WO2022228264A1 - 用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法 - Google Patents

用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法 Download PDF

Info

Publication number
WO2022228264A1
WO2022228264A1 PCT/CN2022/088140 CN2022088140W WO2022228264A1 WO 2022228264 A1 WO2022228264 A1 WO 2022228264A1 CN 2022088140 W CN2022088140 W CN 2022088140W WO 2022228264 A1 WO2022228264 A1 WO 2022228264A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
reactor
nickel
cobalt
sulfuric acid
Prior art date
Application number
PCT/CN2022/088140
Other languages
English (en)
French (fr)
Inventor
刘训兵
彭灿
刘振
周群成
王子
董雄武
吴山木
欧阳剑君
Original Assignee
湖南金源新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南金源新材料股份有限公司 filed Critical 湖南金源新材料股份有限公司
Priority to KR1020237037477A priority Critical patent/KR20230165294A/ko
Priority to JP2023563971A priority patent/JP2024519671A/ja
Publication of WO2022228264A1 publication Critical patent/WO2022228264A1/zh
Priority to US18/487,944 priority patent/US20240075446A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0086Processes carried out with a view to control or to change the pH-value; Applications of buffer salts; Neutralisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00177Controlling or regulating processes controlling the pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of non-ferrous metal wet smelting, in particular to a method for removing iron from a nickel-cobalt-manganese-sulfuric acid solution.
  • the commonly used methods to remove iron in solution are goethite and yellow sodium iron vanadium method. These two methods need to be carried out at a high temperature of 85°C or above, and an oxidant needs to be added during the process to control the valence state of iron ions in the solution. In addition, other ions with a certain concentration in the solution, such as sodium, ammonium, etc., need to be satisfied.
  • the above two iron removal methods add various reagents step by step during the operation and need to control a certain reaction time, generally only a single tank operation.
  • the patent publication number is CN111187922A
  • the disclosure date is a method for selectively leaching nickel from high-nickel copper matte under a normal pressure of 20200522.
  • the disclosed technology is: iron removal from the leaching solution: the leaching solution obtained in step (1) is returned to continue leaching, The iron ion concentration in the leachate is 30 ⁇ 36g/L, then hydrogen peroxide and potassium sulfate are added to the leachate, and the iron-removing liquid and iron-removing slag are obtained after filtration, and the iron-removing liquid is a nickel sulfate solution, and the iron-removing slag is washed and filtered. After the iron alum slag.
  • the dosage of hydrogen peroxide is 2 times the theoretical amount required for the reaction with iron
  • the dosage of potassium sulfate is 1.2 times the theoretical amount required for the reaction with iron
  • the iron removal temperature is 90 to 95°C
  • the iron removal time is 2 to 4 hours. Not only the iron removal temperature is high, a lot of energy is consumed, but also the reaction time is long and the production efficiency is low. At the same time, a large amount of hydrogen peroxide and potassium sulfate are also consumed, resulting in high production costs.
  • the object of the present invention is to overcome the deficiencies and defects mentioned in the above background technology, disclose a kind of iron removal temperature is low, energy consumption is low, production efficiency is high, do not need to use auxiliary materials such as hydrogen peroxide and potassium sulfate, low production cost is used for A device for removing iron from a nickel-cobalt-manganese-sulfuric acid solution and a method for continuously removing iron ions from a nickel-cobalt-manganese-sulfuric acid solution at a low temperature.
  • an iron removing device for nickel-cobalt-manganese sulfuric acid solution is provided with an iron-removing reactor and an aging reactor, and a first stirrer is arranged in the iron-removing reactor; There is a second stirrer in the reactor, and the iron removal reactor is connected with the aging reactor by an overflow connection pipe.
  • a mixing feed pipe and a carbonate solution feed pipe are arranged between the interlayer and the inner cylinder of the iron removal reactor, and a mixer is arranged at the top of the mixing feed pipe, and a compressed air inlet and an outlet for waiting are arranged on the mixer.
  • the iron removal liquid feeding port is equipped with an automatic stone powder feeder on the aging reactor.
  • the mixer is provided with a mixing bin, the mixing bin is a trapezoidal structure, the top is large and the bottom is small, an electric heating part is provided below the mixing, the compressed air inlet is set on the top of the mixing bin, and the feed port for the iron removal liquid is set.
  • the liquid to be removed iron is tangent to the compressed air from the side
  • the diameter of the outlet at the bottom of the mixing bin is 1/2 of the diameter of the bottom of the mixing bin
  • the outlet at the bottom of the mixing bin is connected to the mixing feed pipe, and the mixing feed pipe through the electric heating section.
  • the height of the mixing bin accounts for 25-35% of the height of the entire mixer, preferably 30%.
  • the function is to control the mixed materials to have a certain heating and holding time in the mixer. If the height increases and the heating time is reduced, the heating effect will be affected.
  • the bottom end of the mixing feed pipe is 30-40 cm away from the bottom surface of the iron removal reactor, preferably the direction of the outlet of the 35 cm mixing feed pipe is tangent to the stirring direction of the first mixer.
  • the function is: on the one hand, the inlet of the mixed material is lower than the stirring paddle, and the mixing is strengthened under the pumping force of the stirring paddle; on the other hand, the inlet of the mixed material is tangent to the stirring direction, which is conducive to the rapid mixing of the newly fed material with the material in the reactor and accelerates the reaction speed. .
  • the mixer feed pipe and the carbonate solution feed pipe are arranged symmetrically.
  • the function is: the mixed liquid and the carbonate solution are symmetrically distributed, mainly for better stability of pH value with a certain reaction time under stirring state, if the two are too close, the pH value in the reactor will have excessive High areas cause losses to the main element.
  • the height-diameter ratio of the iron removal reactor is 1.0-2.5:1, preferably 1.5-2.0:1.
  • the effect is: the height-diameter ratio mainly considers that after the mixed liquid and carbonate react at the bottom of the reactor, under the action of stirring force, the reaction time can be kept in the reactor for a certain time before it can flow out to the overflow port and flow to the deification reactor. .
  • the first agitator is composed of a motor and a stirring blade.
  • the stirring blade adopts a cross-shaped double-layer stirring blade.
  • the maximum diameter of the stirring blade is 1/3 of the diameter of the iron removal reactor.
  • the bottom of the reactor is 50-80cm, preferably 60-70cm, and the distance between the upper and lower stirring blades is 50-115cm, preferably 60-100cm, 70-90cm, 80cm.
  • the function is: the distance of the paddle from the bottom is to maintain the distance from the inlet of the mixed liquid and carbonate solution.
  • the length of the paddle mainly ensures the stirring strength. If it is too large, it will increase the motor load, and the excessive stirring strength will The fluid in the reactor is very turbulent and affects the mixing effect.
  • the distance between the two layers of stirring blades is to maintain a certain stirring intensity. If the distance is too low, the mixing intensity of the upper part of the reactor will be insufficient. If the distance is too long, the upper and lower laminar flow will be caused, and the reaction will be uneven, which is not conducive to the iron removal reaction.
  • the carbonate solution feeding pipe is 30-40 cm away from the bottom surface of the iron removal reactor, preferably 35 cm, and the direction of the outlet of the carbonate solution feeding pipe is tangential to the stirring direction of the first mixer.
  • the function is: on the one hand, the inlet of the carbonate solution is lower than the stirring paddle, and the mixing is strengthened under the pumping force of the stirring paddle; on the other hand, the inlet of the carbonate solution is tangent to the stirring direction, which is conducive to the rapid mixing of the newly fed materials with the materials in the reactor. , to speed up the reaction.
  • the inner cylinder of the iron-removing reactor is made into a cylindrical shape with upper and lower openings, and is fixed on the inner wall of the iron-removing reactor by a connecting plate, and the diameter of the inner cylinder is 70-80% of the diameter of the iron-removing reactor. .
  • the function is: the function of the inner cylinder of the reactor is to control the fluid in the reactor to circulate up and down, the mixed liquid and carbonate solution are mixed and lifted upward from the bottom under the action of stirring and pumping, and flow from the upper end of the cylinder to the outside of the cylinder and the reactor. In the gap of the wall, it moves downward under the driving of the overall fluid of the reaction tank and enters the stirring state from the bottom of the cylinder again to form a circulating fluid motion state.
  • the second agitator is composed of a motor and a stirring blade.
  • the stirring blade adopts a cross-shaped double-layer stirring blade.
  • the diameter of the stirring blade is 1/3 of the diameter of the aging reactor.
  • the bottom of the device is 50-80cm, preferably 60-70cm, and the distance between the upper and lower stirring blades is 50-115cm, preferably 60-100cm, 70-90cm, 80cm.
  • This reactor maintains the same parameters as the iron-removing reactor for the aging reactor, but the stirring speed of the iron-removing reactor is much lower than the stirring speed of the iron-removing reactor.
  • the distance of the paddle from the bottom is to ensure that the solid particles will not be deposited on the bottom of the reaction tank during the aging process.
  • the motor load will be increased.
  • the effect of the diameter of the blade is basically the same as that of the bottom. If it is too short, it will easily cause solid particles to deposit, and if it is too long, it will increase the motor load.
  • the distance between the two paddles mainly keeps the stirring at a certain intensity. If the distance is too short, the stirring intensity of the upper part will be low. If the distance is too long, two laminar stirring flows will be formed, which is not conducive to the aging reaction.
  • the stone powder automatic feeder is automatically controlled by a solenoid valve, and the feeding speed and feeding amount are controlled by input to perform automatic feeding.
  • the mixing chamber has a trapezoidal structure, the upper part is large and the lower part is small, the compressed air is sprayed directly from the top, the iron removing liquid is tangent to the compressed air from the side, the pressure of the mixing chamber increases sharply, and the mixing strength It is greatly enhanced, and the outlet at the bottom of the mixing chamber continues to become smaller, which is 1/2 of the diameter of the bottom of the mixing chamber.
  • there is an electric heating part under the mixing chamber so that the compressed air and the liquid to be removed iron enter into the microbubble-like rapid flow and heated. In the reactor, the oxidation of ferrous iron is accelerated.
