WO2022230248A1 - 移動装置 - Google Patents
移動装置 Download PDFInfo
- Publication number
- WO2022230248A1 WO2022230248A1 PCT/JP2022/000916 JP2022000916W WO2022230248A1 WO 2022230248 A1 WO2022230248 A1 WO 2022230248A1 JP 2022000916 W JP2022000916 W JP 2022000916W WO 2022230248 A1 WO2022230248 A1 WO 2022230248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheels
- wheel
- mobile device
- escalator
- actuator
- Prior art date
Links
- 230000005484 gravity Effects 0.000 claims description 30
- 230000008859 change Effects 0.000 claims description 14
- 238000013519 translation Methods 0.000 claims description 4
- 230000005283 ground state Effects 0.000 claims 1
- 210000002414 leg Anatomy 0.000 description 61
- 238000000034 method Methods 0.000 description 20
- 230000001174 ascending effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 230000009194 climbing Effects 0.000 description 12
- 238000001514 detection method Methods 0.000 description 9
- 238000013459 approach Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000001217 buttock Anatomy 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/04—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
- A61G5/041—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven having a specific drive-type
- A61G5/046—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven having a specific drive-type at least three driven wheels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/06—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps
- A61G5/061—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps for climbing stairs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G5/00—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
- A61G5/06—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps
- A61G5/063—Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs with obstacle mounting facilities, e.g. for climbing stairs, kerbs or steps with eccentrically mounted wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/024—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/028—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G2203/00—General characteristics of devices
- A61G2203/30—General characteristics of devices characterised by sensor means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G2203/00—General characteristics of devices
- A61G2203/30—General characteristics of devices characterised by sensor means
- A61G2203/32—General characteristics of devices characterised by sensor means for force
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G2203/00—General characteristics of devices
- A61G2203/30—General characteristics of devices characterised by sensor means
- A61G2203/44—General characteristics of devices characterised by sensor means for weight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B50/00—Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies
Definitions
- the present invention relates to a moving device for moving people and objects on it, and more particularly to a moving device that can go up and down stairs (including steps; the same applies hereinafter) and escalators with objects on it.
- Patent Document 1 a stair climbing type mobile car
- Patent Document 2 a bipedal movement device with a buttock that rotatably supports the joints at the base of the two legs
- Patent Document 3 a bipedal movement mechanism with two legs having wheels at the ends
- the present invention has been made in view of the above circumstances, and the problem to be solved is to provide a moving apparatus that can absorb the speed difference and that allows the user to safely get on and off an escalator with an object to be moved on it. It is in.
- the moving device of the present invention is a device for carrying and moving an object to be moved.
- the end wheels move from the escalator platform to the steps in a four-wheel grounded state in which the end wheels and the intermediate wheels are grounded, and/or when the end wheels get off the escalator steps.
- the wheel speed of the end wheels is controlled by the controller.
- the translation speed of the moving device can be controlled by the controller.
- the moving device of the present invention can be operated by controlling the wheel speed of the end wheels when the end wheels move from the escalator landing to the steps and/or when the end wheels move from the steps to the landing. It can absorb the speed difference between the escalator and the step and between the getting-off place and the step, and can safely get on and off the escalator with the object to be moved on it.
- FIG. 1(a) is a front view showing an example of the moving apparatus of the present invention, and (b) is a side view of a state in which one step of stairs is climbed.
- 1 is a functional block diagram showing an example of a mobile device of the present invention
- 4 is a flowchart showing an example of a procedure for determining whether or not stairs can be ascended/descended; 4 is a flow chart showing an example of a procedure of route generation in a route generation unit; (a) is an explanatory diagram of the width of the moving device, the one-side margin in the width direction of the space above the stairs, and the width of the space above each step; (b) is an explanatory diagram of the center position and the deviation of the center position; (a) to (c) are diagrams for explaining the control of posture in the front-rear direction when climbing stairs. (a) to (c) are diagrams for explaining the control of posture in the front-rear direction when climbing stairs.
- (a) to (c) are diagrams for explaining control of posture in the left-right direction when climbing stairs.
- (a) to (d) are diagrams for explaining control of posture in the left-right direction when climbing stairs.
- 4 is a flow chart showing an example of motion control against disturbance.
- (a) to (d) are operation explanatory diagrams showing an example of a transition from four-wheel grounding to two-wheel grounding.
- (a) to (e) are operation explanatory diagrams showing another example of transition from four-wheel grounding to two-wheel grounding.
- (a) to (e) are operation explanatory diagrams showing an example of transition from two-wheel grounding to four-wheel grounding.
- the side view which shows an example of an escalator.
- 4 is a flowchart showing an example of a processing procedure when entering an escalator; (a) to (c) are explanatory diagrams of an accessible left and right range in which an escalator can be entered. 4 is a flowchart showing an example of a processing procedure when exiting an escalator; (a) to (c) are diagrams for explaining attitude control when entering an escalator. (a) to (c) are diagrams for explaining attitude control when advancing from an escalator.
- the moving device of the present invention is a device that carries a person or an object (hereinafter referred to as "moving object") X or the like and moves.
- a mobile device (chair-type mobile device) for moving a person on it is taken as an example.
- the forward side in the traveling direction of the mobile device is referred to as front, the rear side as rear, the left side as left, the right side as right, the upper side as up, and the lower side as down.
- the "total center-of-gravity position” refers to the center-of-gravity position obtained by adding the center-of-gravity position of the moving device and the center-of-gravity position of the movement target X.
- the center-of-gravity position of the moving object X can be the center-of-gravity position estimated by the center-of-gravity position estimator 32 ( FIG. 2 ) from the load of the moving object X applied to the seat surface sensor 24 installed on the mounting part 20 , for example.
- the center-of-gravity position of the moving device can be calculated based on the center-of-gravity position of each part that constitutes the moving device (by summing the center-of-gravity positions of the parts).
- Each part constituting the movement device here includes an upper link 11, a lower link 12, an intermediate wheel 13, an end wheel 14, a first joint actuator 15, a second joint actuator 16, a third Joint actuators 17 and end wheel actuators 18 are included.
- the position of the center of gravity of the mobile device can be calculated as follows. Since the weight, the position of the center of gravity, and the moment of inertia of each part that constitutes the moving device are known, the relative positional relationship of each part is specified from the rotation angle of each actuator 15 to 18, and from the specified positional relationship, each By calculating the center-of-gravity position of each component and summing the center-of-gravity position of each component, the center-of-gravity position of the moving device can be calculated.
- the "end wheel grounding position” refers to the grounding position of the end wheel 14 with the ground or floor surface (hereinafter referred to as "grounding surface”).
- the end wheel contact position is set for each end wheel 14 of each leg 10 .
- the end wheels 14 of both legs 10 are not displaced in the front-rear direction, the end wheels 14 of both legs 10 are positioned side by side. , the position is shifted in the front-rear direction.
- getting on escalator E is called “approach”, and getting off escalator E is called “advance”.
- the boarding/alighting place F on the entrance side of the escalator E is called “plating F1”
- the boarding/alighting place F on the exit side is called “alighting place F2”.
- the "plating area F1" and the “disembarking area F2" are relative concepts.
- the upper boarding/alighting space F is the boarding place F1
- the lower boarding/alighting space F is the alighting place F2.
- FIGS. A section 30 (FIG. 2) is provided.
- a left leg (hereinafter referred to as "left leg") 10a in the forward direction includes an upper left link 11a, a lower left link 12a, a left intermediate wheel 13a, a left end wheel 14a, a left It has a first joint actuator 15a, a left second joint actuator 16a, a left third joint actuator 17a and a left end wheel actuator 18a.
- the upper left link 11a is rotatably connected to the left bracket 23a provided on the bottom surface of the chair portion 20, and the upper left link 12a is rotatably connected to the upper left link 11a.
- a left intermediate wheel 13a is arranged at the connecting position of the upper left link 11a and the lower left link 12a, and is rotatably connected with the connector used for connecting the upper left link 11a and the lower left link 12a.
- the left intermediate wheel 13a can be provided at the position where the upper left link 11a and the lower left link 12a are connected, the position on the upper left link 11a side of the lower left link 12a, the position on the upper left link 11a side of the lower left link 12a, and other positions.
- a left end wheel 14a is rotatably connected to the lower end of the left lower link 12a.
- the bottom surface of the left end wheel 14a protrudes below the lower end of the left lower link 12a so as to be in contact with the ground (floor surface).
- the left first joint actuator 15a is driving means for driving the upper left link 11a in the front-rear direction, and is provided at the connecting portion between the upper left link 11a and the left bracket 23a.
- the upper left link 11a rotates in the front-rear direction by the operation of the left first joint actuator 15a.
