子年度A修瞬态波特性结果。1-5#线圈正常,6#线圈存在绕组变形。
实施例6:
如图14所示,某2#全速390H转子年度A修瞬态波特性结果。1-5#,7-9#线圈正常,6#线圈存在绕组变形。

Claims (5)

  1. 一种汽轮发电机转子绕组匝间电磁脉振波特性检测装置,其特征在于,包括超大容量内阻信号源,所述超大容量内阻信号源与超高速时序控制电路连接,超高速时序控制电路通过寄生感性电源经正负极负载导波线与转子绕组正负极连接,转子绕组正负极通过运放电路与超高速采集电路连接;
    所述超大容量内阻信号源与每匝绕组圆极化特性平均时间常数匹配,且能产生与转子绕组全程响应时间常数匹配的功率圆极化特性波的能量宽度;
    所述寄生感性电源将正负两极的输入输出耦合圆极化波进行圆波导耦合交换;
    所述正负极负载导波线将圆极化波并发耦合到转子正负极上;
    所述运放电路将并发圆极化发射及接收的信号合并耦合放大;
    所述超高速采集电路采集波形,采集的波形为圆极化双信号发射源、每匝处处感生极化源、双对称组合成的圆极化波导负载、信号源能量维持的时间常数组合作用的波形。
  2. 一种汽轮发电机转子绕组匝间电磁脉振波特性检测方法,其特征在于,利用权利要求1所述的汽轮发电机转子绕组匝间电磁脉振波特性检测装置进行检测,超大容量内阻信号源、超高速时序控制电路产生雪崩极化沿的高位突变电场,通过寄生感性电源产生的对称偏转180°圆极化电磁波,经正负极负载导波线,顺时针或逆时针耦合到转子正负极上,依次会有正极第一匝与负极第一匝互感产生第一个正弦波,时间顺延会有能量返回感性寄生电源,同时会有能量依次传导到第二匝;寄生感性电源及第二匝又开始圆极化反馈能量回馈;依次每匝互相逐级回馈、叠加;每耦合匝均表现出相同时间常数的正弦波。
  3. 根据权利要求2所述的一种汽轮发电机转子绕组匝间电磁脉振波特性检测方法,其特征在于,在顺时针维持正极圆极化发送及负极偏转180°圆极化发送单向能量场时间同时大于转子绕组全长导波时间时,每匝对称绕组均呈现信号源及负载叠加的双重电磁脉振波特性波形,通过自感及互感作用,在时间上可同步叠加耦合出当前匝形成的圆极化波波形,表征的是由上而下正向变化的磁通;如当前匝正弦波完整,波长时间常数变化小,则说明当前对称匝电磁特性完好;如当前匝正弦波不完整,与前后叠加的正弦波波长大于标准时间常数,说明当前匝存在缺陷,存在变形、油污、槽楔松动或位移、早期匝间短路的早期隐患;
  4. 根据权利要求2所述的一种汽轮发电机转子绕组匝间电磁脉振波特性检测方法,其特征在于,在逆时针反方向施加正极圆极化及负极偏转180°圆极化单向能量场,对称采集比较,利用旋转方向同向的两个圆极化波耦合当前匝形成的逆时针圆极化波波形,表征的是自下向上反向变化的磁通;可重复验证缺陷匝,判断出缺陷在正负极的位置。
  5. 根据权利要求2所述的一种汽轮发电机转子绕组匝间电磁脉振波特性检测方法,其特征在于,
    当转子每匝负载单位长度为发送圆极化波波长整数倍时,
    被测转子负载为电介质材料ur=1,可知电磁波的衰减常数和相位常数为:
    Figure PCTCN2022087021-appb-100001
    其中α s为衰减常数;β s为相位常数;c为真空光速;f为生成的电磁波频率;ε 0为自由空间介电常数即10 -9/36πF/m;ε r为每匝绕组相对介电常数,所述ε r=ε′ r-jε″ r,ε′ r为每匝绕组相对介电常数实部,ε″ r为每匝绕组相对介电常数虚部;
    转子绕组中圆极化波的波长为:
    Figure PCTCN2022087021-appb-100002
    式中,λ 0=c/f为圆极化波的自由空间波长;λ s为转子绕组中圆极化波的平均波长;当单匝转子绕组周长为发射电磁波的波长1/2的整数倍时,即
    Figure PCTCN2022087021-appb-100003
    式中n为正整数,可得传播系数T 2
    Figure PCTCN2022087021-appb-100004
    所述传播系数可以真实地反映内阻感抗时间常数。
PCT/CN2022/087021 2021-05-06 2022-04-15 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法 WO2022233224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022001528.4T DE112022001528T5 (de) 2021-05-06 2022-04-15 Vorrichtung und Verfahren zur Erkennung elektromagnetischer Impulseigenschaften zwischen den Windungen der Rotorwicklungen von Turbogeneratoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110490129.5A CN113406540B (zh) 2021-05-06 2021-05-06 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及方法
CN202110490129.5 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022233224A1 true WO2022233224A1 (zh) 2022-11-10

Family

ID=77677918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087021 WO2022233224A1 (zh) 2021-05-06 2022-04-15 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法

Country Status (3)