  • the second technical solution of the present invention is: a method for continuously removing iron ions in a nickel-cobalt-manganese-sulfuric acid solution at a low temperature using an iron-removing device of a nickel-cobalt-manganese-sulfuric acid solution, which is special in that it includes the following steps: a. : First prepare carbonate solution or slurry, the carbonate concentration is 120-240g/L, and the temperature is controlled at 40-45°C.
  • the iron-removing nickel-cobalt-manganese-sulfuric acid solution and the compressed air enter the iron-removing reactor through a mixer with a preheating device.
  • Injecting carbonate solution while injecting the iron-nickel-cobalt-manganese-sulfuric acid solution to be removed, the prepared carbonate solution or slurry is added to the iron-removing reactor, and the pH value of the process reaction is controlled between 2.5-3.5.
  • Solution filtration when the aging reactor is full, filter the solution, the filter residue is iron slag, and the filtrate is the nickel-cobalt-manganese-sulfuric acid solution after iron removal.
  • the carbonate is one or more of cobalt carbonate, nickel carbonate, manganese carbonate, and sodium carbonate.
  • the concentration of the prepared carbonate is 130-220g/L, preferably 140-200g/L, 150-180g/L, 160-170g/L, or 120-130g/L, 130-140g /L, 140-150g/L, 150-160g/L, 160-170g/L, 170-180g/L, 180-190g/L, 190-200g/L, 200-210g/L, 210-220g/L , 220-230g/L.
  • the temperature for preparing the carbonate is controlled at 40-45°C, and may also be 41-42°C or 43-44°C.
  • the flow rate of this step is controlled in the residence time in the iron removal reactor, that is, the reaction time, which can fully react to generate iron hydroxide and remove iron from the solution; the flow rate of the compressed air determines the progress of the oxidation reaction.
  • the experimental data are shown in Table 1 and Table 2.
  • Table 1 Comparison table of iron removal from solution with 24.72 cubic reactor flow rate under 5 times compressed air.
  • Table 2 A comparison table of the removal of iron from solution with a flow rate of 8m3/h and a flow rate of 24.72 cubic meters of compressed air in a reactor.
  • the temperature of the preheating device is controlled at 40-45°C, or 41-42°C or 43-44°C.
  • the added amount of the stone powder is 0.05-0.5kg/cube per cubic solution, preferably 0.10-0.45kg/cubic, 0.15-0.40kg/cubic, 0.20-0.35kg/cubic, 0.25-0.30kg/cubic.
  • This step is to make the produced ferric hydroxide precipitate under the action of calcium powder to generate mixed slag with good filtration performance during the aging process.
  • the experimental data are shown in Table 3.
  • Table 3 Comparison table of filtration time with different calcium additions.
  • the iron-removing liquid nickel-cobalt-manganese-sulfuric acid solution
  • the carbonate solution or slurry are continuously added into the iron-removing reactor in a co-current manner, and compressed air and the to-be-removed iron are used.
  • the molten iron produces a huge amount of micro-bubbles under a certain proportion and pressure, and oxidizes the divalent iron ions in the solution to trivalent.
  • the present invention has the following advantages: (1) The iron removal is carried out at a low temperature of 40-45°C, which requires less equipment and saves energy.
  • the parallel flow joining method can realize continuous production and greatly improve the production efficiency.
  • FIG. 1 is a schematic view of the front sectional structure of the iron removing device of the present invention.
  • FIG. 2 is a schematic top view structure diagram of the iron removing device of the present invention.
  • FIG. 3 is an enlarged schematic view of the structure of the mixer of the present invention.
  • a method for continuously removing iron ions in a nickel-cobalt-manganese-sulfuric acid solution at a low temperature using an iron-removing device of a nickel-cobalt-manganese-sulfuric acid solution comprising the following steps: a. Preparing carbonate: first prepare a carbonate solution or slurry, and the carbonate concentration is 220 g /L, and the temperature was controlled at 45°C.
  • the iron-removing nickel-cobalt-manganese-sulfuric acid solution and the compressed air enter the iron-removing reactor through a mixer with a preheating device.
  • Injecting carbonate solution while injecting the iron-nickel-cobalt-manganese-sulfuric acid solution to be removed, the prepared carbonate solution or slurry is added to the iron-removing reactor, and the pH value of the process reaction is controlled at 3.0.
  • Solution filtration when the aging reactor is full, filter the solution, the filter residue is iron slag, and the filtrate is the nickel-cobalt-manganese-sulfuric acid solution after iron removal.
  • the iron removal device for nickel-cobalt-manganese sulfuric acid solution is provided with iron removal reactor and aging reactor.
  • the iron removal reactor is provided with a first mixer
  • the aging reactor is provided with a second mixer to remove iron.
  • the reactor and the aging reactor are connected with the overflow port connection pipe
  • the iron removal reactor inner cylinder is arranged in the iron removal reactor
  • the mixed feed is arranged between the iron removal reactor and the interlayer of the iron removal reactor inner cylinder.
  • Pipe and carbonate solution feed pipe, a mixer is provided at the top of the mixing feed pipe, a compressed air inlet and a feed port for iron removal liquid are provided on the mixer, and stone powder is provided on the aging reactor Automatic feeder.
  • the mixer is provided with a mixing bin, the mixing bin is a trapezoidal structure, the upper part is large and the lower part is small, an electric heating part is arranged under the mixing, the compressed air inlet is set at the top of the mixing bin, and the feed port for the iron removal liquid is set in the mixing bin On the side, the liquid to be removed iron is tangent to the compressed air from the side, the diameter of the outlet at the bottom of the mixing bin is 1/2 of the diameter of the bottom of the mixing bin, and the outlet at the bottom of the mixing bin is connected to the mixing feed pipe, which passes through the electric heating section.
  • the height of the mixing bin accounts for 30% of the height of the entire mixer.
  • the bottom end of the mixing feed pipe is 35 cm away from the bottom surface of the iron removal reactor, and the direction of the outlet of the mixing feed pipe is tangent to the stirring direction of the first mixer.
  • the mixer feed pipe and the carbonate solution feed pipe are arranged symmetrically.
  • the height-diameter ratio of the iron removal reactor is 1.5-2.0:1.
  • the first agitator is composed of a motor and a stirring blade.
  • the stirring blade adopts a cross-shaped double-layer stirring blade.
  • the maximum diameter of the stirring blade is 1/3 of the diameter of the iron removal reactor.
  • the bottom stirring blade is away from the bottom of the reactor. It is 60-70cm, and the upper and lower stirring blades are separated by 80-100cm.
  • the carbonate solution feed pipe is 35 cm away from the bottom surface of the iron removal reactor, and the direction of the outlet of the carbonate solution feed pipe is tangential to the stirring direction of the first mixer.
  • the inner cylinder of the iron-removing reactor is made into a cylindrical shape with upper and lower openings, and is fixed on the inner wall of the iron-removing reactor by connecting plates, and the diameter of the inner cylinder is 70-80% of the diameter of the iron-removing reactor.
  • the second agitator is composed of a motor and a stirring paddle.
  • the stirring paddle adopts a cross-shaped double-layer stirring blade.
  • the diameter of the stirring blade is 1/3 of the diameter of the aging reactor. 60-70cm, the upper and lower stirring blades are separated by 80-100cm.
  • Embodiment 1 be used for the iron removing device of nickel cobalt manganese sulfuric acid solution, be provided with iron removing reactor 2 and ageing reactor 9, be provided with the first mixer 3 in iron removing reactor 2, in ageing reactor 9
  • the second agitator 7 is provided inside, and the iron removing reactor 2 is connected with the aging reactor 9 with the overflow connection pipe 5, and the iron removing reactor inner cylinder 5 is provided in the iron removing reactor 2.
  • the mixer 1 is provided with a compressed air inlet 11 and a feed port 10 for the iron-removing liquid, and the aging reactor 9 is provided with a stone powder automatic feeder 8 .
  • the mixer 1 is provided with a mixing bin 15.
  • the mixing bin 15 has a trapezoidal structure with a wide top and a narrow bottom.
  • the compressed air inlet 11 is arranged on the top of the mixing bin 15. The compressed air is directly injected from the top, and the iron removal liquid is fed.
  • the port 10 is arranged on the side of the mixing chamber 15, so that the iron removal liquid to be removed is tangent to the compressed air from the side, and the outlet diameter at the bottom of the mixing chamber 15 is 1/2 of the diameter at the bottom of the mixing chamber, so that the compressed air and the iron removal liquid to be removed are in the form of microbubbles.
  • the rapid flow enters the iron removal reactor 2 .
  • Below the mixing bin 15 there is an electric heating part 16 , the outlet at the bottom of the mixing bin 15 is connected to the mixing feed pipe 12 , and the mixing feed pipe 12 passes through the electric heating part 16 .
  • the mixing bin 15 occupies 25-35% of the entire length of the mixer 1 .
  • the device structure of the first embodiment is simple and the manufacturing cost is low. Because the process can realize continuous production, the intermediate pause time is omitted, the production efficiency is greatly improved, and the production capacity is correspondingly increased.
  • Example 2 The iron removal device for nickel-cobalt-manganese-sulfuric acid solution is provided with iron-removing reactor 2 and aging reactor 9, and the height-diameter ratio of the iron-removing reactor 2 is 1:1.
  • a first mixer 3 is provided in the iron removal reactor 2.
  • the first mixer 3 is composed of a motor and a stirring paddle.
  • the stirring paddle adopts a cross-shaped double-layer stirring blade. 1/3 of the diameter, the bottom stirring blade is 50cm away from the bottom of the reactor, and the upper and lower stirring blades are 50cm apart.
  • a second agitator 7 is provided in the aging reactor 9 .
  • the second mixer 7 is composed of a motor and a stirring paddle.
  • the motor is fixed on the support 18.
  • the stirring paddle adopts a cross-shaped double-layer stirring blade.
  • the diameter of the stirring blade is 1/3 of the diameter of the aging reactor 9.
  • the bottom layer stirs
  • the paddle is 50cm from the bottom of the reactor, and the upper and lower stirring blades are 50cm apart.
  • the iron removing reactor 2 is connected with the aging reactor 9 by an overflow connection pipe 5, and the iron removing reactor 2 is provided with an inner barrel 5 of the iron removing reactor, and the inner barrel 5 of the iron removing reactor is made to be open up and down.
  • the mouth has a cylindrical shape and is fixed on the inner wall of the iron removal reactor 2 by the connecting plate 17 , and the diameter of the inner cylinder is 70% of the diameter of the iron removal reactor 2 .
  • a mixing feed pipe 12 and a carbonate solution feed pipe 4 are arranged between the iron removal reactor 2 and the interlayer of the iron removal reactor inner cylinder 5, and the mixer feed pipe 12 and the carbonate solution feed pipe 4 are provided. Symmetrical settings.
  • the bottom end of the mixing feed pipe 12 is 30 cm away from the bottom surface of the iron removal reactor 2 , and the outlet direction of the mixing feed pipe 12 is tangent to the stirring direction of the first mixer 3 .
  • the carbonate solution feed pipe 4 is 30 cm away from the bottom surface of the iron removal reactor 2 , and the outlet direction of the carbonate solution feed pipe 4 is tangent to the stirring direction of the first mixer 3 .
