WO2022228082A1 - 一种地图、地图生成方法、地图使用方法及装置 - Google Patents

一种地图、地图生成方法、地图使用方法及装置 Download PDF

Info

Publication number
WO2022228082A1
WO2022228082A1 PCT/CN2022/085759 CN2022085759W WO2022228082A1 WO 2022228082 A1 WO2022228082 A1 WO 2022228082A1 CN 2022085759 W CN2022085759 W CN 2022085759W WO 2022228082 A1 WO2022228082 A1 WO 2022228082A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
map
indication information
information
quality
Prior art date
Application number
PCT/CN2022/085759
Other languages
English (en)
French (fr)
Inventor
王兴冰
刘建琴
石峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022228082A1 publication Critical patent/WO2022228082A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Definitions

  • the present application relates to the field of automatic driving, and in particular, to a map, a method for generating a map, a method and a device for using a map.
  • High Definition Map also known as high-definition map or high-precision map
  • HD Map High Definition Map
  • the high-precision map contains static information and dynamic information, and can realize the loading of map information by means of cloud collaboration, vehicle-road collaboration, etc., to assist vehicle perception, positioning, planning and control.
  • the generation of high-precision maps depends on the positioning data of location points. Since the collection of positioning data is easily affected by the surrounding environment, the quality of the positioning data obtained on different map elements (such as roads, lanes, etc.) in the high-precision map is not high. one. If the positioning data of low quality in the high-precision map is used in the process of automatic driving, the inaccurate positioning will easily lead to deviation of the navigation route, and even affect the driving safety of the vehicle.
  • the embodiments of the present application disclose a map, a method for generating a map, a method and a device for using the map, so that a vehicle or portable terminal using the map can selectively use the positioning information in the high-precision map, thereby improving the safety of automatic driving.
  • an embodiment of the present application provides a map generation method, the method includes: obtaining a plurality of positioning information of the first plurality of position points and a plurality of first plurality of positioning quality reference information of the first plurality of position points;
  • the first plurality of positioning quality reference information generates first positioning quality indication information, and the first positioning quality indication information is used to indicate the positioning quality in the first driving area;
  • the first association relationship indication information is generated according to the plurality of positioning information, and the first association
  • the relationship indication information is used to indicate an association relationship between the first driving area and at least one map element in the map, and the map element includes an area, a road or a lane; the first positioning quality indication information and the first association relationship indication information are added to the map middle.
  • the positioning quality of a certain driving area is obtained with reference to multiple positioning information of multiple location points, and at least one map element in the map associated with the driving area is determined according to the multiple positioning information of the multiple location points.
  • the map also provides positioning quality indication information and association relationship indication information for each driving area. Opening a driving area with poor positioning quality, or selectively setting a lower confidence level for the positioning information with poor positioning quality, improves the travel safety rate of the vehicle.
  • the driving area may be an area, a road or a lane in the map, or an area re-divided based on the area in the map, or a road re-divided based on the road in the map, or a lane re-divided based on the lane in the map .
  • the positioning quality obtained based on multiple position points in the driving area has high reliability and reference value.
  • association relationship between the first driving area and at least one map element in the map
  • the association relationship may be a mapping relationship or a non-mapping relationship.
  • the mapping relationship includes: the coverage of the first driving area is equal to the coverage of a map element in the map, that is, the driving area corresponding to the positioning quality indication information is a map element in the map, such as a road or a lane; or, The coverage of the first driving area is equal to the coverage of multiple map elements in the map, that is, the driving area corresponding to the positioning quality indication information is the entirety of the multiple map elements in the map, for example, the geographic range covered by multiple roads, Or the geographic area covered by multiple lanes, or the geographic area covered by multiple roads and multiple lanes together.
  • the non-mapping relationship includes: the boundary of the first driving area is not completely formed by the boundary of the map element in the map, and it is shown that the coverage of the first driving area is formed by a partial area of at least one map element in the map, for example, the first driving area
  • the coverage area is the eastern half of road 1 and the western half of road 2 in the map.
  • the association relationship indicates that the first driving area involves road 1 and road 2.
  • the so-called first association relationship indication information indicates that The association relationship between the first driving area and at least one map element in the map only indicates that the first driving area relates to the at least one map element in the map, rather than the first driving area being determined by the at least one map element in the map. Consists of a map element.
  • the first positioning quality indication information includes an error standard deviation of the multiple positioning information relative to the reference true value, the ratio of the fixed solution in the multiple positioning information, and the positioning accuracy in the multiple positioning information satisfying the The required ratio of positioning information, the average number of observable satellites of the first plurality of position points, or the average DOP value of the multiple positioning information.
  • the first positioning quality indication information counts the positioning quality of the driving area based on multiple indicators (for example, the average precision factor DOP value, the ratio of the fixed solution, the error standard deviation of the positioning information, etc.), which improves the estimated driving area.
  • multiple indicators for example, the average precision factor DOP value, the ratio of the fixed solution, the error standard deviation of the positioning information, etc.
  • the first association relationship indication information is an identifier of at least one map element.
  • the above implementation manner is implemented, and the area, road or lane in the existing map is used as the first driving area indicated by the positioning quality indication information, so that the corresponding map element of each map element in the map can be obtained directly and quickly based on the positioning quality indication information. positioning quality.
  • the first association relationship indication information includes an identifier of the first driving area and an identifier of at least one map element.
  • the method further includes: generating low-quality positioning area indication information according to the first plurality of positioning quality reference information, where the low-quality positioning area indication information is used to indicate the first driving area in the first driving area.
  • map element the first map element is one of at least one map element, the first map element is an area, a road or a lane, and there is at least one location point in the first map element whose positioning quality is lower than a threshold; Location area indications are added to the map.
  • the method further includes: obtaining first positioning information of a first position point and first positioning quality reference information of the first position point, where the first position point is not within the first driving area;
  • the second positioning quality indication information is generated according to the first positioning quality reference information, and the second positioning quality indication information is used to indicate the positioning quality in the second driving area;
  • the second association relationship indication information is generated according to the first positioning information, and the second association relationship
  • the indication information is used to indicate an association relationship between the second driving area and at least one map element in the map; the second positioning quality indication information and the second association relationship indication information are added to the map.
  • the positioning information and positioning quality reference of the new position point can be used.
  • the information generates second positioning quality indication information indicating the positioning quality of the second driving area and second association relationship indication information indicating the mapping relationship between the second driving area and the map elements in the map, which enriches the content of the map and makes the map provide.
  • the positioning quality indication information and the association relationship indication information are more complete and detailed.
  • the method further includes: obtaining a second plurality of positioning quality reference information, where the second plurality of positioning quality reference information includes updated values of the first plurality of positioning quality reference information, or a second plurality of positioning quality reference information Multiple positioning quality reference information of multiple position points, the second multiple position points are located in the first driving area; third positioning quality indication information is generated according to the first multiple positioning quality reference information and the second multiple positioning quality reference information ; Use the third positioning quality indication information to update the first positioning quality indication information in the map.
  • the second plurality of positioning quality reference information includes updated values of the first plurality of positioning quality reference information
  • the plurality of positioning quality reference information of the second plurality of location points may be any of the following: (1) the second The multiple pieces of positioning quality reference information are updated values of the first multiple pieces of positioning quality reference information; (2) the second multiple pieces of positioning quality reference information are multiple pieces of positioning quality reference information about the second multiple location points, and the second multiple pieces of location quality reference information are multiple pieces of positioning quality reference information about the second multiple location points.
  • the point is located in the first driving area; (3) the second plurality of positioning quality reference information includes the updated value of the first plurality of positioning quality reference information and the plurality of positioning quality reference information of the second plurality of position points.
  • the generated first positioning quality indication information may no longer be accurate after a period of time.
  • a new set of positioning quality reference information that is, the second plurality of positioning quality reference information, can also be obtained, and the first positioning indication information in the map is updated in combination with the new set of positioning quality reference information, thereby improving the map's ability to reflect the surrounding environment.
  • the applicability of environmental changes improves the reference value of the map.
  • the positioning quality in the first driving area is a statistical value obtained according to the first plurality of positioning quality reference information.
  • the positioning quality reference information includes an error of each positioning information relative to the reference true value, whether each positioning information is a fixed solution, the positioning accuracy of each positioning information, the location of each position point The number of observable satellites or the DOP value of the precision factor for each positioning information.
  • the precision factor DOP value is used to measure the amount of error caused by the geometric position of the satellite relative to the observer (for example, the data collection vehicle that collects the location point).
  • the positioning information is a fixed solution means that the corresponding ambiguity when the positioning information is calculated based on the carrier phase is Integer.
  • an embodiment of the present application provides a method for using a map.
  • the method includes: receiving positioning quality indication information and association relationship indication information in a map, where the positioning quality indication information is used to indicate the positioning quality in the first driving area,
  • the association relationship indication information is used to indicate the association relationship between the first driving area and at least one map element in the map, and the map elements include areas, roads or lanes; route planning and driving decisions are made according to the positioning quality indication information and the association relationship indication information or vehicle control.
  • a map including positioning quality indication information and association relationship indication information is provided, so that the terminal can avoid driving areas with poor positioning quality in time based on the map, so as to avoid driving areas with better positioning quality (for example, If you drive within the road, lane, etc.), you can obtain accurate location information, which is beneficial to improve the accuracy of route planning, driving decision-making, and travel safety.
  • the positioning quality indication information includes the error standard deviation of the positioning value relative to the reference true value, the ratio of the fixed solution of the positioning value, the ratio of the positioning value whose positioning accuracy meets the requirements, and the average observable satellite particles. Number or average precision factor DOP value.
