WO2022228309A1 - 一种热管理控制方法、设备、存储介质和车辆 - Google Patents

一种热管理控制方法、设备、存储介质和车辆 Download PDF

Info

Publication number
WO2022228309A1
WO2022228309A1 PCT/CN2022/088511 CN2022088511W WO2022228309A1 WO 2022228309 A1 WO2022228309 A1 WO 2022228309A1 CN 2022088511 W CN2022088511 W CN 2022088511W WO 2022228309 A1 WO2022228309 A1 WO 2022228309A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
target
air
rotational speed
thermostat
Prior art date
Application number
PCT/CN2022/088511
Other languages
English (en)
French (fr)
Inventor
朱福堂
王春生
黄秋萍
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP22794780.1A priority Critical patent/EP4296486A1/en
Priority to JP2023560294A priority patent/JP2024517574A/ja
Priority to AU2022267544A priority patent/AU2022267544A1/en
Priority to MX2023012017A priority patent/MX2023012017A/es
Priority to BR112023022137A priority patent/BR112023022137A2/pt
Publication of WO2022228309A1 publication Critical patent/WO2022228309A1/zh
Priority to US18/373,233 priority patent/US20240018894A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/44Outlet manifold temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/50Temperature using two or more temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed

Definitions

  • the present disclosure belongs to the technical field of vehicles, and in particular, relates to a thermal management control method, device, storage medium and vehicle.
  • the opening degree of the thermostat, the rotational speed of the electronic water pump, and the rotational speed of the radiator fan are adjusted in the order of priority from high to low, so as to satisfy various working conditions.
  • the co-optimization of thermal management system power consumption and engine fuel consumption is not considered, so that the energy consumption of the whole vehicle is optimized.
  • the first object of the present disclosure is to provide a thermal management control method for an engine, which controls the rotational speed of the water pump and the air cooling and heat dissipation according to the preset minimum fuel consumption MAP of the engine and the minimum power consumption MAP of the thermal management system.
  • the speed of the engine is adjusted to keep the engine at the temperature with the lowest fuel consumption, the power consumption of the thermal management system is the lowest, and the energy consumption of the whole vehicle is optimized.
  • a second object of the present disclosure is to propose a computer-readable storage medium.
  • a third object of the present disclosure is to propose a thermal management control apparatus for a vehicle.
  • a fourth object of the present disclosure is to propose a vehicle.
  • the embodiment of the first aspect of the present disclosure provides a thermal management control method for an engine.
  • the engine is connected to a thermal management system, and the thermal management system includes a water pump, an air-cooled radiator and a thermostat.
  • the engine and the water pump The connection forms a first cooling cycle
  • the air-cooled radiator is connected to the engine and the water pump through a thermostat to form a second cooling cycle
  • the thermal management control method includes: when the current temperature of the engine is greater than or equal to a preset temperature threshold, and the thermostat is opened When the opening degree is greater than or equal to the preset opening threshold, the minimum fuel consumption MAP of the engine is inquired according to the current engine speed, the current torque of the engine, and the current ambient temperature, and the total target heat dissipation of the engine is determined; Wind speed and current ambient temperature query the minimum power consumption MAP of the thermal management system, determine the target speed of the water pump and the target speed of the air-cooled radiator; control the speed of the water pump as the target speed of the water pump, and control
  • the engine temperature with the lowest fuel consumption or the highest efficiency under the current operating conditions is determined by the preset minimum fuel consumption MAP of the engine, that is, the engine target temperature, and then the total target heat dissipation required to reach the engine target temperature is determined, and then through the preset thermal management system
  • the minimum power consumption MAP determines the optimal combination of the speed of the water pump and the speed of the air-cooled radiator with the lowest power consumption in the current environment, that is, the target speed of the water pump and the target speed of the air-cooled radiator, so as to achieve the optimal combination of engine fuel consumption and thermal management system power consumption. Co-optimization to achieve optimal vehicle energy consumption.
  • a second aspect embodiment of the present disclosure provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is adapted to be executed by a processor to implement the above-mentioned first aspect embodiment.
  • Thermal management control method
  • a third aspect of the present disclosure provides a thermal management control device for a vehicle, including a processor and a memory, the processor and the memory are connected to each other; the memory is used to store a computer program, and the computer program includes program instructions , the processor is configured to invoke a program instruction to execute the thermal management control method of the embodiment of the first aspect.
  • a fourth aspect embodiment of the present disclosure provides a vehicle, including the vehicle including an engine and a thermal management system, the thermal management system including a water pump, an air-cooled radiator, a thermostat, and a vehicle according to the third aspect embodiment.
  • Thermal management control equipment; the engine and the water pump are connected to form a first cooling cycle, and the air-cooled radiator is connected to the engine and the water pump through a thermostat to form a second cooling cycle.
  • FIG. 1 is a schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of a thermal management control method provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of the first feedback control of the thermal management control method provided by the embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a thermal management control method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of the second feedback control of the thermal management control method provided by the embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a thermal management control method provided by an embodiment of the present disclosure.
  • the following describes a vehicle 100 , a thermal management control method, a thermal management control device, and a computer-readable storage medium of an embodiment of the present disclosure with reference to FIGS. 1-6 .
  • the vehicle 100 includes an engine 110 and a thermal management system 120 .
  • the thermal management system 120 includes a water pump 121 , an air-cooled radiator 122 , a thermostat 123 and a thermal management control device 124 .
  • the thermal management control device 124 includes a processor 124a and a memory 124b, the processor 124a and the memory 124b being interconnected, the memory 124b for storing a computer program including program instructions, the processor 124a being configured to invoke the program instructions, executing itself
  • the thermal management control method provided by the embodiment the computer-readable storage medium provided by the embodiment of the present disclosure stores a computer program, and the computer program is executed by the processor to implement the thermal management control method provided by the embodiment of the present disclosure.
  • the engine 110 and the water pump 121 are connected to form a first cooling cycle, that is, the coolant is pumped out by the water pump 121 through the engine 110 and cools the engine 110 ; the air-cooled radiator 122 is connected to the engine 110 and The water pump 121 is connected to form a second cooling cycle, that is, when the thermostat 123 is turned on, the coolant is pumped out by the water pump 121 through the engine 110 to cool the engine 110, and then enters the air-cooled radiator 122 through the thermostat 123 for cooling.
  • the first cooling cycle is a small cycle for cooling the engine 110
  • the second cooling cycle is a large cycle for cooling the engine 110 .
  • the thermal management control method provided by the embodiment of the present disclosure includes the following steps S1-S3.
  • the thermal management system 120 needs to continuously control the temperature of the engine 110.
  • the preset temperature threshold may be 60°C to 80°C; specifically, the preset temperature threshold may be 80°C.
  • the temperature-related parameter of the engine 110 in the present disclosure is the temperature at which the coolant flows out of the engine 110 .
  • the preset opening degree threshold may be 95% to 100% , specifically, the preset opening threshold may be 100%, that is, the thermostat 123 is fully opened.
