WO2022228580A1 - 极片及其制备方法、锂离子电池 - Google Patents

极片及其制备方法、锂离子电池 Download PDF

Info

Publication number
WO2022228580A1
WO2022228580A1 PCT/CN2022/091044 CN2022091044W WO2022228580A1 WO 2022228580 A1 WO2022228580 A1 WO 2022228580A1 CN 2022091044 W CN2022091044 W CN 2022091044W WO 2022228580 A1 WO2022228580 A1 WO 2022228580A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
conductive layer
pole piece
area
tab
Prior art date
Application number
PCT/CN2022/091044
Other languages
English (en)
French (fr)
Inventor
翟艳云
张健
彭冲
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Priority to EP22795049.0A priority Critical patent/EP4266396A1/en
Publication of WO2022228580A1 publication Critical patent/WO2022228580A1/zh
Priority to US18/225,649 priority patent/US20230369604A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a pole piece and a preparation method thereof, and a lithium ion battery.
  • a lithium-ion battery is a secondary battery (rechargeable battery) that mainly relies on the movement of lithium ions between the positive and negative electrodes to work.
  • lithium ions are intercalated and deintercalated back and forth between the two electrodes; during charging, lithium ions are deintercalated from the positive electrode, intercalated into the negative electrode through the electrolyte, and the negative electrode is in a lithium-rich state; during discharge, the opposite is true.
  • lithium-ion batteries use aluminum foil as the positive electrode current collector and copper foil as the negative electrode current collector.
  • part of the aluminum foil or part of the copper foil on the current collector can be replaced with a lighter polymer material.
  • a current collector in the form of a sandwich structure such as aluminum-polymer-aluminum or copper-polymer-copper is used.
  • the current collector in the above-mentioned composite structure is non-conductive, the current collector is partially separated by the polymer layer and cannot be electrically connected to the tabs welded to the current collector.
  • the invention provides a pole piece, a preparation method thereof, and a lithium ion battery, so as to realize mutual conduction of conductive layers on both sides of a composite current collector.
  • the present invention provides a pole piece, which includes a current collector, an active material layer and a pole tab.
  • the current collector includes a matrix layer, a first conductive layer and a second conductive layer.
  • the first conductive layer and the second conductive layer are respectively disposed on the matrix layer. opposite sides.
  • the current collector is divided into a first region and a second region in its first direction; the active material layer is coated on opposite sides of the first region of the current collector, and the tabs are connected to the second region of the current collector.
  • the second area is provided with through holes connecting opposite sides of the current collector, part of the tabs is connected to the first conductive layer, and another part of the structure extends to the side of the current collector opposite to the first conductive layer through the through holes, and connected to the second conductive layer.
  • the pole tab includes a main body and a connecting portion, and the main body is connected with the first conductive layer.
  • connection part The first end of the connection part is connected to the body, the second end of the connection part extends from the through hole to the side of the current collector opposite to the body, and the second end of the connection part is connected to the second conductive layer.
  • the surface of the first conductive layer facing away from the base layer has a first connection area
  • the surface of the second conductive layer away from the base layer has a second connection area
  • the first connection area The first and second connection regions are both connected to the tabs to make the first conductive layer and the second conductive layer conduct, and the first connection region and the second connection region are respectively located on both sides of the through hole along the first direction.
  • one end of the pole tab extends to the outside of the current collector in the first direction, and the other end of the pole tab is connected to the inside of the current collector.
  • the part of the pole piece extending to the outer side of the current collector in the first direction is provided with at least two pole tabs for charging/discharging, and the pole tabs are arranged along the second side of the current collector. direction spacing;
  • the first direction and the second direction are arranged vertically.
  • the number of through holes is greater than or equal to one.
  • the pole piece provided by the present invention further includes a protection member; the protection member covers at least one of the first connection area and the second connection area, and the protection member is located on the inner surface of the current collector.
  • the area of the through hole is S1
  • the area of the second area on the current collector is S0
  • the ratio of the area of the through hole to the area of the second area is in the range of 0.01 ⁇ S1 /S0 ⁇ 0.5.
  • the present invention provides a method for preparing a pole piece, which is used for preparing the pole piece of any of the above, comprising the following steps:
  • Tabs are formed on the tabs to form tabs with tabs.
  • the present invention provides a lithium ion battery, the battery comprising any one of the above-mentioned pole pieces.
  • a first conductive layer and a second conductive layer are respectively provided on opposite sides of the base layer to form a current collector.
  • the current collector is divided into a first area and a second area along its first direction, the opposite sides of the first area of the current collector are coated with active material layers, and the second area of the current collector is provided with through holes connecting the opposite sides of the current collector , and connect the tabs to the second area.
  • a part of the tab piece is connected to the first conductive layer on the second region, and another part of the structure extends to the side of the current collector opposite to the first conductive layer through the through hole, and is connected to the second conductive layer.
  • Fig. 1 is the front structure schematic diagram of the pole piece provided by the embodiment of the present invention.
  • Fig. 2 is the sectional view at A-A place in Fig. 1;
  • Fig. 3 is the sectional view at B-B place in Fig. 1;
  • FIG. 4 is a step diagram of a method for preparing a pole piece provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a battery core formed by winding a pole piece according to an embodiment of the present invention.
  • 100-current collector 110-base layer; 120-first conductive layer; 121-first connection region; 130-second conductive layer; 131-second connection region; 140-through hole;
  • 300-pole tab 300-pole tab; 310-body; 320-connecting part; 330-pole ear;
  • a lithium-ion battery is a secondary battery (rechargeable battery) that mainly relies on the movement of lithium ions between the positive and negative electrodes to work.
  • lithium ions are intercalated and deintercalated back and forth between the two electrodes: during charging, lithium ions are deintercalated from the positive electrode, intercalated into the negative electrode through the electrolyte, and the negative electrode is in a lithium-rich state; during discharge, the opposite is true.
  • As a new type of energy storage battery due to its advantages of high energy, long life, low energy consumption, no pollution, no memory effect, low self-discharge, low internal resistance, high cost performance and less pollution, lithium-ion batteries are gradually being used in applications. Showing great advantages, it is widely used in mobile phones, notebook computers, video cameras, digital cameras, electric vehicles, energy storage, aerospace and other fields.
  • Conventional lithium-ion batteries use aluminum foil as the positive electrode current collector and copper foil as the negative electrode current collector.
  • part of the aluminum foil and part of the copper foil on the current collector can be replaced with lighter polymer materials.
  • a current collector of a laminated structure such as aluminum-polymer-aluminum or copper-polymer-copper is used.
  • the polymer layer of the current collector of the above-mentioned composite structure is non-conductive, and welding the tabs to one surface of the current collector cannot conduct the other surface of the current collector.
  • the present invention provides a pole piece, a preparation method thereof, and a lithium ion battery.
  • the conductive layers on both sides of the pole piece current collector can be connected to each other, and the lithium ion has high safety and high rate performance.
  • FIG. 1 is a schematic diagram of a front structure of a pole piece provided by an embodiment of the present invention
  • FIG. 2 is a cross-sectional view at A-A in FIG. 1
  • FIG. 3 is a cross-sectional view at B-B in FIG. 1 .
  • a pole piece provided by the present invention includes a current collector 100 , an active material layer 200 and a tab piece 300 , and the current collector 100 includes a base layer 110 , a first conductive layer 120 and a second conductive layer 130 , the first conductive layer 120 and the second conductive layer 130 are respectively disposed on opposite sides of the base layer 110 .
  • the current collector 100 is divided into a first area and a second area in its first direction; the active material layer 200 is coated on opposite sides of the first area of the current collector 100 , and the tabs 300 are connected to the second area of the current collector 100 .
  • the second area is provided with through holes 140 connecting opposite sides of the current collector 100 .
  • Part of the tab 300 is connected to the first conductive layer 120 , and another part of the structure extends to the first conductive layer of the current collector 100 through the through holes 140 .
  • the opposite side of 120 is connected to the second conductive layer 130 .
  • the pole piece includes a current collector 100, an active material layer 200 and a tab piece 300, wherein the current collector 100 is a laminated structure including a conductive layer and a base layer, and the base layer 110 is located in the middle of the laminated structure, at the A first conductive layer 120 and a second conductive layer 130 are respectively attached to the front and back sides of the base layer 110 to form the current collector 100 .
  • the base layer 110 may have pores.
  • arranging pores on the base layer 110 and filling some conductive materials in the pores can effectively enhance the conductivity of both sides of the base layer 110, which is beneficial to improve the conductivity of the pole piece.
  • the current collector 100 is divided into two regions along the first direction of the current collector 100, namely a first region and a second region.
  • the active material layer 200 is coated on both sides of the first area of the current collector 100 , the tabs 300 are connected to the second area of the current collector 100 , and the tabs 300 are connected to the second area of the current collector 100 at the same time.
  • Surfaces of the first conductive layer 120 and the second conductive layer 130 remote from the base layer 110 are connected.
  • the second area of the current collector 100 is provided with through holes 140 that communicate with opposite sides of the current collector 100.