  • the association relationship indication information is an identifier of at least one map element.
  • the association relationship indication information includes an identifier of the first driving area and an identifier of at least one map element.
  • the method further includes: receiving low-quality positioning area indication information, where the low-quality positioning area indication information is used to indicate a first map element in the first driving area, and the first map element is at least A map element in a map element, the first map element is an area, a road or a lane, and there is at least one location point in the first map element whose positioning quality is lower than a threshold; path planning and driving are carried out according to the low-quality positioning area indication information decision or vehicle control.
  • map users can quickly know map elements with poor positioning quality in the map according to the low-quality positioning area indication information, so that they can autonomously avoid the poor positioning quality in the map in the process of making driving decisions, path planning, etc. It is beneficial to improve the accuracy of path planning, driving decision-making and other operations.
  • the positioning quality in the first driving area is a statistical value obtained according to multiple positioning quality reference information of multiple positioning points in the first driving area.
  • an embodiment of the present application provides an apparatus for generating a map
  • the apparatus includes: an obtaining unit configured to obtain a plurality of positioning information of the first plurality of position points and the first plurality of positions of the first plurality of position points quality reference information; a statistical unit for generating first positioning quality indication information according to the first plurality of positioning quality reference information, where the first positioning quality indication information is used to indicate the positioning quality in the first driving area; an association unit for generating the first positioning quality indication information according to the first plurality of positioning quality reference information A plurality of positioning information generates first association relationship indication information, and the first association relationship indication information is used to indicate an association relationship between the first driving area and at least one map element in the map, and the map element includes an area, a road or a lane; the processing unit, It is used to add the first positioning quality indication information and the first association relationship indication information into the map.
  • the map is generated by a server, and the map generating apparatus may be a map server, or may be a component or a chip in the map server.
  • the map may also be generated by the roadside equipment, vehicle or mobile terminal, and the map generating apparatus may also be the roadside equipment, vehicle or mobile terminal, or a component or chip of the roadside equipment, vehicle or mobile terminal.
  • the first positioning quality indication information includes an error standard deviation of the multiple positioning information relative to the reference true value, a ratio of the fixed solution in the multiple positioning information, and the positioning accuracy in the multiple positioning information satisfies The required ratio of positioning information, the average number of observable satellites of the first plurality of position points, or the average DOP value of the multiple positioning information.
  • the first association relationship indication information is an identifier of at least one map element.
  • the first association relationship indication information includes an identifier of the first driving area and an identifier of at least one map element.
  • the statistics unit is further configured to generate low-quality positioning area indication information according to the first plurality of positioning quality reference information, and the low-quality positioning area indication information is used to indicate the first driving area in the first driving area.
  • a map element the first map element is one of at least one map element, the first map element is an area, a road or a lane, and there is at least one location point in the first map element whose positioning quality is lower than a threshold; processing unit , also used to add low-quality location area indications to the map.
  • the obtaining unit is further configured to obtain first positioning information of the first position point and first positioning quality reference information of the first position point, and the first position point is not in the first driving area
  • the statistical unit is also used to generate second positioning quality indication information according to the first positioning quality reference information, and the second positioning quality indication information is used to indicate the positioning quality in the second driving area
  • the association unit is also used for according to the first positioning quality.
  • information to generate second association relationship indication information the second association relationship indication information is used to indicate the association relationship between the second driving area and at least one map element in the map
  • the processing unit is further configured to combine the second positioning quality indication information with the The second association relationship indication information is added to the map.
  • the obtaining unit is further configured to obtain a second plurality of positioning quality reference information, where the second plurality of positioning quality reference information includes updated values of the first plurality of positioning quality reference information, or the first plurality of positioning quality reference information.
  • a plurality of positioning quality reference information of two or more position points, the second plurality of position points are located in the first driving area;
  • the statistical unit is further configured to calculate the positioning quality reference information according to the first plurality of positioning quality reference information and the second plurality of positioning quality reference information generating third positioning quality indication information;
  • the processing unit is further configured to use the third positioning quality indication information to update the first positioning quality indication information in the map.
  • an embodiment of the present application provides a map using device, the device includes: a receiving unit configured to receive positioning quality indication information and association relationship indication information in a map, where the positioning quality indication information is used to indicate a first driving area The positioning quality in the map, the association relationship indication information is used to indicate the association relationship between the first driving area and at least one map element in the map, and the map element includes an area, a road or a lane; the processing unit is used for indicating information and association according to the positioning quality The relationship indicates information for path planning, driving decisions, or vehicle control.
  • the map-using device may be a vehicle, a component that can be used in a vehicle (such as a navigation device or an automatic driving device in a vehicle), or a chip that can be used in a vehicle.
  • the map using device may be a portable terminal, such as a mobile phone, a portable computer or a navigator, a component that can be used in the portable terminal, or a chip that can be used in the portable terminal.
  • a portable terminal such as a mobile phone, a portable computer or a navigator, a component that can be used in the portable terminal, or a chip that can be used in the portable terminal.
  • the positioning quality indication information includes the error standard deviation of the positioning value relative to the reference true value, the ratio of the fixed solution of the positioning value, the ratio of the positioning value whose positioning accuracy meets the requirements, and the average observable satellite particles. Number or average precision factor DOP value.
  • the association relationship indication information is an identifier of at least one map element.
  • the association relationship indication information includes an identifier of the first driving area and an identifier of at least one map element.
  • the receiving unit is further configured to receive low-quality positioning area indication information, where the low-quality positioning area indication information is used to indicate a first map element in the first driving area, and the first map element is A map element in at least one map element, the first map element is an area, a road or a lane, and there is at least one location point in the first map element whose positioning quality is lower than a threshold; the processing unit is further configured to locate the area according to the low quality Indicates information for path planning, driving decisions, or vehicle control.
  • the positioning quality in the first driving area is a statistical value obtained according to multiple positioning quality reference information of multiple positioning points in the first driving area.
  • an embodiment of the present application provides a map, the map includes positioning quality indication information and association relationship indication information, the positioning quality indication information is used to indicate the positioning quality in the first driving area, and the association relationship indication information is used to indicate An association relationship between the first driving area and at least one map element in the map, where the map element includes an area, a road or a lane.
  • the above-mentioned positioning quality indication information and association relationship indication information may exist in the form of map layers in the map.
  • the positioning quality indication information in the above-mentioned map provides the positioning quality of the driving area with reference value and high reliability, and the association relationship indication information in the map indicates the driving area corresponding to the map element in the map, so that the above-mentioned map can be the driving area of the map.
  • the user provides more accurate a priori information on the positioning quality of map elements in the map.
  • the map further includes time information, where the time information is used to indicate the effective time of the positioning quality in the first driving area.
  • the introduction of time information fully considers the impact of the surrounding environment (for example, vegetation changes with seasons and climate changes) on the positioning quality, and limits the effective time of the positioning quality in the driving area based on the time information.
  • the reliability and reference value of the positioning quality in the driving area is the reliability and reference value of the positioning quality in the driving area.
  • the positioning quality indication information includes the error standard deviation of the positioning value relative to the reference true value, the ratio of the fixed solution of the positioning value, the ratio of the positioning value whose positioning accuracy meets the requirements, and the average observable satellite particles. Number or average precision factor DOP value.
  • the positioning quality in the first driving area is a statistical value obtained according to multiple positioning quality reference information of multiple positioning points in the first driving area.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a map, the map includes positioning quality indication information and association relationship indication information, and the positioning quality indication information is used to indicate the first The positioning quality in a driving area, and the relationship indication information is used to indicate the relationship between the first driving area and at least one map element in the map, and the map element includes an area, a road or a lane.
  • the above-mentioned positioning quality indication information and association relationship indication information may exist in the form of map layers in the map.
  • the map further includes time information, where the time information is used to indicate the effective time of the positioning quality in the first driving area.
  • the positioning quality indication information includes the error standard deviation of the positioning value relative to the reference true value, the ratio of the fixed solution of the positioning value, the ratio of the positioning value whose positioning accuracy meets the requirements, and the average observable satellite particles. Number or average precision factor DOP value.
  • the positioning quality in the first driving area is a statistical value obtained according to multiple positioning quality reference information of multiple positioning points in the first driving area.
  • an embodiment of the present application provides a computer program product, the computer program product includes a map, the map includes positioning quality indication information and association relationship indication information, and the positioning quality indication information is used to indicate the positioning in the first driving area
  • the quality and association relationship indication information is used to indicate the association relationship between the first driving area and at least one map element in the map, where the map element includes an area, a road or a lane.
  • the above-mentioned positioning quality indication information and association relationship indication information may exist in the form of map layers in the map.
  • the map further includes time information, where the time information is used to indicate the effective time of the positioning quality in the first driving area.
  • the positioning quality indication information includes the error standard deviation of the positioning value relative to the reference true value, the ratio of the fixed solution of the positioning value, the ratio of the positioning value whose positioning accuracy meets the requirements, and the average observable satellite particles. Number or average precision factor DOP value.
  • the positioning quality in the first driving area is a statistical value obtained according to multiple positioning quality reference information of multiple positioning points in the first driving area.
  • an embodiment of the present application provides a method for using a map, the method comprising: receiving a map, where the map includes positioning quality indication information and association relationship indication information, and the positioning quality indication information is used to indicate a location within the first driving area.