  • both the water pump 121 and the air-cooled radiator 122 need to participate in the cooling of the engine 110, and make the engine 110 reach the working state with the lowest fuel consumption, that is, the highest efficiency.
  • the current engine speed, current engine torque and current ambient temperature are used as input parameters to query the engine minimum fuel consumption MAP, and finally output the total target heat dissipation that enables the engine 110 to achieve the lowest fuel consumption, that is, the most efficient working state.
  • the minimum engine fuel consumption MAP is calibrated through simulation and experiment in the R&D and design stage according to the specific conditions of the vehicle 100 , and is preset in the thermal management control device 124 under the condition that the fuel consumption of the engine 110 is the lowest.
  • the current ambient temperature refers to the air temperature outside the vehicle, that is, the intake air temperature of the engine 110 and the intake air temperature of the air-cooled radiator 122 .
  • the engine 110 When the opening degree of the thermostat 123 is greater than or equal to the preset opening degree threshold, the engine 110 is cooled through the second cooling cycle, wherein the water pump 121 and the air cooling can make the engine 110 reach the working state with the lowest fuel consumption, that is, the highest efficiency.
  • There are innumerable combinations of rotational speeds of the radiator 122 and the embodiment of the present disclosure uses the total target heat dissipation, the inlet air speed of the air-cooled radiator 122 and the current ambient temperature as input parameters to query the minimum power consumption MAP of the thermal management system, and output the water pump target
  • the optimal combination of the rotational speed and the target rotational speed of the air-cooled radiator enables the thermal management system 120 to work in a state with the lowest power consumption.
  • the minimum power consumption MAP of the thermal management system is calibrated through simulation and experiment according to the specific conditions of the thermal management system 120 in the R&D and design stage, and is preset in the thermal management control device 124 under the condition that the power consumption of the thermal management system 120 is the lowest.
  • the inlet wind speed of the air-cooled radiator 122 is determined according to the current vehicle speed and the ambient wind speed.
  • the total target heat dissipation required for the engine to achieve the lowest fuel consumption or the highest efficiency under the current operating conditions is determined through the preset minimum fuel consumption MAP of the engine, and then through the preset minimum power consumption MAP of the thermal management system, the power consumption in the current environment is determined.
  • the optimal combination of the rotational speed of the water pump 121 and the rotational speed of the air-cooled radiator 122 with the lowest consumption that is, the target rotational speed of the water pump and the target rotational speed of the air-cooled radiator, and control the water pump 121 and the air-cooled radiator 122 with the target rotational speed of the water pump and the air-cooled radiator respectively.
  • the rotational speed of the air-cooled radiator 122 refers to the rotational speed of the fan in the air-cooled radiator 122 .
  • step S1 includes the following steps S110-S130.
  • S130 Determine the total target heat dissipation amount according to the current temperature of the engine, the target temperature of the engine, and the amount of heat generated by the engine.
  • the engine minimum fuel consumption MAP Taking the current engine speed, current engine torque and current ambient temperature as input parameters, query the engine minimum fuel consumption MAP, and output the engine target temperature that enables the engine 110 to achieve the lowest fuel consumption, that is, the highest efficiency operating state.
  • the heat required by the engine from the current temperature to the target temperature can be calculated as C ⁇ M ⁇ T, where C is the specific heat capacity of the coolant, and M is the Coolant quality, coolant quality is related to flow. Therefore, the total target heat dissipation amount of engine cooling can be obtained by taking the difference between the calorific value of the engine and C ⁇ M ⁇ T.
  • step S130 specifically includes: determining the total target heat dissipation in a closed-loop manner through the first feedback control, wherein the engine target temperature and the engine heat generation are the input quantities of the first feedback control, and the engine current The temperature is the feedback variable of the first feedback control, and the total target heat dissipation is the output amount of the first feedback control.
  • step S130 specifically includes the following steps:
  • step S2 includes the following steps:
  • S220 determine the target water pump rotational speed according to the basic rotational speed of the water pump and the target theoretical rotational speed of the water pump; in some embodiments, output the target rotational speed of the water pump by inputting the basic rotational speed of the water pump and the target theoretical rotational speed of the water pump into the third calculator;
  • S230 Determine the target rotational speed of the air-cooled radiator according to the basic rotational speed of the air-cooled radiator and the target theoretical rotational speed of the air-cooled radiator; in some embodiments, by inputting the basic rotational speed of the air-cooled radiator and the target theoretical rotational speed of the air-cooled radiator into the first Three arithmetic units, output the target speed of the air-cooled radiator.
  • the water pump 121 and the air-cooled radiator 122 need to ensure a certain rotational speed, that is, the basic rotational speed of the water pump and the basic rotational speed of the air-cooled radiator.
  • the stable speed MAP of the water pump is queried according to the current engine speed, the current torque of the engine, and the current ambient temperature, and the basic speed of the water pump is determined; Query the stable speed MAP of the air-cooled radiator to determine the basic speed of the air-cooled radiator. That is to say, the current engine speed, the current engine torque and the current ambient temperature are used as input parameters to query the stable speed of the water pump MAP, and the basic speed of the water pump is output; The current ambient temperature is used as the input parameter to query the stable speed MAP of the air-cooled radiator and output the basic speed of the air-cooled radiator.
  • the stable rotational speed MAP of the water pump and the stable rotational speed MAP of the air-cooled radiator are calibrated through simulation and experiments in the R&D and design stage according to the specific conditions of the engine 110 and the thermal management system 120 , and are preset in the thermal management control device 124 .
  • step S220 includes: determining that the target water pump rotational speed is equal to the sum of the basic water pump rotational speed and the target theoretical rotational speed of the water pump, or, determining that the target water pump rotational speed is equal to the larger value between the basic rotational speed of the water pump and the target theoretical rotational speed of the water pump; step S230 Including: determining that the target speed of the air-cooled radiator is equal to the sum of the basic speed of the air-cooled radiator and the target theoretical speed of the air-cooled radiator, or, determining that the target speed of the air-cooled radiator is equal to the basic speed of the air-cooled radiator and the target theoretical speed of the air-cooled radiator The larger value between RPM.
  • the target speed of the water pump is greater than or equal to the basic speed of the water pump, and according to different calculation methods, the minimum power consumption MAP of the thermal management system is adjusted to satisfy the water pump 121 with the lowest power consumption and the air-cooled heat dissipation The optimal combination of rotational speeds of the generator 122.
  • the thermal management control method provided by the present disclosure further includes steps S4-S7.
  • the opening degree of the thermostat 123 is smaller than the preset opening degree threshold, it can be considered that the engine 110 has not entered a higher temperature working state.
  • the air-cooled radiator does not need to actively dissipate heat in the second cooling cycle, relying on natural air intake.
  • the water pump runs at the lowest speed to avoid local overheating of the engine 110, and the thermal management system 120 is in the lowest power consumption state at this time.
  • the safe speed of the water pump is the speed under the safe flow rate.
  • the so-called safe flow rate refers to the minimum flow value that satisfies the cooling of the cylinder block and the cylinder head of the engine under a certain load, that is, the flow rate that does not generate local overheating and boiling.