  • the number and shape of the through holes 140 are not specifically limited, and the number of the through holes 140 is at least one. There may be more than one; the shape of the through hole 140 includes, but is not limited to, a rectangle, a circle, a polygon, an ellipse, and the like.
  • Part of the tab 300 is connected to the first conductive layer 120 , and another part of the tab 300 passes through the through hole 140 and extends to the side of the current collector 100 opposite to the first conductive layer 120 to be connected to the second conductive layer 130 .
  • the first conductive layer 120 and the second conductive layer 130 are conductively connected through the tabs 300 , so that the conductive layers on both sides of the current collector 100 are connected to each other, thereby improving the energy density and electrical performance of the tabs.
  • the tab 300 is connected through one side of the current collector 100, and after the through hole 140 is provided on the current collector 100, part of the structure of the tab 300 is connected to the conductive layer on the other side of the current collector 100 through the through hole 140, so that the collector
  • the structure in which the conductive layers on both sides of the fluid 100 are connected to each other can reduce the thickness of the welding area of the pole piece current collector 100 , which facilitates the encapsulation of subsequent cells.
  • the tab 300 includes a body 310 and a connecting portion 320 , and the body 310 is connected to the first conductive layer 120 .
  • the first end of the connection part 320 is connected to the body 310
  • the second end of the connection part 320 extends from the through hole 140 to the side of the current collector 100 opposite to the body 310
  • the second end of the connection part 320 is connected to the second conductive layer 130 connections.
  • the tab 300 is cut to form a two-part structure of the connection part 320 and the body 310 .
  • the body 310 is connected to the first conductive layer 120
  • the first end of the connection part 320 is connected to the body 310
  • the second end of the connection part 320 passes through the through hole 140 and extends to the side of the current collector 100 opposite to the body 310
  • the second end of the connection portion 320 is connected to the second conductive layer 130 .
  • the tab 300 is divided into a main body 310 and a connecting portion 320 interconnected with the main body 310.
  • the connecting portion 320 is connected to the second conductive layer 130 after passing through the through hole 140.
  • the first conductive layer 120 and the second conductive layer 130 of the current collector 100 are connected and conducted through the body 310 and the connecting portion 320 , so as to avoid welding the tabs on the conductive layers on both sides of the current collector 100 at the same time, so that the electrode current collector 100
  • the thickness of the welding area becomes smaller, which is beneficial to the encapsulation of the subsequent cells.
  • the surface of the first conductive layer 120 facing away from the base layer 110 has a first connection region 121
  • the surface of the second conductive layer 130 facing away from the base layer 110 has a second connection region 131
  • the first connection region 121 and the second connection region 131 are all connected to the tabs 300 so that the first conductive layer 120 and the second conductive layer 130 are electrically connected
  • the first connection regions 121 and the second connection regions 131 are respectively located at two sides of the through hole 140 along the first direction. side.
  • the tabs 300 and the conductive layers on both sides of the current collector 100 are connected by welding technology.
  • a first connection region 121 is provided on the surface of the first conductive layer 120 away from the base layer 110 , and the body 310 of the tab 300 is connected to the first connection region 121 by soldering technology; the second conductive layer 130 is away from the base layer.
  • a second connection area 131 is provided on the surface of the 110 , and the second end of the connection portion 320 is connected to the second connection area 131 by welding technology after passing through the through hole 140 .
  • the tabs 300 are connected to the first connection area 121 and the second connection area 131 by welding at the same time, so that the first conductive layer 120 and the second conductive layer 130 are connected to each other, wherein the first connection area 121 and the second connection area 130
  • the second connection regions 131 are respectively located on both sides of the through hole 140 along the first direction.
  • one end of the tab 300 extends to the outside of the current collector 100 in the first direction
  • the other end of the tab 300 is connected to the inside of the current collector 100
  • the tab 300 extends to the outside of the current collector 100 in the first direction.
  • Parts are provided with tabs 330 for charging/discharging, the tabs 330 are arranged at intervals along the second direction of the current collector 100, and the first direction and the second direction are vertically arranged.
  • the first direction may be the length direction or the width direction of the current collector 100.
  • the first direction is the width direction of the current collector 100 on the pole piece
  • the second direction is the current collector on the pole piece. 100 in the length direction.
  • a part of the tab sheet 300 extending to the outside of the width of the current collector 100 is punched into a plurality of tabs 330 , and the tabs 330 are along the second direction of the current collector 100 . spaced.
  • the tab 330 is used for charging/discharging of the battery after being connected to the external circuit of the battery.
  • multiple equivalent parallel circuits can be formed, which reduces the resistance of the battery, enhances the charging/discharging capability of the battery, and further improves the electrical performance of the battery.
  • the number of the through holes 140 is greater than or equal to one.
  • the number and shape of the through holes 140 are not specifically limited, the number of the through holes 140 is at least one, and there may be more than one; the shapes of the through holes 140 include but are not limited to rectangular, circular, Polygons and ellipses, etc.
  • the ratio of the distance L1 between the through hole 140 and the edge of the current collector 100 away from the side where the active material layer 200 is coated and the width L0 of the second region on the current collector 100 where the active material layer 200 is not coated The range is 0 ⁇ L1/L0 ⁇ 1, and the preferred range is 0.2-0.6; it is convenient for welding and ensures that the through hole 140 has a sufficient width.
  • the shortest distance between the through hole 140 and the edge of the first region coated with the active material layer 200 on the current collector 100 is L2, and the length of L2 is greater than or equal to 4mm; connection strength between 100.
  • the distance between the first connection region 121 on the first conductive layer 120 and the edge of the through hole 140 is L3, and L3 is greater than or equal to 1 mm.
  • the distance between the first connection region 121 on the first conductive layer 120 and the outer edge of the current collector 100 is L4, and L4 is greater than or equal to 1 mm.
  • the width of the second region on the current collector 100 not coated with the active material layer 200 is L0, and the width of the first region on the current collector 100 coated with the active material layer 200 is L5; the ratio of L0 to L5 is in the range of 0 ⁇ L1 /L0 ⁇ 1, the preferred range is 0.1-0.4; while ensuring sufficient capacity of the battery, it can also ensure the convenience and operability of welding.
  • the length of the upper tab 330 of the tab 300 is L6, and the width of the body 310 of the tab 300 and the first conductive layer 120 is L7; the ratio of L6 to L7 is in the range of 0.5 ⁇ L6/L7 ⁇ 5, preferably The range is 1-2; while ensuring the welding strength between the tabs 300 and the current collector 100, it can also facilitate the connection between the cell and the external circuit.
  • the total area of the through holes 140 on the current collector 100 is S1, and the area of the second region of the current collector 100 is S0; the ratio of S1 to S0 is 0.01 ⁇ S1/S0 ⁇ 0.5 to ensure that the current collector 100 has sufficient strength.
  • the pole piece in this embodiment further includes a protection member 400 ; the protection member 400 covers at least one of the first connection area 121 and the second connection area 131 , and the protection member 400 is located on the current collector 100 the inner surface of the .
  • the protection member 400 is provided to protect the electrode.
  • the specific structure of the protection member 400 is not specifically limited here, and may be a protection tape or a protection film.
  • the protection member 400 covers the first connection area 121 , or the protection member covers the second connection area 131 , or the protection member 400 covers both the first connection area 121 and the second connection area 131 . It should be noted that no matter how the protective member is covered, it is located on the inner surface of the current collector 100 and will not protrude from the outer side of the current collector 100 .
  • the thickness of the protective member 400 is 5-50 ⁇ m, and the protective member 400 is an insulating material.
  • the arrangement of the protection member 400 can prevent the burrs from piercing the pole pieces, improve the safety performance of the battery pole pieces, and also increase the connection strength at the welding area.
  • the base layer 110 is a polymer layer
  • the first conductive layer 120 and the second conductive layer 130 are both metal layers.
  • the constituent materials of the active material layer 400 include an active material, a conductive agent, and a binder.
  • the base layer 110 is a polymer layer
  • the polymer layer includes one or more of a polymer material and a polymer matrix composite material
  • the polymer material constituting the base layer 110 includes but is not limited to polyamide, polyimide , polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethylene, polypropylene, polypropylene, acrylonitrile-butadiene- Styrene copolymer, polyvinyl alcohol, polystyrene, polyvinyl chloride, polyvinylidene fluoride, polytetrafluoroethylene, sodium polystyrene sulfonate, polyacetylene, silicone rubber, polyoxymethylene, polyphenylene ether, polyphenylene sulfide Ether, polyethylene glycol, polysulfur nitride polymer materials, polyphenylene, polypyrrole, polyaniline, polythiophene, polypyridine, cellulose
  • the first conductive layer 120 and the second conductive layer 130 may be at least one of metal conductive materials and carbon-based conductive materials.
  • the metal conductive materials constituting the first conductive layer 120 and the second conductive layer 130 include but are not limited to aluminum, copper, titanium, nickel, silver, gold, iron, nickel-copper alloy and aluminum-zirconium alloy, etc.; the first conductive layer 120 and The carbon-based conductive material of the second conductive layer 130 includes, but is not limited to, graphite, acetylene black, graphene, carbon nanotubes, and the like.
  • the first conductive layer 120 and the second conductive layer 130 may be composed of the same metal material or alloy material, or the composition materials of the first conductive layer 120 and the second conductive layer 130 may also be different.