- the left second joint actuator 16a is driving means for driving the left lower link 12a in the front-rear direction, and is provided at the connecting portion between the upper left link 11a and the left lower link 12a.
- the left lower link 12a rotates in the front-rear direction by the operation of the left second joint actuator 16a.
- the left third joint actuator 17a is driving means for driving the left upper link 11a in the left-right direction (inward and outward directions), and is provided at the connecting portion between the upper left link 11a and the left bracket 23a.
- the upper left link 11a rotates in the left-right direction by the operation of the left third joint actuator 17a.
- the left end wheel actuator 18a is driving means for driving the left end wheel 14a forward and backward (forward and backward), and is provided at the connecting portion between the left lower link 12a and the left end wheel 14a.
- the left end wheel 14a rotates forward and backward by the action of the left end wheel actuator 18a.
- the left intermediate wheel 13a of this embodiment is in a free state so as to rotate in forward and reverse directions without an actuator.
- the right leg in the forward direction (hereinafter referred to as "right leg") 10b includes an upper right link 11b, a lower right link 12b, a right intermediate wheel 13b, a right end wheel 14b, a right first joint actuator 15b, and a right second joint actuator 16b. , a right third joint actuator 17b and a right end wheel actuator 18b.
- the upper right link 11b has its upper end rotatably connected to a right bracket 23b provided on the bottom surface of the chair portion 20, and the lower right link 12b has its upper end rotatably connected to the upper right link 11b.
- a right intermediate wheel 13b is arranged at the connecting position of the upper right link 11b and the lower right link 12b, and is rotatably connected with the connector used for connecting the upper right link 11b and the lower right link 12b.
- the right intermediate wheel 13b can be provided at a position where the upper right link 11b and the lower right link 12b are connected, a position on the upper right link 11b side of the lower right link 12b, a position on the upper right link 11b side of the lower right link 12b, and other positions.
- a right end wheel 14b is rotatably connected to the lower end of the lower right link 12b.
- the bottom surface of the right end wheel 14b protrudes below the lower end of the lower right link 12b so as to be in contact with the ground (floor surface).
- the right first joint actuator 15b is driving means for driving the upper right link 11b in the front-rear direction, and is provided at the connecting portion between the upper right link 11b and the right bracket 23b.
- the upper right link 11b rotates in the front-rear direction by the operation of the right first joint actuator 15b.
- the right second joint actuator 16b is driving means for driving the lower right link 12b in the front-rear direction, and is provided at the connecting portion between the upper right link 11b and the lower right link 12b.
- the lower right link 12b rotates in the front-rear direction by the operation of the right second joint actuator 16b.
- the right third joint actuator 17b is driving means for driving the upper right link 11b in the left-right direction (inward and outward directions), and is provided at the connecting portion between the upper right link 11b and the right bracket 23b.
- the upper right link 11b rotates in the left-right direction by the operation of the right third joint actuator 17b.
- the right end wheel actuator 18b is driving means for driving the right end wheel 14b in forward and reverse directions (forward and backward), and is provided at the connecting portion between the lower right link 12b and the right end wheel 14b.
- the right end wheel 14b rotates forward and backward by the action of the right end wheel actuator 18b.
- the right intermediate wheel 13b of this embodiment is in a free state so as to rotate in forward and reverse directions without an actuator.
- both first joint actuators 15 both second joint actuators 16, both third joint actuators 17, and both end wheel actuators 18, existing actuators equipped with motors, speed reducers, encoders, brakes, etc. can be used. .
- the chair portion 20 is a portion on which a person sits, and includes a seat portion 21 on which a person sits, a command operation portion 22 through which a person inputs a control signal, and a connecting portion 23 that connects with the leg portion 10 .
- the seat portion 21 includes a seat surface 21a and a backrest 21b.
- the structure of the seat portion 21 may be other than this. It is also possible to adopt a configuration that is composed only of a legrest.
- the seat portion 21 includes a seat surface sensor 24 for detecting the load of a person on the seat surface 21a, and an external world recognition sensor 25 for recognizing the external conditions around the moving device (for example, the presence or absence of stairs, escalators, and obstacles). , an inertial sensor 26 for detecting translational motion and rotational motion in three orthogonal axes.
- the seat surface sensor 24 is provided on the surface side of the seat surface 21a, and the external world recognition sensor 25 and the inertial sensor 26 are provided on the front and side surfaces of the seat surface 21a.
- the installation position of each sensor is an example, and it can also be installed in places other than these.
- a pressure sensor for example, can be used for the seat surface sensor 24 . It is preferable to install a plurality of seat surface sensors 24 on the seat surface 21a.
- a detection signal from the seat surface sensor 24 is transmitted to a center-of-gravity position estimating section 32 (FIG. 2) of the control section 30, which will be described later, and the center-of-gravity position estimating section 32 estimates the center-of-gravity position of the person based on the detection signal.
- the external world recognition sensor 25 for example, a laser range finder that emits a laser beam and measures the distance to an object from the reflected light can be used.
- a device other than a laser range finder can also be used as the external recognition sensor 25 .
- the external world recognition sensor 25 recognizes, for example, the presence or absence of stairs, escalators, obstacles (walls, pillars, doors, furniture, people, etc.).
- a detection signal from the external world recognition sensor 25 is transmitted to a determination section 34 (FIG. 2) of the control section 30, which will be described later, and based on the detection signal, it is determined whether or not to pass stairs or enter an escalator.
- the inertial sensor 26 for example, a gyro sensor or an acceleration sensor can be used.
- the inertial sensor 26 detects, for example, the actual motion (moving speed, tilt, etc.) of the mobile device.
- a detection signal from the inertial sensor 26 is transmitted to a motion estimator 37 (FIG. 2) of the control unit 30, which will be described later. be.
- a sensor other than a gyro sensor or an acceleration sensor can be used as the inertial sensor 26 .
- the command operation unit 22 is means for a person to input control signals to the control unit 30 .
- An existing input device such as a joystick or a touch panel can be used for the command operation unit 22 .
- the command operation unit 22 is configured to input control signals for operations such as forward movement, backward movement, turning, stair movement, escalator entry, and escalator exit.
- the input control signal is transmitted to the control unit 30 . The operation when each control signal is transmitted will be described later.
- the connecting part 23 is a part that connects the two legs 10 .
- the connecting portion 23 shown in FIGS. 1A and 1B includes a left bracket 23a and a right bracket 23b projecting from the back side of the seat surface 21a.
- the left bracket 23a connects the left leg portion 10a
- the right bracket 23b connects the right leg portion 10b.
- the configuration of the connecting portion 23 is not particularly limited as long as it can rotatably connect the two legs 10 .
- the control section 30 is a means for controlling the actuators 15 to 18, both intermediate wheels 13 and both end wheels 14 that constitute the leg section 10.
- the control unit 30 can be configured by a computer including a processor, memory, and the like as main components.
- the control unit 30 of this embodiment includes a motion control unit 31 that controls the legs 10, a center-of-gravity position estimation unit 32 that estimates the center-of-gravity position from the load applied to the seat surface sensor 24, and a total center-of-gravity calculator that calculates the total center-of-gravity position.
- a determination unit 34 that determines whether it is possible to ascend or descend stairs or enter an escalator based on the detection signal from the external recognition sensor 25;
- a path generation unit 35 that generates a path (trajectory), and a theoretical motion calculation unit 36 that calculates a theoretical motion (hereinafter referred to as "theoretical motion") that occurs when each actuator 15 to 18 is driven based on the total center of gravity position.
- a motion estimator 37 for estimating the actual motion from the actual motion obtained by the inertial sensor 26; 38, and a corrected drive amount calculator 39 for calculating the corrected drive amount of each actuator 15-18 based on the estimated amount of disturbance.
- the controller 30 generates the trajectory of the mobile device.
- a trajectory is information specified by coordinate values and time, and is constantly generated with the current location as a reference while the mobile device is moving. The mobile device moves along the generated trajectory in accordance with instructions input from the command operation unit 22 .
- control unit 30 controls the stationary state, the control when moving forward, the control when moving backward, the control when turning, the control of the posture in the front-rear direction when ascending and descending stairs, and the control of the posture in the left-right direction when ascending and descending stairs.
- motion control against disturbances attitude control when entering an escalator, attitude control when exiting an escalator, attitude control on an escalator, switching control from four wheels to two wheels, switching control from two wheels to four wheels, etc. is done. These controls will be specifically described below.
- the position of the total center of gravity of the moving device in the longitudinal direction is behind the end wheel ground contact position of the both end wheels 14. to create a difference between the combined center of gravity position and the end wheel ground contact position of the end wheels 14 .
