WO2022230053A1 - 半導体レーザ光源装置 - Google Patents

半導体レーザ光源装置 Download PDF

Info

Publication number
WO2022230053A1
WO2022230053A1 PCT/JP2021/016796 JP2021016796W WO2022230053A1 WO 2022230053 A1 WO2022230053 A1 WO 2022230053A1 JP 2021016796 W JP2021016796 W JP 2021016796W WO 2022230053 A1 WO2022230053 A1 WO 2022230053A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
dielectric substrate
light source
source device
control module
Prior art date
Application number
PCT/JP2021/016796
Other languages
English (en)
French (fr)
Inventor
誠二 中野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020237035058A priority Critical patent/KR20230155572A/ko
Priority to CN202180097280.0A priority patent/CN117178445A/zh
Priority to US18/259,984 priority patent/US20240097399A1/en
Priority to DE112021007591.8T priority patent/DE112021007591T5/de
Priority to JP2021549580A priority patent/JP6984801B1/ja
Priority to PCT/JP2021/016796 priority patent/WO2022230053A1/ja
Priority to TW111100726A priority patent/TWI779983B/zh
Publication of WO2022230053A1 publication Critical patent/WO2022230053A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0231Stems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present disclosure relates to a semiconductor laser light source device that controls the temperature of a semiconductor optical modulation element using a temperature control module.
  • a TO-CAN (Transistor-Outlined CAN) type which can be manufactured at low cost, is generally applied as the structure of a laser light source device equipped with a semiconductor optical modulation element.
  • lead pins are generally sealed and fixed to a metal stem using glass. Since the pressure due to the difference in thermal expansion coefficient is used, the arrangement of the lead pins and the spacing between the lead pins are important to ensure high airtightness.
  • a laser light source device equipped with a semiconductor optical modulation element uses a temperature control module to keep the temperature of the semiconductor optical modulation element constant (see, for example, Japanese Unexamined Patent Application Publication No. 2002-100003).
  • the high-frequency line of the first dielectric substrate on which the semiconductor optical modulator is mounted and the high-frequency line of the second dielectric substrate joined to the lead pins are joined with conductive wires.
  • the presence of the second dielectric substrate increases the cost and reduces the degree of freedom in mounting on the first dielectric substrate.
  • the distance from the lead pin to the semiconductor optical modulator becomes long, and the high-frequency characteristics deteriorate due to impedance mismatch or an increase in the inductance component.
  • the distance from the temperature control module to the semiconductor optical modulator is long and the heat diffusion is poor, resulting in high power consumption.
  • the electric signal input method to the semiconductor optical modulation element is a single-layer driving method, the power consumption is high.
  • the present disclosure has been made in order to solve the above-described problems, and the object thereof is to reduce cost and power consumption, and to improve the degree of freedom of mounting on a dielectric substrate and high-frequency characteristics of a semiconductor laser light source. You get the device.
  • a semiconductor laser light source device includes: a metal stem; first to third lead pins penetrating the metal stem; a support block provided on the metal stem; a temperature control module having a lower substrate, an upper substrate, and a plurality of thermoelectric elements sandwiched between the upper substrate and the lower substrate; and a dielectric whose back surface is bonded to the upper substrate of the temperature control module.
  • a substrate a differential driving signal line provided on the main surface of the dielectric substrate, a semiconductor optical modulator mounted on the main surface of the dielectric substrate, and mounted on the main surface of the dielectric substrate a temperature sensor, a first conductive wire connecting one end of the signal line for differential driving to the semiconductor optical modulator, and the other end of the signal line for differential driving to the first lead pin. a third conductive wire connecting the temperature sensor and the second lead pin; and a fourth conductive wire connecting the temperature control module and the third lead pin. It is characterized by having
  • the temperature control module is mounted on the side surface of the support block provided on the metal stem, and the dielectric substrate on which the semiconductor optical modulation element is mounted is joined to the temperature control module.
  • the dielectric substrate can be made larger, the degree of freedom in mounting on the dielectric substrate is improved.
  • the signal line provided on the main surface of the dielectric substrate can be connected to the lead pin with a short conductive wire, the high frequency characteristics are improved.
  • the distance from the temperature control module to the semiconductor optical modulator is short, heat diffusion is improved, and heat absorption and heat dissipation in the temperature control module are improved, thereby reducing power consumption.
  • the electrical signal input method to the semiconductor optical modulation element is a differential drive method, the voltage amplitude of the signal generator can be reduced and the power consumption of the signal generator can be reduced as compared with the conventional single layer drive method. can.
  • FIG. 1 is a front perspective view showing a semiconductor laser light source device according to Embodiment 1;
  • FIG. 1 is a top view showing a semiconductor laser light source device according to Embodiment 1;
  • FIG. 1 is a side view showing the semiconductor laser light source device according to Embodiment 1;
  • FIG. 1 is a rear perspective view showing a semiconductor laser light source device according to Embodiment 1;
  • FIG. 8 is a front perspective view showing a semiconductor laser light source device according to Embodiment 2;
  • FIG. 11 is a front perspective view showing a semiconductor laser light source device according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing a semiconductor laser light source device according to Embodiment 4;
  • a semiconductor laser light source device will be described with reference to the drawings.
  • the same reference numerals are given to the same or corresponding components, and repetition of description may be omitted.
  • FIG. 1 is a front perspective view showing a semiconductor laser light source device according to Embodiment 1.
  • FIG. 2 is a top view showing the semiconductor laser light source device according to Embodiment 1.
  • FIG. 3 is a side view showing the semiconductor laser light source device according to Embodiment 1.
  • FIG. 4 is a rear perspective view showing the semiconductor laser light source device according to Embodiment 1.
  • the metal stem 1 has a generally circular plate-like shape, and is a stem base made of a metal material in which the surface of a material with high thermal conductivity such as Cu is plated with Au.
  • a plurality of lead pins 2a-2f pass through the metal stem 1.
  • a glass 3 is generally used to fix the lead pins 2a-2f to the metal stem 1.
  • FIG. Impedance mismatching degrades frequency response characteristics due to multiple reflections of signals, making high-speed modulation difficult. Therefore, the glass 3 is made of a material with a low dielectric constant so as to have the same impedance as the signal generator.
  • a support block 4 is provided on the metal stem 1.
  • the support block 4 is a block of a metal material in which the surface of a material with high thermal conductivity such as Cu is plated with Au.
  • a support block 4, which is a separate part from the metal stem 1, may be mounted on the metal stem 1, or the metal stem 1 and the support block 4 may be integrally formed.
  • a temperature control module 5 is mounted on the side surface of the support block 4.
  • the temperature control module 5 has a plurality of thermoelectric elements 5a made of a material such as BiTe sandwiched between a lower substrate 5b and an upper substrate 5c made of a material such as AlN.
  • the side surface of the support block 4 and the lower substrate 5b of the temperature control module 5 are bonded with a bonding material such as SnAgCu solder or AuSn solder.
  • the lower substrate 5b has a projecting portion that projects upward from the upper substrate 5c, and the projecting portion is provided with a metallization 5d for supplying power to the thermoelectric element 5a.
  • the dielectric substrate 6 is formed in a rectangular plate shape, is made of a ceramic material such as aluminum nitride (AlN), and has electrical insulation and heat transfer functions.
  • the dielectric substrate 6 has a main surface and a back surface opposite to each other and four side surfaces. Of the four side surfaces of the dielectric substrate 6, the lower side surface faces the upper surface of the metal stem 1, and the upper side surface is opposite to the lower side surface.
  • the back surface of the dielectric substrate 6 is bonded to the upper substrate 5 c of the temperature control module 5 .
  • Two differential drive signal lines 7a and 7b, a ground conductor 8, and a temperature control module conductor 9 are provided on the main surface of the dielectric substrate 6 by Au plating and metallization.
  • the differential drive signal lines 7a and 7b are microstrip lines or coplanar lines and have an impedance equivalent to the output impedance of the signal generator.
  • the temperature control module conductor 9 is provided from the main surface of the dielectric substrate 6 to the upper side surface.
  • a semiconductor optical modulator 10 , a temperature sensor 11 , and a ceramic block 12 are mounted on the main surface of the dielectric substrate 6 .
  • SnAgCu solder, AuSn solder, or the like is used as a bonding material for bonding the temperature sensor 11 and the ceramic block 12 to the dielectric substrate 6, for example.
  • the modulator section of the semiconductor optical modulator 10 is composed of a plurality of electro-absorption optical modulators.
  • the temperature sensor 11 is, for example, a thermistor.
  • the ceramic block 12 is, for example, an AlN substrate, and a conductor film is provided on its upper surface.
  • a light receiving element 13 is mounted on the metal stem 1 or submount. Here, the light receiving element 13 is arranged on the Z-axis negative direction side of the semiconductor optical modulation element 10 .
  • a conductive wire 14a connects the distributed feedback laser diode of the semiconductor optical modulator 10 and the lead pin 2a.
  • Conductive wires 14b and 14c connect one ends of the two differential drive signal lines 7a and 7b to EAM (electro-absorption modulator) electrodes of the semiconductor optical modulator 10, respectively.