  • the material of the conductive layer is preferably a metal conductive material, that is, the conductive layer is preferably a metal conductive layer.
  • the current collector 100 is the positive electrode current collector
  • aluminum is usually used as the material of the conductive layer
  • copper is usually used as the material of the conductive layer.
  • a transition layer (not shown in the figure) may be provided between the first conductive layer 120 and the base layer 110 and between the second conductive layer 130 and the base layer 110 , and the transition layer is used to improve the first conductive layer.
  • the connection strength between the conductive layer 120 and the base layer 110 and the second conductive layer 130 and the base layer 110 is to prevent the first conductive layer 120 and the second conductive layer 130 from falling off from the base layer 110 .
  • the materials constituting the transition layer include, but are not limited to, aluminum oxide, titanium oxide, magnesium oxide, and the like.
  • the constituent materials of the active material layer 400 generally include an active material, a conductive agent, and a binder.
  • the active material when the pole piece is used as a positive pole piece, the active material may be a positive active material.
  • Positive active materials include lithium cobalt oxide (LCO), nickel-cobalt-manganese ternary material (NCM), nickel-cobalt-aluminum ternary material (NCA), nickel-cobalt-manganese-aluminum quaternary material (NCMA), lithium iron phosphate (LFP), phosphoric acid At least one of lithium manganese (LMP), lithium vanadium phosphate (LVP), lithium manganate (LMO), and lithium-rich manganese.
  • LCO lithium cobalt oxide
  • NCM nickel-cobalt-manganese ternary material
  • NCA nickel-cobalt-aluminum ternary material
  • NCMA nickel-cobalt-manganese-aluminum quatern
  • the active material may be a negative electrode active material.
  • the negative electrode active material includes at least one of graphite, mesocarbon microspheres, soft carbon, hard carbon, silicon material, silicon oxygen material, silicon carbon material, and lithium titanate.
  • the conductive agent includes at least one of conductive carbon black, carbon nanotubes, conductive graphite, and graphene.
  • Adhesives include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, sodium carboxymethyl cellulose, polyethylene pyrrolidine At least one of ketone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene, polyhexafluoropropylene, and styrene-butadiene rubber.
  • FIG. 4 is a step diagram of a method for preparing a pole piece provided by an embodiment of the present invention. As shown in FIG. 4 , a method for preparing a pole piece is also provided in this embodiment, which is used to prepare the above-mentioned pole piece.
  • the method includes the following steps:
  • transition layers for connection may also be provided between the first conductive layer 120 and the base layer 110 and between the second conductive layer 130 and the base layer 110 .
  • S102 Divide the current collector 100 into a first area and a second area along the first direction, coat the active material layers 200 on opposite sides of the first area of the current collector 100, and open the second area of the current collector 100 Connect the through holes 140 on opposite sides of the current collector 100 ; by coating the active material layers 200 on both sides of the current collector 100 in the first region, the current generated by the active material layer is collected to the current collector 100 .
  • the structure of the tab 300 may be cut into a body 310 and a connecting portion 320 .
  • the body 310 of the tab 300 is connected to the first conductive layer 120 in the second region of the current collector 100 , the first end of the connecting portion 320 is connected to the body 310 , and the second end of the connecting portion 320 extends through the through hole 140 to the
  • the side of the base layer 110 opposite to the first conductive layer 120 is connected to the second conductive layer 130 .
  • the connection between the body 310 and the first conductive layer 120 and the connection between the connection portion 320 and the second conductive layer 130 can be performed by welding.
  • the first conductive layer 120 and the second conductive layer 130 on both sides of the current collector 100 can be connected and conducted through the tabs 300 , which significantly improves the electrical conductivity of the electrode.
  • the tabs 330 are connected to the external circuit to form a charging/discharging circuit of the battery, and the plurality of tabs 330 further significantly reduces the resistance while realizing the conduction of the conductive layers on both sides of the composite current collector 100, thereby improving the electrical performance of the lithium-ion battery. .
  • the first conductive layer 120 and the second conductive layer 130 are attached on opposite sides of the base layer 110, and then the current collector 100 is formed. Then, the current collector 100 is divided into a first region and a second region along its first direction, the active material layers 200 are coated on opposite sides of the first region of the current collector 100, and the second region of the current collector 100 is communicated Through holes 140 on opposite sides of the current collector 100 . Next, the first part of the tab 300 is connected to the first conductive layer 120 , and the other part of the structure is extended to the side of the current collector 100 opposite to the first conductive layer 120 through the through hole 140 , and is connected to the second conductive layer 130 connect.
  • the tabs 330 are formed by die cutting on the tabs 300 , and finally a pole piece having the tabs 330 is formed.
  • the conductive layers on both sides of the pole piece current collector 100 prepared by the above method can be connected to each other.
  • the arrangement of the plurality of tabs 330 makes the resistance of the battery significantly lower, which improves the electrical performance of the battery.
  • the base layer 110 can reduce the weight of the battery, improve the energy density of the battery and increase the safety performance of the battery.
  • FIG. 5 is a schematic structural diagram of a battery core formed by winding a pole piece according to an embodiment of the present invention.
  • the pole pieces prepared in the above steps are coated with different active materials to obtain a positive pole piece 510 and a negative pole piece 520, and then the positive pole piece 510 and the negative pole piece 520 are rolled together with the separator 530.
  • the battery core 500 is obtained by winding, and the battery core 500 is finally prepared into a lithium ion battery through the processes of packaging, liquid injection, aging, chemical formation, and volume separation.
  • the embodiment of the present invention provides a laminated battery.
  • the laminated battery is formed by stacking a positive electrode piece 510 , a negative electrode piece 520 and a separator 530 in sequence.
  • the structure, function, preparation method and working principle of the pole piece have been introduced in detail in the above content, and will not be repeated here.
  • comparative cell 1 In order to compare and test the energy density and safety performance of the cells formed by the pole pieces of this embodiment, two types of comparative cells are selected for the comparison test.
  • the two types of cells are named as comparative cell 1 and comparative cell 2 respectively.
  • the following is an introduction to the composition of the battery cell of the embodiment, the first comparative cell, and the second comparative cell:
  • the structural composition of the battery cell in the embodiment is as follows: the positive electrode current collector is made of a foil with an aluminum-polyethylene terephthalate-aluminum laminate structure, and the lithium cobalt oxide active slurry is coated on the current collector, and the current collector runs along the One end of one direction is left with an uncoated area, and then a through hole is opened in the uncoated area. Attach the tab on the conductive layer on the side of the uncoated area, cut the tab above the through hole to form a small tab with a length smaller than the through hole, and insert it into the through hole. The tabs are then soldered to the conductive layers on both sides of the uncoated area at the same time.
  • the negative electrode current collector adopts copper foil as the foil, and the graphite active material is coated on the current collector, and the tabs are welded in the uncoated area. Then, the positive electrode sheet, the negative electrode sheet, and the separator are wound to obtain a winding core, and the winding core is packaged, injected, chemically formed, repackaged, and volume divided to obtain a finished battery core.
  • the structure of the comparative cell 1 is as follows: the positive electrode current collector is made of aluminum foil, and the lithium cobalt oxide active slurry is coated on the current collector. Pole ear.
  • the negative electrode current collector uses copper foil as the foil, and the graphite active material is coated on the current collector, and the tabs are welded in the uncoated area. Then, the positive electrode sheet, the negative electrode sheet, and the separator are wound to obtain a winding core, and the winding core is packaged, injected, chemically formed, repackaged, and volume divided to obtain a finished battery core.
  • the structure of the comparative cell 2 is as follows: the positive electrode current collector is made of aluminum-polyethylene terephthalate-aluminum laminated structure foil, and the lithium cobalt oxide active slurry is coated on the current collector, and the current collector follows the first At least one end of the two directions is left with an uncoated area, and the tab is welded in the uncoated area of the current collector.
  • the negative electrode current collector uses copper foil as the foil, and the graphite active material is coated on the current collector, and the tabs are welded in the uncoated area. Then, the positive electrode sheet, the negative electrode sheet, and the separator are wound to obtain a core.
  • the battery core is encapsulated, injected, chemically formed, repackaged, and volume divided to obtain a finished battery core.
  • the comparison battery cell 1, and the comparison battery cell 2 respectively (the internal resistance of the finished battery cell is obtained through the internal resistance test, and the heavy object impact test is to take the battery fully charged, Place the cell on a flat surface, place a steel column with a diameter of 15.8 ⁇ 0.2mm in the center of the cell, the longitudinal axis of the steel column is parallel to the plane, and let the weight of 9.1 ⁇ 0.1kg be free from a height of 610 ⁇ 25mm fall on the steel column above the center of the battery.), and finally get the next set of data.
  • Example battery 13 293 20/20 Contrast cell one 32 280 0/20 Contrast cell two 50 295 20/20
  • This embodiment also provides a lithium-ion battery, which includes the pole piece in the above content.
  • the structure, function, preparation method and working principle of the battery pole piece have been introduced in detail in the above content, and will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种极片及其制备方法、锂离子电池。极片包括集流体、活性物质层和极耳片,集流体包括基体层、第一导电层和第二导电层,第一导电层和第二导电层分别设置在基体层相对两侧;集流体在其第一方向分为第一区域和第二区域;活性物质层涂覆在集流体的第一区域的相对两侧,极耳片连接在集流体的第二区域;第二区域设置有连通集流体相对两侧的通孔,极耳片的部分结构连接于第一导电层,另一部分结构经由通孔延伸至集流体的与第一导电层相对的一侧,并和第二导电层连接。本发明提供的极片,可以实现复合集流体两侧导电层互相导通。