  • the safe water pump rotational speed MAP is queried according to the current engine speed and the current torque of the engine, and the safe water pump rotational speed is determined; wherein, the water pump safe rotational speed MAP is based on the specific conditions of the engine 110 in the development and design stage so that the engine 110 does not suffer from local overheating.
  • the minimum cooling flow is conditionalized through simulation and experimentation, and is preset in the thermal management control device 124 .
  • the temperature of the engine 110 is greater than or equal to the preset temperature threshold and the opening of the thermostat 123 is less than the preset opening threshold, it may be considered that the engine 110 has been warmed up, but the engine 110 has not entered a higher temperature working state, at this time
  • the opening of the thermostat 123 the engine 110 can reach the target temperature to work with the lowest fuel consumption and the highest efficiency.
  • the thermal management system is also enabled. 120 is in the lowest power consumption state.
  • step S6 specifically includes: determining the target opening of the thermostat in a closed-loop manner through the second feedback control, wherein the target engine temperature is the input of the feedback control, and the current temperature of the engine is the feedback variable of the second feedback control, The target opening of the thermostat is the output of the feedback control.
  • the engine can be continuously and stably operated at the temperature with the lowest fuel consumption and the highest efficiency.
  • step S6 specifically further includes: determining the thermostat target theoretical opening degree according to the current engine temperature and the engine target temperature; determining the thermostat theoretical opening degree according to the thermostat basic opening degree and the thermostat target theoretical opening degree target opening.
  • the thermostat 123 needs to ensure a certain opening degree, that is, the basic opening degree of the thermostat.
  • the thermostat stable opening degree MAP is queried according to the current engine speed and the current engine torque, and the basic thermostat opening degree is determined. That is to say, take the current engine speed and the current torque of the engine as input parameters, query the thermostat stable opening degree MAP, and output the thermostat basic opening degree. It should be noted that the thermostat stable opening MAP is calibrated through simulation and experiments in the development and design stage according to the specific conditions of the engine 110 and the thermal management system 120 , and is preset in the thermal management control device 124 .
  • determining the thermostat target opening degree according to the thermostat base opening degree and the thermostat target theoretical opening degree includes: determining that the thermostat target opening degree is equal to the thermostat base opening degree and the thermostat target opening degree.
  • the sum of the target theoretical opening, or, the target speed of the water pump is equal to the larger value between the basic thermostat opening and the thermostat target theoretical opening.
  • it needs to be ensured that the target opening degree of the thermostat is greater than or equal to the basic opening degree of the thermostat, and according to different calculation methods, the stable opening degree MAP of the thermostat is adjusted to satisfy the second feedback control The opening degree of the thermostat 123 with the smallest fluctuation.
  • determining the target theoretical opening degree of the thermostat according to the current engine temperature and the target engine temperature includes: performing proportional-integral-derivative processing, or performing proportional-integral processing on the difference between the target engine temperature and the current temperature of the engine , or perform proportional-differential processing to obtain the target theoretical opening of the thermostat.
  • Proportional-integral-differential processing is PID (Proportion, Integral, Differential) regulation
  • proportional-integral processing is PI (Proportion, Integral) regulation
  • proportional-differential processing is PD (Proportion, Differential) regulation
  • the output parameters include the engine target temperature and the current engine temperature, and the output thermostat target theoretical opening degree.
  • step S6 specifically includes the following steps:
  • the thermal management control method provided by the present disclosure further includes: when the current temperature of the engine is less than a preset temperature threshold, controlling the rotation speed of the air-cooled radiator to be 0, and controlling the opening degree of the thermostat to be 0.
  • the temperature of the engine 110 is lower than the preset temperature threshold, it can be considered that the engine 110 is still in a warm-up state, so the thermostat 123 does not need to be turned on, that is, the second cooling cycle does not need to participate in the cooling of the engine 110, so the control of the air-cooled radiator
  • the rotation speed is 0, and the opening degree of the thermostat is controlled to be 0, so that the thermal management system 120 is in a state with the lowest power consumption.
  • the thermal management control method provided by the present disclosure includes steps S101-S112.
  • S103 Query the minimum fuel consumption MAP of the engine according to the current engine speed, the current torque of the engine, and the current ambient temperature, and determine the target engine temperature.
  • S105 Determine the total target heat dissipation amount according to the current temperature of the engine, the target temperature of the engine, and the calorific value of the engine.
  • S106 query the minimum power consumption MAP of the thermal management system according to the total target heat dissipation, the air inlet wind speed of the air-cooled radiator, and the current ambient temperature, and determine the target rotational speed of the water pump and the target rotational speed of the air-cooled radiator.
  • the engine temperature with the lowest fuel consumption or the highest efficiency under the current operating conditions is determined by the preset minimum fuel consumption MAP of the engine, that is, the engine target temperature, and then the total target heat dissipation required to reach the engine target temperature is determined, and then through the preset thermal management system
  • the lowest power consumption MAP determines the optimal combination of the rotational speed of the water pump 121 and the rotational speed of the air-cooled radiator 122 with the lowest power consumption in the current environment, that is, the target rotational speed of the water pump and the target rotational speed of the air-cooled radiator, and controls the water pump 121 and the air-cooled radiator 122 It runs at the target speed of the water pump and the target speed of the air-cooled radiator respectively, so as to realize the co-optimization of the power consumption of the thermal management system and the fuel consumption of the engine, and then achieve the optimal energy consumption of the whole vehicle.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • Logic and/or steps represented in flowcharts or otherwise described herein, for example, may be considered an ordered listing of executable instructions for implementing the logical functions, and may be embodied in any computer-readable storage medium , for use by an instruction execution system, apparatus, or device (such as a computer-based system, a system including a processor, or other system that can fetch and execute instructions from an instruction execution system, apparatus, or device), or in conjunction with these instruction execution systems, device or equipment.
  • a "computer-readable storage medium" can be any device that can contain, store, communicate, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or apparatus .
  • computer readable storage media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM) , Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable storage medium may even be paper or other suitable medium on which the program can be printed, as the paper or other medium may be optically scanned, for example, and then edited, interpreted or, if necessary, otherwise Process in a suitable manner to obtain the program electronically and then store it in computer memory.
  • portions of the present disclosure may be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one of the following techniques known in the art, or a combination thereof: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Automatic Disk Changers (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种热管理控制方法、设备(124)、存储介质和车辆(100),热管理控制方法包括:当发动机(110)当前温度大于或等于预设温度阈值、且节温器(123)的开度大于或等于预设开度阈值时,根据发动机(110)最低油耗MAP确定发动机(110)的总目标散热量,根据总目标散热量、风冷散热器(122)的进风风速、当前环境温度查询热管理系统(120)最低功耗MAP确定水泵(121)目标转速和风冷散热器(122)目标转速。