  • Conductive wires 14d and 14e connect the other ends of the two differential drive signal lines 7a and 7b to the lead pins 2b and 2c, respectively.
  • a conductive wire 14 f connects the temperature sensor 11 and the conductive film of the ceramic block 12 .
  • a conductive wire 14g connects the conductor film of the ceramic block 12 and the lead pin 2d.
  • Conductive wires 14h, 14i connect the ground conductor 8 and the metal stem 1.
  • a conductive wire 14 j connects the temperature control module conductor 9 provided on the main surface of the dielectric substrate 6 and the metallization 5 d of the temperature control module 5 .
  • a conductive wire 14k connects the temperature control module conductor 9 provided on the upper side surface of the dielectric substrate 6 and the lead pin 2e.
  • a conductive wire 14l connects the light receiving element 13 and the lead pin 2f.
  • the semiconductor optical modulator 10 is, for example, a modulator-integrated laser diode (EAM-LD) in which an electro-absorption optical modulator using an InGaAsP-based quantum well absorption layer and a distributed feedback laser diode are monolithically integrated.
  • EAM-LD modulator-integrated laser diode
  • a laser beam is emitted from the light emitting point of the semiconductor optical modulator 10 along an optical axis perpendicular to the chip end surface and parallel to the chip main surface.
  • the power supply to the distributed feedback laser diode may be directly connected from the lead pin 2a via the conductive wire 14a, or may be connected via a conductor provided on the dielectric substrate 6 depending on the manufacturing method.
  • the differential electrical signals input to the lead pins 2b and 2c are transmitted to the differential driving signal lines 7a and 7b through the conductive wires 14d and 14e, and the semiconductor optical modulator 10 through the conductive wires 14b and 14c. is applied to the modulator.
  • the electrical signals input to the lead pins 2b and 2c are electromagnetically coupled with the metal stem 1.
  • FIG. A ground conductor 8 of the dielectric substrate 6 bonded to the metal stem 1, the support block 4, and the temperature control module 5 acts as an AC ground.
  • the temperature control module 5 Since the oscillation wavelength changes when the temperature of the semiconductor optical modulator 10 changes, it is necessary to keep the temperature constant. Therefore, when the temperature of the semiconductor optical modulator 10 rises, the temperature control module 5 cools it, and conversely, when the temperature drops, the temperature control module 5 generates heat to keep the temperature of the semiconductor optical modulator 10 constant. . Heat generated in the semiconductor optical modulator 10 is transferred to the upper substrate 5 c of the temperature control module 5 through the dielectric substrate 6 . The temperature control module 5 absorbs heat received from the semiconductor optical modulator 10 . The heat absorbed by the temperature control module 5 is propagated from the lower substrate 5b of the temperature control module 5 through the support block 4 and the metal stem 1 in the Z-axis negative direction, ).
  • the temperature sensor 11 indirectly measures the temperature of the semiconductor optical modulator 10 .
  • the measured temperature is fed back to the temperature control module 5.
  • the temperature control module 5 cools the semiconductor optical modulator 10.
  • the temperature control module 5 generates heat. Thereby, the temperature of the semiconductor optical modulator 10 can be stabilized.
  • the temperature sensor 11 and the lead pin 2d are directly connected by wire, the ambient temperature transmitted to the metal stem 1 from the outside world flows into the temperature sensor 11 through the wire, making it impossible to measure the temperature accurately. Therefore, a ceramic block 12 is arranged between the temperature sensor 11 and the lead pin 2d for relay. As a result, the amount of heat flowing into the temperature sensor 11 is reduced, and the temperature sensor 11 can accurately measure the temperature. In addition, since the temperature sensor 11 and the semiconductor optical modulation element 10 are mounted on the same main surface of the dielectric substrate 6, the temperature correlation is easily matched and temperature control is easy.
  • the light receiving element 13 converts the optical signal into an electrical signal (O/E conversion).
  • An electrical signal is transmitted to the lead pin 2f via the connected conductive wire 14l.
  • the semiconductor optical modulation element 10 , the temperature sensor 11 and the ceramic block 12 may be bonded on the dielectric substrate 6 in advance and assembled as a semi-finished product, and this semi-finished product may be bonded to the temperature control module 5 . Therefore, it is not always necessary to use a high-melting-point material such as SnAgCu solder or AuSn solder as a bonding material between the temperature control module 5 and the dielectric substrate 6, and a thermosetting resin, an ultraviolet curable resin, or the like can be used. As a result, manufacturing difficulty is reduced.
  • FIG. 5 is a graph comparing the power consumption of the temperature control module with the conventional structure and the structure of the present embodiment.
  • the heat generation amount of the semiconductor optical modulator 10 was fixed at 0.2 W, and the environmental temperature was varied from -40°C to 95°C. It can be seen that the power consumption of the structure of this embodiment is reduced by about 0.2W.
  • the temperature control module 5 is mounted on the side surface of the support block 4 provided on the metal stem 1, and the dielectric substrate 6 on which the semiconductor optical modulator 10 is mounted is temperature controlled. It is joined to module 5 .
  • the dielectric substrate 6 can be made larger, the degree of freedom in mounting on the dielectric substrate 6 is improved.
  • the signal line provided on the main surface of the dielectric substrate 6 can be connected to the lead pin with a short conductive wire, the high frequency characteristics are improved.
  • the electrical signal input method to the semiconductor optical modulator 10 is a differential drive method, the voltage amplitude of the signal generator can be reduced and the power consumption of the signal generator can be reduced as compared with the conventional single layer drive method. can be done.
  • a secondary medium such as a metal block does not exist between the temperature control module 5 and the dielectric substrate 6, and the two are directly joined. Therefore, the distance between the semiconductor optical modulator 10 and the temperature control module 5 is only the thickness of the dielectric substrate 6 . Therefore, since the thermal distance from the temperature control module 5 to the semiconductor optical modulation element 10 is short, the heat dissipation is improved and the power consumption can be reduced. Moreover, since the temperature control module 5 and the dielectric substrate 6 are directly bonded, the cost can be reduced by reducing the manufacturing process, time, and the number of parts.
  • differential drive signal lines 7a, 7b on the dielectric substrate 6 and the lead pins 2b, 2c are directly connected only by the conductive wires 14d, 14e without another dielectric substrate. Therefore, the number of signal reflection points is reduced and the high frequency characteristics are improved.
  • a compression method or a matching method is generally applied to seal and fix the lead pins 2a to 2f to the metal stem 1 with the glass 3.
  • each lead pin 2a to 2f has the same pressure during sealing. Therefore, it is desirable that the lead pins 2a to 2f are arranged circularly with respect to the metal stem 1. FIG. Also, if the adjacent lead pins 2a to 2f are too close to each other, the sealing performance will deteriorate, so a certain amount of distance is required.
  • the temperature control module 5 is bonded to the side surface of the support block 4 in this embodiment, the area occupied on the metal stem 1 can be reduced.
  • the lead pins 2a to 2d are arranged on the main surface side of the dielectric substrate 6, but the two lead pins 2e for supplying power to the temperature control module 5 are arranged on the back surface side of the dielectric substrate 6. Therefore, the lead pins 2a to 2f can be evenly arranged on the metal stem 1 in a circular shape. As a result, airtightness is improved.
  • a conductive wire 14j connects the metallization 5d of the temperature control module 5 and the temperature control module conductor 9, and a conductive wire 14k connects the temperature control module conductor 9 and the lead pin 2e. This shortens the distance on the XY plane from the lead pin 2e to the metallization 5d. Therefore, the influence of the moment load applied to the conductive wires 14j and 14k is reduced, and the resistance of the conductive wires 14j and 14k to bending, vibration and impact is improved.
  • lead pins arranged on the main surface side of the dielectric substrate 6 other than the lead pins 2b and 2c connected to the differential driving signal lines 7a and 7b are wire-connected to the metallization 5d, the metallization 5d is connected from the lead pins to the metallization 5d. becomes longer on the XY plane. Therefore, there is a problem that the conductive wire is bent under the influence of the moment load and the conductive wire comes into contact with the dielectric substrate 6 . Moreover, there is also a problem that the conductive wire may fall off from the lead pin due to the influence of vibrations and shocks during transportation.
  • the temperature control module conductor 9 is provided from the main surface of the dielectric substrate 6 to the upper side surface.
  • a conductive wire 14j connects the metallization 5d of the temperature control module 5 and the temperature control module conductor 9, and a conductive wire 14k connects the temperature control module conductor 9 and the lead pin 2e arranged on the back surface of the dielectric substrate 6. .
  • the output position/angle of the semiconductor optical modulation element 10 shifts due to changes in the thermal stress of the members due to changes in the temperature of the external environment. As a result, the optical coupling efficiency is lowered when the laser light source device converges the laser light onto the optical fiber. Therefore, it is important to have a structure that is less susceptible to changes in thermal stress.
  • the outer diameters of the dielectric substrate 6 in the X-axis and Z-axis directions are larger than the outer diameters of the upper substrate 5c of the temperature control module 5 in the X-axis and Z-axis directions.
  • the rigidity of the structure is improved, the stress applied to the semiconductor optical modulator 10 can be reduced, and cracks and the like of the semiconductor optical modulator 10 can be suppressed.