Description

极片及其制备方法、锂离子电池 技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种极片及其制备方法、锂离子电池。
背景技术
目前,锂离子电池已广泛应用于消费电子、电动汽车以及储能等领域。锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,锂离子在两个电极之间往返嵌入和脱嵌;充电时,锂离子从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。
常规的锂离子电池采用铝箔作为正极集流体,铜箔作为负极集流体。为降低电池的重量,提升电池的能量密度,可将集流体上的部分铝箔或部分铜箔用更轻质的聚合物材料代替。例如,采用铝-聚合物-铝或者铜-聚合物-铜等三明治结构状的集流体。
但是,由于上述复合结构中的集流体聚合物层不导电,所以集流体会有部分结构被聚合物层所隔开,而无法和焊接在集流体的极耳导通连接。
发明内容
本发明提供一种极片及其制备方法、锂离子电池,以实现复合集流体两侧导电层互相导通。
本发明提供一种极片,包括集流体、活性物质层和极耳片,集流体包括基体层、第一导电层和第二导电层,第一导电层和第二导电层分别设置在基体层相对两侧。
集流体在其第一方向分为第一区域和第二区域;活性物质层涂覆在集流体的第一区域的相对两侧,极耳片连接在集流体的第二区域。
第二区域设置有连通集流体相对两侧的通孔,极耳片的部分结构连接于第一导电层,另一部分结构经由通孔延伸至集流体的与第一导电层相对的一 侧,并和第二导电层连接。
在一种可能的实现方式中,本发明提供的极片,极耳片包括本体和连接部,本体和第一导电层连接。
连接部的第一端连接于本体,连接部的第二端由通孔延伸至集流体的与本体相对的一侧,且连接部的第二端与第二导电层连接。
在一种可能的实现方式中,本发明提供的极片,第一导电层背离基体层的表面具有第一连接区,第二导电层背离基体层的表面具有第二连接区,第一连接区和第二连接区均与极耳片连接,以使第一导电层和第二导电层导通,且第一连接区与第二连接区分别位于通孔沿第一方向的两侧。
在一种可能的实现方式中,本发明提供的极片,极耳片一端延伸至集流体第一方向外侧,极耳片另一端连接在集流体内侧。
在一种可能的实现方式中,本发明提供的极片,极耳片延伸至集流体第一方向外侧的部分设置有用于充/放电的至少两个极耳,极耳沿着集流体第二方向间隔排列;
第一方向和第二方垂直设置。
在一种可能的实现方式中,本发明提供的极片,通孔的数量大于或等于一个。
在一种可能的实现方式中,本发明提供的极片,还包括保护件;保护件覆盖第一连接区和第二连接区的至少一者,且保护件位于集流体内侧表面。
在一种可能的实现方式中,本发明提供的极片,通孔的面积为S1,集流体上第二区域的面积为S0,通孔的面积与第二区域的面积比值范围为0.01≤S1/S0≤0.5。
本发明提供一种极片的制备方法,用于制备上述任一项的极片,包括以下步骤:
在基体层相对两侧设置第一导电层和第二导电层,以形成集流体;
在集流体的第一区域的相对两侧涂覆活性物质层,并在集流体的第二区域开设连通集流体相对两侧的通孔;
将极耳片的一部分结构连接于第一导电层,另一部分结构经由通孔延伸至集流体的与第一导电层相对的一侧,并和第二导电层连接;
在极耳片上形成极耳,以形成具有极耳的极片。
本发明提供一种锂离子电池,该电池包括上述任一项的极片。
本发明提供的极片及其制备方法、锂离子电池,在基体层的相对两侧分别设置第一导电层和第二导电层以形成集流体。将集流体沿其第一方向分为第一区域和第二区域,集流体第一区域的相对两侧涂覆有活性物质层,集流体第二区域设置有连通集流体相对两侧的通孔,并将极耳片连接在第二区域。其中极耳片的部分结构连接在第二区域上的第一导电层,另一部分结构经由通孔延伸至集流体的与第一导电层相对的一侧,并和第二导电层连接。通过将极耳片的两部分结构同时与第一导电层和第二导电层连接使集流体两侧的导电层互相连通,且在保证锂离子电池高安全和高能量密度的同时,提高锂离子电池的电性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的极片的正面结构示意图;
图2为图1中A-A处的剖视图;
图3为图1中B-B处的剖视图;
图4为本发明实施例提供的极片制备方法步骤图;
图5为本发明实施例提供的极片卷绕形成电芯的结构示意图。
附图标记说明:
100-集流体;110-基体层;120-第一导电层;121-第一连接区;130-第二导电层;131-第二连接区;140-通孔;
200-活性物质层;
300-极耳片;310-本体;320-连接部;330-极耳;
400-保护件;
500-电芯;510-正极极片;520-负极极片;530-隔膜。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,锂离子在两个电极之间往返嵌入和脱嵌:充电时,锂离子从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。作为一种新型储能电池,由于具有高能量、长寿命、低耗能、无公害、无记忆效应以及自放电小、内阻小、性价比高、污染少等优点,锂离子电池逐步在应用中显示出巨大的优势,其广泛应用于移动电话、笔记本电脑、摄像机、数码相机、电动汽车、储能、航天等各领域。
常规的锂离子电池采用铝箔作为正极集流体,铜箔作为负极集流体。为提升电池的能量密度,降低电池的重量,可将集流体上的部分铝箔和部分铜箔用更轻质的聚合物材料代替。例如,采用铝-聚合物-铝或者铜-聚合物-铜等层叠结构的集流体。这种结构的集流体在电池发生短路时,电池升温至一定温度后,其内部的聚合物层会收缩从而切断电池内的电流通路,因而不容易发生燃烧或爆炸,相对于常规的铜箔和铝箔的集流体而言,其具有更好的安全性。
但是,上述复合结构的集流体聚合物层不导电,将极耳焊接在集流体一侧表面无法导通另一侧表面。
基于此,本发明提供了一种极片及其制备方法、锂离子电池,极片集流体两侧的导电层可以互相导通,且锂离子具有高安全性和高倍率性能。
下面,通过具体的实施例对本发明进行详细说明。
图1为本发明实施例提供的极片的正面结构示意图,图2为图1中A-A处的剖视图,图3为图1中B-B处的剖视图。
如图1-3所示,本发明提供的一种极片,包括集流体100、活性物质层200和极耳片300,集流体100包括基体层110、第一导电层120和第二导电层130,第一导电层120和第二导电层130分别设置在基体层110相对两侧。
集流体100在其第一方向分为第一区域和第二区域;活性物质层200涂 覆在集流体100的第一区域的相对两侧,极耳片300连接在集流体100的第二区域。
第二区域设置有连通集流体100相对两侧的通孔140,极耳片300的部分结构连接于第一导电层120,另一部分结构经由通孔140延伸至集流体100的与第一导电层120相对的一侧,并和第二导电层130连接。
在一些实施例中,极片包括集流体100、活性物质层200和极耳片300,其中,集流体100为包括导电层和基体层的层叠结构,基体层110位于层叠结构的中间位置,在基体层110的正反两面分别贴附有第一导电层120和第二导电层130,以形成集流体100。其中,为了减轻集流体100的重量、提升极片的能量密度,基体层110可以有孔隙。另外,在基体层110上设置孔隙并在孔隙中填充一些导电性的材料,可以有效的增强基体层110两侧的导电性能,有利于提高极片的导电性能。
沿着集流体100的第一方向将集流体100划分成两个区域,分别是第一区域和第二区域。在集流体100的第一区域的正反两面均涂覆有活性物质层200,在集流体100的第二区域连接有极耳片300,极耳片300同时与集流体100的第二区域的第一导电层120和第二导电层130的远离基体层110的表面连接。