  • the positioning quality, the association relationship indication information is used to indicate the association relationship between the first driving area and at least one map element in the map, where the map element includes an area, a road or a lane; the map is stored, or the map is displayed on the display device.
  • the received map is stored so that it can be quickly called at any time later, and the map is displayed on the display device, so that the user can intuitively and clearly understand the positioning quality of each map element in the map.
  • navigation route planning, driving decision or vehicle control is performed according to the positioning quality indication information and the association relationship indication information.
  • the positioning quality of each driving area in the map can be quickly known, so that the driving area with poor positioning quality can be avoided in time during driving, and the driving area with better positioning quality can be avoided.
  • Regional driving is beneficial to improve the accuracy of navigation path planning, driving decision-making or vehicle control.
  • the positioning quality indication information includes the error standard deviation of the positioning value relative to the reference true value, the ratio of the fixed solution of the positioning value, the ratio of the positioning value whose positioning accuracy meets the requirements, and the average observable satellite particles. Number or average precision factor DOP value.
  • an embodiment of the present application provides a map using device, the device includes: a receiving unit for receiving a map, the map includes positioning quality indication information and association relationship indication information, and the positioning quality indication information is used to indicate the first The positioning quality in a driving area, the association relationship indication information is used to indicate the association relationship between the first driving area and at least one map element in the map, and the map element includes an area, a road or a lane; the storage unit is used to store the map, Alternatively, a display unit for displaying a map.
  • the map-using device may be a vehicle, a component that can be used in a vehicle (such as a navigation device or an automatic driving device in a vehicle), or a chip that can be used in a vehicle.
  • the map using device may be a portable terminal, such as a mobile phone, a portable computer or a navigator, a component that can be used in the portable terminal, or a chip that can be used in the portable terminal.
  • the apparatus further includes a processing unit configured to perform navigation route planning, driving decision or vehicle control according to the positioning quality indication information and the association relationship indication information.
  • the positioning quality indication information includes the error standard deviation of the positioning value relative to the reference true value, the ratio of the fixed solution of the positioning value, the ratio of the positioning value whose positioning accuracy meets the requirements, and the average observable satellite particles. Number or average precision factor DOP value.
  • an embodiment of the present application provides a map generation device, the device includes a processor and a memory, the processor and the memory are connected or coupled together through a bus; wherein, the memory is used to store program instructions; the processor calls The program instructions in the memory are used to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the map is generated by a server, and the map generating apparatus may be a map server, or may be a component or a chip in the map server.
  • the map may also be generated by the roadside equipment, vehicle or mobile terminal, and the map generating apparatus may also be the roadside equipment, vehicle or mobile terminal, or a component or chip of the roadside equipment, vehicle or mobile terminal.
  • an embodiment of the present application provides a map using device, the device includes a processor and a memory, the processor and the memory are connected or coupled together through a bus; wherein, the memory is used to store program instructions; the processor Program instructions in the memory are invoked to perform the method of the second aspect or any possible implementation of the second aspect.
  • the map-using device may be a vehicle, a component that can be used in a vehicle (such as a navigation device or an automatic driving device in a vehicle), or a chip that can be used in a vehicle.
  • the map using device may be a portable terminal, such as a mobile phone, a portable computer or a navigator, a component that can be used in the portable terminal, or a chip that can be used in the portable terminal.
  • an embodiment of the present application provides a map using device, the device includes a processor and a memory, the processor and the memory are connected or coupled together through a bus; wherein, the memory is used to store program instructions; the processor The program instructions in the memory are invoked to execute the method of the eighth aspect or any possible implementation manner of the eighth aspect.
  • the map-using device may be a vehicle, a component that can be used in a vehicle (such as a navigation device or an automatic driving device in a vehicle), or a chip that can be used in a vehicle.
  • the map using device may be a portable terminal, such as a mobile phone, a portable computer or a navigator, a component that can be used in the portable terminal, or a chip that can be used in the portable terminal.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable medium stores program code for execution by an apparatus, where the program code includes a program code for executing the first aspect or the first aspect Instructions for the method in any of the possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable medium stores program code for execution by an apparatus, where the program code includes a program code for executing the second aspect or the second aspect Instructions for the method in any of the possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable medium stores program code for execution by an apparatus, where the program code includes a program code for executing the eighth aspect or the eighth aspect Instructions for the method in any of the possible implementations.
  • an embodiment of the present application provides a computer program product that, when the computer program product is executed by a processor, implements the first aspect or the method in any possible implementation manner of the first aspect.
  • the computer program product for example, can be a software installation package, which can be downloaded and executed on a processor if the method provided by any one of the possible designs of the first aspect needs to be used.
  • an embodiment of the present application provides a computer program product that, when the computer program product is executed by a processor, implements the second aspect or the method in any possible implementation manner of the second aspect.
  • the computer program product for example, can be a software installation package, which can be downloaded and executed on a processor if the method provided by any one of the possible designs of the second aspect needs to be used.
  • an embodiment of the present application provides a computer program product, which, when the computer program product is executed by a processor, implements the above eighteenth aspect or the method in any possible implementation manner of the eighth aspect.
  • the computer program product for example, can be a software installation package, which can be downloaded and executed on the processor if the method provided by any of the possible designs of the eighth aspect needs to be used.
  • an embodiment of the present application provides a vehicle, the vehicle includes the map using device as described in the fourth, ninth, eleventh, or twelfth aspect, or includes the fourth, ninth, eleventh, or twelfth aspect as described above A map using apparatus of any possible implementation of the aspect.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a region of a high-precision map
  • Fig. 3 is a road schematic diagram of a high-precision map
  • Fig. 4 is a road-lane schematic diagram of a high-precision map
  • FIG. 5 is a flowchart of a method for updating positioning quality indication information provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for generating a map provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an application scenario provided by this embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a map generation device provided by this embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a map using device provided in this embodiment of the present application.
  • FIG. 11 is a schematic functional structure diagram of a map generating apparatus provided in this embodiment of the present application.
  • FIG. 12 is a schematic functional structure diagram of a map using device provided in this embodiment of the present application.
  • High-precision maps are auxiliary maps for autonomous driving.
  • the high-precision map shows areas, roads and lanes, where a lane can be an upstream lane or a downstream lane, each lane has a unique lane ID, each road includes multiple lanes, each road has a unique road ID, and each An area consists of multiple sections of roads, and each area has a unique area ID.
  • the high-precision map also includes intersections. The intersection can be an intersection, and there are also roads and lanes in the intersection.
  • the high-precision map also shows the connection between roads and the connection between lanes and lanes. It should be noted that each area in the high-precision map has a corresponding area range.
  • the location coordinates (for example, latitude and longitude coordinates) of the four corners of the area can determine the area range of the area; each road has a corresponding road Range, for example, the start point coordinates and end point coordinates of the road can determine the road range of the road, and the start point coordinates and end point coordinates of the road can also determine the road centerline of the road; each lane has a corresponding lane range, for example, The starting coordinates of the lane and the ending coordinates of the lane can determine the lane range of the lane, and the starting coordinates and ending coordinates of the lane can also determine the lane centerline of the lane; each intersection has a corresponding intersection range.
  • the location coordinates (eg, latitude and longitude coordinates) of each corner point determine the intersection range of the intersection.
  • the high-precision map also displays parameters such as the slope, curvature, and heading of the road.
  • the generation of high-precision maps depends on the positioning data of the location points. Since the quality of the collected positioning data is easily affected by the surrounding environment (for example, tall buildings and trees, etc.), satellite occlusion, etc., for example, the more tall buildings and trees beside the road, the more The more serious the occlusion of the satellite signal, the greater the deviation of the positioning data collected on the road, and the lower the quality of the positioning data. Therefore, the quality of the positioning data obtained on different map elements (eg, roads, lanes, etc.) in HD maps varies. If the positioning data of low quality in the high-precision map is used in the process of automatic driving, the inaccurate positioning will easily lead to deviation of the navigation route, and even affect the driving safety of the vehicle.
  • the surrounding environment for example, tall buildings and trees, etc.
  • satellite occlusion, etc. for example, the more tall buildings and trees beside the road, the more The more serious the occlusion of the satellite signal, the greater the deviation of the positioning data collected on the road, and the lower the quality of
  • the embodiment of the present application proposes a map generation method, which can provide a priori information with strong reference and high reliability for the measurement of the positioning quality of each driving area in the map, so that vehicles or portable terminals using the map can use the map.
  • the positioning information in the high-precision map can be selectively used, for example, the driving area with better positioning quality is independently selected for driving and the driving area with poor positioning quality is avoided, thereby improving the safety of automatic driving.
  • Fig. 1 exemplarily shows a system architecture diagram.
  • the system is used to generate positioning quality indication information and association relationship indication information, or a map including positioning quality indication information and association relationship indication information.
  • the positioning quality indication information is used to indicate the positioning quality of the driving area in the map
  • the association relationship indication information is used to indicate the mapping relationship between the driving area in the map and the area, road or lane in the reference map (eg, high-precision map).
  • the system includes data acquisition equipment, mapping equipment and terminals, wherein the data acquisition equipment and the mapping equipment can be connected wirelessly or wiredly, and the mapping equipment and the terminal can be connected wirelessly.
  • the data acquisition equipment is generally installed on the data acquisition vehicle, and the data acquisition equipment is used to collect the raw data required to generate the positioning quality indication information.
  • the data acquisition device can be an RTK device, and the RTK device includes any one of GPS and GNSS, and the positioning information of the track point is obtained based on the RTK measurement method.
  • RTK equipment can be used to record the location information and quality information of each location point collected when the data collection vehicle where it is located is driving in each lane.