  • the dielectric substrate 6 can suppress the influence of the amount of deflection of the temperature control module 5 .
  • the outer diameter of the upper substrate 5c of the temperature control module 5 may be made larger than the outer diameter of the dielectric substrate 6.
  • the ground of the semiconductor light modulating element extends from the first dielectric substrate to the second dielectric substrate by conductive wires, and is metallized through the metal block supporting the second dielectric substrate. connected to the stem.
  • the distance is long and the GND is weak, degrading the high-frequency characteristics.
  • the ground conductor 8 of the dielectric substrate 6 is directly connected to the metal stem 1 only by the conductive wires 14h and 14i without the second dielectric substrate. This strengthens the GND and improves the high frequency characteristics.
  • the ground conductor 8 is provided from the main surface to the back surface of the dielectric substrate 6 in a region not in contact with the differential drive signal lines 7a and 7b and the temperature control module conductor 9.
  • a conductive wire 14h connects the ground conductor 8 on the main surface of the dielectric substrate 6 and the metal stem 1 to provide a common ground for the semiconductor optical modulator 10, the temperature sensor 11, and the like.
  • a conductive wire 14 i connects the ground conductor 8 on the back surface of the dielectric substrate 6 and the metal stem 1 . This improves the frequency response characteristics. Two or more of these conductive wires 14h and 14i are desirable because the improvement effect is small with one wire.
  • the lead pins 2b and 2c connected to the differential drive signal lines 7a and 7b have inner lead portions protruding from the upper surface of the metal stem 1. As the length of the inner lead portion is shortened, the inductance component is reduced, the loss due to signal reflection in the inner lead portion can be reduced, and the passband is improved.
  • a matching resistor may be provided on the main surface of the dielectric substrate 6 and connected in parallel with the semiconductor optical modulation element 10 .
  • FIG. 6 is a front perspective view showing a semiconductor laser light source device according to Embodiment 2.
  • an MZM (Mach Zehnder Module) type semiconductor optical modulator 15 is mounted on the main surface of the dielectric substrate 6 .
  • the semiconductor optical modulator 15 is a laser diode in which, for example, a distributed feedback laser diode, two phase modulator sections 16a and 16b, a polarization rotator section 17 and a light receiving element 13 are monolithically integrated.
  • the phase modulator sections 16a and 16b are Mach-Zehnder optical modulators.
  • Differential drive signal lines 7a, 7b, etc. are provided on the main surface of the dielectric substrate 6 in the same manner as in the first embodiment. It is provided on the main surface of the substrate 6 .
  • Conductive wires 14b and 14c connect one ends of the two differential driving signal lines 7a and 7b to the phase modulator sections 16a and 16b of the semiconductor optical modulator 15, respectively.
  • a conductive wire 14m connects the polarization rotator section 17 of the semiconductor optical modulator 15 and the polarization rotator conductor 18 .
  • a conductive wire 14n connects the polarization rotator conductor 18 and the lead pin 2g.
  • a conductive wire 14 o connects the light receiving element 13 of the semiconductor optical modulation element 15 and the light receiving element conductor 19 .
  • a conductive wire 14p connects the light-receiving element conductor 19 and the lead pin 2f.
  • the semiconductor optical modulation element 15 has two phase modulator sections 16a and 16b and one polarization rotator section 17, it is originally necessary to provide one more lead pin than in the first embodiment. However, if one lead pin is added to the structure of the first embodiment and arranged in a circular shape, the interval between the lead pins becomes too narrow, and airtightness cannot be ensured, and mass productivity cannot be ensured in some cases.
  • the lead pin 2a is arranged in the central portion of the metal stem 1. Since pressure is likely to be evenly applied to the central portion, airtightness equivalent to that of the first embodiment can be maintained. In addition, in the conventional structure in which the temperature control module is flatly joined to the central portion of the metal stem, the lead pins cannot be arranged in the central portion of the metal stem, resulting in poor airtightness.
  • the vertical and horizontal outer diameters of the MZM type semiconductor optical modulator 15 are several millimeters, which are several times the outer diameter of the electro-absorption optical modulator of the first embodiment. Therefore, it has been difficult to mount the MZM type semiconductor optical modulator 15 in the conventional structure in which the second dielectric substrate exists on the stem. In order to mount the MZM type semiconductor optical modulator, it is necessary to increase the size by several millimeters in the direction of light emission, which increases the outer diameter of the laser light source device. As a result, the distance from the temperature control module 5 to the semiconductor optical modulator 10 increases, and the heat absorption/radiation performance of the temperature control module 5 deteriorates. In addition, since the distance from the lead pin to the semiconductor optical modulator becomes long, the extension of the high frequency line degrades the high frequency characteristics.
  • the MZM type is mounted on the main surface of the dielectric substrate 6 without increasing the outer diameter of the laser light source device.
  • a semiconductor optical modulator 15 can be mounted. Since the distance from the temperature control module 5 to the semiconductor optical modulation element 15 is the thickness of the dielectric substrate 6 and is very close, the heat absorption/dissipation properties are as good as in the first embodiment. Performance enhancement is not required. Moreover, no extension of the high-frequency line is required, and the high-frequency characteristics do not deteriorate.
  • the light receiving element 13 is generally integrated in the MZM type semiconductor optical modulation element 15, it may be mounted separately as in the first embodiment.
  • Other configurations and effects are the same as those of the first embodiment.
  • FIG. 7 is a front perspective view showing a semiconductor laser light source device according to Embodiment 3.
  • FIG. A lens 20 , an optical element 21 and a block 22 are mounted on the main surface of the dielectric substrate 6 .
  • a light receiving element 13 is mounted on the side surface of the block 22 .
  • a semiconductor optical modulation element 23 is mounted on the main surface of the dielectric substrate 6 instead of the semiconductor optical modulation element 10 .
  • the semiconductor optical modulator 23 has an optical amplifier (SOA: Semiconductor Optical Amplifier) that amplifies the intensity of laser light. Therefore, a higher light output can be obtained.
  • SOA Semiconductor Optical Amplifier
  • the overall length of the semiconductor optical modulation element 23 having the optical amplifier is increased, the mounting space on the main surface of the dielectric substrate 6 is large in this embodiment, so the dielectric substrate 6 is a factor of high cost or band deterioration. No structural change is required.
  • the lens 20 and the optical element 21 are made of glass such as SiO2 .
  • the lens 20 and the optical element 21 are bonded to the dielectric substrate 6 with a bonding material such as an epoxy resin adhesive.
  • a bonding material such as an epoxy resin adhesive.
  • an epoxy-based resin it is temporarily cured by ultraviolet irradiation immediately after adhesion, and then thermally cured through a heat treatment process to perform bonding.
  • the lens 20 collimates or converges the laser light emitted from the semiconductor optical modulator 23 in the positive direction of the Z axis.
  • the optical element 21 separates part of the laser light emitted from the semiconductor optical modulator 10 .
  • the light receiving element 13 converts the separated laser light into an electric signal.
  • the lens 20 and the lens 20 are mounted on the main surface of the dielectric substrate 6 without increasing the outer diameter of the laser light source device.
  • the optical element 21, block 22, light receiving element 13, etc. can be mounted.
  • the block 22 is, for example, an AlN substrate, and conductors 22a and 22b separated from each other are provided on the surface.
  • the back electrode of the light receiving element 13 is joined to the conductor 22a of the block 22 by soldering or the like.
  • a surface electrode of the light receiving element 13 is joined to the conductor 22b by a conductive wire 14q.
  • This bonding is performed by assembling a semi-finished product in a process different from the assembling process of the laser light source device, and this semi-finished product is bonded to the main surface of the dielectric substrate 6 simultaneously with the bonding of the semiconductor optical modulation element 23 and the like. As a result, manufacturing difficulty is reduced compared to the case where semi-finished products are not manufactured.
  • the conductor 22b After bonding the semifinished product to the main surface of the dielectric substrate 6, the conductor 22b is connected to the lead pin 2f by the conductive wire 14r. As a result, the electric signal OE-converted by the light receiving element 13 can be sent to the lead pin 2f in the negative direction of the Z axis.
  • Other configurations and effects are the same as those of the first embodiment.
  • FIG. 8 is a schematic diagram showing a semiconductor laser light source device according to a fourth embodiment.
  • a lens cap 24 is joined to the metal stem 1 of the semiconductor laser light source device according to any one of the first to third embodiments.
  • the lens cap 24 is an airtight sealing cap that airtightly seals the support block 4 mounted on the metal stem 1, the temperature control module 5, the dielectric substrate 6, the semiconductor optical modulator 10, the temperature sensor 11, and the like. . Therefore, humidity resistance and disturbance resistance can be improved.
  • the lens of the cap 24 with lens is made of glass made of SiO 2 , for example, and substantially converges or collimates the laser light emitted from the semiconductor optical modulation element 10 .
  • the laser light from the semiconductor optical modulator 23 having a large spread angle is collimated by the lens 20, and then the collimated light is condensed by the lens cap 24. and make it incident on the fiber.
  • the light is directly condensed without being collimated and made incident on the fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