  • a mixer 1 with a preheating device is provided at the top of the mixing feed pipe 12 , a compressed air inlet 11 and a feed port 10 for iron removal liquid are provided on the mixer 1 , and stone powder is provided on the aging reactor 9 Automatic feeder 8.
  • the stone powder automatic feeder 8 is automatically controlled by a solenoid valve, and the feeding speed and feeding amount are controlled by input for automatic feeding.
  • the stone powder automatic feeder 8 uses a pneumatic knife gate valve produced by Shanghai Beisite Automation Technology Co., Ltd. to control the feeding.
  • the linkage operation of the reactor and the aging reactor in the present embodiment 2 can realize continuous iron removal production, the equipment structure is simple, and the manufacturing cost is low. Because the process can realize continuous production, the intermediate pause time is saved, and the production efficiency is greatly improved. , correspondingly increased production capacity.
  • Example 3 The iron removal device for nickel-cobalt-manganese-sulfuric acid solution is provided with iron-removing reactor 2 and aging reactor 9, and the height-diameter ratio of the iron-removing reactor 2 is 2.5:1.
  • a first mixer 3 is provided in the iron removal reactor 2.
  • the first mixer 3 is composed of a motor and a stirring paddle.
  • the stirring paddle adopts a cross-shaped double-layer stirring blade. 1/3 of the diameter, the bottom stirring blade is 80cm from the bottom of the reactor, and the upper and lower stirring blades are 115cm apart.
  • a second agitator 7 is provided in the aging reactor 9 .
  • the second mixer 7 is composed of a motor and a stirring paddle.
  • the motor is fixed on the support 18.
  • the stirring paddle adopts a cross-shaped double-layer stirring blade.
  • the diameter of the stirring blade is 1/3 of the diameter of the aging reactor 9.
  • the bottom layer stirs
  • the paddle is 80cm from the bottom of the reactor, and the upper and lower stirring blades are 115cm apart.
  • the iron removing reactor 2 is connected with the aging reactor 9 by an overflow connection pipe 5, and the iron removing reactor 2 is provided with an inner barrel 5 of the iron removing reactor, and the inner barrel 5 of the iron removing reactor is made to be open up and down.
  • the mouth has a cylindrical shape and is fixed on the inner wall of the iron removal reactor 2 by the connecting plate 17 , and the diameter of the inner cylinder is 80% of the diameter of the iron removal reactor 2 .
  • a mixing feed pipe 12 and a carbonate solution feed pipe 4 are arranged between the iron removal reactor 2 and the interlayer of the iron removal reactor inner cylinder 5, and the mixer feed pipe 12 and the carbonate solution feed pipe 4 are provided. Symmetrical settings.
  • the bottom end of the mixing feed pipe 12 is 40 cm away from the bottom surface of the iron removal reactor 2 , and the outlet direction of the mixing feed pipe 12 is tangent to the stirring direction of the first mixer 3 .
  • the carbonate solution feed pipe 4 is 40 cm away from the bottom surface of the iron removal reactor 2 , and the outlet direction of the carbonate solution feed pipe 4 is tangent to the stirring direction of the first mixer 3 .
  • a mixer 1 with a preheating device is provided at the top of the mixing feed pipe 12 , a compressed air inlet 11 and a feed port 10 for iron removal liquid are provided on the mixer 1 , and stone powder is provided on the aging reactor 9 Automatic feeder 8.
  • the stone powder automatic feeder 8 is automatically controlled by a solenoid valve, and the feeding speed and feeding amount are controlled by input for automatic feeding.
  • the stone powder automatic feeder 8 uses a pneumatic knife gate valve produced by Shanghai Beisite Automation Technology Co., Ltd. to control the feeding.
  • the linkage operation of the reactor and the aging reactor in the present embodiment 3 can realize continuous iron removal production, the equipment structure is simple, and the manufacturing cost is low. Because the process can realize continuous production, the intermediate pause time is saved, and the production efficiency is greatly improved. , correspondingly increased production capacity.
  • Embodiment 4 adopt the method for the low-temperature continuous removal of iron ions in the nickel-cobalt-manganese-sulfuric acid solution of the iron-removing device of the nickel-cobalt-manganese sulfuric acid solution, comprising the following steps: a. , Co: 26.03g/L, Mn: 5.41g/L, Ni: 7.35g/L; b. Prepare 124g/L manganese carbonate slurry and keep the temperature at 45°C; c. Iron removal reactor 2 and aging reactor 9 Both are 3m in diameter, 4m in height, and have an effective volume of 24.72 cubic meters; d.
  • the mixer 1 Open the mixer 1 and inject the iron-removing solution, compressed air and manganese carbonate slurry at the same time, the iron-removing liquid flow rate is 10.5m 3 /h, and the compressed air is 21m 3 /h; e.
  • the temperature of the mixer is controlled at 45 °C, the temperature in the reactor is controlled at 45 °C, and the reaction pH value is controlled at 3.05; f.
  • the iron removal reactor 2 After the iron removal reactor 2 is full, it flows into the aging reactor 9, and the stone powder automatic feeder 8 is turned on. Control to add 5kg of stone powder per hour; g. open the filter device after the aging reactor 9 is full, and filter, at this time, the iron removal device reaches a balance, and can continuously feed and discharge materials to realize continuous production; h. Analyze and detect the composition of the solution after iron removal As follows: Fe: 0.0055g/L, Co: 25.99g/L, Mn: 11.13g/L, Ni: 7.05g/L.
  • This embodiment 4 overcomes the problem that the existing solution iron removal technology must carry out iron removal under the high temperature condition of 85°C or above, and can realize the solution iron removal under the low temperature condition of 45°C. After the solution undergoes iron removal, the iron removal The rate reached 99.52%.
  • Embodiment 5 adopt the method for the low-temperature continuous removal of iron ions in the nickel-cobalt-manganese-sulfuric acid solution of the iron-removing device of the nickel-cobalt-manganese-sulfuric acid solution, comprising the following steps: a. /L, Co: 16.03g/L, Mn: 3.47g/L, Ni: 3.35g/L; b. Prepare 127g/L nickel carbonate slurry, keep the temperature at 45°C; c. Reaction between iron removal reactor 2 and aging The diameter of the device 9 is 3m, the height is 4m, and the effective volume is 24.72 cubic meters; d.
  • the flow rate of the iron removal liquid is 9.9m 3 /h, and the compressed air is 31m 3 /h; e.
  • the temperature of the mixer is controlled at 45°C, the temperature in the reactor is controlled at 45°C, and the pH value of the reaction is controlled at 3.11; f.
  • the iron removal reactor 2 When full, flow into the aging reactor 9, open the stone powder automatic feeder 8, and control to add 4.6 kg of stone powder per hour; g. After the aging reactor 9 is full, open the filter device to filter. At this time, the iron removal device reaches a balance, and can continuously feed and discharge materials to realize continuous production.
  • the composition of the solution after iron removal by analysis and detection is as follows: Fe: 0.0025g/L, Co: 15.98g/L, Mn: 3.13g/L, Ni: 9.05g/L.
  • the present embodiment 5 overcomes the problem that the existing solution iron removal technology must carry out iron removal under the high temperature condition of 85°C or above, and can realize the iron removal of the solution under the low temperature condition of 45°C, and the iron content of the solution is as high as 5.22g/L , After iron removal, the iron removal rate reached 99.95%. In the case of high iron, the method can remove iron ions without adding an oxidant, thereby reducing the production cost.
  • Embodiment 6 adopt the method for the low temperature continuous removal of iron ions in the nickel-cobalt-manganese-sulfuric acid solution of the iron-removing device of the nickel-cobalt-manganese-sulfuric acid solution, comprising the following steps: a. /L, Co: 22.03g/L, Mn: 1.47g/L, Ni: 4.31g/L; b. Prepare 121g/L cobalt carbonate slurry, keep the temperature at 45°C; c. Reaction between iron removal reactor 2 and aging 9 are 3m in diameter, 4m in height, and have an effective volume of 24.72 cubic meters; d.
  • the flow rate of the iron removal liquid is 12.7m 3 /h, and the compressed air is 30m 3 /h; e.
  • the temperature of the mixer is controlled at 45°C, the temperature in the reactor is controlled at 45°C, and the pH value of the reaction is controlled at 3.13; f.
  • the iron removal reactor 2 When full, flow into the aging reactor 9, open the stone powder automatic feeder 8, and control to add 5.2 kg of stone powder per hour; g. After the aging reactor 9 is full, open the filter device to filter. At this time, the iron removal device reaches a balance, and can continuously feed and discharge materials to realize continuous production.
  • the composition of the solution after iron removal is analyzed and detected as follows: Fe: 0.0023g/L, Co: 25.98g/L, Mn: 1.19g/L, Ni: 4.05g/L.
  • the present embodiment 6 overcomes the problem that the existing solution iron removal technology must carry out iron removal under the high temperature condition of 85 °C or more, and can realize the iron removal of the solution under the low temperature condition of 45 °C, and the iron content of the solution is 0.77g/L, After iron removal, the iron removal rate reached 99.70%. This method is equally applicable when the iron content is not high, and the process continuity is not affected.
  • Embodiment 7 adopt the method for the low-temperature continuous removal of iron ions in the nickel-cobalt-manganese-sulfuric acid solution of the iron-removing device of the nickel-cobalt-manganese-sulfuric acid solution, comprising the following steps: a. /L, Co: 35.03g/L, Mn: 1.47g/L, Ni: 14.31g/L; b. Prepare 146g/L sodium carbonate slurry, keep the temperature at 45°C; c. Reaction between iron removal reactor 2 and aging The diameter of the device 9 is 3m, the height is 4m, and the effective volume is 24.72 cubic meters; d.
  • the flow rate of the iron removal liquid is 11.3m 3 /h, and the compressed air is 30m 3 /h.
  • the temperature of the mixer is controlled at 45°C, the temperature in the reactor is controlled at 45°C, and the pH value of the reaction is controlled at 3.15; f.
  • the iron removal reactor 2 After the iron removal reactor 2 is full, it flows into the aging reactor 9, and the stone powder automatic feeder 8 is turned on to control every hour. Add 4.7kg of stone powder; g. open the filter device after the aging reactor 9 is full, and filter. At this time, the iron removal device reaches a balance, and can continuously feed and discharge materials to realize continuous production.
  • the composition of the solution after iron removal was analyzed and detected as follows: Fe: 0.0043g/L, Co: 34.88g/L, Mn: 1.13g/L, Ni: 14.05g/L.
  • the present embodiment 7 overcomes the problem that the existing solution iron removal technology must carry out iron removal under the high temperature condition of 85°C or above, and can realize the solution iron removal under the low temperature condition of 45°C. After the solution undergoes iron removal, the iron removal The rate reached 99.86%.
  • the process adopts calcium-added aging technology, the slag filtration performance is good, and there is no residual iron ion in the solution to affect the iron ion concentration in the solution.
  • the invention has been put into industrial production and application, and realizes the iron removal of nickel-cobalt-manganese sulfuric acid solution under the low temperature condition of 40-45 DEG C, and the iron removal rate is over 99.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法。用于镍钴锰硫酸溶液的除铁装置设有除铁反应器(2)和陈化反应器(9),在除铁反应器(2)内设有搅拌机(3),在陈化反应器(9)内设有陈化反应器搅拌机(7),在除铁反应器(2)内设有除铁反应器内筒(5),在除铁反应器(2)与除铁反应器内筒(5)的夹层之间设有混合进料管(12)和碳酸盐溶液进料管(4),在混合进料管(12)的顶部设有预热装置的混合器(1),在混合器上(1)设有压缩空气进口(11)和待除铁液进料口(10),在陈化反应器(9)上设有石粉自动加料器(8)。还有其除铁方法。具有对设备要求不高,节省能源,能连续化生产,大大提高产能效率,在不添加氧化剂的情况下能将二价铁离子氧化成三价,除铁率在99.5%以上等优点。