Description

一种热管理控制方法、设备、存储介质和车辆
相关申请的交叉引用
本公开要求于2021年04月27日提交的申请号为202110458536.8,名称为“一种热管理控制方法、设备、存储介质和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于车辆技术领域,尤其涉及一种热管理控制方法、设备、存储介质和车辆。
背景技术
相关技术中的用于车辆发动机的热管理控制方法,通过对节温器的开度、电子水泵的转速、散热器风扇的转速以优先级从高到低的顺序进行调整,从而满足各工况下的散热需求,然而并没有考虑到对热管理系统功耗和发动机油耗的共同优化,使得整车能耗最优。
公开内容
针对上述技术问题,本公开的第一个目的在于提供一种用于发动机的热管理控制方法,根据预设的发动机最低油耗MAP和热管理系统最低功耗MAP,控制水泵的转速和风冷散热器的转速,以使得发动机保持在油耗最低的温度,热管理系统的功耗最低,整车能耗最优。
本公开的第二个目的在于提出一种计算机可读存储介质。
本公开的第三个目的在于提出一种用于车辆的热管理控制设备。
本公开的第四个目的在于提出一种车辆。
为达上述目的,本公开第一方面实施例提出了一种用于发动机的热管理控制方法,发动机与热管理系统连接,热管理系统包括水泵、风冷散热器和节温器,发动机和水泵连接形成第一冷却循环,风冷散热器通过节温器与发动机和水泵连接形成第二冷却循环,热管理控制方法包括:当发动机当前温度大于或等于预设温度阈值、且节温器的开度大于或等于预设开度阈值时,根据发动机当前转速、发动机当前扭矩、当前环境温度查询发动机最低油耗MAP,确定发动机的总目标散热量;根据总目标散热量、风冷散热器的进风风速、当前环境温度查询热管理系统最低功耗MAP,确定水泵目标转速和风冷散热器目标转速;控制水泵的转速为水泵目标转速,并控制风冷散热器的转速为风冷散 热器目标转速。
通过预设的发动机最低油耗MAP确定当前工况下油耗最低、或者说效率最高的发动机温度即发动机目标温度,进而确定达到发动机目标温度所需的总目标散热量,再通过预设的热管理系统最低功耗MAP,确定当前环境下功耗最低的水泵转速和风冷散热器转速的最优组合,即水泵目标转速和风冷散热器目标转速,从而实现对发动机油耗和热管理系统功耗的共同优化,实现整车能耗最优。
为达上述目的,本公开第二方面实施例提出了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序适于被处理器执行以实现根据上述第一方面实施例的热管理控制方法。
为达上述目的,本公开第三方面实施例提出了一种用于车辆的热管理控制设备,包括处理器和存储器,处理器和存储器相互连接;存储器用于存储计算机程序,计算机程序包括程序指令,处理器被配置为用于调用程序指令,执行上述第一方面实施例的热管理控制方法。
为达上述目的,本公开第四方面实施例提出了一种车辆,包括车辆包括发动机和热管理系统,热管理系统包括水泵、风冷散热器、节温器和根据上述第三方面实施例的热管理控制设备;发动机和水泵连接形成第一冷却循环,风冷散热器通过节温器与发动机和水泵连接形成第二冷却循环。
本公开的理论方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1是本公开实施例提供的车辆的示意图。
图2是本公开实施例提供的热管理控制方法的流程示意图。
图3是本公开实施例提供的热管理控制方法的第一反馈控制的流程示意图。
图4是本公开实施例提供的热管理控制方法的流程示意图。
图5是本公开实施例提供的热管理控制方法的第二反馈控制的流程示意图。
图6是本公开实施例提供的热管理控制方法的流程示意图。
附图标记:
100、车辆;110、发动机;120、热管理系统;121、水泵;122、风冷散热器;123、节温器;124、热管理控制设备;124a、处理器;124b、存储器。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图1-6描述本公开实施例的车辆100及其热管理控制方法、热管理控制设备和计算机可读存储介质。
如图1所示,车辆100包括发动机110和热管理系统120,热管理系统120包括水泵121、风冷散热器122、节温器123和热管理控制设备124。热管理控制设备124包括处理器124a和存储器124b,处理器124a和存储器124b相互连接,存储器124b用于存储计算机程序,计算机程序包括程序指令,处理器124a被配置为用于调用程序指令,执行本身实施例提供的热管理控制方法。另外,本公开实施例提供的计算机可读存储介质存储有计算机程序,计算机程序被处理器执行以实现本公开实施例提供的热管理控制方法。
如图1所示,发动机110和水泵121连接形成第一冷却循环,即冷却液由水泵121泵出经过发动机110并对发动机110进行冷却;风冷散热器122通过节温器123与发动机110和水泵121连接形成第二冷却循环,即在节温器123开启时,冷却液由水泵121泵出经过发动机110并对发动机110进行冷却,然后从经过节温器123进入风冷散热器122进行冷却。需要说明的是,第一冷却循环即发动机110冷却的小循环,第二冷却循环即发动机110冷却的大循环。
如图2所示,本公开实施例提供的热管理控制方法,包括如下步骤S1~S3。
S1、当发动机当前温度大于或等于预设温度阈值、且节温器的开度大于或等于预设开度阈值时,根据发动机当前转速、发动机当前扭矩、当前环境温度查询发动机最低油耗MAP,确定发动机的总目标散热量。
当发动机110的温度大于或等于预设温度阈值时,可认为发动机110已完成暖机,此时热管理系统120需要对发动机110的温度进行持续控制,在一些实施例中,预设温度阈值可取60℃~80℃;具体地,预设温度阈值可取80℃。需要说明的是,本公开中发动机110的温度相关参数为冷却液流出发动机110时的温度。当节温器123的开度大于或等于预设开度阈值时,可认为发动机110已进入具有较高散热需求的工作状态,在一些实施例中,预设开度阈值可取95%~100%,具体地,预设开度阈值可取100%,即节温器123全开。
因此,在发动机110进入具有较高散热需求的工作状态时,水泵121和风冷散热器 122均需要参与发动机110的冷却,并使发动机110达到油耗最低、即效率最高的工作状态。具体地,将发动机当前转速、发动机当前扭矩和当前环境温度作为输入参数,查询发动机最低油耗MAP,最终输出可使得发动机110达到油耗最低、即效率最高的工作状态的总目标散热量。其中,发动机最低油耗MAP根据车辆100的具体情况在研发设计阶段以使发动机110油耗最低为条件通过仿真和实验所标定,并预设在热管理控制设备124中。其中,当前环境温度是指车辆外的空气温度,即发动机110的进气温度和风冷散热器122的进风温度。