第1から第3のリードピン(2b~2e)が金属ステム(1)を貫通する。支持ブロック(4)が金属ステム(1)の上に設けられている。温度制御モジュール(5)は、支持ブロック(4)の側面に実装され、下側基板(5b)と、上側基板(5c)と、上側基板(5c)と下側基板(5b)に挟まれた複数の熱電素子(5a)とを有する。誘電体基板(6)の裏面が温度制御モジュール(5)の上側基板(5c)に接合されている。2本の差動駆動用信号線路(7a,7b)が誘電体基板(6)の主面に設けられている。半導体光変調素子(10)と温度センサ(11)が誘電体基板(6)の主面に実装されている。第1の導電性ワイヤ(14b,14c)は差動駆動用信号線路(7a,7b)の一端と半導体光変調素子(10)を接続する。第2の導電性ワイヤ(14d,14e)は差動駆動用信号線路(7a,7b)の他端と第1のリードピン(2b,2c)を接続する。第3の導電性ワイヤ(14f,14g)は温度センサ(11)と第2のリードピン(2d)を接続する。第4の導電性ワイヤ(14j,14k)は温度制御モジュール(5)と第3のリードピン(2e)を接続する。

Description

半導体レーザ光源装置
 本開示は、温度制御モジュールにより半導体光変調素子の温度制御を行う半導体レーザ光源装置に関する。
 SNS、動画共有サービス等の普及が世界的規模で進んでおり、データ伝送の大容量化が加速している。限られた実装スペースで信号の高速大容量伝送化に対応するために、光トランシーバーは高速化の小型化が進んでいる。光デバイスには、高速化と低コスト化に加えて、ランニングコストを抑えるために低消費電力化が求められている。
 半導体光変調素子を搭載したレーザ光源装置の構造として、安価に製品化できるTO-CAN(Transistor-Outlined CAN)型が一般的に適用される。TO-CANの構造では一般的にリードピンを金属ステムにガラスを用いて封着固定している。それぞれの熱膨張係数差による圧力を利用しているため、高い気密性を確保するためにはリードピンの配置とリードピン同士の間隔が重要となる。
 半導体光変調素子は発熱することによって発振波長又は光出力が変化する。従って、半導体光変調素子を搭載したレーザ光源装置には、半導体光変調素子の温度を一定に保つために温度制御モジュールが用いられている(例えば、特許文献1参照)。
日本特開2011-518381号公報
 従来構造では、半導体光変調素子が実装された第1の誘電体基板の高周波線路と、リードピンに接合された第2の誘電体基板の高周波線路を導電性ワイヤで接合していた。第2の誘電体基板が存在することでコストが増加し、第1の誘電体基板への実装自由度が低下していた。また、リードピンから半導体光変調素子までの距離が長くなり、インピーダンス不整合又はインダクタンス成分増加によって高周波特性が劣化していた。また、温度制御モジュールから半導体光変調素子までの距離が遠く、熱拡散性が悪いため、消費電力が高くなっていた。また、半導体光変調素子への電気信号入力方式が単層駆動方式であるため、消費電力が高くなっていた。
 本開示は、上述のような課題を解決するためになされたもので、その目的はコストと消費電力を低減し、誘電体基板への実装自由度と高周波特性を向上させることができる半導体レーザ光源装置を得るものである。
 本開示に係る半導体レーザ光源装置は、金属ステムと、前記金属ステムを貫通する第1から第3のリードピンと、前記金属ステムの上に設けられた支持ブロックと、前記支持ブロックの側面に実装され、下側基板と、上側基板と、前記上側基板と前記下側基板に挟まれた複数の熱電素子とを有する温度制御モジュールと、前記温度制御モジュールの前記上側基板に裏面が接合された誘電体基板と、前記誘電体基板の主面に設けられた差動駆動用信号線路と、前記誘電体基板の前記主面に実装された半導体光変調素子と、前記誘電体基板の前記主面に実装された温度センサと、前記差動駆動用信号線路の一端と前記半導体光変調素子を接続する第1の導電性ワイヤと、前記差動駆動用信号線路の他端と前記第1のリードピンを接続する第2の導電性ワイヤと、前記温度センサと前記第2のリードピンを接続する第3の導電性ワイヤと、前記温度制御モジュールと前記第3のリードピンを接続する第4の導電性ワイヤとを備えることを特徴とする。
 本開示では、金属ステムの上に設けられた支持ブロックの側面に温度制御モジュールが実装され、半導体光変調素子が実装された誘電体基板が温度制御モジュールに接合されている。これにより、第2の誘電体基板が不要なため、コストを低減できる。また、誘電体基板を大きくできるため、誘電体基板への実装自由度が向上する。また、誘電体基板の主面に設けられた信号線路をリードピンに短い導電性ワイヤで接続できるため、高周波特性が向上する。また、温度制御モジュールから半導体光変調素子までの距離が近いため、熱拡散性が向上し、温度制御モジュールでの吸熱・放熱性が向上して消費電力を低減することができる。また、半導体光変調素子への電気信号入力方式が差動駆動方式であるため、従来の単層駆動方式よりも信号発生器の電圧振幅を低減でき、信号発生器の消費電力を低減することができる。
実施の形態1に係る半導体レーザ光源装置を示す正面斜視図である。 実施の形態1に係る半導体レーザ光源装置を示す上面図である。 実施の形態1に係る半導体レーザ光源装置を示す側面図である。 実施の形態1に係る半導体レーザ光源装置を示す背面斜視図である。 従来構造と本実施の形態の構造の温度制御モジュールの消費電力を比較したグラフである。 実施の形態2に係る半導体レーザ光源装置を示す正面斜視図である。 実施の形態3に係る半導体レーザ光源装置を示す正面斜視図である。 実施の形態4に係る半導体レーザ光源装置を示す概略図である。
 実施の形態に係る半導体レーザ光源装置について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、実施の形態1に係る半導体レーザ光源装置を示す正面斜視図である。図2は、実施の形態1に係る半導体レーザ光源装置を示す上面図である。図3は、実施の形態1に係る半導体レーザ光源装置を示す側面図である。図4は、実施の形態1に係る半導体レーザ光源装置を示す背面斜視図である。
 金属ステム1は概ね円形の板状であり、例えばCuなどの熱伝導率の高い材料の表面にAuメッキなどが施された金属材料のステムベースである。複数のリードピン2a~2fが金属ステム1を貫通する。金属ステム1にリードピン2a~2fを固定するために一般的にガラス3が用いられる。インピーダンス不整合になると信号の多重反射によって周波数応答特性が劣化し、高速変調が困難となる。従って、ガラス3は信号発生器と同じインピーダンスとなるように低誘電率の材質からなる。
 支持ブロック4が金属ステム1の上に設けられている。支持ブロック4は、例えばCuなどの熱伝導率の高い材料の表面にAuメッキなどが施された金属材料のブロックである。金属ステム1とは別部品の支持ブロック4を金属ステム1に実装してもよいし、金属ステム1と支持ブロック4を一体形成してもよい。
 温度制御モジュール5が支持ブロック4の側面に実装されている。温度制御モジュール5は、例えばBiTeなどの材料からなる複数の熱電素子5aを、AlNなどの材料からなる下側基板5bと上側基板5cで挟んだものである。例えばSnAgCuハンダ又はAuSnハンダなどの接合材により支持ブロック4の側面と温度制御モジュール5の下側基板5bが接合されている。下側基板5bは上側基板5cよりも上方に突出した突出部を有し、この突出部に、熱電素子5aに電力供給するためのメタライズ5dが設けられている。