Country Link
CN (1) CN113406540B (zh)
DE (1) DE112022001528T5 (zh)
WO (1) WO2022233224A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406540B (zh) * 2021-05-06 2022-07-19 杭州核诺瓦科技有限公司 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163196A (ja) * 2005-12-12 2007-06-28 Nissan Motor Co Ltd コイルの試験装置
CN110346685A (zh) * 2019-07-16 2019-10-18 杭州核诺瓦科技有限公司 大型电机定子绕组匝间状态检测的装置及方法
CN111521939A (zh) * 2020-05-15 2020-08-11 杭州核诺瓦科技有限公司 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法
CN111965541A (zh) * 2020-08-18 2020-11-20 杭州核诺瓦科技有限公司 检测电机磁回路槽楔、气隙、转子断条状态的装置及方法
CN212845842U (zh) * 2020-05-12 2021-03-30 江苏大唐国际金坛热电有限责任公司 一种发电机转子绕组匝间故障在线监测装置
CN113406540A (zh) * 2021-05-06 2021-09-17 杭州核诺瓦科技有限公司 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954529B1 (ko) * 2007-11-27 2010-04-23 한국과학기술연구원 원환형 압전 초음파 공진기 및 그를 이용한 압전 초음파회전모터
US8812254B2 (en) * 2009-02-18 2014-08-19 General Electric Company Methods and systems for monitoring stator winding vibration
CN101988945A (zh) * 2009-08-07 2011-03-23 华东电力试验研究院有限公司 转子绕组匝间短路的诊断方法
CN101794984B (zh) * 2010-03-18 2012-05-16 清华大学 基于多回路模型的发电机转子匝间故障分析方法
RU2546131C2 (ru) * 2013-06-19 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ защиты синхронной электрической машины от витковых замыканий обмотки ротора
CN105137349B (zh) * 2015-07-22 2017-09-01 广东电网有限责任公司电力科学研究院 基于频域介电谱法的大型发电机定子绕组主绝缘老化状态测评方法
CN108872856B (zh) * 2018-07-16 2019-04-09 山东固特电气有限公司 发电机转子绕组状态检测装置及方法
CN110596547B (zh) * 2019-09-19 2021-08-24 上海电力大学 逆变器驱动电机的匝绝缘状态在线监测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163196A (ja) * 2005-12-12 2007-06-28 Nissan Motor Co Ltd コイルの試験装置
CN110346685A (zh) * 2019-07-16 2019-10-18 杭州核诺瓦科技有限公司 大型电机定子绕组匝间状态检测的装置及方法
CN212845842U (zh) * 2020-05-12 2021-03-30 江苏大唐国际金坛热电有限责任公司 一种发电机转子绕组匝间故障在线监测装置
CN111521939A (zh) * 2020-05-15 2020-08-11 杭州核诺瓦科技有限公司 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法
CN111965541A (zh) * 2020-08-18 2020-11-20 杭州核诺瓦科技有限公司 检测电机磁回路槽楔、气隙、转子断条状态的装置及方法
CN113406540A (zh) * 2021-05-06 2021-09-17 杭州核诺瓦科技有限公司 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及方法

Also Published As

Publication number Publication date
CN113406540B (zh) 2022-07-19
DE112022001528T5 (de) 2024-02-22
CN113406540A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CN101833043B (zh) 一种电容式电压互感器电容量及介损测量方法
CN102435903B (zh) 电压互感器的匝间短路在线监测装置
CN110967654B (zh) 一种干式空心串联电抗器匝间故障监测及保护识别方法
CN106124941A (zh) 电抗器匝间绝缘性诊断方法
Bagheri et al. Practical challenges in online transformer winding deformation diagnostics
WO2022233224A1 (zh) 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及检测方法
CN106291123A (zh) 一种直接测量磁元件绕组损耗的方法
Cabanas et al. Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysis
CN108535329A (zh) 薄层导电材料的测试装置、表面电阻的测试方法、损伤信息的测试方法
Bagheri et al. Frequency Response Analysis vs. Flux Division Measurement in detection of transformer winding internal short circuit
Ding et al. Investigation of vibration impacts on HVAC transformer from HVDC system under monopole operation
Firoozi et al. Transformer fault diagnosis using frequency response analysis-practical studies
CN108318791A (zh) 基于频域特征分析的空心电抗器匝间绝缘绝缘故障判别方法
Cheng et al. Proposed methodology for online frequency response analysis based on magnetic coupling to detect winding deformations in transformers
CN114200349B (zh) 基于不停电检测的变压器绕组变形程度评估方法
Sharma et al. Development of reference SFRA plot of transformer at design stage using high frequency modelling
CN202383224U (zh) 电压互感器的匝间短路在线监测装置
Pinhas et al. On the development of transfer function method for fault identification in large power transformers on load
RÄDLER et al. Performing reliable and reproducible frequency response measurements on power transformers
Sano et al. Experimental investigation on FRA diagnosis of transformer faults
Cheng et al. Signal injection by magnetic coupling for the online FRA of transformer winding deformation diagnosis
Zhao et al. Investigation of condition monitoring of transformer winding based on detection simulated transient overvoltage response
Hao et al. Winding Deformation Detection Based on Vibration Signal Analysis
CN217931884U (zh) 一种发电机出口pt匝间绝缘故障在线诊断系统
Hong et al. Research on diagnosis method of Interturn short Circuit Fault of dry reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18289252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001528

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798565

Country of ref document: EP

Kind code of ref document: A1