集流体100的第二区域上设置有连通集流体100相对两侧的通孔140,本实施例中,对通孔140的数量和形状不做具体限定,通孔140的数量至少为一个,也可以有多个;通孔140的形状包括但不限于矩形、圆形、多边形和椭圆形等。极耳片300的部分结构与第一导电层120连接,其另一部分结构穿过通孔140并延伸至集流体100与第一导电层120相对的一侧后与第二导电层130连接。第一导电层120和第二导电层130通过极耳片300导通连接,这样便使得集流体100两侧的导电层互相导通,提升了极片的能量密度和电性能。而且通过集流体100的单侧连接极耳片300,并在集流体100上设置通孔140后将极耳片300的部分结构穿过通孔140与集流体100另外一侧导电层连接使集流体100两侧的导电层互相导通的结构,可以使极片集流体100的焊接区域的厚度减小,便于后续电芯的封装工作。
如图2和图3所示,极耳片300包括本体310和连接部320,本体310和第一导电层120连接。连接部320的第一端连接于本体310,连接部320 的第二端由通孔140延伸至集流体100的与本体310相对的一侧,且连接部320的第二端与第二导电层130连接。
在一种可能的实现方式中,为了便于极耳片300导通第一导电层120和第二导电层130,在极耳片300上切割形成连接部320和本体310两部分结构。本体310与第一导电层120连接,连接部320的第一端连接在本体310上,连接部320的第二端穿过通孔140后延伸至集流体100的与本体310相对的一侧,且连接部320的第二端与第二导电层130连接。将极耳片300分成本体310和与本体310相互连接的连接部320,在本体310与第一导电层120连接的同时,连接部320穿过通孔140后第二导电层130连接,如此,集流体100的第一导电层120和第二导电层130通过本体310和连接部320连接导通,这样可以避免在集流体100两侧的导电层上同时焊接极耳,使极片集流体100的焊接区域厚度变小,有利于后续电芯的封装工作。
如图3所示,第一导电层120背离基体层110的表面具有第一连接区121,第二导电层130背离基体层110的表面具有第二连接区131,第一连接区121和第二连接区131均与极耳片300连接,以使第一导电层120和第二导电层130导通,且第一连接区121与第二连接区131分别位于通孔140沿第一方向的两侧。
为了使本体310、连接部320分别与第一导电层120、第二导电层130相互连接,在一些实施例中,通过采用焊接技术将极耳片300与集流体100两侧的导电层相连接。具体地,在第一导电层120背离基体层110的表面设置第一连接区121,极耳片300的本体310通过焊接技术连接在第一连接区121上;在第二导电层130背离基体层110的表面设置第二连接区131,连接部320的第二端穿过通孔140后通过焊接技术连接在第二连接区131上。这样便使极耳片300同时与第一连接区121和第二连接区131通过焊接的方式连接,从而使第一导电层120和第二导电层130互相导通,其中第一连接区121和第二连接区131分别位于通孔140沿第一方向的两侧。
如图1-3所示,极耳片300一端延伸至集流体100第一方向外侧,极耳片300另一端连接在集流体100内侧,极耳片300延伸至集流体100第一方向外侧的部分设置有用于充/放电的极耳330,极耳330沿着集流体100第二方向间隔排列,第一方向和第二方向垂直设置。
具体地,极耳片300的一端沿着第一方向伸出集流体100的外侧,极耳片300的另一端贴附在集流体100的内侧表面上。其中第一方向可以是集流体100的长度方向或者宽度方向,优选的,当极片用作卷绕电池时,第一方向为极片上集流体100的宽度方向,第二方向为极片上集流体100的长度方向。
在本实施例中,为了便于电池快速的充/放电,在极耳片300延伸至集流体100宽度外侧的部分冲切成多个极耳330,极耳330沿着集流体100的第二方向间隔排列。极耳330与电池的外电路连接后用于电池的充/放电工作。同时,多个极耳330与外电路连接后可以形成多个等效并联电路,降低电池电阻,增强了电池的充/放电能力,进而提高了电池的电性能。
如图3所示,通孔140的数量大于或等于一个。
在一种可能的方式中,对通孔140的数量和形状不做具体限定,通孔140的数量至少为一个,也可以有多个;通孔140的形状包括但不限于矩形、圆形、多边形和椭圆形等。
如图2和图3所示,通孔140距离集流体100远离涂覆活性物质层200一侧边缘的距离L1与集流体100上未涂覆活性物质层200的第二区域的宽度L0的比值范围为0≤L1/L0<1,优选的范围是0.2-0.6;便于焊接且保证通孔140具有足够的宽度。
同时,通孔140距离集流体100上涂覆有活性物质层200的第一区域边缘的最短距离为L2,且L2的长度大于等于4mm;以同时兼顾操作性和保证极耳片300与集流体100之间的连接强度。
第一导电层120上的第一连接区121距离通孔140的边缘距离为L3,且L3大于等于1mm。
第一导电层120上的第一连接区121距离集流体100外侧边缘的距离为L4,且L4大于等于1mm。
集流体100上未涂覆活性物质层200的第二区域的宽度为L0,集流体100上涂覆有活性物质层200的第一区域的宽度为L5;L0与L5的比值范围为0<L1/L0<1,优选的范围是0.1-0.4;在保证电池足够容量的同时也能保证焊接的方便操作性。
极耳片300上极耳330的长度为L6,极耳片300的本体310与第一导电 层120贴合连接的宽度为L7;L6与L7的比值范围为0.5<L6/L7<5,优选的范围是1-2;在保证极耳片300与集流体100之间焊接强度的同时也能够方便电芯与外电路连接。
集流体100上通孔140的总面积为S1,集流体100的第二区域面积为S0;S1与S0的比值范围为0.01≤S1/S0≤0.5,以确保集流体100具有足够的强度。
如图2和图3所示,本实施例中的极片还包括保护件400;保护件400覆盖第一连接区121和第二连接区131的至少一者,且保护件400位于集流体100的内侧表面。
在一些实施例中,为了避免极耳片300与集流体100两侧的导电层焊接后在焊接区形成的毛刺刺穿隔膜引发内短路,通过设置保护件400来对极片做防护。对于保护件400的具体结构在此不做具体限定,可以是保护胶纸或者保护膜等。保护件400覆盖在第一连接区121,或保护件覆盖在第二连接区131,亦或是保护件400同时覆盖在第一连接区121和第二连接区131上。需要特别说明的是无论保护件是如何覆盖,其均位于集流体100的内侧表面,而不会伸出集流体100的外侧。保护件400的厚度为5-50μm,且保护件400是绝缘材料。
保护件400的设置可避免毛刺刺穿极片,提升电池极片的安全性能的同时还可以增加焊接区域处的连接强度。
在本实施例中,基体层110为聚合物质层,第一导电层120和第二导电层130均为金属层。活性物质层400的组成材料包括活性物质、导电剂和粘接剂。
具体地,基体层110为聚合物质层,聚合物质层包括高分子材料和高分子基复合材料中的一种或多种,构成基体层110的聚合物质包括但不限于聚酰胺、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚碳酸酯、聚乙烯、聚丙烯、聚丙乙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚乙烯醇、聚苯乙烯、聚氯乙烯、聚偏氟乙烯、聚四氟乙烯、聚苯乙烯磺酸钠、聚乙炔、硅橡胶、聚甲醛、聚苯醚、聚苯硫醚、聚乙二醇、聚氮化硫类高分子材料、聚苯、聚吡咯、聚苯胺、聚噻吩、聚吡啶、纤维素、淀粉、蛋白质、环氧树脂、酚醛树脂以及上述物质的衍生物、交联物和上述 物质的共聚物等。
第一导电层120和第二导电层130可以为金属导电材料、碳基导电材料中的至少一种。构成第一导电层120和第二导电层130的金属导电材料包括但不限于铝、铜、钛、镍、银、金、铁以及镍铜合金和铝锆合金等;构成第一导电层120和第二导电层130的碳基导电材料包括但不限于石墨、乙炔黑、石墨烯、碳纳米管等。其中,第一导电层120和第二导电层130可由同样的金属材料或合金材料组成,或者,第一导电层120和第二导电层130的组成材料也可以不同。