  • the mapping device is used for generating positioning quality indication information and association relationship indication information according to a plurality of position information of a plurality of position points and a plurality of quality information of the plurality of position points, and adding the positioning quality indication information and the association relationship indication information to the reference map (for example, high-definition maps).
  • the mapping device may be a device with computing functions, such as a computer, a server, a multi-access edge computing (Multi-Acess Edge Computing, MEC), and the like.
  • the terminal can be a vehicle, for example, an ordinary vehicle or an autonomous vehicle.
  • the vehicle can generally refer to a car, a car, a tourist bus, a bicycle, a tricycle, an electric vehicle, a motorcycle, a truck, etc., and a vehicle can also be an electric vehicle or a hybrid vehicle. , extended-range electric vehicles, plug-in hybrid vehicles, etc.
  • the terminal may also be a roadside unit (Road Side Unit, RSU), an on-board unit (OBU), a portable mobile device (for example, a mobile phone, a tablet, etc.), or a component or chip of a portable mobile device
  • RSU roadside unit
  • OBU on-board unit
  • portable mobile device for example, a mobile phone, a tablet, etc.
  • Other sensors or devices that can communicate with the mapping device are not specifically limited in the embodiments of the present application.
  • FIG. 1 is only an exemplary architecture diagram, but does not limit the number of network elements included in the system shown in FIG. 1 .
  • FIG. 1 may also include other functional entities.
  • the methods provided in the embodiments of the present application may be applied to the communication system shown in FIG. 1 .
  • the methods provided in the embodiments of the present application may also be applied to other communication systems, which are not limited in the embodiments of the present application.
  • the above reference map may be not only a high-precision map, but also other types of maps including areas, roads or lanes, which are not specifically limited in this application.
  • the reference map in the following may take the high-precision map as an example, but the reference map is not limited to only the high-precision map.
  • Each location point has corresponding location information and quality information, wherein the location information of the location point (also called positioning information) is used to indicate the location of the location point in the high-precision map, and the location information of the location point includes longitude coordinates, Latitude coordinates and elevation coordinates; the quality information of the location point (also referred to as positioning quality reference information) includes the number of satellites that can be observed at the location point, the Dilution of Precision (DOP) value of the location point, and the location of the location point. Whether the information is a fixed solution, one or more of the offsets of the position point relative to the true value in the east, north and vertical directions, etc.
  • the quality information of the position point can be used to measure the position point in the high-precision map localization quality.
  • the high-precision map includes at least one map element, and the map element is an area, road or lane in the high-precision map, and each map element has a corresponding ID identification.
  • the area is represented by the area ID
  • the road is represented by the road ID.
  • the area ID is used to distinguish different areas in the high-precision map, and one area ID corresponds to at least one road ID
  • the road ID is used to distinguish different roads in the high-precision map, and a road ID and At least one lane ID corresponds
  • the lane ID is used to distinguish different lanes in the high-precision map.
  • the positioning quality indication information includes at least one driving area, and the driving area is an area, a road or a lane in the positioning quality indication information. And there is an association relationship between the driving area in the positioning quality indication information and the map elements in the high-precision map. For details, reference may be made to the relevant description of the content representation in the following positioning quality indication information, which will not be repeated here.
  • any driving area A eg, area, road or lane
  • one or more of the following indicators are set in the positioning quality indication information to indicate the positioning of the driving area Quality
  • the following five indicators are specifically described:
  • the average positioning accuracy is used to represent the error standard deviation of multiple position points in the driving area relative to the reference ground value, specifically, the standard of the positioning error of multiple position points relative to the reference ground value in both horizontal and vertical directions Difference.
  • the average positioning accuracy can be used to measure the positioning quality of the terminal in the driving area. Specifically, the smaller the average positioning accuracy, that is, the smaller the average positioning error, the more accurate the positioning of the terminal in the driving area.
  • the average positioning accuracy can be expressed as ( ⁇ H , ⁇ V ), where ⁇ H represents the horizontal average positioning accuracy, and ⁇ V represents the vertical average positioning accuracy.
  • the reference truth value corresponding to each position point may be provided by an integrated navigation device or an RTK monitoring device, which is not specifically limited in this embodiment of the present application.
  • M represents the number of location points corresponding to the driving area A in the positioning quality indication information
  • ⁇ E represents the average offset of the location points corresponding to the driving area A relative to the reference true value in the east direction
  • ⁇ N represents the corresponding location of the driving area A.
  • the average offset of the position point relative to the reference truth value in the north direction e i represents the offset of the ith position point corresponding to the driving area A in the east direction to the reference truth value
  • ni the driving area A corresponding to the offset
  • ui represents the offset of the i-th position point corresponding to the driving area A in the vertical direction to the reference truth value
  • ⁇ V represents the travel area A corresponding to the offset
  • the above formula (1) indicates an example, and the expression formula of the average positioning accuracy may also be in other forms.
  • the parameter M in the above formula (1) does not need to be
  • the root sign processing is not specifically limited in this embodiment of the present application.
  • the average number of satellites is used to represent the average number of observable satellites at multiple locations in the driving area, and the average number of satellites can be used to measure the positioning quality of the terminal in the driving area. Specifically, the larger the average number of satellites, the more The more accurate the positioning of the terminal on the driving area.
  • Avg satnum represents the average number of satellites in the driving area A
  • M represents the number of location points corresponding to the driving area A in the RTK information layer
  • si represents the number of observable satellites at the i-th location point corresponding to the driving area A.
  • the observable satellites corresponding to the location points can be Global Positioning System (GPS), Global Navigation Satellite System (GNSS), BeiDou Navigation Satellite System (BDS) , Russia's GLONASS system, the European Galileo satellite positioning GALILEO system at least one system of satellites.
  • GPS Global Positioning System
  • GNSS Global Navigation Satellite System
  • BDS BeiDou Navigation Satellite System
  • GLONASS Russia's GLONASS system
  • the European Galileo satellite positioning GALILEO system at least one system of satellites.
  • the average precision factor DOP value represents the average value of the DOP values of multiple location points in the driving area.
  • the average DOP value can be used to measure the positioning quality of the driving area. Specifically, the smaller the average DOP value is, the more accurate the positioning of the terminal in the driving area is.
  • Avg dop represents the average DOP value of the driving area A
  • M represents the number of location points corresponding to the driving area A in the RTK information layer
  • dop i represents the DOP value of the ith location point corresponding to the driving area A.
  • the DOP value can also be called the strength of the precision value, the precision dilution factor, etc. Since the quality of the measurement results is related to the geometry between the satellite being measured and the signal receiving equipment, the DOP value is used to measure The amount of error caused by the geometric position of the satellite relative to the observer (for example, the data collection vehicle that collects the location point). Therefore, the smaller the DOP value, the better the distribution of satellites in the sky, and the better the positioning of the terminal on the driving area. precise.
  • the DOP value may be a Position Dilution of Precision (PDOP), which represents the root value of the squared error of the latitude, longitude, and elevation of the position point.
  • PDOP Position Dilution of Precision
  • the fixed ratio represents the ratio of fixed solutions in the bit information of a plurality of position points in the driving area, that is, the ratio of the number of fixed solutions in the driving area to the total number of position points in the driving area.
  • the fixation rate can be used to measure the positioning quality of the driving area. Specifically, the higher the fixation rate, the more accurate the positioning of the terminal in the driving area. It should be noted that, when the position point is a fixed solution, the corresponding ambiguity when the position point is calculated based on the carrier phase is an integer, and it is known whether the position point is a fixed solution.
  • ⁇ fix represents the fixed rate of the driving area A
  • M represents the number of position points corresponding to the driving area A in the RTK information layer
  • Pfix represents the number of fixed solutions corresponding to the driving area A.
  • the accuracy coverage rate represents the ratio of the position points whose positioning accuracy meets the preset accuracy requirement among the multiple position points in the driving area.
  • the accuracy coverage rate can also be used to measure the positioning quality of the driving area. Specifically, the higher the accuracy coverage rate, the more accurate the positioning of the terminal on the driving area.
  • represents the accuracy coverage of the driving area A
  • M represents the number of location points corresponding to the driving area A
  • N represents the number of location points in the driving area A whose positioning accuracy meets the preset accuracy requirements.
  • the preset accuracy requirement is [ ⁇ T h , ⁇ T v ], where T h represents the threshold value of the horizontal positioning error, and T v represents the threshold value of the vertical positioning error.
  • T h represents the threshold value of the horizontal positioning error
  • T v represents the threshold value of the vertical positioning error.
  • the process of obtaining the positioning quality of the lane in the positioning quality indication information may be described by taking the driving area A as the lane id1 in the above-mentioned positioning quality indication information as an example.
  • the lane id1 in the positioning quality indication information corresponds to the lane ID1 in the high-precision map (that is, one-to-one)
  • the number of position points corresponding to the lane ID1 is 20, of which 16 position points are fixed solutions, and there are The 14 position points meet the above preset accuracy requirements
  • the position point corresponding to the lane id1 in the positioning quality indication information is the trajectory point corresponding to the lane ID1 in the high-precision map.
  • the average positioning accuracy of the lane id1 is Based on the above formula (2), it can be known that the average number of satellites in lane id1 is Based on the above formula (3), it can be known that the average DOP value of lane id1 is Based on the above formula (4), it can be known that the fixed rate of lane id1 is Based on the above formula (5), it can be known that the accuracy coverage of lane id1 is Similarly, according to the above formulas (1)-(5), the average positioning accuracy, average number of satellites, average DOP value, fixed rate and accuracy of any road id or any area id in the first layer can be obtained respectively. Coverage, for the sake of brevity of the specification, will not be repeated here.