Description

用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法 技术领域
本发明属于有色金属湿法冶炼技术领域,特别是涉及镍钴锰硫酸溶液中除铁方法。
背景技术
在工业生产中,去除溶液中铁常用的方法是针铁矿和黄钠铁钒法。这两种方法需要在85℃或以上的高温条件下进行,且过程中需要加入氧化剂对溶液的铁离子价态进行控制。此外还需要满足溶液中具有一定浓度的其它离子,如钠、铵等。以上两种除铁方法在操作过程中分步加入各种试剂且需要控制一定的反应时间,一般只能是单槽作业。如专利公开号为CN111187922A,公开日为20200522的一种常压下从高镍铜锍中选择性浸出镍的方法,公开的技术为:浸出液除铁:将步骤(1)所得浸出液返回继续浸出,至浸出液中铁离子浓度为30~36g/L,然后向浸出液中加入双氧水和硫酸钾,过滤后得到除铁后液和除铁渣,所述除铁后液为硫酸镍溶液,除铁渣水洗过滤后为铁矾渣。双氧水用量为与铁反应所需理论量的2倍,硫酸钾用量为与铁反应所需理论量的1.2倍,除铁温度90~95℃,除铁时间2~4小时。不仅除铁温度高,要消耗大量的能量,而且反应时间长,生产效率低。同时还要消耗大量的双氧水和硫酸钾,导致生产成本高。
技术问题
本发明的目的在于克服以上背景技术中提到的不足和缺陷,公开一种除铁温度低,能耗少,生产效率高的,无须使用双氧水和硫酸钾等辅料的,生产成本低的用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法。
技术解决方案
本发明的技术解决方案之一是:用于镍钴锰硫酸溶液的除铁装置,设有除铁反应器和陈化反应器,在除铁反应器内设有第一搅拌机,在陈化反应器内设有第二搅拌机,除铁反应器与陈化反应器用溢流口连接管连接,其特殊之处在于:在除铁反应器内设有除铁反应器内筒,在除铁反应器与除铁反应器内筒的夹层之间设有混合进料管和碳酸盐溶液进料管,在混合进料管的项部设有混合器,在混合器上设有压缩空气进口和待除铁液进料口,在陈化反应器上设有石粉自动加料器。
进一步地,所述混合器设有混合仓,混合仓为梯形体结构,上大下小,混合的下面设有电加热部,压缩空气进口设在混合仓顶部,待除铁液进料口设在混合仓侧面,使待除铁液由侧面与压缩空气正切,混合仓底部的出口直径为混合仓底部直径的1/2,混合仓底部的出口与混合进料管相接,混合进料管穿过电加热部。
进一步地,混合仓的高度占整个混合器高度的25-35%,优选30%。作用是:控制混合后的物料在混合器有一定的加热保温时间,如果高度增加减少了加温时间会影响加温的效果。
进一步地,所述混合进料管底端离除铁反应器的底面30-40cm,优选35cm混合进料管的出口的方向与第一搅拌机的搅拌方向相切。作用是:一方面混合物料进口低于搅拌浆,在搅拌浆抽力下强化混合;另一方面混合物料进口与搅拌方向正切,有利于新进物料快速与反应器内物料快速混合,加快反应速度。
进一步地,所述混合器进料管与碳酸盐溶液进料管对称设置。作用是:混合液与碳酸盐溶液呈对称分布,主要是为了在搅拌状态下,能与一定的反应时间,PH值稳定性更好,若两者过于靠近将出现反应器内PH值有过高的区域会造成对主元素的损失。
进一步地,所述除铁反应器的高径比为1.0-2.5:1,优选1.5-2.0:1。作用是:高径比主要是考虑混合液与碳酸盐在反应器底部发生反应后,在搅拌力的作用下在反应器内保持一定的反应时间才可以出到溢流口流向除化反应器。
进一步地,所述第一搅拌机由电机和搅拌浆两部份组成,搅拌浆采用十字形双层搅拌叶,搅拌叶最大直径为除铁反应器的直径的1/3,最下层搅拌浆叶离反应器底部为50-80cm,优选60-70cm,上下两搅拌叶相距50-115cm,优选60-100cm,70-90cm,80cm。作用是:浆叶离底的距离是为了保持与混合液、碳酸盐溶液的进口距离之上,浆叶的长度主要保证搅拌强度,若过大一方面增加电机负荷,过大的搅拌强度会造成反应器的流体十分紊乱影响混合效果。两层搅拌浆叶的距离是为了保持一定搅拌强度,距离过低造成反应器上部混合强度不够,距离过长会造成上下两个层流,反应不均匀,不利于除铁反应的进行。
进一步地,所述碳酸盐溶液进料管离除铁反应器的底面30-40cm,优选35cm,碳酸盐溶液进料管的出口的方向与第一搅拌机的搅拌方向相切。作用是:一方面碳酸盐溶液进口低于搅拌浆,在搅拌浆抽力下强化混合;另一方面碳酸盐溶液进口与搅拌方向正切,有利于新进物料快速与反应器内物料快速混合,加快反应速度。
进一步地,所述除铁反应器内筒制成上下敞口的圆筒状,由连接板固定在除铁反应器的内壁上,其内筒直径为除铁反应器的直径的70-80%。作用是:反应器内筒的作是控制反应器内流体呈上下循环状态,混合液与碳酸盐溶液由底部在搅拌抽力作用下向上混合提升,由筒体上端流入到筒体外与反应器壁的间隙中,在反应槽整体流体的带动下向下运动并再次由筒体底部进入搅拌形成循环流体运动状态。
进一步地,所述第二搅拌机由电机和搅拌浆两部份组成,搅拌浆采用十字形双层搅拌叶,搅拌叶直径为陈化反应器的直径的1/3,最下层搅拌浆叶离反应器底部为50-80cm,优选60-70cm,上下两搅拌叶相距50-115cm,优选60-100cm,70-90cm,80cm。作用是:此反应器为陈化反应器保持与除铁反应器同等参数,但除化反应器搅拌转速要远远低于除铁反应器搅拌转速。浆叶离底的距离是为了保证在陈化过程中固体颗粒不会沉积到反应槽底部,离底过高则会出现沉积现象,过低会增加电机负荷。浆叶的直径的作用与离底的作用基本一致,过短易造成固体颗粒沉积,过长造成电机负荷增加。两浆叶之间的距离主要使搅拌保持一定强度,距离过短造成上部搅拌强度偏低,过长会形成上下两个搅拌层流,不利于陈化反应时行。
进一步地,所述石粉自动加料器,由电磁阀自动控制,通过输入控制加料速度及加料量进行自动加料。
本发明由于混合器1中设有混合仓,混合仓为梯形体结构,上大下小,压缩空气由顶部直喷,待除铁液由侧面与压缩空气正切,混合仓压力骤增,混合强度大大增强,混合仓底部的出口继续变小,为混合仓底部直径的1/2,加之混合仓下面设有电加热部,使得压缩空气与待除铁液以微泡状急流并加热后进入到反应器内,加速了二价铁的氧化。
本发明的技术解决方案之二是:采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,其特殊之处在于:包括以下步骤:a.配制碳酸盐:先配制碳酸盐溶液或浆液,碳酸盐浓度为120-240g/L,温度控制在40-45℃。
b.注入待除铁溶液:将待除铁镍钴锰硫酸溶液与压缩空气通过带预热装置的混合器进入到除铁反应器内。
c.注入碳酸盐溶液:在注入待除铁镍钴锰硫酸溶液的同时将配置好的碳酸盐溶液或浆液加入除铁反应器内,过程反应的PH值控制在2.5-3.5之间。
d.搅拌反应:在注入待除铁溶液和碳酸盐溶液时,边注入边搅拌,过程控制温度40-45℃,当反应器装满后,反应浆液进入陈化反应器。
e.加入石粉:反应浆液进入陈化反应器后,进行搅拌,然后通过自动加料装置加入石粉(主成份碳酸钙)。
f.溶液过滤:当陈化反应器装满后将溶液过滤,滤渣为铁渣,滤液为除铁后的镍钴锰硫酸溶液。
进一步地,所述碳酸盐为碳酸钴、碳酸镍、碳酸锰、碳酸钠的一种或多种。
进一步地,所述配制碳酸盐的浓度为130-220g/L,优选可以为140-200g/L,150-180g/L,160-170g/L,或者是120-130g/L,130-140g/L,140-150g/L,150-160g/L,160-170g/L,170-180g/L,180-190g/L,190-200g/L,200-210g/L,210-220g/L,220-230g/L。
进一步地,所述配制碳酸盐的温度控制在40-45℃,也可以是41-42℃,43-44℃。
进一步地,在所述注入待除铁溶液步骤中,溶液流量根据反应器体积大小按如下公式进行计算:流速=反应器的体积V立方米/(2-5.5小时),压缩空气流量为待除铁溶液流速的2-8倍,优选3-7倍,4-6倍,5倍。