此外,导电层的材料优选为金属导电材料,即导电层优选为金属导电层。其中,当集流体100为正极集流体时,通常采用铝为导电层的材料;当集流体100为负极集流体时,通常采用铜为导电层的材料。
在一些实施例中,第一导电层120与基体层110之间及第二导电层130与基体层110之间可以均设有过渡层(图中未示出),过渡层用于提高第一导电层120与基体层110及第二导电层130与基体层110之间的连接强度,以避免第一导电层120及第二导电层130从基体层110上脱落。示例性的,构成过渡层的材料包括但不限于氧化铝、氧化钛、氧化镁等。
活性物质层400的组成材料通常包括活性物质、导电剂和粘接剂。在具体应用中,极片作为正极极片的情况下,活性物质可以为正极活性物质。正极活性物质包括钴酸锂(LCO)、镍钴锰三元材料(NCM)、镍钴铝三元材料(NCA)、镍钴锰铝四元材料(NCMA)、磷酸铁锂(LFP)、磷酸锰锂(LMP)、磷酸钒锂(LVP)、锰酸锂(LMO)、富锂锰基中的至少一种。
极片作为负极极片的情况下,活性物质可以为负极活性物质。负极活性物质包括石墨、中间相碳微球、软碳、硬碳、硅材料、硅氧材料、硅碳材料、钛酸锂中的至少一种。
导电剂包括导电炭黑、碳纳米管、导电石墨、石墨烯中的至少一种。
粘接剂包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素纳、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯、聚六氟丙烯和丁苯橡胶中的至少一种。
图4为本发明实施例提供的极片制备方法步骤图。如图4所示,本实施 例中还提供了一种极片的制备方法,用于制备上述的极片。
具体的,该方法包括以下步骤:
S101、在基体层110相对两侧设置第一导电层120和第二导电层130,以形成集流体100;通过在基体层110的相对两侧贴附第一导电层120和第二导电层130,以形成三明治结构的集流体100。
其中,还可以在第一导电层120与基体层110之间以及第二导电层130与基体层110之间设置有用于连接的过渡层。
S102、将集流体100沿其第一方向分为第一区域和第二区域,在集流体100的第一区域的相对两侧涂覆活性物质层200,并在集流体100的第二区域开设连通集流体100相对两侧的通孔140;通过在第一区域内的集流体100的两侧表面涂覆活性物质层200,以使活性物质层产生的电流汇集至集流体100。
S103、将极耳片300的一部分结构连接于第一导电层120,另一部分结构经由通孔140延伸至集流体100的与第一导电层120相对的一侧,并和第二导电层130连接。
具体地,将极耳片300的结构可以切割分成本体310和连接部320。其中,极耳片300的本体310连接在集流体100的第二区域的第一导电层120上,连接部320的第一端与本体310连接,其第二端穿过通孔140后延伸至基体层110的与第一导电层120相对的一侧,并和第二导电层130连接。本体310与第一导电层120的连接及连接部320与第二导电层130的连接均可采用焊接的方式。
通过极耳片300可以将集流体100两侧的第一导电层120与第二导电层130连接导通,明显提高了极片的导电性能。
S104、在极耳片300上形成极耳330,以形成具有极耳330的极片。具体地,极耳片300沿集流体100第一方向伸出的部分模切形成多个具有一定形状和大小的极耳330,得到焊接多个极耳330的极片。
其中,极耳330与外部电路连接后形成电池的充/放电电路,且多个极耳330在实现复合集流体100两侧导电层导通的同时进一步显著降低电阻,提高锂离子电池的电性能。
本实施例提供的极片的制备方法,首先在基体层110的相对两侧贴附第 一导电层120和第二导电层130后形成集流体100。然后将集流体100沿其第一方向分为第一区域和第二区域,在集流体100的第一区域的相对两侧涂覆活性物质层200,并在集流体100的第二区域开设连通集流体100相对两侧的通孔140。接着将极耳片300的第一部分结构连接于第一导电层120,其另一部分结构经由通孔140延伸至集流体100的与第一导电层120相对的一侧,并和第二导电层130连接。最后在极耳片300上模切形成极耳330,最终形成具有极耳330的极片。通过上述方法制备的极片集流体100的两侧的导电层能够互相导通。此外,多个极耳330的设置使电池的电阻显著较低,提高了电池的电性能。基体层110可以减轻电池的重量,提升电池的能量密度并增加了电池的安全性能。
图5为本发明实施例提供的极片卷绕形成电芯的结构示意图。如图5所示,上述步骤制备完成的极片,经过涂覆不同的活性物质后得到正极极片510和负极极片520,然后将正极极片510和负极极片520与隔膜530一起进行卷绕得到电芯500,电芯500经封装、注液、陈化、化成、分容等工序最终制得锂离子电池。
另外,本发明实施例提供一种叠片电池,该叠片电池由正极极片510、负极极片520和隔膜530依次层叠形成。其中极片的结构、功能、制备方法及工作原理等在上述内容中已经作了详细介绍,在此不再赘述。
为了对比测试本实施例的极片形成电芯的能量密度和安全性能,选用了两款对比电芯来做对比测试。并将该两款电芯分别命名为对比电芯一和对比电芯二。以下分别对实施例电芯、对比电芯一、对比电芯二的组成结构做一介绍:
实施例电芯的结构组成为:正极集流体采用铝-聚对苯二甲酸乙二醇酯-铝层叠结构的箔材,将钴酸锂活性浆料涂敷在集流体上,集流体沿第一方向一端留有未涂覆区域,然后在未涂覆区开一通孔。并将极耳片贴附在未涂覆区域一侧的导电层上,将位于通孔上方的极耳片进行裁切,形成一长度小于通孔的小极耳片,将其穿插进通孔中,然后将极耳片同时焊接在未涂覆区域两侧的导电层。负极集流体采用铜箔作为箔材,将石墨活性物质涂敷在集流体上,在未涂敷区焊接极耳片。然后将正极片、负极片、隔膜卷绕得到卷芯,卷芯经封装、注液、化成、二次封装、分容得到成品电芯。
对比电芯一的结构组成为:正极集流体采用铝箔,将钴酸锂活性浆料涂敷在集流体上,集流体沿第二方向至少一端留有未涂区,在集流体未涂区焊接极耳。负极集流体采用铜箔作为箔材,将石墨活性物质涂敷在集流体上,在未涂敷区焊接极耳。然后将正极片、负极片、隔膜卷绕得到卷芯,卷芯经封装、注液、化成、二次封装、分容得到成品电芯。
对比电芯二的结构组成为:正极集流体采用铝-聚对苯二甲酸乙二醇酯-铝层叠结构的箔材,将钴酸锂活性浆料涂敷在集流体上,集流体沿第二方向至少一端留有未涂区,在集流体未涂区焊接极耳。负极集流体采用铜箔作为箔材,将石墨活性物质涂敷在集流体上,在未涂敷区焊接极耳。然后将正极片、负极片、隔膜卷绕得到卷芯。电卷芯经封装、注液、化成、二次封装、分容得到成品电芯。
分别对实施例电芯、对比电芯一、对比电芯二进行内阻测试和重物冲击测试(成品电芯的内阻通过内阻仪测试得出,重物冲击测试为取电池充满电,将电芯放置于一平面,将一个直径15.8±0.2mm的钢柱置于电芯中心,钢柱的纵轴平行于平面,让质量为9.1±0.1kg的重物从610±25mm的高度自由落到电池中心上方的钢柱上。),并最终得出下组数据。
表1.实施例电芯和各对比电芯的能量密度及安全测试结果
项目 内阻mΩ 能量密度Wh/kg 满电重物冲击(通过/测试)
实施例电芯 13 293 20/20
对比电芯一 32 280 0/20
对比电芯二 50 295 20/20
通过上述表1中的数据可以看出,本实施例中的电芯具有较高的能量密度和安全性能。
本实施例还提供一种锂离子电池,该电池包括上述内容中的极片。其中电池极片的结构、功能、制备方法及工作原理等在上述内容中已经作了详细介绍,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以使固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或维护工具不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或维护工具固有的其它步骤或单元。