  • the specific content of the positioning quality indication information is described in detail below.
  • the content representation of the positioning quality indication information can be divided into the following three parts:
  • the positioning quality indication information is used to indicate the positioning quality of the driving area, and the driving area in the positioning quality indication information may have an association relationship with at least one map element in the high-precision map, and the association relationship is carried in the generated In the association relationship indication information.
  • Map elements are areas, roads or lanes in HD maps.
  • the map elements in the high-precision map have corresponding identifications.
  • the area in the high-precision map can be represented by the area ID
  • the road in the high-precision map can be represented by the road ID
  • the lane in the high-precision map can be represented by the lane ID.
  • the identifier of the driving area may be the identifier of the map element corresponding to the driving area.
  • the identification of the driving area may also be newly established. For example, when the driving area is an area, it can be represented by an area id; when the driving area is a road, it can be represented by a road id; when the driving area is a lane, it can be represented by a lane id. express.
  • Part 1 Content Representation at the Regional Level
  • an area id is established in the positioning quality indication information, and the area indicated by the area id is a driving area in the positioning quality indication information.
  • the area id may be the same as the area ID in the high-precision map.
  • the area indicated by the area id is the area indicated by the area ID in the high-precision map corresponding to the area id.
  • the positioning quality indication information also includes the positioning quality information of the area id, wherein the fixed quality information of the area id includes one or more of the average positioning accuracy, the average number of satellites, the average DOP value, the fixed rate and the accuracy coverage rate.
  • the positioning quality information of the area id is a statistical value obtained according to the quality information of multiple location points in the area id.
  • Figure 2 is a schematic diagram of area division in a high-precision map. It can be seen that the high-precision map is divided into four areas by a cross, and the four areas are numbered in a clockwise manner.
  • the area IDs of each area are 1-00, 1-01, 1-10, and 1-11, respectively.
  • the track point corresponding to each area ID can be determined according to the location information of the location point and the area range of each area in the high-precision map. It should be noted that the area range of each area in the high-precision map can be determined according to the coordinates of multiple corner points of the area.
  • the positioning quality indication information which are 1-00, 1-01, 1-10 and 1-11 respectively.
  • the location point in the area 1-00 in the location quality indication information is the location point in the area 1-00 in FIG. 2
  • the quality information set of the corresponding multiple location points The above formulas (1)-(5) can respectively obtain the average positioning accuracy, the average number of satellites, the average DOP value, the fixed rate and the precision corresponding to the area 1-00 in the positioning quality indication information. coverage. Therefore, the area-level information storage structure in the positioning quality indication information corresponding to FIG.
  • Table 2 can be expressed as shown in Table 1.
  • the area id for example, 1-00, 1-01, 1-10 and 1-11
  • the average positioning accuracy for example, 1-00, 1-01, 1-10 and 1-11
  • the average number of satellites for example, 1-00, 1-01, 1-10 and 1-11
  • the average DOP value for example, fixed rate and precision coverage rate corresponding to the area id.
  • the area IDs shown in Table 1 are the same as the area IDs in the high-precision map.
  • the area id established in the RTK information layer is different from the area ID in the high-precision map.
  • the difference between the area id and the area ID in the high-precision map can be added in Table 1.
  • the area id "1" corresponds to the area ID "1-00" in the high-precision map, which means that the area id "1" in the positioning quality indication information indicates the area 1-00 in the high-precision map.
  • Table 1 may also store the number of the location point corresponding to each area id, the location information of the track point (for example, longitude and latitude coordinates), and the quality information of the location point (for example, the number of satellites) , DOP value, etc.), which are not specifically limited in the embodiments of the present application.
  • a road id is established in the positioning quality indication information, and the road indicated by the road id may be called a driving area in the positioning quality indication information.
  • the road ID in the positioning quality indication information may be associated with the road ID in the high-precision map.
  • the positioning quality indication information also includes the positioning quality information of the road id, wherein the fixed quality information of the road id includes one or more of the average positioning accuracy, the average number of satellites, the average DOP value, the fixed rate and the precision coverage rate.
  • the positioning quality information of the road id is a statistical value obtained from the quality information of a plurality of position points within the road id.
  • the road ID in the positioning quality indication information corresponds to multiple road IDs in the high-precision map
  • the lengths vary. Under the condition that the sampling frequency of the location points and the speed of the data collection vehicle are constant, the shorter the length of the road, the less the number of location points collected on the road. If the location points corresponding to a certain road are few, the positioning quality of the road cannot be well evaluated based on the few location points, and the road ID in the positioning quality indication information corresponds to multiple road IDs in the high-precision map. It is equivalent to indicating multiple roads in the high-precision map, which can effectively increase the number of location points participating in the evaluation of the positioning quality of the road id.
  • the positioning quality information of the road id may be the positioning quality information of any one of the multiple road IDs corresponding to the road id.
  • Figure 3 is a display diagram of a road in a certain area in a high-precision map.
  • Figure 3 shows 9 sections of roads, and the lengths of each section of the road are different, and the 9 sections of roads form two road connection lines , wherein the road connection line 1 is composed of road 1, road 2, road 3 and road 4.
  • road 1 is connected with road 2
  • road 2 is connected with road 3
  • road 3 is connected with road 4
  • road connection line 2 is connected by Road 5, Road 6, Road 7, Road 8 and Road 9 are composed, specifically, Road 5 is connected with Road 6, Road 6 is connected with Road 7, Road 7 is connected with Road 8, Road 8 is connected with Road 9, Road 3 and Road 8 is located in the same intersection.
  • road ids are established, which are a1, a2, a3 and a4 respectively.
  • road a1 is used to indicate road 1 and road 2 in the high-precision map
  • road a2 is used to indicate the high-precision map
  • Road 3 and Road 4 Road a3 is used to indicate Road 5, Road 6 and Road 7 in the HD map
  • Road a4 is used to indicate Road 8 and Road 9 in the HD map.
  • the road ID corresponding to each location point can be determined according to the location information of each location point, and the location point corresponding to each road id is determined based on the mapping relationship between the road ID and the road id in the positioning quality indication information, then based on the above formula ( 1)-(5) and the quality information of the position point corresponding to each road id can obtain the positioning quality information corresponding to each road id respectively. Therefore, the specific content of the road level in the first layer corresponding to FIG. 3 can refer to Table 2.
  • Table 2 sets road ids (for example, a1, a2, a3 and a4), road ids and Correspondence of road IDs in the high-precision map (for example, a1 corresponds to road 1 and road 2 in the high-precision map), the average positioning accuracy corresponding to the road id, the average number of satellites, the average DOP value, the fixed rate and the accuracy coverage rate .
  • the location points corresponding to the road id may be stored in Table 2, and the number of location points corresponding to the road id is the sum of the number of location points corresponding to each road ID corresponding to the road id.
  • the correspondence between the road IDs in the positioning quality indication information and the road IDs in the high-precision map is many-to-one, that is, the multiple road IDs in the positioning quality indication information and the high-precision map The same road ID in the map corresponds.
  • both road a1 and road a2 in the positioning quality indication information correspond to road 2 in the HD map
  • road a1 includes all of road 2
  • road a2 includes all of road 2
  • the road id in the positioning quality indication information may also be the road ID in the high-precision map, or in other words, the road id in the positioning quality indication information and the road ID in the high-precision map are a pair
  • a mapping relationship is not specifically limited in this embodiment of the present application.
  • the positioning quality indication information may also store the coordinates of the starting point and the coordinate of the ending point corresponding to the road id.
  • the starting point coordinate corresponding to the road id is the starting point coordinate of the road ID corresponding to the road id in the high-precision map
  • the end point coordinate corresponding to the road id is the high-precision map
  • the coordinates of the end point of the road ID corresponding to the road id For example, assuming that the road a1 in the positioning quality indication information corresponds to the road 1 in the high-precision map, the stored coordinates of the start point corresponding to the road a1 are the coordinates of the start point of the road 1 and the coordinates of the end point corresponding to the road a1 are the coordinates of the end point of the road 1.
  • the starting point coordinates corresponding to the road id are the starting point coordinates of the first road ID among the multiple road IDs
  • the end point coordinates corresponding to the road id are The coordinates of the end point of the last road ID among the plurality of road IDs.
  • road a1 corresponds to road 1 and road 2 in the high-precision map, wherein road 1 and road 2 are connected, and the vehicle passes through road 1 and road 2 in turn, then the stored coordinates of the starting point corresponding to road a1 are The coordinates of the starting point of the road 1 and the coordinates of the end point corresponding to the road a1 are the coordinates of the end point of the road 2 .
  • the road ID where the lowest quality position point in the high-precision map is located may also be marked in the positioning quality indication information, as a feature attribute in the positioning quality indication information, so that the terminal can easily determine the location quality from the positioning quality.
  • the road ID with poor positioning quality in the high-precision map is directly obtained from the instruction information, so as to effectively avoid the road indicated by the road ID, or avoid the road indicated by other road IDs related to the road ID. For example, when it is determined that the location points corresponding to a certain road ID include low-quality location points, a column of "low-quality road ID marking" can be added to Table 2 to mark low-quality road IDs.