 誘電体基板6は四角形の板状に形成され、例えば窒化アルミ(AlN)などのセラミック材料からなり、電気絶縁機能と熱伝達機能を有する。誘電体基板6は、互いに反対側の主面及び裏面と、4つの側面とを有する。誘電体基板6の4つの側面のうち下部側面が金属ステム1の上面に対向し、上部側面は下部側面の反対側である。誘電体基板6の裏面が温度制御モジュール5の上側基板5cに接合されている。2本の差動駆動用信号線路7a,7b、グランド導体8、及び温度制御モジュール用導体9がAuメッキ及びメタライズにより誘電体基板6の主面に設けられている。差動駆動用信号線路7a,7bはマイクロストリップ線路又はコプレナ線路であり、信号発生器の出力インピーダンスと同等のインピーダンスを有する。温度制御モジュール用導体9は誘電体基板6の主面から上側側面にかけて設けられている。
 半導体光変調素子10、温度センサ11、及びセラミックブロック12が誘電体基板6の主面に実装されている。誘電体基板6に温度センサ11及びセラミックブロック12を接合するための接合材として、例えばSnAgCuハンダやAuSnハンダなどが用いられる。半導体光変調素子10の変調器部は複数の電界吸収型光変調器で構成されている。温度センサ11は例えばサーミスタである。セラミックブロック12は例えばAlN基板であり、上面に導体膜が設けられている。受光素子13が金属ステム1又はサブマウントの上に実装されている。ここでは、受光素子13は、半導体光変調素子10のZ軸負方向側に配置されている。
 導電性ワイヤ14aが半導体光変調素子10の分布帰還型レーザダイオードとリードピン2aを接続する。導電性ワイヤ14b,14cがそれぞれ2本の差動駆動用信号線路7a,7bの一端と半導体光変調素子10のEAM(electro-absorption modulator)電極を接続する。導電性ワイヤ14d,14eがそれぞれ2本の差動駆動用信号線路7a,7bの他端とリードピン2b,2cを接続する。導電性ワイヤ14fが温度センサ11とセラミックブロック12の導体膜を接続する。導電性ワイヤ14gがセラミックブロック12の導体膜とリードピン2dを接続する。導電性ワイヤ14h,14iがグランド導体8と金属ステム1を接続する。導電性ワイヤ14jが誘電体基板6の主面に設けられた温度制御モジュール用導体9と温度制御モジュール5のメタライズ5dを接続する。導電性ワイヤ14kが誘電体基板6の上部側面に設けられた温度制御モジュール用導体9とリードピン2eを接続する。導電性ワイヤ14lが受光素子13とリードピン2fを接続する。
 半導体光変調素子10は、例えば、InGaAsP系量子井戸吸収層を用いた電界吸収型光変調器と分布帰還型レーザダイオードとをモノリシックに集積した変調器集積型レーザダイオード(EAM-LD)である。半導体光変調素子10の発光点から、チップ端面に対して垂直かつチップ主面に対して平行な光軸に沿ってレーザ光が放射される。分布帰還型レーザダイオードへの給電方法はリードピン2aから導電性ワイヤ14aを介して直接接続してもよいし、製造方法によっては誘電体基板6に設けた導体を中継して接続してもよい。
 リードピン2b,2cに入力された差動電気信号は、導電性ワイヤ14d,14eを介して差動駆動用信号線路7a,7bに伝達され、導電性ワイヤ14b,14cを介して半導体光変調素子10の変調器に印加される。ここでリードピン2b,2cに入力された電気信号は金属ステム1と電磁的に結合する。金属ステム1、支持ブロック4、及び温度制御モジュール5に接合された誘電体基板6のグランド導体8はACグランドとして作用する。
 半導体光変調素子10の温度が変化すると発振波長が変化するため、温度を一定に保つ必要がある。そこで、半導体光変調素子10の温度が上昇した場合は温度制御モジュール5が冷却を行い、逆に温度が低下した場合は温度制御モジュール5が発熱し、半導体光変調素子10の温度を一定にする。半導体光変調素子10において発生した熱は誘電体基板6を介して温度制御モジュール5の上側基板5cに伝わる。温度制御モジュール5は、半導体光変調素子10から受けた熱を吸熱する。温度制御モジュール5が吸熱した熱は、温度制御モジュール5の下側基板5bから支持ブロック4及び金属ステム1を介してZ軸負方向に伝搬され、金属ステム1の下面側の冷却部材(不図示)に放熱される。
 温度センサ11は半導体光変調素子10の温度を間接的に測定する。測定した温度を温度制御モジュール5にフィードバックして、半導体光変調素子10の温度が狙い値に対して高い場合は温度制御モジュール5が冷却を行い、逆に低い場合は発熱を行う。これにより、半導体光変調素子10の温度を安定化することができる。
 温度センサ11とリードピン2dを直接ワイヤ接続すると、外界から金属ステム1に伝わってきた雰囲気温度がワイヤを通って温度センサ11に流入し、正確な温度を測定できない。そこで、温度センサ11とリードピン2dの間にセラミックブロック12を配置して中継する。これにより、温度センサ11に流入する熱量が低減され、温度センサ11が正確な温度を測定することができる。また、温度センサ11と半導体光変調素子10が同じ誘電体基板6の主面に実装されているため、温度相関が合いやすく、温度制御が容易である。
 受光素子13は光信号を電気信号へ変換(O/E変換)する。電気信号は接続された導電性ワイヤ14lを介してリードピン2fへと伝送される。受光素子13を設けることで、金属ステム1を貫通するリードピンの数が1本増えることになるが、半導体光変調素子10の背面光の強度をモニターすることができる。このモニター結果をフィードバックすることで、光出力が一定になるように半導体光変調素子10の駆動電流を制御することができる。
 予め半導体光変調素子10、温度センサ11及びセラミックブロック12を誘電体基板6上に接合して半完成品として組立てておき、この半完成品を温度制御モジュール5に接合してもよい。これにより、温度制御モジュール5と誘電体基板6の接合材として、必ずしもSnAgCuハンダ又はAuSnハンダのような高融点の材質を用いる必要はなく、熱硬化樹脂又は紫外線硬化樹脂等を用いることができる。この結果、製造難易度が低下する。
 図5は、従来構造と本実施の形態の構造の温度制御モジュールの消費電力を比較したグラフである。半導体光変調素子10の発熱量を0.2Wに固定し、環境温度を-40℃から95℃に変化させた。本実施形態の構造の方が0.2W程度の低消費電力化となっていることが分かる。
 以上説明したように、実施の形態では、金属ステム1の上に設けられた支持ブロック4の側面に温度制御モジュール5が実装され、半導体光変調素子10が実装された誘電体基板6が温度制御モジュール5に接合されている。これにより、第2の誘電体基板が不要なため、コストを低減できる。また、誘電体基板6を大きくできるため、誘電体基板6への実装自由度が向上する。また、誘電体基板6の主面に設けられた信号線路をリードピンに短い導電性ワイヤで接続できるため、高周波特性が向上する。また、温度制御モジュール5から半導体光変調素子10までの距離が近いため、熱拡散性が向上し、温度制御モジュール5での吸熱・放熱性が向上して消費電力を低減することができる。また、半導体光変調素子10への電気信号入力方式が差動駆動方式であるため、従来の単層駆動方式よりも信号発生器の電圧振幅を低減でき、信号発生器の消費電力を低減することができる。