S2、根据总目标散热量、风冷散热器的进风风速、当前环境温度查询热管理系统最低功耗MAP,确定水泵目标转速和风冷散热器目标转速。
当节温器123的开度大于或等于预设开度阈值时,通过第二冷却循环对发动机110进行冷却,其中能使发动机110达到油耗最低、即效率最高的工作状态的水泵121和风冷散热器122的转速组合有无数种,而本公开实施例将总目标散热量、风冷散热器122的进风风速和当前环境温度作为输入参数,查询热管理系统最低功耗MAP,输出水泵目标转速和风冷散热器目标转速的最优组合,使得热管理系统120在最低功耗的状态下工作。其中,热管理系统最低功耗MAP根据热管理系统120的具体情况在研发设计阶段以使热管理系统120功耗最低为条件通过仿真和实验所标定,并预设在热管理控制设备124中。在一些实施例中,根据当前车速和环境风速,确定风冷散热器122的进风风速。
S3、控制水泵的转速为水泵目标转速,并控制风冷散热器的转速为风冷散热器目标转速。
通过预设的发动机最低油耗MAP确定当前工况下发动机达到油耗最低、或者说效率最高的状态所需的总目标散热量,再通过预设的热管理系统最低功耗MAP,确定当前环境下功耗最低的水泵121转速和风冷散热器122转速的最优组合,即水泵目标转速和风冷散热器目标转速,并控制水泵121和风冷散热器122分别以水泵目标转速和风冷散热器目标转速运行,从而实现对热管理系统功耗和发动机油耗的共同优化,进而实现整车能耗最优。需要说明的是,风冷散热器122的转速指的是风冷散热器122中风扇的转速。
在一些实施例中,步骤S1包括如下步骤S110~S130。
S110、根据发动机当前转速、发动机当前扭矩、当前环境温度查询发动机最低油耗MAP,确定发动机目标温度;
S120、根据发动机当前转速和发动机当前扭矩,确定发动机发热量;
S130、根据发动机当前温度、发动机目标温度和发动机发热量,确定总目标散热量。
将发动机当前转速、发动机当前扭矩和当前环境温度作为输入参数,查询发动机最 低油耗MAP,输出可使得发动机110达到油耗最低、即效率最高的工作状态的发动机目标温度。在一些实施例中,根据发动机当前温度和发动机目标温度的差值△T,可算得发动机从当前温度到目标温度所需要的热量为C·M·△T,其中C为冷却液比热容,M为冷却液质量,冷却液质量与流量相关。因此,将发动机发热量与C·M·△T作差,可得发动机冷却的总目标散热量。
如图3所示,在一些实施例中,步骤S130具体包括:通过第一反馈控制闭环地确定总目标散热量,其中,发动机目标温度和发动机发热量为第一反馈控制的输入量,发动机当前温度为第一反馈控制的反馈变量,总目标散热量为第一反馈控制的输出量。通过反馈控制闭环地控制总目标散热量,可以持续稳定地使发动机工作在最低油耗、最高效率的温度。在一些实施例中,步骤S130具体包括以下步骤:
S131、将发动机目标温度作为输入量、发动机当前温度作为反馈变量输入第一加法器,输出得到目标温差△T;
S132、将目标温差△T输入第一运算器,输出得到发动机所需热量C·M·△T;
S133、将发动机所需热量C·M·△T和发动机发热量输入第二运算器,输出得到总目标散热量;
S134、经过S2和S3后,重新获取发动机当前温度,并作为反馈变量输入第一加法器。
如图3所示,在一些实施例中,步骤S2包括以下步骤:
S210、根据总目标散热量、风冷散热器的进风风速、当前环境温度查询热管理系统最低功耗MAP,确定水泵目标理论转速和风冷散热器目标理论转速;
S220、根据水泵基础转速和水泵目标理论转速,确定水泵目标转速;在一些实施例中,通过将水泵基础转速和水泵目标理论转速输入第三运算器,输出水泵目标转速;
S230、根据风冷散热器基础转速和风冷散热器目标理论转速,确定风冷散热器目标转速;在一些实施例中,通过将风冷散热器基础转速和风冷散热器目标理论转速输入第三运算器,输出风冷散热器目标转速。
为了避免第一反馈控制所输出的总目标散热量和反馈的发动机当前温度出现较大波动,需要水泵121和风冷散热器122保证一定的转速,即水泵基础转速和风冷散热器基础转速。
在一些实施例中,根据发动机当前转速、发动机当前扭矩、当前环境温度查询水泵稳定转速MAP,确定水泵基础转速;根据发动机当前转速、发动机当前扭矩、风冷散热器的进风风速、当前环境温度查询风冷散热器稳定转速MAP,确定风冷散热器基础转速。 也就是说,将发动机当前转速、发动机当前扭矩和当前环境温度作为输入参数,查询水泵稳定转速MAP,输出水泵基础转速;将发动机当前转速、发动机当前扭矩、风冷散热器122的进风风速和当前环境温度作为输入参数,查询风冷散热器稳定转速MAP,输出风冷散热器基础转速。需要说明的是,水泵稳定转速MAP和风冷散热器稳定转速MAP根据发动机110和热管理系统120的具体情况在研发设计阶段通过仿真和实验所标定,并预设在热管理控制设备124中。
在一些实施例中,步骤S220包括:确定水泵目标转速等于水泵基础转速与水泵目标理论转速的和,或,确定水泵目标转速等于水泵基础转速与水泵目标理论转速之间的较大值;步骤S230包括:确定风冷散热器目标转速等于风冷散热器基础转速与风冷散热器目标理论转速的和,或,确定风冷散热器目标转速等于风冷散热器基础转速与风冷散热器目标理论转速之间的较大值。在不同的实施例中,需要保证的是水泵目标转速大于或等于水泵基础转速,而根据不同的计算方式,则通过调整热管理系统最低功耗MAP以满足最低功耗的水泵121和风冷散热器122的转速最优组合。
如图4所示,在一些实施例中,本公开提供的热管理控制方法还包括步骤S4~S7。
S4、当发动机当前温度大于或等于预设温度阈值、且节温器的开度小于预设开度阈值时,控制水泵的转速为水泵安全转速,并控制风冷散热器的转速为0。
当节温器123的开度小于预设开度阈值时,可认为发动机110未进入较高温度的工作状态,此时在第二冷却循环中无需风冷散热器主动散热,依靠自然进风即可,同时水泵以最低转速运行,避免发动机110发生局部过热,此时热管理系统120处于最低功耗状态。需要说明的是,水泵安全转速为安全流量下的转速,所谓安全流量是指在一定负荷下,满足发动机的缸体和缸盖冷却的最小流量值,即不产生局部过热、沸腾的流量。在一些实施例中,根据发动机当前转速和发动机当前扭矩查询水泵安全转速MAP,确定水泵安全转速;其中,水泵安全转速MAP根据发动机110的具体情况在研发设计阶段以使发动机110不发生局部过热的最小冷却流量为条件通过仿真和实验所标定,并预设在热管理控制设备124中。