  • the quality information of each position point is known, and the quality information of each position point includes the DOP value, the number of satellites, whether the position information of the position point is a fixed solution, the position point One or more of the position information of the position point, the offset of the position information of the position point relative to the reference ground value in the east direction, the north direction and the vertical direction, based on the position point relative to the reference ground value in the east direction, north direction and the offset in the vertical direction to calculate the positioning accuracy of the position point, and the calculation method can refer to the description of the positioning accuracy of the position point 1 in the description of the accuracy coverage above, which will not be repeated here.
  • the criterion for judging the position point as the lowest quality position point can be any of the following:
  • Criterion A Satisfy at least one of the DOP value greater than the preset threshold 1, the number of satellites less than the preset threshold 2, and the positioning accuracy of the location point greater than the preset threshold 3;
  • Criterion B The quality score of the location point is greater than the preset threshold 4, where the quality score of the location point is the weighted sum of the DOP value of the location point, the reciprocal of the number of satellites, and the location accuracy of the location point.
  • the location accuracy of the location point The calculation can refer to the above introduction.
  • the quality score of a location point can be expressed as Equation (6):
  • F i represents the quality score of the location point i
  • dop i represents the DOP value of the i-th location point
  • s i indicates the number of satellites at the position point i
  • ⁇ 1 , ⁇ 2 and ⁇ 3 respectively represent the weight of the DOP value of the position point i
  • the weight of the positioning accuracy of the position point i and the position point i The weights corresponding to the number of satellites, ⁇ 1 , ⁇ 2 and ⁇ 3 are preset based on human experience.
  • the method of marking the road 6 with a low-quality road ID may also be to set the value of the road 6 in the high-precision map to be non-null in the column of "low-quality road ID marking” in Table 2.
  • the embodiment of the present application does not specifically limit the marking method of the low-quality road ID in Table 2.
  • Table 2 may also store the number of the location point corresponding to each road ID in the high-precision map, the location information of the location point (for example, longitude and latitude coordinates), and the quality information of the location point (for example, , the number of satellites, the DOP value, etc.), which are not specifically limited in the embodiments of the present application.
  • a lane id is established in the positioning quality indication information, and the lane indicated by the lane id may be referred to as a driving area in the positioning quality indication information.
  • the lane ID in the positioning quality indication information may be associated with the lane ID in the high-precision map.
  • the positioning quality indication information also includes the positioning quality information of the lane id, wherein the fixed quality information of the lane id includes one or more of the average positioning accuracy, the average number of satellites, the average DOP value, the fixed rate and the accuracy coverage rate.
  • the positioning quality information of the lane id is a statistical value obtained according to the quality information of multiple position points within the lane id.
  • Figure 4 is a schematic diagram of a road-lane in a high-precision map.
  • Figure 4 shows four roads in the high-precision map, namely Road 1, Road 2, Road 3 and Road 4, wherein, Road 1 includes lane 11 and lane 12, road 2 includes lane 21 and lane 22, road 3 includes lane 31 and lane 32, and road 4 includes lane 41 and lane 42.
  • Road 1 includes lane 11 and lane 12
  • road 2 includes lane 21 and lane 22
  • road 3 includes lane 31 and lane 32
  • road 4 includes lane 41 and lane 42.
  • lane 11 is connected to lane 21
  • lane 12 is connected to lane 22
  • lane 21 is connected to lane 31
  • lane 22 is connected to lane 32
  • lane 31 is connected to lane 41
  • lane 32 is connected to lane 42.
  • 4 lane ids are established in the positioning quality indication information, which are l1, l2, l3 and l4 respectively.
  • lane l1 is used to indicate lane 11 and lane 21 in the high-precision map
  • lane l2 is used to indicate Lane 12 and lane 22 in the high-precision map
  • lane l3 is used to indicate lane 31 and lane 41 in the high-precision map
  • lane l4 is used to indicate lane 32 and lane 42 in the high-precision map.
  • the specific content of the lane level corresponding to Figure 4 can refer to Table 3.
  • Table 3 sets the lane id (for example, l1, l2, l3 and l4), the lane id and the lane in the high-precision map
  • ID for example, l1 corresponds to lane 11 and lane 21 in the high-precision map
  • the average positioning accuracy corresponding to the lane id the average number of satellites
  • the average DOP value the fixed rate and the accuracy coverage rate.
  • the location points corresponding to the lane id may be stored in Table 3. It can be understood that the number of location points corresponding to the lane id is the sum of the number of location points corresponding to each lane ID corresponding to the lane id.
  • the correspondence between the lane IDs in the positioning quality indication information and the lane IDs in the high-precision map is many-to-one, that is, the multiple lane IDs in the positioning quality indication information are associated with the high-precision map.
  • the same lane ID in the map corresponds.
  • lane c1 and lane c2 in the positioning quality indication information both correspond to lane 21 in the high-precision map
  • lane 21 includes all of lane 21.
  • the lane id in the positioning quality indication information may also be the lane ID in the high-precision map, or there is a one-to-one mapping between the lane id in the positioning quality indication information and the lane ID in the high-precision map relationship, which is not specifically limited in this embodiment of the present application.
  • the positioning quality indication information may also store the coordinates of the starting point and the coordinate of the ending point corresponding to the lane id.
  • the starting point coordinate corresponding to the stored lane l1 is the lane 11
  • the coordinates of the starting point of and the coordinates of the end point corresponding to the lane l1 are the coordinates of the end point of the lane 11.
  • lane 11 corresponds to lane 11 and lane 21 in the high-precision map, wherein lane 11 and lane 22 connected, and the vehicle passes through lane 11 and lane 21 in sequence
  • the stored starting coordinates of lane l1 are the starting coordinates of lane 11
  • the end coordinates corresponding to lane l1 are the end coordinates of lane 21.
  • the lane ID where the lowest quality position point in the high-precision map is located can also be marked as a feature attribute in the positioning quality indication information, so that the terminal can directly obtain high-quality positioning information from the positioning quality indication information.
  • the lane ID with poor quality is located in the precise map, so as to effectively avoid the lane indicated by the lane ID, or the lane indicated by other lane IDs related to the lane ID. For example, when it is determined that the trajectory point corresponding to a certain lane ID contains the lowest quality position point, a column of "low-quality lane ID mark" can be added in Table 3 to mark the low-quality lane ID.
  • the method for marking the lane 21 with a low-quality lane ID may also be to set the value of the lane 21 in the high-precision map to be non-null in the column of "low-quality lane ID marking" in Table 3.
  • the embodiment of the present application does not specifically limit the marking method of the low-quality lane ID in Table 3.
  • the correspondence between the lane id and the road id, and the correspondence between the road id and the area id may also be added to the positioning quality indication information.
  • the correspondence between the road id and the area id added to the positioning quality indication information as an example, if there is a correspondence between the road a1 in the above table 2 and the area 1-00 in the above good table 1, it means that the high-precision map indicated by the road a1 The roads in are located in the area of the HD map indicated by area 1-00.
  • Table 3 may also store the number of the location point corresponding to each lane ID in the high-precision map, the location information of the location point (for example, longitude and latitude coordinates), and the quality information of the location point (for example, , the number of satellites, the DOP value, etc.), which are not specifically limited in the embodiments of the present application.
  • the positioning quality indication information can be sequentially expressed as the three mapping tables of Table 1, Table 2 and Table 3 according to the division of regions, roads and lanes.
  • these three mapping tables can also be expressed as It is merged into one mapping table, which is not specifically limited in this embodiment of the present application.
  • Table 1 Table 2 and Table 3
  • it can also be divided into a plurality of parts for representation. Take Table 3 as an example, which can be divided into three tables.
  • One table is used to store the lane id and the positioning quality corresponding to the lane id
  • the second table is used to store the mapping relationship between the lane id and the lane ID in the high-precision map
  • the third table is used to store the high-precision map. Lane IDs that are flagged as low quality.
  • the above embodiment defines the content representation structure of the driving area (for example, area, road or lane), so that the positioning quality of the driving area provided by the positioning quality indication information has strong reference value and credibility.
  • the positioning quality of the corresponding area, road or lane in the high-precision map can be accurately obtained based on the positioning quality indication information; and the setting of the low-quality positioning area mark It is helpful for the terminal to quickly know the low-quality map elements (for example, roads or lanes) in the high-precision map, and provides a priori information for the terminal's driving decision, navigation planning, etc.
  • the positioning quality indication information 1 established based on the quality information of the historical location points only includes part of the area ID, road ID or lane ID in the high-precision map, that is to say, the incomplete data of the historical location points causes the positioning quality indication information 1 Compared with the high-precision map, the content is missing;
  • the positioning quality information in the positioning quality indication information 1 is no longer applicable, that is, the accuracy of the positioning quality statistically obtained in the positioning quality indication information 1 is reduced.
  • the new location information may be an updated value of the quality information of the historical location point, or may be the quality information of a new location point that is different from the historical location point, or may be an updated value including the quality information of the historical location point and a value different from that of the historical location point.
  • the quality information of the new location point of the historical location point is not specifically limited in this embodiment of the present application.
  • FIG. 5 is a flowchart of a method for updating positioning quality indication information provided by an embodiment of the present application, which is applied to a drawing device, and the method includes but is not limited to the following steps:
  • the location point group 1 is the newly collected location point data
  • the location point group 1 includes a plurality of location points
  • each location point has corresponding location information and quality information
  • the location information and quality information about the location point For specific information, reference may be made to the relevant descriptions in the foregoing embodiments, which will not be repeated here.
  • each position point in the position point group 1 includes one or more of a position point collected again and a position point collected for the first time, which is not specifically limited in this embodiment of the present application.
  • the positioning quality indication information 1 includes the identification of the map element in the high-precision map and the positioning quality information corresponding to the map element.