Claims (10)

  1. 一种极片,其特征在于,包括集流体、活性物质层和极耳片,所述集流体包括基体层、第一导电层和第二导电层,所述第一导电层和所述第二导电层分别设置在所述基体层相对两侧;
    所述集流体在第一方向分为第一区域和第二区域;所述活性物质层涂覆在所述集流体的所述第一区域的相对两侧,所述极耳片连接在所述集流体的所述第二区域;
    所述第二区域设置有连通所述集流体相对两侧的通孔,所述极耳片的部分结构连接于所述第一导电层,另一部分结构经由所述通孔延伸至所述集流体的与所述第一导电层相对的一侧,并和所述第二导电层连接。
  2. 根据权利要求1所述的极片,其特征在于,所述极耳片包括本体和连接部,所述本体和所述第一导电层连接;
    所述连接部的第一端连接于所述本体,所述连接部的第二端由所述通孔延伸至所述集流体的与所述本体相对的一侧,且所述连接部的第二端与所述第二导电层连接。
  3. 根据权利要求2所述的极片,其特征在于,所述第一导电层背离所述基体层的表面具有第一连接区,所述第二导电层背离所述基体层的表面具有第二连接区,所述第一连接区和所述第二连接区均与所述极耳片连接,以使所述第一导电层和所述第二导电层导通,且所述第一连接区与所述第二连接区分别位于所述通孔沿所述第一方向的两侧。
  4. 根据权利要求1所述的极片,其特征在于,所述极耳片一端延伸至所述集流体第一方向外侧,所述极耳片另一端连接在所述集流体内侧。
  5. 根据权利要求4所述的极片,其特征在于,所述极耳片延伸至所述集流体第一方向外侧的部分设置有用于充/放电的至少两个极耳,所述极耳沿着所述集流体第二方向间隔排列;
    所述第一方向与所述第二方向垂直设置。
  6. 根据权利要求1所述的极片,其特征在于,所述通孔的数量大于或等于一个。
  7. 根据权利要求3所述的极片,其特征在于,还包括保护件;所述保护件覆盖所述第一连接区和所述第二连接区的至少一者,且所述保护件位于所 述集流体内侧表面。
  8. 根据权利要求1所述的极片,其特征在于,所述通孔的面积为S1,所述集流体上所述第二区域的面积为S0,所述通孔的面积与所述第二区域的面积比值范围为0.01≤S1/S0≤0.5。
  9. 一种极片的制备方法,用于制备权利要求1-8任一项所述的极片,其特征在于,包括以下步骤:
    在所述基体层相对两侧设置所述第一导电层和所述第二导电层,以形成所述集流体;
    在所述集流体的所述第一区域的相对两侧涂覆所述活性物质层,并在所述集流体的所述第二区域开设连通所述集流体相对两侧的通孔;
    将所述极耳片的一部分结构连接于所述第一导电层,另一部分结构经由所述通孔延伸至所述集流体的与所述第一导电层相对的一侧,并和所述第二导电层连接;
    在所述极耳片上形成极耳,以形成具有所述极耳的极片。
  10. 一种锂离子电池,其特征在于,包括权利要求1-8任一项所述的极片。
PCT/CN2022/091044 2021-04-30 2022-05-05 极片及其制备方法、锂离子电池 WO2022228580A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22795049.0A EP4266396A1 (en) 2021-04-30 2022-05-05 Electrode plate and preparation method therefor, and lithium-ion battery
US18/225,649 US20230369604A1 (en) 2021-04-30 2023-07-24 Electrode sheet and preparation method therefor, and lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110480435.0 2021-04-30
CN202110480435.0A CN113241423B (zh) 2021-04-30 2021-04-30 极片及其制备方法、锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/225,649 Continuation US20230369604A1 (en) 2021-04-30 2023-07-24 Electrode sheet and preparation method therefor, and lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2022228580A1 true WO2022228580A1 (zh) 2022-11-03