此步流速是控制在除铁反应器内的停留时间,即反应时间,能充分反应生成氢氧化铁,将铁从溶液中去除;压缩空气的流速决定氧化反应的进行程度。实验数据如表1,表2。
表1:5倍压缩空气下,24.72立方反应器流速对溶液铁去除的对照表。
Figure 690994dest_path_image001
表2:流速8m3/h,24.72立方反应器压缩空气流量对溶液铁去除的对照表。
Figure 318022dest_path_image002
进一步地,在所述注入待除铁溶液步骤中,预热装置的温度控制在40-45℃,也可以是41-42℃,43-44℃。
进一步地,所述石粉加入量为每立方溶液加0.05-0.5kg/立方,优选为0.10-0.45kg/立方,0.15-0.40kg/立方,0.20-0.35kg/立方,0.25-0.30kg/立方。
此步是为了在陈化过程中使产生的氢氧化铁沉淀在钙粉的作用下生成过滤性能良好的混合渣,实验数据如表3。
表3:不同钙加入量过滤时间对照表。
Figure 11171dest_path_image003
本发明在40-45℃低温条件下,待除铁液(镍钴锰硫酸溶液)和碳酸盐的溶液或浆液采用并流方式连续不断加入到除铁反应器内,利用压缩空气与待除铁液在一定比例和压力条件下产生巨量微气泡,将溶液中二价铁离子氧化成三价,在碳酸盐的作用下,提高PH值时产生Fe(OH) 3的沉淀;除铁反应器内浆液满后连续不断流入到陈化反应器内,采用陈化加钙技术,使产生的氢氧化铁胶体在陈化过程中颗增大,表面得到修饰,与加入的钙形成过滤性能良好的混合渣,将铁进行去除。
有益效果
本发明由于采用了以上技术方案,具有以下优点:(1)采用40-45℃低温条件下进行除铁,对设备要求不高,节省能源。
(2)采用并流加入方式,可实现连续化生产,大大提高产能效率。
(3)采用压缩空气与待除铁液进行压力强化混合,在过程产生巨量微气泡,在不添加氧化剂的情况下将二价铁离子氧化成三价。
(4)采用陈化加钙技术,使产生的氢氧化铁胶体在陈化过程中颗粒增大并得到表面修饰,与加入的钙形成过滤性能良好的混合渣。
(5)除铁率在99.5%以上。
附图说明
图1为本发明的除铁装置主视剖面结构示意图。
图2为本发明的除铁装置俯视结构示意图。
图3为本发明的混合器结构放大示意图。
附图标记说明:1-混合器,2-除铁反应器,3-第一搅拌机,4-碳酸盐溶液进料管,5-除铁反应器内筒,5-溢流口联接管,7-第二搅拌机,8-石粉自动加料器,9-陈化反应器,10-待除铁液进料口,11-压缩空气进口,12-混合进料管,13-混合进料管出口,14-碳酸盐溶液进料管出口,15-混合仓,16-加热部,17-连接板,18-支架。
本发明的最佳实施方式
采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,包括以下步骤:a.配制碳酸盐:先配制碳酸盐溶液或浆液,碳酸盐浓度为220g/L,温度控制在45℃。
b.注入待除铁溶液:将待除铁镍钴锰硫酸溶液与压缩空气通过带预热装置的混合器进入到除铁反应器内。
c.注入碳酸盐溶液:在注入待除铁镍钴锰硫酸溶液的同时将配置好的碳酸盐溶液或浆液加入除铁反应器内,过程反应的PH值控制在3.0。
d.搅拌反应:在注入待除铁溶液和碳酸盐溶液时,边注入边搅拌,过程控制温度45℃,当反应器装满后,反应浆液进入陈化反应器。
e.加入石粉:反应浆液进入陈化反应器后,进行搅拌,然后通过自动加料装置加入石粉(主成份碳酸钙)。
f.溶液过滤:当陈化反应器装满后将溶液过滤,滤渣为铁渣,滤液为除铁后的镍钴锰硫酸溶液。
用于镍钴锰硫酸溶液的除铁装置,设有除铁反应器和陈化反应器,在除铁反应器内设有第一搅拌机,在陈化反应器内设有第二搅拌机,除铁反应器与陈化反应器用溢流口连接管连接,在除铁反应器内设有除铁反应器内筒,在除铁反应器与除铁反应器内筒的夹层之间设有混合进料管和碳酸盐溶液进料管,在混合进料管的项部设有混合器,在混合器上设有压缩空气进口和待除铁液进料口,在陈化反应器上设有石粉自动加料器。所述混合器设有混合仓,混合仓为梯形体结构,上大下小,混合的下面设有电加热部,压缩空气进口设在混合仓顶部,待除铁液进料口设在混合仓侧面,使待除铁液由侧面与压缩空气正切,混合仓底部的出口直径为混合仓底部直径的1/2,混合仓底部的出口与混合进料管相接,混合进料管穿过电加热部。混合仓的高度占整个混合器高度的30%。所述混合进料管底端离除铁反应器的底面35cm,混合进料管的出口的方向与第一搅拌机的搅拌方向相切。所述混合器进料管与碳酸盐溶液进料管对称设置。所述除铁反应器的高径比为1.5-2.0:1。所述第一搅拌机由电机和搅拌浆两部份组成,搅拌浆采用十字形双层搅拌叶,搅拌叶最大直径为除铁反应器的直径的1/3,最下层搅拌浆叶离反应器底部为60-70cm,上下两搅拌叶相距80-100cm。所述碳酸盐溶液进料管离除铁反应器的底面35cm,碳酸盐溶液进料管的出口的方向与第一搅拌机的搅拌方向相切。所述除铁反应器内筒制成上下敞口的圆筒状,由连接板固定在除铁反应器的内壁上,其内筒直径为除铁反应器的直径的70-80%。所述第二搅拌机由电机和搅拌浆两部份组成,搅拌浆采用十字形双层搅拌叶,搅拌叶直径为陈化反应器的直径的1/3,最下层搅拌浆叶离反应器底部为60-70cm,上下两搅拌叶相距80-100cm。
本发明的实施方式
为了更清楚地理解本发明,下面结合附图1-3用实施例对本发明作进一步的说明。
实施例1:用于镍钴锰硫酸溶液的除铁装置,设有除铁反应器2和陈化反应器9,在除铁反应器2内设有第一搅拌机3,在陈化反应器9内设有第二搅拌机7,除铁反应器2与陈化反应器9用溢流口连接管5连接,在除铁反应器2内设有除铁反应器内筒5,在除铁反应器2与除铁反应器内筒5的夹层之间设有混合进料管12和碳酸盐溶液进料管4,在混合进料管12的项部设有预热装置的混合器1,在混合器1上设有压缩空气进口11和待除铁液进料口10,在陈化反应器9上设有石粉自动加料器8。所述混合器1设有混合仓15,混合仓15为梯形体结构,上宽下窄,所述压缩空气进口11设在混合仓15顶部,压缩空气由顶部直喷,待除铁液进料口10设在混合仓15侧面,使待除铁液由侧面与压缩空气正切,混合仓15底部的出口直径为混合仓底部直径的1/2,使得压缩空气与待除铁液以微泡状急流进入除铁反应器2内。在在混合仓15的下面,设有电加热部16,混合仓15底部的出口与混合进料管12相接,混合进料管12穿过电加热部16。混合仓15占整个混合器1长度的25-35%。
本实施例1设备结构简单,制造成本低,因过程可实现连续法生产,省去了中间停顿时间,大大提高了生产效率,相应提高了生产产能。
实施例2:用于镍钴锰硫酸溶液的除铁装置,设有除铁反应器2和陈化反应器9,所述除铁反应器2的高径比为1:1。在除铁反应器2内设有第一搅拌机3,所述第一搅拌机3由电机和搅拌浆两部份组成,搅拌浆采用十字形双层搅拌叶,搅拌叶直径为除铁反应器2的直径的1/3,最下层搅拌浆叶离反应器底部为50cm,上下两搅拌叶相距50cm。在陈化反应器9内设有第二搅拌机7。第二搅拌机7由电机和搅拌浆两部份组成,电机固定在支架18上,搅拌浆采用十字形双层搅拌叶,搅拌叶直径为陈化反应器9的直径的1/3,最下层搅拌浆叶离反应器底部为50cm,上下两搅拌叶相距50cm。除铁反应器2与陈化反应器9用溢流口连接管5连接,在除铁反应器2内设有除铁反应器内筒5,所述除铁反应器内筒5制成上下敞口的圆筒状,由连接板17固定在除铁反应器2的内壁上,其内筒直径为除铁反应器2的直径的70%。在除铁反应器2与除铁反应器内筒5的夹层之间设有混合进料管12和碳酸盐溶液进料管4,混合器进料管12与碳酸盐溶液进料管4对称设置。混合进料管12底端离除铁反应器2的底面30cm,混合进料管12的出口方向与第一搅拌机3的搅拌方向相切。所述碳酸盐溶液进料管4离除铁反应器2的底面30cm,碳酸盐溶液进料管4的出口方向与第一搅拌机3的搅拌方向相切。在混合进料管12的项部设有预热装置的混合器1,在混合器1上设有压缩空气进口11和待除铁液进料口10,在陈化反应器9上设有石粉自动加料器8。石粉自动加料器8由电磁阀自动控制,通过输入控制加料速度及加料量进行自动加料。石粉自动加料器8采用由上海北四特自动化科技有限公司生产的气动刀型闸阀进行控制加料,闸阀型号:QZ41-50CPV24-DXZ43。