S5、根据发动机当前转速、发动机当前扭矩、当前环境温度查询发动机最低油耗MAP,确定发动机目标温度。
S6、根据发动机当前温度和发动机目标温度,确定节温器目标开度。
S7、控制节温器的开度为节温器目标开度。
发动机110的温度大于或等于预设温度阈值且节温器123的开度小于预设开度阈值时,可认为发动机110已完成暖机,但发动机110未进入较高温度的工作状态,此时可 通过控制节温器123的开度,使得发动机110达到目标温度以在最低油耗、最高效率的状态下工作,同时由于水泵121以最低转速运转、风冷散热器停止运转,还使得热管理系统120处于最低功耗状态。
在一些实施例中,步骤S6具体包括:通过第二反馈控制闭环地确定节温器目标开度,其中,发动机目标温度为反馈控制的输入量,发动机当前温度为第二反馈控制的反馈变量,节温器目标开度为反馈控制的输出量。通过反馈控制闭环地控制节温器目标开度,可以持续稳定地使发动机工作在最低油耗、最高效率的温度。
在一些实施例中,步骤S6具体还包括:根据发动机当前温度和发动机目标温度,确定节温器目标理论开度;根据节温器基础开度和节温器目标理论开度,确定节温器目标开度。为了避免第二反馈控制所输出的节温器目标开度和反馈的发动机当前温度出现较大波动,需要节温器123保证一定的开度,即节温器基础开度。
在一些实施例中,根据发动机当前转速、发动机当前扭矩查询节温器稳定开度MAP,确定节温器基础开度。也就是说,将发动机当前转速和发动机当前扭矩作为输入参数,查询节温器稳定开度MAP,输出节温器基础开度。需要说明的是,节温器稳定开度MAP根据发动机110和热管理系统120的具体情况在研发设计阶段通过仿真和实验所标定,并预设在热管理控制设备124中。
在一些实施例中,根据节温器基础开度和节温器目标理论开度,确定节温器目标开度,包括:确定节温器目标开度等于节温器基础开度与节温器目标理论开度的和,或,水泵目标转速等于节温器基础开度与节温器目标理论开度之间的较大值。在不同的实施例中,需要保证的是节温器目标开度大于或等于节温器基础开度,而根据不同的计算方式,则通过调整节温器稳定开度MAP以满足第二反馈控制波动最小的节温器123的开度。
在一些实施例中,根据发动机当前温度和发动机目标温度,确定节温器目标理论开度,包括:对发动机目标温度和发动机当前温度的差进行比例-积分-微分处理、或进行比例-积分处理、或进行比例-微分处理,得到节温器目标理论开度。比例-积分-微分处理即PID(Proportion、Integral、Differential)调节、比例-积分处理即PI(Proportion、Integral)调节、比例-微分处理即PD(Proportion、Differential)调节,通过选择PID调节或PI调节或PD调节中的一种调节方式,输出参数包括发动机目标温度和发动机当前温度,输出节温器目标理论开度。采用PID调节或PI调节或PD调节可有效地纠正节温器目标开度的偏差,从而使其达到一个稳定的状态。
如图5所示,在一些实施例中,步骤S6具体包括以下步骤:
S610、将发动机目标温度作为输入量、发动机当前温度作为反馈变量输入第二加法 器,输出得到目标温差△T;
S620、将目标温差△T输入第四运算器,对目标温差△T进行PID调节或PI调节或PD调节,输出得到节温器目标理论开度;
S630、将节温器目标理论开度和节温器基础开度输入第五运算器,输出节温器目标开度;
S640、经过S7后,重新获取发动机当前温度,并作为反馈变量输入第二加法器。
在一些实施例中,本公开提供的热管理控制方法还包括:当发动机当前温度小于预设温度阈值时,控制风冷散热器的转速为0,并控制节温器的开度为0。当发动机110的温度小于预设温度阈值时,可认为发动机110仍处于暖机状态,因此节温器123无需开启、即无需第二冷却循环参与对发动机110的冷却,因此控制风冷散热器的转速为0,并控制节温器的开度为0,以使热管理系统120处于最低功耗的状态。
如图6所示,在一些实施例中,本公开提供的热管理控制方法包括步骤S101~S112。
S101、判断是否满足:发动机当前温度大于或等于预设温度阈值,若是,则执行S102,若否,则执行S112。
S102、判断是否满足:节温器的开度大于或等于预设开度阈值,若是,则执行S103,若否,则执行S107。
S103、根据发动机当前转速、发动机当前扭矩和当前环境温度,查询发动机最低油耗MAP,确定发动机目标温度。
S104、根据发动机当前转速和发动机当前扭矩,输出发动机发热量。
S105、根据发动机当前温度、发动机目标温度和发动机发热量,确定总目标散热量。
S106、根据总目标散热量、风冷散热器的进风风速和当前环境温度,查询热管理系统最低功耗MAP,确定水泵目标转速和风冷散热器目标转速。
S107、控制水泵的转速为水泵目标转速,并控制风冷散热器的转速为风冷散热器目标转速。
S108、控制水泵的转速为水泵安全转速,并控制风冷散热器的转速为0。
S109、根据发动机当前转速、发动机当前扭矩和当前环境温度,查询发动机最低油耗MAP,确定发动机目标温度。
S110、根据发动机当前温度和发动机目标温度,确定节温器目标开度。
S111、控制节温器的开度为节温器目标开度。
S112、控制风冷散热器的转速为0,并控制节温器的开度为0。
通过预设的发动机最低油耗MAP确定当前工况下油耗最低、或者说效率最高的发动 机温度即发动机目标温度,进而确定达到发动机目标温度所需的总目标散热量,再通过预设的热管理系统最低功耗MAP,确定当前环境下功耗最低的水泵121转速和风冷散热器122转速的最优组合,即水泵目标转速和风冷散热器目标转速,并控制水泵121和风冷散热器122分别以水泵目标转速和风冷散热器目标转速运行,从而实现对热管理系统功耗和发动机油耗的共同优化,进而达到整车能耗最优。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读存储介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读存储介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读存储介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可 读存储介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