  • the positioning quality information corresponding to the map element includes the average positioning accuracy, the average number of satellites, the average DOP value, the fixed rate and the accuracy coverage rate. one or more of. It should be noted that the positioning quality indication information 1 is generated in advance according to the position point group 2, and the position point group 2 includes a plurality of position information of the plurality of position points and the quality information of the plurality of position points.
  • the positioning quality indication information 1 may be expressed in the form of a table shown in Table 1 to Table 3 above, or may be expressed as a graph, which is not specifically limited in this embodiment of the present application.
  • the location point group 1 may be sent to the mapping device by a data acquisition vehicle or a data acquisition device.
  • the positioning quality indication information 1 may be pre-stored in the memory of the mapping device, or may be obtained by the mapping device from other devices (eg, vehicles, cloud servers, etc.).
  • the map element is an area, a road, or a lane in a high-precision map. Therefore, the target map element ID may be an area ID, a road ID, or a lane ID. It should be noted that each location point in the location point group 1 has a unique associated area ID, road ID and lane ID.
  • the location point 2 is any location point in the location point group 1. Taking the location point 2 as an example to illustrate the association process between each location point in the location point group 1 and the identification of the map element in the high-precision map:
  • the location information of the location point 2 is compared with the area range of each area in the high-precision map, and it is determined that the location point 2 is within the area range of the area ID1, then the location point 2 The area ID1 association in the HD map.
  • the positional relationship is judged according to the position information of the position point 2 and the position information of each road in the high-precision map, and the position point 2 is located on the road of the road ID1 in the high-precision map.
  • the road ID1 in the high-precision map of location point 2 is associated.
  • the positional relationship is judged according to the position information of the position point 2 and the position information of each lane in the high-precision map, and the position point 2 is located in the lane of the lane ID1 in the high-precision map.
  • judging whether there is a target map element ID associated with the location point 2 in the positioning quality indication information 1 refers to: judging whether there is a target map element ID corresponding to the location point 2 in the positioning quality indication information 1 The same, if it exists, execute S104; if it does not exist, execute S105.
  • the target map element ID associated with the location point 2 can be the area ID1, the road ID1 or the lane ID1, then it is determined whether there is a target map element ID associated with the location point 2 in the positioning quality indication information 1. Refers to: judging whether the positioning quality indication information 1 includes the area ID1, or whether the positioning quality indication information 1 includes the road ID1, or whether the positioning quality indication information 1 includes the lane ID1.
  • the target map element ID associated with the location point 2 does not exist in the positioning quality indication information 1, it means that there is no data related to the target map element ID in the positioning quality information 1, so the positioning quality
  • the target map element ID is added to the instruction information 1, and the positioning quality information corresponding to the target map element ID is obtained according to the quality information of the position point associated with the target map element ID, and the positioning quality information corresponding to the target map element ID is added to the positioning quality.
  • the instruction information 1 In the instruction information 1.
  • the area ID1 is added to the area-level content representation of the location quality indication information 1, for example, in the above table 1 Add "area ID1" to the column of "area id (area ID of high-precision map)", and obtain the positioning quality information corresponding to area ID1 according to the above formulas (1)-(5), and set the positioning quality corresponding to area ID1 Information is added to Positioning Quality Indication Information 1.
  • the road ID1 is added to the road-level content representation of the location quality indication information 1, for example, in the above Table 2 Add “Road ID1" to the column of "Road ID in HD Map".
  • the so-called adding "road ID1" to the column "Road ID in the high-precision map” in Table 2 includes the following methods A and B:
  • Method A When there is no connection between road ID1 and each road ID listed in Table 2, after adding "Road ID1" to the column of "Road ID in HD Map” in Table 2, it can also be displayed in Table 2 as The road ID1 creates a new road id, eg, road a5, and corresponds it to the road ID1.
  • the positioning quality information corresponding to the road ID1 is obtained according to the execution information of the location point associated with the road ID1 and the above formulas (1)-(5), and the positioning quality corresponding to the road ID1 is added to the corresponding Location.
  • Mode B When road ID1 has a connection relationship with a certain road ID (for example, road 1) in Table 2, that is, road ID1 is connected with road 1, and in addition, road 1 in Table 2 corresponds to road a1, then the "Road ID1" is added to the position corresponding to "Road a1" in the column "Road ID in HD Map” in Table 2, which means that the road a1 in Table 2 and the road a1, Road 1 in the HD map Corresponds to road 2.
  • adding the positioning quality information corresponding to the road ID1 means recalculating and updating the positioning quality information corresponding to the road a1 based on the quality information of the position point 2 and the quality information of the historical position points associated with the road 1 and the road 2 respectively.
  • the lane ID1 is added to the lane-level content representation of the positioning quality indication information 1, for example, in the above Table 3 Add “Lane ID1" to the column of "Lane ID in HD Map".
  • the so-called adding "lane ID1" to the column "lane ID in the high-precision map” in Table 3 includes the following methods C and D:
  • Method C When there is no connection between lane ID1 and each lane ID listed in Table 3, after adding "lane ID1" to the column of "lane ID in high-precision map” in Table 3, it can also be listed in Table 3 as Lane ID1 creates a new lane id, for example, lane l5, and associates it with lane ID1.
  • the positioning quality information corresponding to the lane ID1 is obtained according to the quality information of the position point associated with the lane ID1 and the above formulas (1)-(5), and the positioning quality information corresponding to the lane ID1 is added to the corresponding location.
  • Mode D When the lane ID1 has a connection relationship with a certain lane ID (for example, lane 11) in Table 3, that is, the lane ID1 is connected with the lane 11, and in addition, the lane 11 in Table 3 corresponds to the lane l1, then the "Lane ID1" is added to the position corresponding to "Lane l1" in the column of "Lane ID in HD Map” in Table 3, which means that Lane l1 in Table 3 and Lane ID1 and Lane 11 in HD Map Corresponds to lane 21.
  • a certain lane ID for example, lane 11
  • adding the positioning quality information corresponding to the lane ID1 means recalculating and updating the positioning quality information corresponding to the lane 11 based on the quality information of the position point 2 and the quality information of the historical position points associated with the lane 11 and the lane 21 respectively.
  • the positioning quality indication information 1 may not include any two of the area ID1, road ID1 and lane ID1, or, the positioning quality indication information 1 may also not include the area ID1, road ID1 and lane ID1. These three are not specifically limited in the embodiments of the present application. In this case, any one of the area ID1, the road ID1 and the lane ID1 does not exist in the positioning quality indication information 1, and the relevant processing can be performed according to the above-mentioned corresponding method.
  • the location quality information corresponding to the target map element ID is updated in combination with the quality information of the location point 2.
  • the positioning quality information corresponding to the target map element ID is recalculated according to the quality information of the position point 2 and the quality information of the historical position point to which the target map element ID has been associated.
  • the existence of the target map element ID associated with the location point 2 in the positioning quality indication information 1 indirectly indicates that the data collection vehicle has collected the location point again in the area, road or lane where the location point has been collected, and The surrounding vegetation or the corresponding season may have changed when the location point is collected this time, that is to say, the quality information of the track point 2 obtained this time is an updated value. Therefore, the corresponding updating of the positioning quality indication information 1 can truly reflect the positioning quality of each map element in the current high-precision map.
  • the area ID1 is the area 1-00 in the high-precision map
  • the area-level content of the positioning quality indication information 1 is represented as shown in Table 1
  • the positioning quality information corresponding to 00 is updated, and the above formulas (1)-(5) can be referred to in the update process.
  • the location point 2 may also be added to the location point set corresponding to the area 1-00.
  • the positioning quality information corresponding to road 1 needs to be updated. It can be understood that the positioning quality information corresponding to road 1 is equivalent to that corresponding to road a1 in Table 2.
  • Positioning quality information may be: recalculating road a1 in combination with the quality information of position point 2, the quality information of the historical position point corresponding to road 1 and the quality information of the historical position point corresponding to road 2
  • the above formulas (1)-(5) may be referred to in the update process.
  • updating the positioning quality information corresponding to the road 1 may also be: according to the quality information of the position point 2 and the historical position point corresponding to the road 1
  • the quality information updates the positioning quality information of road 1 .
  • the location point corresponding to the road ID is listed in Table 2, the location point 2 may also be added to the location point set corresponding to the road 1.
  • the lane ID1 is the lane 11 in the high-precision map
  • the lane-level content of the positioning quality indication information 1 is represented as shown in Table 3
  • the positioning quality information corresponding to the lane 11 needs to be updated. It can be understood that the positioning quality information corresponding to lane 11 is equivalent to the positioning quality information corresponding to lane l1 in Table 3.
  • updating the positioning quality information corresponding to lane 11 may be: combining the quality information of position point 2 and the historical position corresponding to lane 11
  • the quality information of the point and the quality information of the historical position point corresponding to the lane 21 are used to recalculate the positioning quality information corresponding to the lane l1, and the above formulas (1)-(5) can be referred to in the update process.
  • updating the positioning quality information corresponding to the lane 11 may also be: according to the quality information of the position point 2 and the historical position point corresponding to the lane 11
  • the quality information updates the positioning quality information of the lane 11 .
  • the position point 2 may also be added to the set of position points corresponding to the lane 11 .
  • any two of the area ID1, road ID1 and lane ID1 may also exist in the positioning quality indication information 1, or, the location quality indication information 1 may also contain area ID1, road ID1 and lane ID1.