 従来構造は第2の誘電体基板を介していたため、接続点におけるインピーダンス不整合により信号の反射が発生し、帯域の利得が低下していたが、本実施の形態では第2の誘電体基板が不要であるため信号の反射点が存在せず、従来構造よりも広帯域化が可能になる。
 温度制御モジュール5と誘電体基板6の間に金属ブロックなどの2次媒体は存在せず、両者を直接接合している。このため、半導体光変調素子10と温度制御モジュール5との距離は誘電体基板6の厚み分のみである。従って、温度制御モジュール5から半導体光変調素子10までの熱的距離が近いため、放熱性が向上し、消費電力を低減することができる。また、温度制御モジュール5と誘電体基板6を直接接合しているため、製造工程、時間、部材点数の削減によりコストを低減することができる。
 また、誘電体基板6上の差動駆動用信号線路7a,7bとリードピン2b,2cは、他の誘電体基板を介することなく、導電性ワイヤ14d,14eのみによって直接的に接続される。このため、信号反射点が少なくなり高周波特性が向上する。
 リードピン2a~2fを金属ステム1にガラス3で封着固定させるために一般的にコンプレッション方式又はマッチング方式が適用される。気密性を保つためには封着の際に各リードピン2a~2fが等圧力になっていることが重要である。従って、リードピン2a~2fが金属ステム1に対して円形状に配置されていることが望ましい。また、隣り合うリードピン2a~2fの間隔が近接しすぎていると封着性が劣化するため、ある程度の距離が必要である。
 温度制御モジュールを金属ステム1に平置き接合した従来構造では、金属ステム1上の面積を占有し、リードピン2a~2fを均等に配置することができず、気密性が取れなかった。本実施の形態では温度制御モジュール5を支持ブロック4の側面に接合しているため、金属ステム1上の占有面積を縮小できる。
 また、リードピン2a~2dは誘電体基板6の主面側に配置されているが、温度制御モジュール5に給電するための2本のリードピン2eは誘電体基板6の裏面側に配置されている。このため、各リードピン2a~2fを金属ステム1に対して円形状に均等に配置することができる。この結果、気密性が向上する。また、導電性ワイヤ14jが温度制御モジュール5のメタライズ5dと温度制御モジュール用導体9を接続し、導電性ワイヤ14kが温度制御モジュール用導体9とリードピン2eを接続する。これにより、リードピン2eからメタライズ5dまでのXY平面上の距離が短くなる。このため、導電性ワイヤ14j,14kにかかるモーメント荷重の影響が小さくなり、導電性ワイヤ14j,14kのたわみ・振動・衝撃の耐性が向上する。
 もし、差動駆動用信号線路7a,7bと接続されているリードピン2b,2c以外の、誘電体基板6の主面側に配置されているリードピンとメタライズ5dをワイヤ接続すると、そのリードピンからメタライズ5dまでのXY平面上の距離が長くなる。従って、モーメント荷重の影響で導電性ワイヤにたわみが発生して導電性ワイヤが誘電体基板6へ接触するという問題がある。また、輸送時等の振動・衝撃の影響で導電性ワイヤがリードピンから脱落するという問題もある。また、誘電体基板6の主面側に配置されているリードピンから温度制御モジュール5のメタライズ5dへ直接的に導電性ワイヤを接続することは困難である。そこで、本実施の形態では、誘電体基板6の主面から上側側面にかけて温度制御モジュール用導体9を設けている。導電性ワイヤ14jが温度制御モジュール5のメタライズ5dと温度制御モジュール用導体9を接続し、導電性ワイヤ14kが温度制御モジュール用導体9と誘電体基板6の裏面に配置されたリードピン2eを接続する。これにより、ワイヤボンディング装置の複雑な機構を用いることなく、温度制御モジュール5に電気を供給することができる。
 外界の温度変化に伴う部材の熱応力変化によって半導体光変調素子10の出射位置・角度がずれる。これにより、レーザ光源装置が光ファイバにレーザ光を集光する際に光結合効率が低下する。そこで、熱応力変化の影響を受けにくい構造にすることが重要である。本実施の形態では、誘電体基板6のX軸及びZ軸方向の外径は温度制御モジュール5の上側基板5cのX軸及びZ軸方向の外径よりも大きい。これにより、構造の剛性が向上し、半導体光変調素子10への応力を低減でき、半導体光変調素子10の割れ等を抑制することができる。また、誘電体基板6が温度制御モジュール5のたわみ量の影響を抑制することができる。この結果、上側基板5cの外径よりも誘電体基板6の外径の方が小さい場合に比べて、Y軸正方向への出射位置・角度ずれが減少する。なお、温度制御モジュール5の上側基板5cの外径を誘電体基板6の外径よりも大きくしてもよい。これにより、熱拡散性が向上し、温度制御モジュール5での吸熱・放熱性が向上して消費電力を低減することができる。
 従来構造では、半導体光変調素子のグランドは第1の誘電体基板から導電性ワイヤにて第2の誘電体基板に渡り、かつ第2の誘電体基板を支持している金属ブロックを介して金属ステムに接続されていた。このため、距離が遠くてGNDが弱くなり高周波特性が劣化していた。これに対して、本実施の形態では、誘電体基板6のグランド導体8を第2の誘電体基板を介することなく、導電性ワイヤ14h,14iのみにより金属ステム1に直接的に接続する。これにより、GNDが強くなり高周波特性が向上する。
 グランド導体8は、差動駆動用信号線路7a,7b及び温度制御モジュール用導体9とは接触しない領域において誘電体基板6の主面から裏面にかけて設けられている。半導体光変調素子10及び温度センサ11等の共通したグランドを取るために、導電性ワイヤ14hが誘電体基板6の主面のグランド導体8と金属ステム1を接続している。ただし、これだけでは等電位にすることが難しく、周波数応答特性の広帯域化が難しいことが高周波シミュレーションから分かっている。そこで、導電性ワイヤ14iが誘電体基板6の裏面のグランド導体8と金属ステム1を接続する。これにより、周波数応答特性が改善する。この導電性ワイヤ14h,14iは1本では改善効果が薄いため、2本以上が望ましい。
 なお、誘電体基板6が金属ステム1に接触していると、金属ステム1に伝わってきた外界からの熱が誘電体基板6を介して半導体光変調素子10及び温度センサ11に流入する。これにより、温度制御モジュール5による温度制御が困難になる。このため、誘電体基板6を金属ステム1と接触させないことが望ましい。
 また、差動駆動用信号線路7a,7bと接続されるリードピン2b,2cは、金属ステム1の上面からの飛び出したインナーリード部を有する。インナーリード部の長さを短くするほどインダクタンス成分が低減し、インナーリード部における信号の反射による損失を低減でき、通過帯域が向上する。
 また、信号発生器からの最大電圧振幅を得るために、誘電体基板6の主面に整合抵抗を設けて半導体光変調素子10に並列接続してもよい。
実施の形態2.