本实施例2的反应器与陈化反应器联动操作可实现除铁生产连续化,设备结构简单,制造成本低,因过程可实现连续法生产,省去了中间停顿时间,大大提高了生产效率,相应提高了生产产能。
实施例3:用于镍钴锰硫酸溶液的除铁装置,设有除铁反应器2和陈化反应器9,所述除铁反应器2的高径比为2.5:1。在除铁反应器2内设有第一搅拌机3,所述第一搅拌机3由电机和搅拌浆两部份组成,搅拌浆采用十字形双层搅拌叶,搅拌叶直径为除铁反应器2的直径的1/3,最下层搅拌浆叶离反应器底部为80cm,上下两搅拌叶相距115cm。在陈化反应器9内设有第二搅拌机7。第二搅拌机7由电机和搅拌浆两部份组成,电机固定在支架18上,搅拌浆采用十字形双层搅拌叶,搅拌叶直径为陈化反应器9的直径的1/3,最下层搅拌浆叶离反应器底部为80cm,上下两搅拌叶相距115cm。除铁反应器2与陈化反应器9用溢流口连接管5连接,在除铁反应器2内设有除铁反应器内筒5,所述除铁反应器内筒5制成上下敞口的圆筒状,由连接板17固定在除铁反应器2的内壁上,其内筒直径为除铁反应器2的直径的80%。在除铁反应器2与除铁反应器内筒5的夹层之间设有混合进料管12和碳酸盐溶液进料管4,混合器进料管12与碳酸盐溶液进料管4对称设置。混合进料管12底端离除铁反应器2的底面40cm,混合进料管12的出口方向与第一搅拌机3的搅拌方向相切。所述碳酸盐溶液进料管4离除铁反应器2的底面40cm,碳酸盐溶液进料管4的出口方向与第一搅拌机3的搅拌方向相切。在混合进料管12的项部设有预热装置的混合器1,在混合器1上设有压缩空气进口11和待除铁液进料口10,在陈化反应器9上设有石粉自动加料器8。石粉自动加料器8由电磁阀自动控制,通过输入控制加料速度及加料量进行自动加料。石粉自动加料器8采用由上海北四特自动化科技有限公司生产的气动刀型闸阀进行控制加料,闸阀型号:QZ41-50CPV24-DXZ43。
本实施例3的反应器与陈化反应器联动操作可实现除铁生产连续化,设备结构简单,制造成本低,因过程可实现连续法生产,省去了中间停顿时间,大大提高了生产效率,相应提高了生产产能。
实施例4:采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,包括以下步骤:a.待除铁镍钴锰硫酸溶液成份:Fe:1.15g/L,Co:26.03g/L,Mn:5.41g/L,Ni:7.35g/L;b.配制124g/L碳酸锰浆液,保温至45℃;c.除铁反应器2与陈化反应器9均为直径3m,高4m,有效体积24.72立方;d.开启混合器1同时注入待除铁溶液、压缩空气和碳酸锰浆料,待除铁液流量为10.5m 3/h,压缩空气21m 3/h;e.混合器温度控制45℃,反应器内温度控制45℃,反应PH值控制在3.05;f.除铁反应器2满后流入陈化反应器9,开启石粉自动加料器8,控制每小时加入5kg石粉;g.陈化反应器9满后开启过滤装置,进行过滤,此时除铁装置达到平衡,可连续性进出料,实现连续生产;h.分析检测除铁后溶液成份如下:Fe:0.0055g/L,Co:25.99g/L,Mn:11.13g/L,Ni:7.05g/L。
本实施例4克服了现有溶液除铁技术必须在85℃或以上的高温条件下进行除铁的问题,可实现在45℃低温条件下进行溶液的除铁,溶液经过除铁后,铁去除率达到了99.52%。
实施例5:采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,包括以下步骤:a.待除铁液(镍钴锰硫酸溶液)成份Fe:5.22g/L,Co:16.03g/L,Mn:3.47g/L,Ni:3.35g/L;b.配制127g/L碳酸镍浆液,保温至45℃;c.除铁反应器2与陈化反应器9均为直径3m,高4m,有效体积24.72立方;d.开启混合器同时注入待除铁溶液、压缩空气和碳酸锰浆料。待除铁液流量为9.9m 3/h,压缩空气31m 3/h;e.混合器温度控制45℃,反应器内温度控制45℃,反应PH值控制在3.11;f.除铁反应器2满后流入陈化反应器9,开启石粉自动加料器8,控制每小时加入4.6kg石粉;g.陈化反应器9满后开启过滤装置,进行过滤。此时除铁装置达到平衡,可连续性进出料,实现连续生产。h.分析检测除铁后溶液成份如下:Fe:0.0025g/L,Co:15.98g/L,Mn:3.13g/L,Ni:9.05g/L。
本实施例5克服了现有溶液除铁技术必须在85℃或以上的高温条件下进行除铁的问题,可实现在45℃低温条件下进行溶液的除铁,溶液铁含量高达5.22g/L,经过除铁后,铁去除率达到了99.95%。此方法在高铁情况下,也不用额外添加氧化剂可将铁离子去除干净,降低了生产成本。
实施例6:采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,包括以下步骤:a.待除铁液(镍钴锰硫酸溶液)成份Fe:0.77g/L,Co:22.03g/L,Mn:1.47g/L,Ni:4.31g/L;b.配制121g/L碳酸钴浆液,保温至45℃;c.除铁反应器2与陈化反应9均为直径3m,高4m,有效体积24.72立方;d.开启混合器同时注入待除铁溶液、压缩空气和碳酸锰浆料。待除铁液流量为12.7m 3/h,压缩空气30m 3/h;e.混合器温度控制45℃,反应器内温度控制45℃,反应PH值控制在3.13;f.除铁应器2满后流入陈化反应器9,开启石粉自动加料器8,控制每小时加入5.2kg石粉;g.陈化反应器9满后开启过滤装置,进行过滤。此时除铁装置达到平衡,可连续性进出料,实现连续生产。h.分析检测除铁后溶液成份如下:Fe:0.0023g/L,Co:25.98g/L,Mn:1.19g/L,Ni:4.05g/L。
本实施例6克服了现有溶液除铁技术必须在85℃或以上的高温条件下进行除铁的问题,可实现在45℃低温条件下进行溶液的除铁,溶液铁含量0.77g/L,经过除铁后,铁去除率达到了99.70%。此方法在铁含量不高时也同等适用,过程连续化不受影响。
实施例7:采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,包括以下步骤:a.待除铁液(镍钴锰硫酸溶液)成份Fe:3.04g/L,Co:35.03g/L,Mn:1.47g/L,Ni:14.31g/L;b.配制146g/L碳酸钠浆液,保温至45℃;c.除铁反应器2与陈化反应器9均为直径3m,高4m,有效体积24.72立方;d.开启混合器同时注入待除铁溶液、压缩空气和碳酸锰浆料。待除铁液流量为11.3m 3/h,压缩空气30m 3/h。e.混合器温度控制45℃,反应器内温度控制45℃,反应PH值控制在3.15;f.除铁反应器2满后流入陈化反应器9,开启石粉自动加料器8,控制每小时加入4.7kg石粉;g.陈化反应器9满后开启过滤装置,进行过滤。此时除铁装置达到平衡,可连续性进出料,实现连续生产。h.分析检测除铁后溶液成份如下:Fe:0.0043g/L,Co:34.88g/L,Mn:1.13g/L,Ni:14.05g/L。
本实施例7克服了现有溶液除铁技术必须在85℃或以上的高温条件下进行除铁的问题,可实现在45℃低温条件下进行溶液的除铁,溶液经过除铁后,铁去除率达到了99.86%。过程采用加钙陈化技术,渣过滤性能良好,溶液中没有残余铁离子影响溶液中铁离子浓度。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明已投入工业化生产应用,实现了在40-45℃低温条件下进行镍钴锰硫酸溶液的除铁,除铁率在99.5%以上。