Family

ID=77131738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091044 WO2022228580A1 (zh) 2021-04-30 2022-05-05 极片及其制备方法、锂离子电池

Country Status (4)

Country Link
US (1) US20230369604A1 (zh)
EP (1) EP4266396A1 (zh)
CN (1) CN113241423B (zh)
WO (1) WO2022228580A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115692723A (zh) * 2022-11-08 2023-02-03 厦门海辰储能科技股份有限公司 复合集流体、电芯、电池以及复合集流体的制备方法
CN115870560A (zh) * 2022-12-30 2023-03-31 重庆太蓝新能源有限公司 一种裁切机构及封装方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220149491A1 (en) * 2020-11-06 2022-05-12 Sk Innovation Co., Ltd. Electrode for lithium secondary battery and method of manufacturing the same
CN113066955B (zh) * 2021-03-11 2024-02-13 珠海冠宇电池股份有限公司 一种电极片及其应用
CN113241423B (zh) * 2021-04-30 2023-04-18 珠海冠宇电池股份有限公司 极片及其制备方法、锂离子电池
EP4287331A1 (en) * 2021-10-29 2023-12-06 Contemporary Amperex Technology Co., Limited Secondary battery, battery module, battery pack, and electrical device
CN114068944A (zh) * 2021-11-11 2022-02-18 惠州赣锋锂电科技有限公司 极片及其制备方法和应用
CN114156488A (zh) * 2021-11-29 2022-03-08 珠海冠宇电池股份有限公司 极片及其制备方法、电池
CN114613932B (zh) * 2022-03-24 2024-04-19 深圳吉阳智能科技有限公司 极片结构及电池
CN217933932U (zh) * 2022-07-27 2022-11-29 珠海冠宇电池股份有限公司 电芯结构和电池
CN115332737B (zh) * 2022-10-17 2023-10-10 宁德新能源科技有限公司 一种极片、电化学装置及电子装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2872606Y (zh) * 2005-12-01 2007-02-21 深圳市比克电池有限公司 卷绕式锂离子电池单元和包括其的锂离子电池
JP2016152154A (ja) * 2015-02-18 2016-08-22 セイコーインスツル株式会社 電気化学セル
CN108428848A (zh) * 2017-11-22 2018-08-21 宁德时代新能源科技股份有限公司 电极构件、电极组件和充电电池
CN108767262A (zh) * 2018-05-30 2018-11-06 中航锂电(洛阳)有限公司 集流体用塑料膜、集流体及其制备方法、极片、储能装置
CN111048787A (zh) * 2019-12-11 2020-04-21 合肥国轩高科动力能源有限公司 一种柔性复合集流体的制作方法
CN210897473U (zh) * 2019-11-19 2020-06-30 深圳市海鸿新能源技术有限公司 二次电池的极片、二次电池
CN113066955A (zh) * 2021-03-11 2021-07-02 珠海冠宇电池股份有限公司 一种电极片及其应用
CN113241423A (zh) * 2021-04-30 2021-08-10 珠海冠宇电池股份有限公司 极片及其制备方法、锂离子电池
CN114156488A (zh) * 2021-11-29 2022-03-08 珠海冠宇电池股份有限公司 极片及其制备方法、电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967230B2 (ja) * 2004-12-07 2012-07-04 日産自動車株式会社 電池構造体
JP2010003653A (ja) * 2008-06-23 2010-01-07 Sumitomo Electric Ind Ltd 電池
CN205303580U (zh) * 2016-01-22 2016-06-08 宁德时代新能源科技股份有限公司 一种锂离子电池极片及含有该极片的锂离子电池
CN108281609B (zh) * 2018-03-27 2023-07-28 横店集团东磁股份有限公司 一种带极耳的正极极片、其制备方法及包含该正极极片的锂离子电池
KR102097444B1 (ko) * 2019-01-30 2020-04-06 주식회사 유앤에스에너지 양극 전극용 집전체
CN116093337A (zh) * 2019-03-29 2023-05-09 宁德新能源科技有限公司 电池
CN111952541B (zh) * 2020-09-14 2022-05-06 珠海冠宇电池股份有限公司 一种正极片及制备方法、电池
CN112670435A (zh) * 2020-12-17 2021-04-16 惠州市豪鹏科技有限公司 电池极片制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2872606Y (zh) * 2005-12-01 2007-02-21 深圳市比克电池有限公司 卷绕式锂离子电池单元和包括其的锂离子电池
JP2016152154A (ja) * 2015-02-18 2016-08-22 セイコーインスツル株式会社 電気化学セル
CN108428848A (zh) * 2017-11-22 2018-08-21 宁德时代新能源科技股份有限公司 电极构件、电极组件和充电电池
CN108767262A (zh) * 2018-05-30 2018-11-06 中航锂电(洛阳)有限公司 集流体用塑料膜、集流体及其制备方法、极片、储能装置
CN210897473U (zh) * 2019-11-19 2020-06-30 深圳市海鸿新能源技术有限公司 二次电池的极片、二次电池
CN111048787A (zh) * 2019-12-11 2020-04-21 合肥国轩高科动力能源有限公司 一种柔性复合集流体的制作方法
CN113066955A (zh) * 2021-03-11 2021-07-02 珠海冠宇电池股份有限公司 一种电极片及其应用
CN113241423A (zh) * 2021-04-30 2021-08-10 珠海冠宇电池股份有限公司 极片及其制备方法、锂离子电池
CN114156488A (zh) * 2021-11-29 2022-03-08 珠海冠宇电池股份有限公司 极片及其制备方法、电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115692723A (zh) * 2022-11-08 2023-02-03 厦门海辰储能科技股份有限公司 复合集流体、电芯、电池以及复合集流体的制备方法
CN115692723B (zh) * 2022-11-08 2024-01-23 厦门海辰储能科技股份有限公司 复合集流体、电芯、电池以及复合集流体的制备方法
CN115870560A (zh) * 2022-12-30 2023-03-31 重庆太蓝新能源有限公司 一种裁切机构及封装方法
CN115870560B (zh) * 2022-12-30 2024-01-26 重庆太蓝新能源有限公司 一种裁切机构及封装方法

Also Published As

Publication number Publication date
CN113241423A (zh) 2021-08-10
CN113241423B (zh) 2023-04-18
EP4266396A1 (en) 2023-10-25
US20230369604A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2022228580A1 (zh) 极片及其制备方法、锂离子电池
CN113097662B (zh) 电池极片及其制备方法、锂离子电池
CN101312244B (zh) 电极组件及使用该电极组件的二次电池
CN101141009B (zh) 电池组
US11811022B2 (en) Secondary battery
KR100929126B1 (ko) 비수전해질 전지 및 그 제조 방법
US20130177787A1 (en) Current collector and nonaqueous secondary battery
CN111755700A (zh) 复合集流体、应用该复合集流体的电极极片及电芯
CN113097439B (zh) 一种极片及电池
CN113285055B (zh) 一种电极片及其应用
CN113066955B (zh) 一种电极片及其应用
CN113285054B (zh) 一种电极片及其应用
CN111095613B (zh) 电极、非水电解质电池及电池包
WO2023103993A1 (zh) 极片及电池
CN114156488A (zh) 极片及其制备方法、电池
CN114975864A (zh) 极片、电芯结构、锂电池以及电子设备
CN216354304U (zh) 极片及电池
JP2013196788A (ja) 非水電解液二次電池
JP2006244833A (ja) リチウム二次電池およびその製造方法
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JP7414129B2 (ja) 二次電池
JP2018160439A (ja) 非水電解質二次電池
CN115461927A (zh) 二次电池
CN108075093B (zh) 电池组
JP2011175904A (ja) 全固体型リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022795049

Country of ref document: EP

Effective date: 20230719

NENP Non-entry into the national phase

Ref country code: DE