 図6は、実施の形態2に係る半導体レーザ光源装置を示す正面斜視図である。半導体光変調素子10の代わりに、MZM(Mach Zehnder Module)型の半導体光変調素子15が誘電体基板6の主面に実装されている。半導体光変調素子15は、例えば分布帰還型レーザダイオード、2つの位相変調器部16a,16b、偏波回転器部17及び受光素子13をモノリシックに集積したレーザダイオードである。位相変調器部16a,16bはマッハツェンダ型光変調器である。
 実施の形態1と同様に差動駆動用信号線路7a,7b等が誘電体基板6の主面に設けられ、更に偏波回転器用導体18及び受光素子用導体19がAuメッキ及びメタライズにより誘電体基板6の主面に設けられている。導電性ワイヤ14b,14cが2本の差動駆動用信号線路7a,7bの一端と半導体光変調素子15の位相変調器部16a,16bを接続する。導電性ワイヤ14mが半導体光変調素子15の偏波回転器部17と偏波回転器用導体18を接続する。導電性ワイヤ14nが偏波回転器用導体18とリードピン2gを接続する。導電性ワイヤ14oが半導体光変調素子15の受光素子13と受光素子用導体19を接続する。導電性ワイヤ14pが受光素子用導体19とリードピン2fを接続する。
 半導体光変調素子15は2つの位相変調器部16a,16bと1つの偏波回転器部17を有するため、本来ならばリードピンを実施の形態1よりも1本多く設ける必要がある。しかし、実施の形態1の構造にリードピンを1本追加して円形状に配置するとリードピン間隔が狭くなり過ぎ、気密性を確保できず量産性を担保できない場合がある。
 そこで、本実施の形態では、リードピン2aを金属ステム1の中央部に配置している。中央部は圧力が均等にかかりやすいため、実施の形態1と同等の気密性を保つことができる。なお、温度制御モジュールを金属ステム中央部に平置き接合した従来の構造では、リードピンを金属ステム中央部に配置することができず、気密性が悪化する。
 MZM型の半導体光変調素子15の縦横の外径は数mmあり、実施の形態1の電界吸収型光変調器の外径の数倍である。よって、ステム上に第2の誘電体基板が存在する従来構造ではMZM型の半導体光変調素子15の実装は困難であった。MZM型の半導体光変調素子を実装するには光出射方向に数mm拡大する必要があり、レーザ光源装置の外径が拡大する。これに伴って温度制御モジュール5から半導体光変調素子10までの距離が遠くなり、温度制御モジュール5による吸熱・放熱性が悪化し、温度制御モジュール5の高性能化が必要となる。また、リードピンから半導体光変調素子までの距離も遠くなるため、高周波線路の延長により高周波特性が悪化する。
 これに対して、本実施の形態では、従来よりも誘電体基板6への実装自由度が向上したため、レーザ光源装置の外径を大きくすることなく、誘電体基板6の主面にMZM型の半導体光変調素子15を実装することができる。温度制御モジュール5から半導体光変調素子15までの距離が誘電体基板6の厚み分であり非常に近いため、吸熱・放熱性は実施の形態1と同様に良好であり、温度制御モジュール5の高性能化は不要である。また、高周波線路の延長も不要であり、高周波特性は悪化しない。
 なお、受光素子13は、一般的にMZM型の半導体光変調素子15に集積されているが、実施の形態1と同様に別途実装してもよい。その他の構成及び効果は実施の形態1と同様である。
実施の形態3.
 図7は、実施の形態3に係る半導体レーザ光源装置を示す正面斜視図である。レンズ20、光学素子21及びブロック22が誘電体基板6の主面に実装されている。受光素子13がブロック22の側面に実装されている。半導体光変調素子10の代わりに半導体光変調素子23が誘電体基板6の主面に実装されている。
 半導体光変調素子23はレーザ光の強度を増幅する光増幅器(SOA: Semiconductor Optical Amplifier)を有している。このため、より高光出力を得ることができる。光増幅器を有する半導体光変調素子23の全長は長尺化するが、本実施の形態では誘電体基板6の主面の実装スペースが大きいため、高コスト又は帯域劣化の要因となる誘電体基板6の構造変更は不要である。
 レンズ20及び光学素子21は例えばSiOなどのガラスからなる。レンズ20及び光学素子21は、エポキシ系樹脂の接着剤などの接合材により誘電体基板6に接合される。エポキシ系樹脂を用いた場合には、接着直後に紫外線照射によって仮硬化した後、熱処理工程を経て熱硬化させることで、接合を行う。
 レンズ20は、半導体光変調素子23から出射されたレーザ光をZ軸正方向側に平行化又は集光化する。光学素子21は、半導体光変調素子10から出射されたレーザ光の一部を分離する。受光素子13は、分離されたレーザ光を電気信号へ変換する。
 従来の構造では、第2の誘電体基板を用いていたため受光素子13を実装することが困難であった。レンズ20、光学素子21、及び受光素子13を実装すると構造が複雑になり、レーザ光源装置の外径が大型化し、強度と熱分布の点で信頼性も低下していた。これに対して、本実施の形態では、従来よりも誘電体基板6への実装自由度が向上したため、レーザ光源装置の外径を大きくすることなく、誘電体基板6の主面にレンズ20、光学素子21、ブロック22、受光素子13などを実装することができる。
 ブロック22は例えばAlN基板であり、表面に互いに分離した導体22a,22bが設けられている。受光素子13の裏面電極はブロック22の導体22aにハンダ等で接合される。受光素子13の表面電極は導体22bに導電性ワイヤ14qで接合される。この接合はレーザ光源装置の組立工程とは別の工程で組立てて半完成品としておき、この半完成品を半導体光変調素子23などの接合と同時に誘電体基板6の主面に接合する。これにより、半完成品を製作しない場合と比較して製造難易度が低下する。誘電体基板6の主面に半完成品を接合した後、導体22bをリードピン2fに導電性ワイヤ14rにより接続する。これにより、受光素子13でOE変換された電気信号をリードピン2fのZ軸負方向側へ送ることができる。その他の構成及び効果は実施の形態1と同様である。
実施の形態4.
 図8は、実施の形態4に係る半導体レーザ光源装置を示す概略図である。実施の形態1~3の何れかの半導体レーザ光源装置の金属ステム1にレンズ付きキャップ24が接合されている。レンズ付きキャップ24は、金属ステム1上に実装された支持ブロック4、温度制御モジュール5、誘電体基板6、半導体光変調素子10及び温度センサ11等を気密封止する気密封止用キャップである。従って、耐湿性及び外乱耐性を向上することができる。レンズ付きキャップ24のレンズは、例えばSiOからなるガラスからなり、半導体光変調素子10から出射されたレーザ光を略集光又は平行光化(コリメート)する。例えば、実施の形態3にレンズ付きキャップ24を接合した場合、広がり角度が大きい半導体光変調素子23のレーザ光をレンズ20にて平行光化した後、レンズ付きキャップ24にてコリメート光を集光させてファイバに入射させる。なお、実施の形態1,2はコリメートせずに直接集光させてファイバに入射させている。
1 金属ステム、2a~2g リードピン、4 支持ブロック、5 温度制御モジュール、5a 熱電素子、5b 下側基板、5c 上側基板、5d メタライズ、6 誘電体基板、7a,7b 差動駆動用信号線路、8 グランド導体、10,15,23 半導体光変調素子、11 温度センサ、12 セラミックブロック、13 受光素子、14a~14r 導電性ワイヤ、21 光学素子、22 ブロック、29 レンズ、24 レンズ付きキャップ