Claims (11)

  1. 用于镍钴锰硫酸溶液的除铁装置,设有除铁反应器和陈化反应器,在除铁反应器内设有第一搅拌机,在陈化反应器内设有第二搅拌机,除铁反应器与陈化反应器用溢流口连接管连接,其特征在于:在除铁反应器内设有除铁反应器内筒,在除铁反应器与除铁反应器内筒的夹层之间设有混合进料管和碳酸盐溶液进料管,在混合进料管的项部设有混合器,在混合器上设有压缩空气进口和待除铁液进料口,在陈化反应器上设有石粉自动加料器。
  2. 根据权利要求1所述的用于镍钴锰硫酸溶液的除铁装置,其特征在于:所述混合器设有混合仓,混合仓为梯形体结构,上大下小,混合仓的下面设有电加热部,压缩空气进口设在混合仓顶部,待除铁液进料口设在混合仓侧面,使待除铁液由侧面与压缩空气正切,混合仓底部的出口直径为混合仓底部直径的1/2,混合仓底部的出口与混合进料管相接,混合进料管穿过电加热部。
  3. 根据权利要求1所述的用于镍钴锰硫酸溶液的除铁装置,其特征在于:所述混合进料管底端离除铁反应器的底面30-40cm,混合进料管的出口方向与搅拌机的搅拌方向相切,所述碳酸盐溶液进料管离除铁反应器的底面30-40cm,碳酸盐溶液进料管的出口方向与搅拌机的搅拌方向相切。
  4. 根据权利要求1所述的用于镍钴锰硫酸溶液的除铁装置,其特征在于:所述混合器进料管与碳酸盐溶液进料管对称设置。
  5. 根据权利要求1所述的用于镍钴锰硫酸溶液的除铁装置,其特征在于:所述除铁反应器2的高径比为1.0-2.5:1。
  6. 根据权利要求1所述的用于镍钴锰硫酸溶液的除铁装置,其特征在于:所述搅拌机由电机和搅拌浆两部份组成,搅拌浆采用十字形双层搅拌叶,搅拌叶直径为除铁反应器的直径的1/3,最下层搅拌浆叶离反应器底部为50-80cm,上下两搅拌叶相距50-115cm,所述陈化反应器搅拌机由电机和搅拌浆两部份组成,搅拌浆采用十字形双层搅拌叶,搅拌叶直径为陈化反应器的直径的1/3,最下层搅拌浆叶离反应器底部为50-80cm,上下两搅拌叶相距50-115cm。
  7. 根据权利要求1所述的用于镍钴锰硫酸溶液的除铁装置,其特征在于:所述除铁反应器内筒制成上下敞口的圆筒状,由支搅拌架固定在除铁反应器的内壁上,其内筒直径为除铁反应器的直径的70-80%。
  8. 采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,其特征在于:包括以下步骤:
    a.配制碳酸盐:先配制碳酸盐溶液或浆液,碳酸盐浓度为120-240g/L,温度控制在40-45℃;
    b.注入待除铁溶液:将待除铁镍钴锰硫酸溶液与压缩空气通过带预热装置的混合器进入到除铁反应器内;
    c.注入碳酸盐溶液:在注入待除铁镍钴锰硫酸溶液的同时将配置好的碳酸盐溶液或浆液加入除铁反应器内,过程反应的PH值控制在2.5-3.5之间;
    d.搅拌反应:在注入待除铁溶液和碳酸盐溶液时,边注入边搅拌,过程控制温度40-45℃,当反应器装满后,反应浆液流入陈化反应器;
    e.加入石粉:反应浆液进入陈化反应器后,进行搅拌,然后通过自动加料装置加入石粉;
    f.溶液过滤:当陈化反应器装满后将溶液过滤,滤渣为铁渣,滤液为除铁后的镍钴锰硫酸溶液。
  9. 根据权利要求8所述的采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,其特征在于:在所述注入待除铁溶液步骤中,溶液流量根据反应器体积大小按如下公式进行计算:流速=反应器的体积V立方米/(2-5.5小时),压缩空气流量为待除铁溶液流速的2-8倍。
  10. 根据权利要求8所述的采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法,其特征在于:所述石粉加入量为0.05-0.5kg/立方溶液。
  11. 根据权利要求8-10任何一项所述采用镍钴锰硫酸溶液的除铁装置的低温连续去除镍钴锰硫酸溶液中铁离子的方法所制备的镍钴锰硫酸溶液。
PCT/CN2022/088140 2021-04-25 2022-04-21 用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法 WO2022228264A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237037477A KR20230165294A (ko) 2021-04-25 2022-04-21 니켈코발트망간 황산 용액용 철 제거 장치 및 니켈코발트망간 황산 용액의 철 이온을 저온에서 연속 제거하는 방법
JP2023563971A JP2024519671A (ja) 2021-04-25 2022-04-21 ニッケルコバルトマンガン硫酸溶液用の除鉄装置及びニッケルコバルトマンガン硫酸溶液中の鉄イオンの低温連続除去方法
US18/487,944 US20240075446A1 (en) 2021-04-25 2023-10-16 Device for removing iron from nickel-cobalt-manganese sulfuric acid solution and method for continuously removing iron ions from nickel-cobalt-manganese sulfuric acid solution at low temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110446037.7A CN113046555B (zh) 2021-04-25 2021-04-25 用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法
CN202110446037.7 2021-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/487,944 Continuation US20240075446A1 (en) 2021-04-25 2023-10-16 Device for removing iron from nickel-cobalt-manganese sulfuric acid solution and method for continuously removing iron ions from nickel-cobalt-manganese sulfuric acid solution at low temperature