- the rotation angular velocity is controlled so that the rotation angular velocity of the end wheels 14 finally converges to zero, and after the rotation angular velocity of the end wheels 14 approaches zero, the stationary state is controlled.
- the position of the total center of gravity position in the longitudinal direction of the moving device is in front of the end wheel ground contact position of the both end wheels 14. to create a difference between the combined center of gravity position and the end wheel ground contact position of the end wheels 14 .
- the rotation angular velocity is controlled so that the rotation angular velocity of the end wheels 14 finally converges to zero, and after the rotation angular velocity of the end wheels 14 approaches zero, the stationary state is controlled.
- the number of revolutions of the left end wheel 14a is made larger than the number of revolutions of the right end wheel 14b, and in the case of command operation to turn left, the number of revolutions of the right end wheel 14b is increased. It is made larger than the number of revolutions of the left end wheel 14a.
- the average value of the number of rotations of the left and right end wheels 14 is made to match the number of rotations of the end wheels 14 based on the forward or backward command operation when a person is performing a turning command operation. Note that when a turn command operation is performed by operating the command operation unit 22 when no forward or reverse command operation is performed, the average value of the rotation speeds of the left and right end wheels 14 is set to zero.
- the shape of the external world is acquired by the external world recognition sensor 25 (S001).
- the acquisition of the external world shape by the external world recognition sensor 25 is continuously performed, and the acquired external world shape is transmitted to the control unit 30 .
- (2) Whether or not there are stairs is determined from the shape of the external world acquired by the external world recognition sensor 25 (S002).
- the mobile device continues planar movement (S003).
- stair shape As a result of the determination in (2) above, when it is recognized that there are stairs, the shape of the stairs (hereinafter referred to as "stair shape") is acquired by the external world recognition sensor 25 (S004).
- the route generation unit 35 From the shape of the stairs acquired by the external world recognition sensor 25, the route generation unit 35 generates a route for ascending and descending the stairs (for example, an optimum route such as the shortest route) (S005). (6) After the route is generated by the route generator 35, it is determined whether or not the route is passable (S006). (7) As a result of the determination in (6) above, if it is determined that the passage is impassable, the mobile device stops before the stairs (S007). In this case, information display means, notification means, or the like (not shown) can be used to inform the passengers that the vehicle is impassable.
- the route generation in (5) is performed, for example, by the procedure shown in FIG. (1) Width W b of moving device, one-side margin (hereinafter referred to as “one-side width margin”) W m in the width direction of the space above the stairs (FIG. 5(a)), and the center position of the next step from the center position of each step d th is set (S101). (2) Based on the shape of the stairs obtained by the external world recognition sensor 25, the width W S (FIG. 5(a)) of the space above each step is measured (S102). (3) Whether or not W s ⁇ W b +2W m (Equation 1) is satisfied determines whether or not the mobile device can pass through the space of each stage (S103).
- the grounding position of each stage can also be set to minimize the change in the widthwise direction of the grounding position of each stage within a range in which a margin in the width direction can be secured.
- the grounding position of each stage is calculated so that the sum of the center position deviations of each stage is minimized.
- the control unit 30 determines which of the two legs 10 should be lifted according to the route generated by the route generation unit 35 (FIG. 6(a)).
- the right leg 10b is lifted after the left leg 10a is lifted.
- the left first joint actuator 15a and the left second joint actuator 16a are driven so that the left end wheel 14a of the lifted left leg 10a moves to the next end wheel contact position (Fig. 6(b)).
- the next end wheel grounding position means the grounding position of the left end wheel 14a of the left leg 10a on the tread surface of the step next to the currently standing step.
- both first joint actuators 15 and both second joint actuators 16 of both legs 10 are driven as shown in FIGS. 6(c) and 7(a).
- the chair portion 20 and the end are separated by the height.
- the actuators 15 to 18 are driven so as to simultaneously change the height of the end wheel 14 (end wheel contact position) (FIGS. 7(b) and (c)). It should be noted that the heights of both do not necessarily need to be changed at the same time, and there may be some error.
- the end wheel 14 In the phase where one end wheel 14 touches the ground when climbing stairs, the end wheel 14 is driven to match the grounded end wheel ground position of the grounded end wheel 14 and the total center of gravity position in the longitudinal direction. Attitude control is performed by
- the posture control in the front-rear direction of the moving device is performed by using the reaction force when moving a heavy object such as a battery in the front-rear direction, and by installing a flywheel on the chair portion 20 and using the gyroscopic moment.
- the control unit 30 determines which of the two legs 10 should be lifted according to the route generated by the route generation unit 35 (FIG. 8(a)).
- the right leg 10b is lifted and then the left leg 10a is lifted.
- the left third joint actuator 17a of the left leg 10a that is not lifted is driven so that the ground position of the left leg 10a that is not lifted coincides with the total center of gravity position in the horizontal direction (Fig. 8(b)).
- the right end wheel 14b of the lifted right leg 10b moves to the next end wheel grounding position (grounding position of the right end wheel 14b of the right leg 10b on the tread surface of the step next to the currently standing step).
- the right first joint actuator 15b and the right second joint actuator 16b are driven (FIGS. 8(c) and 9(a)).
- the right third joint actuator 17b of the right leg 10b on the lifted side is driven to compensate for the change in the total center-of-gravity position. do.
- the chair portion 20 and the end wheels are separated by the height.
- the actuators 15 to 18 are driven so as to simultaneously change the height of 14 (end wheel grounding position) (FIG. 9(b)). It should be noted that the heights of both do not necessarily need to be changed at the same time, and there may be some error.
- both the third joint actuators 17 are driven so that the combined center of gravity position is positioned at the center of the both legs 10 (FIGS. 9(b) and 9(c)).
- the horizontal posture control of the mobile device is performed by using the reaction force when moving a heavy object such as a battery in the lateral direction, and also by attaching a flywheel to the chair portion 20. It can also be installed and performed using the gyroscopic moment.
- the correction driving amount calculator 39 calculates the correction driving amounts of the actuators 15 to 18 (S207). (9) Based on the corrected driving amount calculated in (8) above, the motion control section 31 drives the actuators 15 to 18 to control the motion with respect to the disturbance (S208).
- the estimation of the actual motion by the motion estimating unit 37 in (4) can also use the drive torque of each actuator 15 to 18 and the change in the estimated value of the position of the center of gravity of the person by the seat surface sensor 24 .
- the escalator E has various structures.
- the escalator E has a stepless movement region (
- the stepless movement area on the entrance side will be referred to as "entrance side stepless movement area E1" and the exit side stepless movement area will be referred to as "exit side stepless movement area E2").
- An example is the case of an escalator E having a gradient region E3 in which a difference in height occurs on the step Q of .
- the external world situation is recognized by the external world recognition sensor 25 (S301).
- Recognition of the external world situation by the external world recognition sensor 25 is an operation that is always performed while the mobile device is moving.
- the presence or absence of the escalator E is determined (S302).
- the moving device continues planar movement (S311).
- the external world recognition sensor 25 acquires the shape of the escalator E (hereinafter referred to as "escalator shape") (S303).
- the escalator shape here includes, for example, the height and width of the step Q, the width between the left and right handle portions of the escalator E, the distance of the stepless movement area in the front-rear direction, and the like.
- S304 it is determined whether or not the escalator E can be entered.
- the external world recognition sensor 25 can recognize the shape of the escalator, it is determined that it can be entered, and when it cannot be recognized, it is determined that it cannot be entered.
- the planar movement is continued (S311).
- the route generation unit 35 creates a moving route for entering the escalator E (hereinafter referred to as "entering route ) is generated (S307). Specifically, a trajectory from the platform F1 in front of the escalator E to the first step Q is generated as the approach route. Although it is possible to generate only one approach path pattern, in this embodiment two or more patterns are generated. (11) After the entry route is generated in (10) above, the left and right positions at which the escalator E can be entered are displayed on the display screen of the command operation unit 22 (S308).
- the display screen displays, for example, selection buttons such as "left”, “middle”, and “right”. (12) After the left and right positions of the approach route are displayed in (11) above, it is determined whether or not there is an instruction for the left and right positions to enter the escalator E from the command operation unit 22 (S309). For example, if the display screen displays "left”, “middle”, and “right” selection buttons, if one of the selection buttons is pressed within a certain period of time, it will be determined that an instruction has been given, and If any selection button is not pressed, it can be determined that there is no instruction.
- a lateral range (hereinafter referred to as "accessible lateral range”) W a in which the mobile device can enter the escalator E is specified, and the center of the lateral direction of the mobile device is an accessible lateral range.
- the escalator E can be entered from a position within the range Wa.
- the accessible left/right range W a is specified by the width W i of the moving device, the width W s of the step Q of the escalator E, and the left/right margin W m . can do.