  1. 一种用于发动机的热管理控制方法,所述发动机与热管理系统连接,所述热管理系统包括水泵、风冷散热器和节温器,所述发动机和所述水泵连接形成第一冷却循环,所述风冷散热器通过所述节温器与所述发动机和所述水泵连接形成第二冷却循环,其特征在于,所述热管理控制方法包括:
    当发动机当前温度大于或等于预设温度阈值、且所述节温器的开度大于或等于预设开度阈值时,根据发动机当前转速、发动机当前扭矩、当前环境温度查询发动机最低油耗MAP,确定所述发动机的总目标散热量;
    根据所述总目标散热量、所述风冷散热器的进风风速、所述当前环境温度查询热管理系统最低功耗MAP,确定水泵目标转速和风冷散热器目标转速;
    控制所述水泵的转速为所述水泵目标转速,并控制所述风冷散热器的转速为所述风冷散热器目标转速。
  2. 根据权利要求1所述的热管理控制方法,其特征在于,所述当发动机当前温度大于或等于预设温度阈值、且所述节温器的开度大于或等于预设开度阈值时,根据发动机当前转速、发动机当前扭矩、当前环境温度查询发动机最低油耗MAP,确定所述发动机的总目标散热量,包括:
    根据所述发动机当前转速、所述发动机当前扭矩、所述当前环境温度查询所述发动机最低油耗MAP,确定发动机目标温度;
    根据所述发动机当前转速和所述发动机当前扭矩,确定发动机发热量;
    根据所述发动机当前温度、所述发动机目标温度和所述发动机发热量,确定所述总目标散热量。
  3. 根据权利要求2所述的热管理控制方法,其特征在于,所述根据所述发动机当前温度、所述发动机目标温度和所述发动机发热量,确定总目标散热量,包括:
    通过第一反馈控制闭环地确定所述总目标散热量,其中,所述发动机目标温度和所述发动机发热量为所述第一反馈控制的输入量,所述发动机当前温度为所述第一反馈控制的反馈变量,所述总目标散热量为所述第一反馈控制的输出量。
  4. 根据权利要求1~3中任一项所述的热管理控制方法,其特征在于,所述根据所述总目标散热量、所述风冷散热器的进风风速、所述当前环境温度查询热管理系统最低功耗MAP,确定水泵目标转速和风冷散热器目标转速,包括:
    根据所述总目标散热量、所述风冷散热器的进风风速、所述当前环境温度查询热管 理系统最低功耗MAP,确定所述水泵目标理论转速和所述风冷散热器目标理论转速;
    根据水泵基础转速和所述水泵目标理论转速,确定所述水泵目标转速;
    根据风冷散热器基础转速和所述风冷散热器目标理论转速,确定所述风冷散热器目标转速。
  5. 根据权利要求4所述的热管理控制方法,其特征在于,
    所述根据水泵基础转速和所述水泵目标理论转速,确定所述水泵目标转速,包括:确定所述水泵目标转速等于所述水泵基础转速与所述水泵目标理论转速的和,或,确定所述水泵目标转速等于所述水泵基础转速与所述水泵目标理论转速之间的较大值;
    所述根据风冷散热器基础转速和所述风冷散热器目标理论转速,确定所述风冷散热器目标转速,包括:确定所述风冷散热器目标转速等于所述风冷散热器基础转速与所述风冷散热器目标理论转速的和,或,确定所述风冷散热器目标转速等于所述风冷散热器基础转速与所述风冷散热器目标理论转速之间的较大值。
  6. 根据权利要求4所述的热管理控制方法,其特征在于,
    所述根据水泵基础转速和所述水泵目标理论转速,确定所述水泵目标转速,包括:根据所述发动机当前转速、所述发动机当前扭矩、所述当前环境温度查询水泵稳定转速MAP,确定所述水泵基础转速;
    所述根据风冷散热器基础转速和所述风冷散热器目标理论转速,确定所述风冷散热器目标转速,包括:根据所述发动机当前转速、所述发动机当前扭矩、所述风冷散热器的进风风速、所述当前环境温度查询风冷散热器稳定转速MAP,确定所述风冷散热器基础转速。
  7. 根据权利要求1~6中任一项所述的热管理控制方法,其特征在于,根据所述总目标散热量、所述风冷散热器的进风风速、所述当前环境温度查询热管理系统最低功耗MAP,确定所述水泵目标转速和所述风冷散热器目标转速,包括:
    根据当前车速和环境风速,确定所述风冷散热器的进风风速。
  8. 根据权利要求1所述的热管理控制方法,其特征在于,还包括:
    当发动机当前温度大于或等于预设温度阈值、且所述节温器的开度小于预设开度阈值时,控制所述水泵的转速为水泵安全转速,并控制所述风冷散热器的转速为0;
    根据发动机当前转速、发动机当前扭矩、当前环境温度查询发动机最低油耗MAP,确定发动机目标温度;
    根据所述发动机当前温度和所述发动机目标温度,确定节温器目标开度;
    控制所述节温器的开度为所述节温器目标开度。
  9. 根据权利要求8所述的热管理控制方法,其特征在于,根据所述发动机当前温度和所述发动机目标温度,确定所述节温器目标开度,包括:
    通过第二反馈控制闭环地确定所述节温器目标开度,其中,所述发动机目标温度为所述反馈控制的输入量,所述发动机当前温度为所述第二反馈控制的反馈变量,所述节温器目标开度为所述反馈控制的输出量。
  10. 根据权利要求9所述的热管理控制方法,其特征在于,根据所述发动机当前温度和所述发动机目标温度,确定所述节温器目标开度,还包括:
    根据所述发动机当前温度和所述发动机目标温度,确定所述节温器目标理论开度;
    根据节温器基础开度和所述节温器目标理论开度,确定所述节温器目标开度。
  11. 根据权利要求10所述的热管理控制方法,其特征在于,所述根据节温器基础开度和所述节温器目标理论开度,确定所述节温器目标开度,包括:
    确定所述节温器目标开度等于所述节温器基础开度与所述节温器目标理论开度的和,或,所述水泵目标转速等于所述节温器基础开度与所述节温器目标理论开度之间的较大值。
  12. 根据权利要求10所述的热管理控制方法,其特征在于,根据所述发动机当前转速、所述发动机当前扭矩查询节温器稳定开度MAP,确定所述节温器基础开度。
  13. 根据权利要求10所述的热管理控制方法,其特征在于,所述根据所述发动机当前温度和所述发动机目标温度,确定所述节温器目标理论开度,包括:
    对所述发动机目标温度和所述发动机当前温度的差进行比例-积分-微分处理、或进行比例-积分处理、或进行比例-微分处理,得到所述节温器目标理论开度。
  14. 根据权利要求1所述的热管理控制方法,其特征在于,还包括:
    当发动机当前温度小于预设温度阈值时,控制所述风冷散热器的转速为0,并控制所述节温器的开度为0。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序适于被处理器执行以实现权利要求1~14中任一项所述的热管理控制方法。
  16. 一种用于车辆的热管理控制设备,其特征在于,包括处理器和存储器,所述处理器和存储器相互连接;
    所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置为用于调用所述程序指令,执行如权利要求1~14中任一项所述的热管理控制方法。
  17. 一种车辆,其特征在于,所述车辆包括发动机和热管理系统,所述热管理系统 包括水泵、风冷散热器、节温器和根据权利要求16所述的热管理控制设备;
    所述发动机和所述水泵连接形成第一冷却循环,所述风冷散热器通过所述节温器与所述发动机和所述水泵连接形成第二冷却循环。
PCT/CN2022/088511 2021-04-27 2022-04-22 一种热管理控制方法、设备、存储介质和车辆 WO2022228309A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22794780.1A EP4296486A1 (en) 2021-04-27 2022-04-22 Thermal management control method and device, storage medium, and vehicle
JP2023560294A JP2024517574A (ja) 2021-04-27 2022-04-22 熱管理制御方法、装置、記憶媒体及び車両
AU2022267544A AU2022267544A1 (en) 2021-04-27 2022-04-22 Thermal management control method and device, storage medium, and vehicle
MX2023012017A MX2023012017A (es) 2021-04-27 2022-04-22 Metodo y dispositivo de gestion y control termico, medio de almacenamiento y vehiculo.
BR112023022137A BR112023022137A2 (pt) 2021-04-27 2022-04-22 Método e dispositivo de gerenciamento e controle térmico, mídia de armazenamento legível por computador, e, veículo
US18/373,233 US20240018894A1 (en) 2021-04-27 2023-09-26 Thermal management and control method and device, storage medium, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110458536.8 2021-04-27
CN202110458536.8A CN115247597A (zh) 2021-04-27 2021-04-27 一种热管理控制方法、设备、存储介质和车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/373,233 Continuation US20240018894A1 (en) 2021-04-27 2023-09-26 Thermal management and control method and device, storage medium, and vehicle