Publications (1)

Publication Number Publication Date
WO2022228264A1 true WO2022228264A1 (zh) 2022-11-03

Family

ID=76520112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088140 WO2022228264A1 (zh) 2021-04-25 2022-04-21 用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法

Country Status (5)

Country Link
US (1) US20240075446A1 (zh)
JP (1) JP2024519671A (zh)
KR (1) KR20230165294A (zh)
CN (3) CN113046555B (zh)
WO (1) WO2022228264A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046555B (zh) * 2021-04-25 2023-12-22 湖南金源新材料股份有限公司 用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法
CN114100193A (zh) * 2021-11-05 2022-03-01 金川集团股份有限公司 一种高效混合澄清分离式萃取装置
CN115069311A (zh) * 2022-06-22 2022-09-20 格林美(江苏)钴业股份有限公司 一种硫酸镍溶液除铁装置、除铁系统及除铁方法
CN118109890B (zh) * 2024-04-25 2024-07-26 新邵辰州锑业有限责任公司 含锑电解液萃取除铁设备及工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805779A (zh) * 2013-12-30 2014-05-21 中国神华能源股份有限公司 酸法炼铝工艺中的除铁方法
CN109897957A (zh) * 2019-01-16 2019-06-18 中南大学 一种选择性分离钴镍铜铁合金中有价金属的方法
CN110983045A (zh) * 2019-11-26 2020-04-10 湖南邦普循环科技有限公司 一种镍钴锰溶液除铁铝的方法
US20200283305A1 (en) * 2019-03-05 2020-09-10 Korea Resources Corporation Method for recovering valuable metal sulfides
CN111826523A (zh) * 2020-06-28 2020-10-27 广东邦普循环科技有限公司 一种氢氧化镍钴精炼的方法
CN112126783A (zh) * 2020-08-25 2020-12-25 湖南邦普循环科技有限公司 一种镍钴锰溶液中铁铝资源化的回收方法
CN113046555A (zh) * 2021-04-25 2021-06-29 湖南金源新材料股份有限公司 用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法
CN214655164U (zh) * 2021-04-25 2021-11-09 湖南金源新材料股份有限公司 用于镍钴锰硫酸溶液的除铁装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967556A (zh) * 2010-10-22 2011-02-09 蒙自矿冶有限责任公司 一种高效空气氧化除铁装置
JP5637295B1 (ja) * 2013-12-03 2014-12-10 住友金属鉱山株式会社 中和処理方法
CN106566926B (zh) * 2016-11-22 2019-03-15 格林美(江苏)钴业股份有限公司 一种除铁装置及低温连续除铁工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805779A (zh) * 2013-12-30 2014-05-21 中国神华能源股份有限公司 酸法炼铝工艺中的除铁方法
CN109897957A (zh) * 2019-01-16 2019-06-18 中南大学 一种选择性分离钴镍铜铁合金中有价金属的方法
US20200283305A1 (en) * 2019-03-05 2020-09-10 Korea Resources Corporation Method for recovering valuable metal sulfides
CN110983045A (zh) * 2019-11-26 2020-04-10 湖南邦普循环科技有限公司 一种镍钴锰溶液除铁铝的方法
CN111826523A (zh) * 2020-06-28 2020-10-27 广东邦普循环科技有限公司 一种氢氧化镍钴精炼的方法
CN112126783A (zh) * 2020-08-25 2020-12-25 湖南邦普循环科技有限公司 一种镍钴锰溶液中铁铝资源化的回收方法
CN113046555A (zh) * 2021-04-25 2021-06-29 湖南金源新材料股份有限公司 用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法
CN214655164U (zh) * 2021-04-25 2021-11-09 湖南金源新材料股份有限公司 用于镍钴锰硫酸溶液的除铁装置

Also Published As

Publication number Publication date
US20240075446A1 (en) 2024-03-07
CN113046555B (zh) 2023-12-22
KR20230165294A (ko) 2023-12-05
JP2024519671A (ja) 2024-05-21
CN113046555A (zh) 2021-06-29
CN117568596A (zh) 2024-02-20
CN117403063A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2022228264A1 (zh) 用于镍钴锰硫酸溶液的除铁装置及低温连续去除镍钴锰硫酸溶液中铁离子的方法
CN107459069B (zh) 一种降低镍钴铝前驱体硫含量的方法
CN108847477A (zh) 一种镍钴锰酸锂三元正极材料及其制备方法
WO2012006935A1 (zh) 无汞碱锰型电解二氧化锰的生产方法
CN108987682B (zh) 可防止颗粒破裂的富镍基前驱体材料的制备方法
WO2023029897A1 (zh) 一种高振实三元前驱体材料的制备装置及制备方法
CN214681715U (zh) 一种高镍三元前驱体反应釜
CN106745280B (zh) 高密度四氧化三锰前驱体高纯碳酸锰的生产系统
CN102168181B (zh) 卧式加压浸出釜以及使用其的硫化锌精矿浸出方法
CN108455686A (zh) 一种掺铌钨钽四氧化三钴的制备方法
CN214655164U (zh) 用于镍钴锰硫酸溶液的除铁装置
CN112322899B (zh) 一种浸出处理废锂离子电池正极的方法及装置
CN108946825A (zh) 一种小粒度四氧化三钴的制备方法
CN111939859B (zh) 窄粒径分布的三元前驱体反应装置
CN218058485U (zh) 人造金红石的生产系统和二氧化钛生产系统
CN207862421U (zh) 锌粉一次置换制备海绵镉装置
CN206415117U (zh) 一种稀土氧化物生产专用连续沉淀装置
CN110391410A (zh) 一种铜掺杂三元正极材料的制备方法
CN207749162U (zh) 一种锌片置换制备海绵镉的装置
CN111646502B (zh) 一种渣矿混合连续酸解浸取方法及设备
CN212758636U (zh) 减少分子筛产品破碎或提高收率的改性反应釜
CN107675201A (zh) 电解二氧化锰的制备方法
CN102586767A (zh) 一种碳纳米管负载纳米铜镍合金材料的制备方法
CN208167067U (zh) 一种浸出软锰矿的微波反应装置
CN208856921U (zh) 一种碳酸镍的生产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563971

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237037477

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794735

Country of ref document: EP

Kind code of ref document: A1