- the accessible left and right range W a is calculated from the point calculated by (left margin W m + width W i of the moving device)/2 to (escalator It can be set as the range of points calculated by width W s of step Q of E) ⁇ (right margin W m ) ⁇ ((horizontal width W i of mobile device)/2).
- the approachable left-right range W a identification method shown here is an example, and the approachable left-right range W a can also be identified by other methods.
- Control to absorb speed difference when entering escalator In this embodiment, the following control is performed when entering the escalator E in order to absorb the speed difference between the platform F1 and the step Q.
- both intermediate wheels 13 enter the escalator E first, and both end wheels 14 enter the escalator E later.
- the shape of the escalator E and the moving speed of the step Q are acquired by the external world recognition sensor 25, and the moving device is moved at the same speed as the moving speed of the step Q (forward translation speed).
- both intermediate wheels 13 in this embodiment are driven wheels (free rolls that rotate according to the driving of the wheels 14 at both ends)
- the moving device that moves at the same speed as the forward translational speed in step Q moves from the platform F1 to the escalator E.
- the wheel speed of both intermediate wheels 13 becomes zero at the moment when step Q is entered.
- the position and the time at which the wheel speed of both intermediate wheels 13 becomes zero are specified as the boundary between the platform F1 and the step Q, and the coordinate value thereof (hereinafter referred to as "platform side boundary coordinate value") and the platform side boundary coordinate value Gets the time of arrival at
- both end wheels 14 which are driving wheels, enter escalator E.
- the both end wheels 14 reach the boundary between the platform F1 and the step Q (the position specified by the platform side boundary coordinate value)
- the both end wheels 14 are set so that the driving torque of the both end wheels 14 becomes zero.
- Actuator 18 is controlled.
- the time of arrival here is a concept that allows a certain amount of temporal width, such as immediately before arrival, the moment of arrival, and immediately after arrival (the same applies hereinafter).
- both end wheels 14 are maintained at a wheel speed substantially equal to the forward translational speed of step Q when they are in contact with the platform F1, but after contacting step Q, The wheel speed becomes zero, and the speed difference between the platform F1 and the step Q can be absorbed.
- the moving device is moved at the same speed as the forward translation speed of step Q by controlling the wheel speed of both end wheels 14 to be kept at zero. be able to.
- the grounding of the both end wheels 14 to step Q may be specified by reaching the platform side boundary coordinate value, may be specified by detecting a change in wheel speed of both end wheels 14, and others Appropriate means can be used.
- the left and right legs 10 more specifically, the positions of the both end wheels 14 may be shifted in the front-rear direction, the control is performed on the left and right legs 10 (both end wheels 14). can be performed for each of
- the external recognition sensor 25 estimates the forward translational speed of step Q when entering the escalator E, and the mobile device enters the escalator E at that forward translational speed.
- the estimated value of the external recognition sensor 25 is not necessarily correct, and the wheel speed of both intermediate wheels 13 entering step Q may not become zero.
- step Q If the wheel speed of both intermediate wheels 13 entering step Q does not become zero, it means that there is an error between the estimated forward translational speed of step Q and the actual forward translational speed of step Q. In such a case, based on the error, the translational speed of the moving device is adjusted so that the wheel speed of both intermediate wheels 13 becomes zero. can be matched with
- the route generation unit 35 when the exit of the escalator E is recognized by the external world recognition sensor 25, the route generation unit 35 generates a movement route for exiting the escalator E (hereinafter referred to as "exit route"). (S403). Specifically, a trajectory from the grounding positions of both intermediate wheels 13 and both end wheels 14 of the mobile device to the landing site F2 is generated as an exit route. Although it is possible to generate only one pattern of exit routes, in this embodiment two or more patterns are generated. (5) When the exit route from the escalator E is generated in (3) above, the mobile device exits from the escalator E according to the exit route (S404).
- both intermediate wheels 13 in this embodiment are driven wheels, when both intermediate wheels 13 move (advance) from step Q to landing F2, the wheel speed of both intermediate wheels 13 is accelerates. At this time, the position and time at which the wheel speed of both intermediate wheels 13 are accelerated are specified as the boundary between step Q and landing F2, and the coordinate value thereof (hereinafter referred to as "landing field side boundary coordinate value") and the landing field side boundary The arrival time to the coordinate value is obtained.
- both end wheels 14 which are driving wheels, advance from the escalator E.
- both end wheels 14 reach the boundary between step Q and landing F2 (the position specified by the landing side boundary coordinate value)
- the wheel speed of both end wheels 14 changes to the wheel speed of both intermediate wheels 13.
- the driving torque is controlled by the both end wheel actuators 18 so that the speed becomes constant. By doing so, it is possible to absorb the speed difference between step Q and landing F2.
- control method for absorbing the speed difference described here is just an example, and the speed difference between the boarding area F1 and the step Q and the speed difference between the step Q and the getting off area F2 are absorbed by other control methods. good too.
- the left and right legs 10 As in the case of entering the escalator E, when exiting from the escalator E, the left and right legs 10, more specifically, the wheels 14 at both ends may be displaced in the longitudinal direction. Therefore, the control can be performed for each of the left and right leg portions 10 (both end wheels 14).
- attitude control on the escalator E will be described.
- the positions of the intermediate wheels 13 in the front-rear direction and the positions of the end wheels 14 in the front-rear direction are shown.
- Attitude control in a state where the positions match is taken as an example.
- FIG. 18(a) shows a state in which the moving device is positioned in the stepless moving area E1 on the entrance side of the ascending escalator E.
- FIG. The moving device is in a state in which both intermediate wheels 13 and both end wheels 14 straddle two steps Q, specifically, both intermediate wheels 13 are positioned ahead in the direction of travel Q (hereinafter referred to as "first step Q1"). , and both end wheels 14 are in contact with the step Q (hereinafter referred to as the "second step Q2”) following the first step Q1.
- both intermediate wheels 13 and both end wheels 14 there is no difference in the height direction (hereinafter referred to as "height difference") between both intermediate wheels 13 and both end wheels 14.
- the both end wheel actuators 18 are driven, and by the drive, both the intermediate wheels 13 and the both end wheels 14 on each step Q are driven.
- the both-end wheels 14 are controlled so that the contact position of the wheel does not move.
- both intermediate wheels 13 become higher than both end wheels 14 as shown in FIG. A height difference is generated between the intermediate wheels 13 and the end wheels 14 .
- both the first joint actuators 15 and both the second joint actuators 16 are driven so that the angle ⁇ formed by the upper link 11 and the lower link 12 increases as the first step Q1 rises.
- the horizontality of the mounting section 20 is maintained.
- FIG. 19(a) shows a state in which the moving device is positioned in the entrance-side stepless moving area E1.
- the moving device is in a state where both intermediate wheels 13 and both end wheels 14 straddle two steps Q, specifically, both intermediate wheels 13 are grounded on the first step Q1. Then, the user rides on the escalator E with both end wheels 14 in contact with the second step Q2.
- both intermediate wheels 13 and both end wheels 14 there is no height difference between both intermediate wheels 13 and both end wheels 14 .
- the both end wheel actuators 18 are driven, and by the drive, both the intermediate wheels 13 and the both end wheels 14 on each step Q are driven.
- the both-end wheels 14 are controlled so that the contact position of the wheel does not move.
- both the intermediate wheels 13 become lower than the both end wheels 14 as shown in FIG. A height difference is generated between the intermediate wheels 13 and the end wheels 14 .
- both the first joint actuators 15 and both the second joint actuators 16 are driven so that the angle ⁇ between the upper link 11 and the lower link 12 becomes narrower as the first step Q1 descends.
- the horizontality of the mounting section 20 is maintained.
- Whether or not the height difference (relative position difference) between both intermediate wheels 13 and both end wheels 14 has become infinitely small can be determined, for example, by It can be determined from the current joint angle calculated based on the vertical detection signal acquired by the inertial sensor 26 .
- both intermediate wheels 13 and both end wheels 14 are controlled by both end wheel actuators 18 so that both middle wheels 13 and both end wheels 14 are always fixed at predetermined positions of step Q. be.
- fixed means that the four wheels of both intermediate wheels 13 and both end wheels 14 are positioned within a predetermined range of each step Q.
- the wheel speed of the wheels 14 becomes zero.
- both the first joint actuators 15 and both the second joint actuators 15 and the two second joint actuators are arranged so that the position of the center of gravity of the moving device in the longitudinal direction is always intermediate between the end wheel grounding position and the middle wheel grounding position.
- a joint actuator 16 is controlled.
- the combined center-of-gravity calculator 33 calculates the combined center-of-gravity position from the detection signal obtained by the seat surface sensor 24, and based on the calculated combined center-of-gravity position, both first joint actuators 15 and both By driving the second joint actuator 16, the longitudinal position of the center of gravity of the mobile device is controlled so that it is always intermediate between the end wheel grounding position and the middle wheel grounding position.