Publications (1)

Publication Number Publication Date
WO2022228309A1 true WO2022228309A1 (zh) 2022-11-03

Family

ID=83696240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088511 WO2022228309A1 (zh) 2021-04-27 2022-04-22 一种热管理控制方法、设备、存储介质和车辆

Country Status (8)

Country Link
US (1) US20240018894A1 (zh)
EP (1) EP4296486A1 (zh)
JP (1) JP2024517574A (zh)
CN (1) CN115247597A (zh)
AU (1) AU2022267544A1 (zh)
BR (1) BR112023022137A2 (zh)
MX (1) MX2023012017A (zh)
WO (1) WO2022228309A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115962040B (zh) * 2023-02-02 2024-06-11 重庆赛力斯新能源汽车设计院有限公司 一种发动机冷却控制方法、系统、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027012A (ja) * 2009-07-23 2011-02-10 Toyota Motor Corp 内燃機関オイル循環量制御装置
CN110594004A (zh) * 2019-10-21 2019-12-20 广西玉柴机器股份有限公司 柴油发动机电控水泵的控制方法
CN111577441A (zh) * 2020-06-11 2020-08-25 汉腾新能源汽车科技有限公司 一种发动机冷却系统的控制方法
CN111828159A (zh) * 2020-07-17 2020-10-27 徐州重型机械有限公司 一种发动机智能冷却系统及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027012A (ja) * 2009-07-23 2011-02-10 Toyota Motor Corp 内燃機関オイル循環量制御装置
CN110594004A (zh) * 2019-10-21 2019-12-20 广西玉柴机器股份有限公司 柴油发动机电控水泵的控制方法
CN111577441A (zh) * 2020-06-11 2020-08-25 汉腾新能源汽车科技有限公司 一种发动机冷却系统的控制方法
CN111828159A (zh) * 2020-07-17 2020-10-27 徐州重型机械有限公司 一种发动机智能冷却系统及控制方法

Also Published As

Publication number Publication date
CN115247597A (zh) 2022-10-28
US20240018894A1 (en) 2024-01-18
EP4296486A1 (en) 2023-12-27
MX2023012017A (es) 2023-10-23
JP2024517574A (ja) 2024-04-23
BR112023022137A2 (pt) 2023-12-26
AU2022267544A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
CN111520227B (zh) 一种发动机电子水泵的控制方法
EP2129887B1 (en) Cooling apparatus and cooling method for internal combustion engine
JP3891512B2 (ja) 内燃機関の冷却制御装置および冷却制御方法
JP5945306B2 (ja) 車両用熱管理システム
WO2022228310A1 (zh) 一种车辆及其热管理控制方法、设备和存储介质
WO2022228309A1 (zh) 一种热管理控制方法、设备、存储介质和车辆
US20180209324A1 (en) Cooling fan and active grille shutter control
CN111196145B (zh) 一种冷却用风扇的转速控制方法及装置、车辆
CN106894882B (zh) 一种汽车发动机冷却控制系统及控制方法
CN107288735A (zh) 一种建立汽车电子风扇转速控制函数的方法
JP3956812B2 (ja) エンジンの冷却制御装置及びその冷却制御装置を備えた車両
CN115492674A (zh) 电动水泵和散热风扇的控制方法及装置
CN114094139B (zh) 一种多层次热管理控制的燃料电池系统
JP2006207449A (ja) 車両の制御装置
CN114017174B (zh) 一种发动机冷却系统中的风扇的控制方法及装置
US11588159B2 (en) Control system and method for preventing overheating of a fuel cell
CN113471575B (zh) 一种电池的温度管理方法、管理系统以及汽车
CN118231880A (zh) 车辆电池温度的控制方法及车辆
JP2010209818A (ja) 内燃機関の冷却装置
JP2024016485A (ja) 駆動装置、駆動方法、及びプログラム
CN117673407A (zh) 燃料电池温度失控调节方法、系统及存储介质
CN117507796A (zh) 一种车辆的控制方法、控制装置、介质和电子设备
CN116826235A (zh) 一种风冷液冷集成式储能机柜的散热控制方法
CN118024964A (zh) 车辆散热模块的控制方法、装置及车辆
JP2023097412A (ja) 船舶冷却システムの冷却水循環ポンプ運用最適化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794780

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023560294

Country of ref document: JP

Ref document number: AU2022267544

Country of ref document: AU

Ref document number: 2022267544

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022794780

Country of ref document: EP

Effective date: 20230922

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/012017

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2301006729

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022267544

Country of ref document: AU

Date of ref document: 20220422

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023022137

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023022137

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231024