Claims (15)

  1.  金属ステムと、
     前記金属ステムを貫通する第1から第3のリードピンと、
     前記金属ステムの上に設けられた支持ブロックと、
     前記支持ブロックの側面に実装され、下側基板と、上側基板と、前記上側基板と前記下側基板に挟まれた複数の熱電素子とを有する温度制御モジュールと、
     前記温度制御モジュールの前記上側基板に裏面が接合された誘電体基板と、
     前記誘電体基板の主面に設けられた2本の差動駆動用信号線路と、
     前記誘電体基板の前記主面に実装された半導体光変調素子と、
     前記誘電体基板の前記主面に実装された温度センサと、
     前記差動駆動用信号線路の一端と前記半導体光変調素子を接続する第1の導電性ワイヤと、
     前記差動駆動用信号線路の他端と前記第1のリードピンを接続する第2の導電性ワイヤと、
     前記温度センサと前記第2のリードピンを接続する第3の導電性ワイヤと、
     前記温度制御モジュールと前記第3のリードピンを接続する第4の導電性ワイヤとを備えることを特徴とする半導体レーザ光源装置。
  2.  前記第1及び第2のリードピンは前記誘電体基板の主面側に配置され、
     前記第3のリードピンは前記誘電体基板の裏面側に配置されていることを特徴とする請求項1に記載の半導体レーザ光源装置。
  3.  前記下側基板は、前記上側基板よりも上方に突出した突出部を有し、
     前記熱電素子に電力供給するためのメタライズが前記突出部に設けられ、
     温度制御モジュール用導体が前記誘電体基板の前記主面から上側側面にかけて設けられ、
     前記第4の導電性ワイヤは、前記誘電体基板の前記上側側面に設けられた前記温度制御モジュール用導体と前記第3のリードピンを接続する導電性ワイヤと、前記誘電体基板の前記主面に設けられた前記温度制御モジュール用導体と前記メタライズを接続する導電性ワイヤとを有することを特徴とする請求項2に記載の半導体レーザ光源装置。
  4.  前記差動駆動用信号線路の他端は、前記第2の導電性ワイヤで前記第1のリードピンに直接的に接続されていることを特徴とする請求項1~3の何れか1項に記載の半導体レーザ光源装置。
  5.  前記誘電体基板の外径は前記上側基板の外径よりも大きいことを特徴とする請求項1~4の何れか1項に記載の半導体レーザ光源装置。
  6.  前記誘電体基板に実装され、導体膜が設けられたセラミックブロックを更に備え、
     前記第3の導電性ワイヤは、前記導体膜と前記温度センサを接続する導電性ワイヤと、前記導体膜と前記第2のリードピンを接続する導電性ワイヤとを有することを特徴とする請求項1~5の何れか1項に記載の半導体レーザ光源装置。
  7.  前記誘電体基板に設けられ、前記金属ステムに導電性ワイヤで直接的に接続されたグランド導体を更に備えることを特徴とする請求項1~6の何れか1項に記載の半導体レーザ光源装置。
  8.  前記グランド導体は前記誘電体基板の主面と裏面に設けられ、それぞれ導電性ワイヤで前記金属ステムに接続されていることを特徴とする請求項7に記載の半導体レーザ光源装置。
  9.  前記半導体光変調素子の変調器部は複数の電界吸収型光変調器で構成されていることを特徴とする請求項1~8の何れか1項に記載の半導体レーザ光源装置。
  10.  前記半導体光変調素子の位相変調器部はマッハツェンダ型光変調器であることを特徴とする請求項1~8の何れか1項に記載の半導体レーザ光源装置。
  11.  前記誘電体基板の前記主面に実装され、前記半導体光変調素子から出射されたレーザ光を平行又は集光化するレンズを備えることを特徴とする請求項1~10の何れか1項に記載の半導体レーザ光源装置。
  12.  前記半導体光変調素子から出射されたレーザ光の一部を電気信号へ変換する受光素子を更に備えることを特徴とする請求項1~11の何れか1項に記載の半導体レーザ光源装置。
  13.  前記誘電体基板の前記主面に実装され、前記半導体光変調素子から出射されたレーザ光の一部を分離する光学素子と、
     前記誘電体基板の前記主面に実装されたブロックを更に備え、
     前記受光素子は前記ブロックの側面に実装され、前記光学素子により分離された前記レーザ光の一部を電気信号へ変換することを特徴とする請求項12に記載の半導体レーザ光源装置。
  14.  前記半導体光変調素子はレーザ光の強度を増幅する光増幅器を有していることを特徴とする請求項1~13の何れか1項に記載の半導体レーザ光源装置。
  15.  前記金属ステムには気密封止用キャップが接合されていることを特徴とする請求項1~14の何れか1項に記載の半導体レーザ光源装置。
PCT/JP2021/016796 2021-04-27 2021-04-27 半導体レーザ光源装置 WO2022230053A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237035058A KR20230155572A (ko) 2021-04-27 2021-04-27 반도체 레이저 광원 장치
CN202180097280.0A CN117178445A (zh) 2021-04-27 2021-04-27 半导体激光光源装置
US18/259,984 US20240097399A1 (en) 2021-04-27 2021-04-27 Semiconductor laser light source device
DE112021007591.8T DE112021007591T5 (de) 2021-04-27 2021-04-27 Halbleiterlaser-Lichtquellenvorrichtung
JP2021549580A JP6984801B1 (ja) 2021-04-27 2021-04-27 半導体レーザ光源装置
PCT/JP2021/016796 WO2022230053A1 (ja) 2021-04-27 2021-04-27 半導体レーザ光源装置
TW111100726A TWI779983B (zh) 2021-04-27 2022-01-07 半導體雷射光源裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016796 WO2022230053A1 (ja) 2021-04-27 2021-04-27 半導体レーザ光源装置

Publications (1)

Publication Number Publication Date
WO2022230053A1 true WO2022230053A1 (ja) 2022-11-03

Family

ID=79193358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016796 WO2022230053A1 (ja) 2021-04-27 2021-04-27 半導体レーザ光源装置

Country Status (7)

Country Link
US (1) US20240097399A1 (ja)
JP (1) JP6984801B1 (ja)
KR (1) KR20230155572A (ja)
CN (1) CN117178445A (ja)
DE (1) DE112021007591T5 (ja)
TW (1) TWI779983B (ja)
WO (1) WO2022230053A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466773B1 (ja) 2022-12-23 2024-04-12 三菱電機株式会社 光モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233589A1 (ja) * 2022-06-01 2023-12-07 三菱電機株式会社 半導体レーザ光源装置
WO2024018501A1 (ja) * 2022-07-19 2024-01-25 三菱電機株式会社 半導体レーザ光源装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475394A (ja) * 1990-07-18 1992-03-10 Fujitsu Ltd 半導体レーザモジュール
JP2002043686A (ja) * 2000-05-16 2002-02-08 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュール及び光送信器
JP2007081261A (ja) * 2005-09-16 2007-03-29 Fuji Xerox Co Ltd 光伝送モジュール
US20080080575A1 (en) * 2006-09-28 2008-04-03 Applied Optoelectronics, Inc. Laser with heater to reduce operating temperature range and method of using same
JP2010135688A (ja) * 2008-12-08 2010-06-17 Sumitomo Electric Ind Ltd 光モジュール製造方法
JP2013251424A (ja) * 2012-06-01 2013-12-12 Mitsubishi Electric Corp 光集積素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254149B2 (en) * 2002-03-19 2007-08-07 Finisar Corporation Submount, pedestal, and bond wire assembly for a transistor outline package with reduced bond wire inductance
US8161353B2 (en) 2007-12-06 2012-04-17 Fusion-Io, Inc. Apparatus, system, and method for validating that a correct data segment is read from a data storage device
JP6374447B2 (ja) * 2016-07-08 2018-08-15 ファナック株式会社 温度を含む駆動条件を考慮した実効的駆動時間と残存寿命が算出可能なレーザ装置
US11133647B2 (en) * 2018-09-20 2021-09-28 Source Photonics (Chengdu) Company, Ltd. Impedance matching circuit for optical transmitters and methods of making and using the same
JPWO2021014568A1 (ja) * 2019-07-23 2021-09-13 三菱電機株式会社 To−can型光送信モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475394A (ja) * 1990-07-18 1992-03-10 Fujitsu Ltd 半導体レーザモジュール
JP2002043686A (ja) * 2000-05-16 2002-02-08 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュール及び光送信器
JP2007081261A (ja) * 2005-09-16 2007-03-29 Fuji Xerox Co Ltd 光伝送モジュール
US20080080575A1 (en) * 2006-09-28 2008-04-03 Applied Optoelectronics, Inc. Laser with heater to reduce operating temperature range and method of using same
JP2010135688A (ja) * 2008-12-08 2010-06-17 Sumitomo Electric Ind Ltd 光モジュール製造方法
JP2013251424A (ja) * 2012-06-01 2013-12-12 Mitsubishi Electric Corp 光集積素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466773B1 (ja) 2022-12-23 2024-04-12 三菱電機株式会社 光モジュール

Also Published As

Publication number Publication date
JPWO2022230053A1 (ja) 2022-11-03
TWI779983B (zh) 2022-10-01
CN117178445A (zh) 2023-12-05
TW202243354A (zh) 2022-11-01
DE112021007591T5 (de) 2024-02-15
KR20230155572A (ko) 2023-11-10
JP6984801B1 (ja) 2021-12-22
US20240097399A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2022230053A1 (ja) 半導体レーザ光源装置
JP4670384B2 (ja) 光送信アセンブリの製造方法
JP4015440B2 (ja) 光通信モジュール
US7463659B2 (en) Can-type optical transmitting module utilizing a laser diode with impedance matching resistors
JP2015088641A (ja) 光モジュール
US11703378B2 (en) Optical module
KR20050046893A (ko) 티오-캔 구조의 광 모듈
JP4587218B2 (ja) パッケージ型半導体装置
WO2021014568A1 (ja) To-can型光送信モジュール
JP6232950B2 (ja) 発光モジュール
JP2006351610A (ja) 光モジュール
TWI735995B (zh) 光模組
WO2022123659A1 (ja) レーザ光源装置
JP2007036046A (ja) 光送信デバイス
WO2023233589A1 (ja) 半導体レーザ光源装置
WO2024018501A1 (ja) 半導体レーザ光源装置
JP7246590B1 (ja) 半導体レーザ光源装置
JP7544304B1 (ja) 光モジュールおよび光トランシーバ
TWI859936B (zh) 半導體雷射光源裝置
WO2022113174A1 (ja) 光モジュール
JP2013120773A (ja) 光送信モジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549580

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237035058

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035058

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112021007591

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939214

Country of ref document: EP

Kind code of ref document: A1