- control methods may be used when there is a change in the total center of gravity position. It is also possible to change the position of the center of gravity in the front-rear direction.
- FIG. 11(a) shows a state in which the four wheels of both end wheels 14 and both intermediate wheels 13 are in contact with the ground surface.
- FIG. 11(a) shows a state in which the four wheels of both end wheels 14 and both intermediate wheels 13 are in contact with the ground surface.
- FIG. 12(a) shows a state in which the four wheels of both end wheels 14 and both intermediate wheels 13 are in contact with the ground surface.
- both second joint actuators 16 are driven to change the position of the total center of gravity in the longitudinal direction to the ground contact position (intermediate wheel contact position) of both intermediate wheels 13 and the ground contact position of both end wheels 14. It is moved forward within the range between the end wheel ground contact positions (Fig. 12(a)).
- (3) Drive both the first joint actuators 15 and both the second joint actuators 16 in order to move the chair 20 backward while keeping the chair 20 horizontal.
- both first joint actuators 15 and both second joint actuators 16 simultaneously driving both end wheels 14 to counteract the rearward movement of chair 20 during rearward movement; to lift both intermediate wheels 13 from the ground surface (FIG. 12(c)).
- Both end wheels 14, both first joint actuators 15, both first joint actuators 15, and both first joint actuators 15 are arranged so that the ground contact positions of the end wheels 14 of both end wheels 14 coincide with the longitudinal direction of the total center of gravity at the same time when the rearward movement speed of the chair 20 becomes zero.
- the two-joint actuator 16 is driven (Fig. 12(d)).
- the mobile device of the present embodiment can switch from a two-wheel contact state to a four-wheel contact state. Switching from two-wheel grounding to four-wheel grounding can be performed, for example, by the procedure shown in FIGS. 13(a) to (e).
- FIG. 13(a) shows a state in which the mobile device stands up (self-supporting) with both end wheels 14 in contact with the ground surface.
- both end wheels 14 are driven so as to cancel the inertial force toward the rear of the moving device, and both first joint actuators 15 and both second joint actuators 16 are driven at the same time, The rear wheel 14 is moved rearward relative to the chair 20 (FIG. 13(d)).
- both first joint actuators 15 and both second joint actuators 16 are driven, and both intermediate wheels 13 are grounded at the same time that the translational speed of the moving device becomes zero (Fig. 13(e) )).
- the above switching control is an example, and switching from four-wheel grounding to two-wheel grounding and switching from two-wheel grounding to four-wheel grounding can be controlled by methods other than these.
- the moving apparatus of the present embodiment can stand on a single tread (equivalent to one step of stairs) with two legs 10 by controlling the legs 10 by the control unit 30, and one leg can 10 end wheel 14 is in contact with the first tread of the stair and the end wheel 14 of the other leg 10 is in contact with the second tread following the first tread. If there is an occupied space equivalent to that of a person walking up and down stairs, it is possible to go up and down stairs by bipedal walking.
- a moving device for moving a person is taken as an example.
- a loading section on which a load is placed can be used as the loading section 20 instead of the chair section 20 .
- stationary, forward, backward, turning, switching from four-wheel ground contact to two-wheel ground contact, and switching from two-wheel ground contact to four-wheel ground contact are performed in a state in which both end wheels 14 are not displaced in the front-rear direction (side-by-side state). ), but these operations can also be performed in a state in which both legs 10 (wheels 14 at both ends) are displaced in the longitudinal direction.
- both or one of the both end wheels 14 by controlling the rotation of both or one of the both end wheels 14 to match the total center of gravity position and the grounding position of one of the end wheels 14, when stationary or moving forward , when reversing, when turning, when switching from four-wheel grounding to two-wheel grounding, and when switching from two-wheel grounding to four-wheel grounding.
- the control for absorbing the speed difference when getting on and off the escalator E with two wheels on the ground will be described below.
- the processing flow for getting on and off the escalator E with two wheels on the ground is the same as that for getting on and off the escalator E with four wheels on the ground.
- the speed of the wheels 14 at both ends is controlled to be substantially constant with respect to the forward translational speed of step Q, the wheels at both ends 14 drive torque is reduced.
- the translational speed control and attitude control of the moving device are performed simultaneously, so the translational speed and wheel speed do not match. Therefore, the speed difference cannot be absorbed simply by controlling the wheel speed.
- the moving device By making the velocity equal to the directional translational velocity, the moving device can be moved so that the relative velocity with respect to the step Q is zero.
- control is performed as follows.
- both end wheels 14 are on the step Q and the translational speed of the moving device with respect to the forward translational speed of the step Q is controlled to be zero.
- both end wheels 14 of the moving device reach the landing F2 of the escalator E, there is a relative speed difference corresponding to the forward translational speed of step Q between the landing F2 and the moving device.
- the driving torque of the both end wheels 14 for speed control is increased.
- step Q it is determined that the both end wheels 14 have reached the landing F2 from step Q by detecting the change in the driving torque of the both end wheels 14 with a torque sensor or the like (not shown), and the both end wheels 14 have reached the landing F2.
- the driving torque of the wheels 14 at both ends is controlled so that the translational speed of the moving device becomes constant on step Q and after advancing to landing F.
- the moving apparatus of the present invention absorbs the speed difference between the step Q of the escalator E and the boarding/alighting area F, regardless of whether the four-wheel grounded state or the two-wheeled grounded state. You can safely get on and off E.
- the advantage of being able to get on and off escalator E with four wheels on the ground is that the posture when getting on and off escalator E is easier to stabilize, and safety is superior compared to getting on and off escalator E with two wheels on the ground. mentioned.
- the advantage of being able to get on and off the escalator E with two wheels on the ground is that it does not occupy more space on the escalator E than necessary.
- the left and right legs 10 As in the case of four-wheel grounding, in the case of two-wheel grounding, the left and right legs 10, more specifically, the wheels 14 at both ends are displaced in the front-rear direction when entering or exiting the escalator E. Therefore, the control can be performed for each of the left and right leg portions 10 (both end wheels 14).
- two legs 10 are used as an example, but at least two legs suffice, and three or more legs 10 are not excluded.
- the configuration of the mobile device of the present embodiment is an example, and the configuration of the mobile device of the present invention can be appropriately omitted, replaced, replaced, or otherwise changed without changing the gist thereof.
- the moving device of the present invention can be used not only as a moving device (chair-type moving device) for moving a person on it, but also as a moving device for moving a load other than a person (a load moving device). .
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Handcart (AREA)
- Manipulator (AREA)
- Motorcycle And Bicycle Frame (AREA)
Abstract
Description
本発明の移動装置の一例を、図面を参照して説明する。本発明の移動装置は人や物(以下「移動対象」という)Xなどを載せて移動する装置である。ここでは、人を載せて移動する移動装置(椅子型移動装置)を一例とする。なお、本願では移動装置の進行方向前方側を前、後方側を後ろ、左側を左、右側を右、上方側を上、下方側を下と表現する。
指令操作部22の操作によって指令操作が行われない場合、合算重心位置の前後方向の位置と両端部車輪14の端部車輪接地位置の前後方向の位置とが一致するように、左右の端部車輪14を駆動する。駆動後、最終的には左右の端部車輪14の回転角速度がゼロに収束するように回転角速度を制御する。
指令操作部22の操作によって前進の指令操作が行われた場合、合算重心位置の前後方向の位置が両端部車輪14の端部車輪接地位置の前後方向の位置よりも前方に位置するように端部車輪14を駆動させ、合算重心位置と両端部車輪14の端部車輪接地位置との間に差を生じさせる。この差の大きさは指令操作の大きさに比例した値とする。
指令操作部22の操作によって後退の指令操作が行われた場合、合算重心位置の前後方向の位置が両端部車輪14の端部車輪接地位置の前後方向の位置よりも後ろに位置するように端部車輪14を駆動させ、合算重心位置と両端部車輪14の端部車輪接地位置との間に差を生じさせる。この差の大きさは指令操作の大きさに比例した値とする。
指令操作部22の操作によって旋回の指令操作が行われた場合、左右の端部車輪14の回転数に差が生じるように両端部車輪14を駆動する。その差の大きさは旋回の指令操作の大きさに比例した値とする。
(1)外界認識センサ25によって外界形状を取得する(S001)。外界認識センサ25による外界形状の取得は継続して行われ、取得された外界形状は制御部30に伝達される。
(2)外界認識センサ25によって取得された外界形状から階段があるか否かが判定される(S002)。
(3)前記(2)の判定の結果、階段がないと認識された場合、移動装置は平面移動を継続する(S003)。
(4)前記(2)の判定の結果、階段があると認識された場合、その階段の形状(以下「階段形状」という)が外界認識センサ25によって取得される(S004)。
(5)外界認識センサ25によって取得された階段形状から、経路生成部35によって階段を昇降するための経路(たとえば、最短経路などの最適経路)が生成される(S005)。
(6)経路生成部35によって経路が生成されたのち、当該経路を通行可能か否かが判定される(S006)。
(7)前記(6)の判定の結果、通行できないと判定された場合、移動装置が階段の手前で停止する(S007)。この場合、図示しない情報表示手段や報知手段等によって、乗っている人に対して通行できないことを伝達することもできる。
(8)前記(6)の判定の結果、通行できると判定された場合、移動装置は当該階段の通行(昇降)を開始する(S008)。
(9)以降、前記(2)~(8)を繰り返して階段を順次昇降していく。
前記(5)の経路生成は、たとえば、図4に示す手順で行われる。
(1)移動装置の幅Wb、階段上方空間の幅方向の片側マージン(以下「片側幅マージン」という)Wm(図5(a))及び各段の中心位置から次の段の中心位置に対する幅方向の偏差許容値(以下「中心偏差許容値」という)dthを設定する(S101)。
(2)外界認識センサ25によって得られた階段の形状に基づき、各段の上方空間の幅WS(図5(a))を計測する(S102)。
(3)Ws≧Wb+2Wm(式1)を満たすか否かにより、移動装置が各段の空間を通行可能か否かを判定する(S103)。
(4)前記(3)において、前記式1を満たさない場合には通行不可と判定され、図示しない情報表示手段等によって通行不可能である旨が乗っている人に通知される(S104)。
(5)前記(3)において、前記式1を満たす場合、外界認識センサ25によって得られた階段形状に基づき、各段の中心位置Csi、Csi+1・・・を計算する(S105)。具体的には、図5(b)に示すように、予め設定された各段に共通に使用する基準線RLと各段を幅方向に二分する中心線L1、L2・・・との距離によって、各段の中心位置Csi、Csi+1・・・が計算される。
(6)前記(5)において各段の中心位置Csiを計算したのち、隣り合う段(たとえば、一段目と二段目、二段目と三段目)ごとに中心位置偏差dsi=|Csi+1-Csi|(式2)を計算する(S106)。
(7)前記(1)で設定した中心偏差許容値dthと前記(6)で計算した中心位置偏差dsiが、dth≧dsi(式3)を満たすか否かを判定する(S107)。
(8)前記(7)において、前記式3を満たさない場合(中心偏差許容値dthが中心位置偏差dsiを下回る場合)には通行不可と判定され、図示しない情報表示手段等によって通行不可能である旨が乗っている人に通知される(S104)。
(9)前記(7)において、前記式3を満たす場合(中心偏差許容値dthが中心位置偏差dsiを上回る場合)、各段の接地位置を各段の中心位置Csiに設定する(S108)。
(10)前記(9)で各段の接地位置を各段の中心位置Csiに設定したのち、図示しない情報表示手段等によって通行可能である旨が乗っている人に通知される(S109)。
制御部30は、経路生成部35で生成された経路に従い、両脚部10のどちらを持ち上げるかを決定する(図6(a))。ここでは、左脚部10aを持ち上げたのち、右脚部10bを持ち上げる場合を一例とする。
制御部30は、経路生成部35で生成された経路に従い、両脚部10のどちらを持ち上げるかを決定する(図8(a))。ここでは、右脚部10bを持ち上げたのち、左脚部10aを持ち上げる場合を一例とする。
次に、外乱に対する運動制御の一例について説明する。この実施形態の移動装置では、外乱に対して、図10に示す手順で制御が行われるようにしてある。
(1)座面センサ24によって得られた検知信号から、移動対象(人)Xの重心位置を推定する(S201)。
(2)合算重心算出部33(図2)で算出された合算重心位置に基づき、各アクチュエータ15~18を駆動する(S202)。
(3)合算重心位置に基づき、各アクチュエータ15~18を駆動した際に起こる理論運動を理論運動計算部36(図2)で計算する(S203)。
(4)慣性センサ26によって得られた情報から、運動推定部37(図2)によって実運動を推定する(S204)。
(5)前記(3)で計算した理論運動と前記(4)で推定した実運動とを比較し、両者に差があるか否かを判定する(S205)。
(6)前記(5)において、実運動と理論運動に差がないと判定された場合は、外乱がないものと判定し、外乱に対する運動制御は行わない。
(7)前記(5)において、実運動と理論運動に差があると判定された場合は、その差分の外乱があるものと判定し、その差の量に基づき、外乱量推定部38で外乱量を推定する(S206)。
(8)前記(7)で外乱量を推定したのち、推定した外乱量に基づき、修正駆動量計算部39で各アクチュエータ15~18の修正駆動量を計算する(S207)。
(9)前記(8)で計算した修正駆動量に基づいて、運動制御部31で各アクチュエータ15~18を駆動し、外乱に対する運動を制御する(S208)。
(1)外界認識センサ25によって外界状況が認識される(S301)。外界認識センサ25による外界状況の認識は移動装置での移動中、常時行われる動作である。
(2)外界認識センサ25によって取得された情報に基づき、エスカレータEの有無が判定される(S302)。
(3)前記(2)の判定の結果、エスカレータEがないと判定された場合、移動装置は平面移動を継続する(S311)。
(4)前記(2)の判定の結果、エスカレータEがあると判定された場合、外界認識センサ25によってエスカレータEの形状(以下「エスカレータ形状」という)が取得される(S303)。ここでいう、エスカレータ形状には、たとえば、ステップQの高さや幅のほか、エスカレータEの左右の持ち手部間の幅、無段差移動領域の前後方向の距離等が含まれる。
(5)前記(4)でエスカレータ形状が取得されると、当該エスカレータEに進入できるか否かが判定される(S304)。この実施形態では、外界認識センサ25によってエスカレータ形状が認識できた場合に「進入できる」と判定され、認識できなかった場合に「進入できない」と判定される。
(6)前記(5)において、エスカレータEに進入できないと判定された場合、平面移動を継続する(S311)。
(7)前記(5)において、エスカレータEに進入できると判定された場合、当該エスカレータ形状が運動制御部31に伝達され、エスカレータEへ進入できる旨が指令操作部22の表示画面に表示される。表示の一例としては、「エスカレータに乗る」のようなボタン等が挙げられる。
(8)前記(7)での表示後、指令操作部22からのエスカレータEに進入する旨の指示があるか否かが判定される(S306)
(9)前記(8)において、一定時間内に指令操作部22からエスカレータEへの進入の指示がないときは、移動装置は平面移動を継続する(S311)。
(10)前記(8)において、一定時間内に指令操作部22からエスカレータEへの進入の指示があったときは、経路生成部35によってエスカレータEに進入するための移動経路(以下「進入経路」という)が生成される(S307)。具体的には、エスカレータEの手前の乗り場F1から最初のステップQまでの軌道が進入経路として生成される。進入経路は一パターンだけ生成することもできるが、この実施形態では二以上のパターンが生成されるようにしてある。
(11)前記(10)での進入経路の生成後、エスカレータEに進入可能な左右位置が指令操作部22の表示画面に表示される(S308)。表示画面には、たとえば、「左」「真ん中」「右」のような選択ボタンが表示される。
(12)前記(11)での進入経路の左右位置の表示後、指令操作部22からエスカレータEへ進入する左右位置の指示があるか否かが判定される(S309)。たとえば、表示画面に「左」「真ん中」「右」の選択ボタンが表示される場合、一定時間内にいずれかの選択ボタンが押されれば指示があったものと判定し、一定時間内にいずれかの選択ボタンも押されなければ指示がないものと判定することができる。
(13)前記(12)において、一定時間内に指令操作部22からエスカレータEに進入する左右位置の指示がないときは、移動装置は平面移動を継続する(S311)。
(14)前記(12)において、一定時間内に指令操作部22からエスカレータEに進入する左右位置の指示があったときは、前記(10)で生成された複数の進入経路の中から当該指示に最も近い進入経路が選択され、当該進入経路に従って移動装置がエスカレータEに進入する(S310)。
この実施形態では、乗り場F1とステップQの間の速度差を吸収するため、エスカレータEに進入する際に次の制御が行われるようにしてある。
(1)外界認識センサ25によって外界状況を認識し、エスカレータ形状を取得する(S401)。外界認識センサ25による外界状況の認識は移動装置での移動中、常時行われる動作である。
(2)外界認識センサ25によってエスカレータ形状が取得されると、エスカレータEの出口が認識されたか否かが判定される(S402)。
(3)前記(2)において、外界認識センサ25によってエスカレータEの出口が認識されない場合、後述するエスカレータEに乗っている際の姿勢制御が継続される(S405)。
(4)前記(2)において、外界認識センサ25によってエスカレータEの出口が認識された場合、経路生成部35によってエスカレータEから進出する際の移動経路(以下「進出経路」という)が生成される(S403)。具体的には、移動装置の両中間車輪13及び両端部車輪14の接地位置から降り場F2までの軌道が進出経路として生成される。進出経路は一パターンだけ生成することもできるが、この実施形態では二以上のパターンが生成されるようにしてある。
(5)前記(3)でエスカレータEからの進出経路が生成されると、移動装置は当該進出経路に従ってエスカレータEから進出する(S404)。
この実施形態では、ステップQと降り場F2の間の速度差を吸収するため、エスカレータEから進出する際に次の制御が行われるようにしてある。
次に、エスカレータE上での姿勢制御について説明する。ここでは、左右の脚部10の両中間車輪13及び両端部車輪14が接地した四輪接地の状態であって、両中間車輪13同士の前後方向の位置及び両端部車輪14同士の前後方向の位置が一致した状態での姿勢制御を一例とする。
次に、四輪接地の状態から二輪接地の状態に切り替える際の制御の一例について説明する。本実施形態の移動装置は、四輪接地の状態から二輪接地の状態に切り替えることができる。四輪接地から二輪接地への切り替えは、たとえば、図11(a)~(d)に示す手順で行うことができる。
(1)図11(a)は両端部車輪14及び両中間車輪13の四輪が接地面に接地した状態を示すものである。
(2)図11(a)の状態で両端部車輪14を後進方向に駆動させ、移動装置を後方に(図11(a)の矢印方向)に並進運動させる。
(3)前記(2)のように移動装置を後方に並進運動させたのち、両端部車輪14に前進方向の駆動トルクをかける。このとき、慣性力によって椅子部20が後方に移動するように、また、椅子部20の高さと姿勢角が変化しないように、両第一関節アクチュエータ15及び両第二関節アクチュエータ16を駆動することで、両中間車輪13が地面から離れる(図11(b))。
(4)前記(3)の状態で、両端部車輪14、両第一関節アクチュエータ15及び両第二関節アクチュエータ16を駆動させ、両端部車輪14を椅子部20に対して相対的に前方に移動させる。
(5)前記(4)の状態で、椅子部20の後進速度がゼロになると同時に両端部車輪14の端部車輪接地位置が合算重心位置の前後方向と一致するように両端部車輪14を駆動する(図11(c))。
(6)前記(5)の状態で、左右二輪の端部車輪14のみが接地した状態になったのち、人による指令操作部22の操作に基づき、椅子部20の高さを変化させる。(図11(d))。
(1)図12(a)は両端部車輪14及び両中間車輪13の四輪が接地面に接地した状態を示すものである。
(2)前記(1)の状態で、両第二関節アクチュエータ16を駆動して、合算重心位置の前後方向の位置を両中間車輪13の接地位置(中間車輪接地位置)と両端部車輪14の端部車輪接地位置の間の範囲内で前方に移動させる(図12(a))。
(3)椅子部20を水平に保った状態で椅子部20を後方に移動させるために、両第一関節アクチュエータ15と両第二関節アクチュエータ16を駆動する。これにより、前後方向の合算重心位置が後方に移動する(図12(b))。
(4)椅子部20が後方に移動している最中に、その後方への運動を打ち消すように両端部車輪14を駆動するのと同時に、両第一関節アクチュエータ15と両第二関節アクチュエータ16を駆動することで両中間車輪13を接地面から持ち上げる(図12(c))。
(5)椅子部20の後進速度がゼロになると同時に両端部車輪14の端部車輪接地位置が合算重心位置の前後方向と一致するように両端部車輪14、両第一関節アクチュエータ15、両第二関節アクチュエータ16を駆動する(図12(d))。
(6)両端部車輪14のみが接地した状態になったのち、人による指令操作部22の操作に基づき、椅子部20の高さを変化させる。(図12(e))。
本実施形態の移動装置は、二輪接地の状態から四輪接地の状態に切り替えることができる。二輪接地から四輪接地の切り替えは、たとえば、図13(a)~(e)に示す手順で行うことができる。
(1)図13(a)は両端部車輪14が接地面に接地した状態で移動装置が起立(自立)した状態を示すものである。
(2)前記(1)の状態で、両第一関節アクチュエータ15及び両第二関節アクチュエータ16を駆動して、椅子部20の高さを四輪接地の状態に近い高さにする(図13(a)(b))。
(3)前記(2)の状態で、両端部車輪14を駆動し、移動装置を後方(図13(c)の矢印方向)に並進運動させる(図13(c))。
(4)前記(3)の状態で、移動装置の後方へ慣性力を打ち消すように両端部車輪14を駆動させると同時に、両第一関節アクチュエータ15及び両第二関節アクチュエータ16を駆動させ、両端部車輪14を椅子部20に対して相対的に後方に移動させる(図13(d))。
(5)前記(4)の状態で、両第一関節アクチュエータ15と両第二関節アクチュエータ16を駆動し、移動装置の並進速度がゼロになると同時に両中間車輪13を接地させる(図13(e))。
前記実施形態では人を載せて移動する移動装置(椅子型移動装置)を一例としているが、本発明の移動装置は人以外のもの、たとえば、荷物を載せて移動する荷物移動装置などとして用いることもできる。荷物移動装置として用いる場合、椅子部20に代えて荷物を載せられる荷載せ部を載置部20とすることができる。
10a 左脚部
10b 右脚部
11 上リンク
11a 左上リンク
11b 右上リンク
12 下リンク
12a 左下リンク
12b 右下リンク
13 中間車輪
13a 左中間車輪
13b 右中間車輪
14 端部車輪
14a 左端部車輪
14b 右端部車輪
15 第一関節アクチュエータ
15a 左第一関節アクチュエータ
15b 右第一関節アクチュエータ
16 第二関節アクチュエータ
16a 左第二関節アクチュエータ
16b 右第二関節アクチュエータ
17 第三関節アクチュエータ
17a 左第三関節アクチュエータ
17b 右第三関節アクチュエータ
18 端部車輪アクチュエータ
18a 左端部車輪アクチュエータ
18b 右端部車輪アクチュエータ
20 載置部(椅子部)
21 着座部
21a 座面
21b 背凭れ
22 指令操作部
23 連結部
23a 左ブラケット
23b 右ブラケット
24 座面センサ
25 外界認識センサ
26 慣性センサ
30 制御部
31 運動制御部
32 重心位置推定部
33 合算重心算出部
34 判定部
35 経路生成部
36 理論運動計算部
37 運動推定部
38 外乱量推定部
39 修正駆動量計算部
E エスカレータ
E1 入口側無段差移動領域
E2 出口側無段差移動領域
E3 勾配領域
F1 乗り場
F2 降り場
Q ステップ
Q1 第一ステップ
Q2 第二ステップ
X 移動対象
Claims (14)
- 移動対象を載せて移動する移動装置において、
端部車輪と中間車輪を有する二本の脚部と、
前記二本の脚部で支持された載置部と、
前記二本の脚部を制御する制御部を備え、
前記端部車輪と中間車輪が接地した四輪接地の状態で、前記端部車輪がエスカレータの乗り場からステップに移動したとき又は/及び端部車輪がエスカレータのステップから降り場に移動したときに、当該端部車輪の車輪速が前記制御部で制御される、
ことを特徴とする移動装置。 - 請求項1記載の移動装置において、
制御部は、中間車輪が乗り場からステップに又は中間車輪がステップから降り場に移動したときの座標値を取得し、端部車輪が当該座標値で特定される位置に到達したときに端部車輪の車輪速を制御する、
ことを特徴とする移動装置。 - 請求項1又は請求項2記載の移動装置において、
端部車輪を駆動する端部車輪アクチュエータを備え、
制御部は、端部車輪が乗り場からステップに移動したときに、当該端部車輪の車輪速がゼロになるように端部車輪アクチュエータを制御する、
ことを特徴とする移動装置。 - 請求項2記載の移動装置において、
端部車輪を駆動する端部車輪アクチュエータを備え、
制御部は、端部車輪がステップから降り場に移動したときに、当該端部車輪の車輪速が中間車輪の車輪速と等速になるように端部車輪アクチュエータを制御する、
ことを特徴とする移動装置。 - 移動対象を載せて移動する移動装置において、
端部車輪と中間車輪を有する二本の脚部と、
前記二本の脚部で支持された載置部と、
前記二本の脚部を制御する制御部を備え、
前記端部車輪が接地した二輪接地の状態で、当該端部車輪がエスカレータの乗り場からステップに移動したとき又は/及び端部車輪がエスカレータのステップから降り場に移動したときに、移動装置の並進速度が前記制御部で制御される、
ことを特徴とする移動装置。 - 請求項5記載の移動装置において、
端部車輪を駆動する端部車輪アクチュエータを備え、
制御部は、端部車輪が乗り場からステップに移動したときに、移動装置の並進速度がステップの前方向並進速度と等しくなるように端部車輪アクチュエータを制御する、
ことを特徴とする移動装置。 - 請求項5記載の移動装置において、
端部車輪を駆動する端部車輪アクチュエータを備え、
制御部は、端部車輪がステップから降り場に移動したときに、移動装置の並進速度がステップ上と降り場への進出後で等速となるように両端部車輪の駆動トルクを制御する、
ことを特徴とする移動装置。 - 請求項1から請求項4のいずれか1項に記載の移動装置において、
各脚部は、上リンクと、当該上リンクに連結された下リンクと、中間車輪と、当該下リンクの下端に設けられた端部車輪と、当該上リンクを前後方向に駆動する第一関節アクチュエータと、当該下リンクを前後方向に駆動する第二関節アクチュエータを備え、
エスカレータのステップに前記端部車輪と中間車輪が接地した四輪接地の状態で当該端部車輪と中間車輪に高さ方向の差が生じると、載置部の水平が維持されるように前記第一関節アクチュエータ及び第二関節アクチュエータが駆動する、
ことを特徴とする移動装置。 - 請求項8記載の移動装置において、
第一関節アクチュエータ及び第二関節アクチュエータは、中間車輪が第一ステップに接地し、端部車輪が当該第一ステップに後続する第二ステップに接地した四輪接地の状態で、当該中間車輪と端部車輪に高さ方向の差が生じたときに駆動する、
ことを特徴とする移動装置。 - 請求項8又は請求項9記載の移動装置において、
第一ステップの上昇によって中間車輪と端部車輪に高さ方向の差が生じると、上リンクと下リンクのなす角が広くなるように第一関節アクチュエータ及び第二関節アクチュエータが駆動する、
ことを特徴とする移動装置。 - 請求項8から請求項10のいずれか1項に記載の移動装置において、
第一ステップの降下によって中間車輪と端部車輪に高さ方向の差が生じると、上リンクと下リンクのなす角が狭くなるように第一関節アクチュエータ及び第二関節アクチュエータが駆動する、
ことを特徴とする移動装置。 - 請求項8から請求項11のいずれか1項に記載の移動装置において、
エスカレータ上で合算重心位置に変化が生じると、当該合算重心位置の前後方向の位置が端部車輪接地位置と中間車輪接地位置の中間となるように第一関節アクチュエータ及び第二関節アクチュエータが駆動する、
ことを特徴とする移動装置。 - 請求項12記載の移動装置において、
エスカレータ上での移動対象又は/及び移動装置の重心変化によって合算重心位置に変化が生じたときに、第一関節アクチュエータ及び第二関節アクチュエータが駆動する、
ことを特徴とする移動装置。 - 請求項12記載の移動装置において、
エスカレータのステップの高さの変化によって合算重心位置に変化が生じたときに、第一関節アクチュエータ及び第二関節アクチュエータが駆動する、
ことを特徴とする移動装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022549550A JP7538556B2 (ja) | 2021-04-26 | 2022-01-13 | 移動装置 |
CN202280007587.1A CN116490324A (zh) | 2021-04-26 | 2022-01-13 | 移动装置 |
US18/270,756 US20240293274A1 (en) | 2021-04-26 | 2022-01-13 | Moving device |
EP22795171.2A EP4331777A1 (en) | 2021-04-26 | 2022-01-13 | Moving device |
JP2023202688A JP2024019261A (ja) | 2021-04-26 | 2023-11-30 | 移動装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-074008 | 2021-04-26 | ||
JP2021074008 | 2021-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022230248A1 true WO2022230248A1 (ja) | 2022-11-03 |
Family
ID=83846847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/000916 WO2022230248A1 (ja) | 2021-04-26 | 2022-01-13 | 移動装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240293274A1 (ja) |
EP (1) | EP4331777A1 (ja) |
JP (2) | JP7538556B2 (ja) |
CN (1) | CN116490324A (ja) |
WO (1) | WO2022230248A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018102496A (ja) * | 2016-12-26 | 2018-07-05 | 国立大学法人 東京大学 | 走行車両及び走行車両の制御方法 |
US20200085654A1 (en) * | 2018-09-17 | 2020-03-19 | Toyota Motor North America, Inc. | Modular power bases for wheelchairs |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4326622A (en) * | 1980-12-11 | 1982-04-27 | Ellzey Floyd P | Cooperative escalator and wheel chair |
JP2695677B2 (ja) * | 1989-05-31 | 1998-01-14 | 三菱電機株式会社 | エスカレータ装置 |
JP4258456B2 (ja) * | 2004-09-14 | 2009-04-30 | トヨタ自動車株式会社 | ロボット |
CN106240669B (zh) * | 2016-07-27 | 2018-06-26 | 江苏安格尔机器人有限公司 | 机器人行走装置 |
GB2575505B (en) * | 2018-07-13 | 2022-08-24 | Centaur Robotics Ltd | Mobility aid device and method of manufacturing |
KR20240044131A (ko) * | 2022-09-28 | 2024-04-04 | 현대자동차주식회사 | 계단 주행 차량 |
-
2022
- 2022-01-13 JP JP2022549550A patent/JP7538556B2/ja active Active
- 2022-01-13 WO PCT/JP2022/000916 patent/WO2022230248A1/ja active Application Filing
- 2022-01-13 US US18/270,756 patent/US20240293274A1/en active Pending
- 2022-01-13 CN CN202280007587.1A patent/CN116490324A/zh active Pending
- 2022-01-13 EP EP22795171.2A patent/EP4331777A1/en active Pending
-
2023
- 2023-11-30 JP JP2023202688A patent/JP2024019261A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018102496A (ja) * | 2016-12-26 | 2018-07-05 | 国立大学法人 東京大学 | 走行車両及び走行車両の制御方法 |
US20200085654A1 (en) * | 2018-09-17 | 2020-03-19 | Toyota Motor North America, Inc. | Modular power bases for wheelchairs |
Also Published As
Publication number | Publication date |
---|---|
CN116490324A (zh) | 2023-07-25 |
JP2024019261A (ja) | 2024-02-08 |
JP7538556B2 (ja) | 2024-08-22 |
JPWO2022230248A1 (ja) | 2022-11-03 |
EP4331777A1 (en) | 2024-03-06 |
US20240293274A1 (en) | 2024-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6220069B2 (ja) | 走行装置 | |
KR101265745B1 (ko) | 이동체 및 그 제어방법 | |
JP4886201B2 (ja) | 移動ロボット | |
KR101158372B1 (ko) | 도립 차륜형 이동체 및 그 제어 방법 | |
JP4702414B2 (ja) | 同軸二輪車及び同軸二輪車の制御方法 | |
JP6601001B2 (ja) | 走行装置、案内用ロボット及び走行装置の制御方法 | |
KR20170048247A (ko) | 주행기구 및 그 주행기구가 장착되는 전기차와 장난감 | |
JP5177692B2 (ja) | 一対の片足載置型移動体を組み合わせた乗用移動装置 | |
JP2015047986A (ja) | 階段昇降機 | |
EP3580163A1 (en) | Stairlift | |
WO2022230248A1 (ja) | 移動装置 | |
JP6936668B2 (ja) | 車椅子用階段昇降機 | |
KR102371922B1 (ko) | 계단 및 단차 지형의 휠체어 주행을 위한 전동 어시스트 모듈을 포함한 전동 어시스트 시스템 및 전동 어시스트 모듈의 제어 방법 | |
JP7122779B1 (ja) | 移動装置 | |
KR20110054850A (ko) | 탑승자 자세인식을 통해 주행시키는 1인 기립식 탑승로봇 | |
JP2015047987A (ja) | 階段昇降機 | |
JPH07206324A (ja) | 階段昇降装置 | |
KR102393474B1 (ko) | 전동보장구 | |
US12076283B2 (en) | Small electric vehicle | |
EP4406897A1 (en) | Method to operate a stairlift with two speed profiles | |
JP4030009B2 (ja) | 移乗機 | |
WO2019187292A1 (ja) | 作業支援機 | |
JP6265143B2 (ja) | バランス訓練システム | |
JP2007314078A (ja) | キャリー | |
JP5593181B2 (ja) | 階段昇降機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022549550 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22795171 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280007587.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18270756 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022795171 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022795171 Country of ref document: EP Effective date: 20231127 |