  • the three ID1 are not specifically limited in this embodiment of the present application. In this case, any one of the area ID1, the road ID1 and the lane ID1 already exists in the positioning quality indication information 1, and the relevant processing can be performed according to the above-mentioned corresponding method.
  • the positioning quality of the map element in the positioning quality indication information is updated in combination with the quality information of the newly collected position points on the same map element (for example, a lane, etc.) and the quality information obtained in the past,
  • the updated positioning quality indication information can better adapt to the influence of vegetation changes and seasonal changes on the positioning quality information of map elements in the high-precision map, and can accurately indicate the positioning quality of the map elements in the high-precision map in the current environment.
  • FIG. 6 is a flowchart of another map generation method provided by an embodiment of the present application.
  • FIG. 6 may be independent of the embodiment of FIG. 5 , or may be a supplement to the embodiment of FIG. 5 .
  • the method includes but is not limited to the following steps:
  • the mapping device obtains multiple pieces of positioning information of the first multiple position points and first multiple pieces of positioning quality reference information of the first multiple position points.
  • the multiple positioning information of the first multiple location points and the first positioning quality reference information may be sent by the data acquisition vehicle or the data acquisition device to the mapping device.
  • the first plurality of position points may be understood as a set of position points, the position point set includes a plurality of position points, and each position point has corresponding positioning information and positioning quality reference information.
  • the location information of the track point is used to indicate the location of the location point in the high-precision map.
  • the location information of the location point can be represented by longitude and latitude; the location quality reference information of the location point can be used to measure the location of the location point.
  • the positioning quality reference information of the position point includes the positioning accuracy of the position point, the DOP value of the position point, the number of satellites observed at the position point, or whether the positioning position information of the position point is a fixed solution.
  • the positioning position information of the track point is the position information of the track point in the above embodiment
  • the positioning quality reference information of the track point is the quality information of the track point in the above embodiment.
  • the positioning accuracy of the position point can be obtained according to the offset of the position point relative to the true value in the three directions of east, north and vertical.
  • the DOP value of the location point is used to measure the amount of error caused by the geometric position of the satellite relative to the observer (eg, the data collection vehicle that collected the location point).
  • the positioning position information of the position point is a fixed solution means that the corresponding ambiguity when the positioning position information of the position point is calculated based on the carrier phase is an integer, and the positioning quality corresponding to the fixed solution is better than the positioning quality corresponding to the non-fixed solution.
  • the mapping device generates first positioning quality indication information according to the first plurality of positioning quality reference information.
  • the mapping device generates first positioning quality indication information according to the first plurality of positioning quality reference information, where the first positioning quality indication information is used to indicate the positioning quality in the first driving area.
  • the first positioning quality indication information may be represented in the form of a table, graph, text, etc., which is not specifically limited in the embodiment of the present application.
  • the positioning quality in the first driving area is a statistical value obtained according to the first plurality of positioning quality reference information, which improves the reliability and accuracy of the estimated positioning quality in the first driving area.
  • the first positioning quality indication information includes the error standard deviation of the plurality of positioning information relative to the reference true value, the ratio of the fixed solution in the plurality of positioning information, and the positioning accuracy of the plurality of positioning information that meets the requirements.
  • the error standard deviation of the multiple positioning information relative to the reference true value is the "average positioning accuracy" in the above-mentioned embodiment
  • the ratio of the fixed solutions in the multiple positioning information is the "fixed rate" in the above-mentioned embodiment.
  • the ratio of the positioning information whose positioning accuracy meets the requirements in the multiple positioning information is the "accuracy coverage ratio" in the above-mentioned embodiment, and the average number of observable satellites of the first plurality of position points is the “" in the above-mentioned embodiment.
  • Average number of satellites the average DOP value of the multiple positioning information is the "average DOP value of the precision factor” in the above-mentioned embodiment.
  • the mapping device generates first association relationship indication information according to the plurality of positioning information.
  • the mapping device generates first association relationship indication information according to the above-mentioned multiple positioning information, and the first association relationship indication information is used to indicate the association between the first driving area and at least one map element in the high-precision map relationship, the map elements include areas, roads or lanes in the HD map.
  • the first association relationship indication information is an identifier of at least one map element.
  • the first column in Table 1 is the area ID in the high-precision map, that is, the identifier of the area, and each area ID is equivalent to a driving area.
  • the first association relationship indication information includes an identifier of the first driving area and an identifier of at least one map element. That is to say, the first association relationship indication information includes both the identification of the driving area and the identification of the map element.
  • the road id listed in the first column in Table 2 is equivalent to the identification of the driving area
  • the road ID in the high-precision map listed in the second column in Table 2 is equivalent to the identification of the map element.
  • the information composed of the first column and the second column in 2 is an example of the first association relationship indication information.
  • the identification of the driving area in the positioning quality indication information there is an association relationship between the identification of the driving area in the positioning quality indication information and the identification of the map element in the high-precision map. It may be a non-mapping relationship, which is not specifically limited in this embodiment of the present application.
  • the identifier of the driving area in the positioning quality indication information may be the area id in Table 1 above, the road id in Table 2 above, or the lane id in Table 3 above. Take the road as an example to illustrate the mapping relationship between the identification of the driving area and the identification of the map element.
  • a road id can correspond to at least one road ID in the high-precision map, or it can be multiple road ids and the A road ID corresponds.
  • road 1 is a road ID
  • road a1 and road a2 are both road IDs
  • both road a1 and road a2 correspond to road 1
  • the roads in the high-precision map are divided into two driving areas, road a1 and road a2 in the positioning quality indication information.
  • road a1 includes all of road 1
  • road a2 includes all of road 1, which can also be understood as road 1.
  • a part of road al belongs to road a1 and another part of road 1 belongs to road a2.
  • the mapping device adds the first positioning quality indication information and the first association relationship indication information to the high-precision map.
  • the mapping device may also add the first positioning quality indication information and the first association relationship indication information to the high-precision map, so that the high-precision The high-precision map intuitively and clearly displays the statistical value of the positioning quality of any area, any road or any lane in the high-precision map.
  • the mapping device may further generate low-quality positioning area indication information according to the first plurality of positioning quality reference information, where the low-quality positioning area indication information is used to indicate the first map element in the first driving area, and the first map element in the first driving area.
  • a map element is an area, road or lane in the high-precision map, and there is at least one location point in the first map element whose positioning quality is lower than a threshold; the low-quality positioning area indication information is added to the high-precision map.
  • the function of the low-quality positioning area indication information is to mark the map element in the high-precision map where the lowest-quality track point in the above-mentioned embodiment is located, for example, the low-quality road ID in Table 2, or the table For the low-quality lane ID in 3, reference may be made to the relevant descriptions in Table 2 or Table 3 in the foregoing embodiment.
  • the mapping device may also generate positioning quality indication information and association relationship indication information of the driving area corresponding to the newly collected trajectory point. Specifically, first positioning information of the first position point and first positioning quality reference information of the first position point are obtained, and the first position point is not in the first driving area; the second positioning quality indication is generated according to the first positioning quality reference information information, the second positioning quality indication information is used to indicate the positioning quality in the second driving area; the second correlation indication information is generated according to the first positioning information, and the second correlation indication information is used to indicate the second driving area and the high-precision map The association relationship between at least one map element in the map; adding the second positioning quality indication information and the second association relationship indication information into the high-precision map. It should be noted that this embodiment is equivalent to the relevant description of S104 in the above-mentioned embodiment of FIG. 5 , and the first position point is the trajectory point 2 in FIG. 5 .
  • the mapping device may update the first positioning quality indication information when the newly collected track point is still located in the first driving area. Specifically, a second plurality of positioning quality reference information is obtained, where the second plurality of positioning quality reference information includes updated values of the first plurality of positioning quality reference information, or a plurality of positioning quality reference information of the second plurality of location points, and Two or more locations are located in the first driving area; the third positioning quality indication information is generated according to the first multiple positioning quality reference information and the second multiple positioning quality reference information; the third positioning quality indication information is used to update the high-precision map the first positioning quality indication information. It should be noted that, in this embodiment, reference may be made to the relevant description of S105 in the embodiment of FIG. 5 , and the trajectory point 2 in FIG. 5 is any one of the second plurality of position points.
  • the first positioning quality indication information, the first association relationship indication information, and the high-precision map may also be stored separately and independently.
  • the first positioning quality indication information and the first association relationship indication information need to be used, in the When it is known that a certain map element (may be referred to as a target map element) in the high-precision map where the terminal is located, the positioning quality information corresponding to the target map element can be quickly searched based on the first association relationship indication information and the first positioning quality indication information .
  • the positioning quality indication information may be generated by a map server, and the mapping device may be a map server, or may be a component or a chip in the map server.
  • the positioning quality indication information may also be generated by a roadside device, vehicle or mobile terminal, and the mapping device may also be the roadside device, vehicle or mobile terminal, or a component or chip of the roadside device, vehicle or mobile terminal .
  • positioning quality indication information is added to the high-precision map, and the positioning quality indication information provides relatively accurate prior information of positioning quality.
  • the area, road or lane in the high-precision map can be provided with reference and reliable statistical value of the positioning quality , so that the vehicle or portable terminal using the map can selectively use the positioning information in the high-precision map, which improves the safety of automatic driving.
  • FIG. 7 is a flowchart of another method for using a map provided by an embodiment of the present application.
  • FIG. 7 may be independent of the embodiments of FIGS. 5 and 6 , or may be a supplement to the embodiments of FIGS. 5 and 6 .
  • the drawing device may be described by taking the server as an example, and the terminal may be described by taking the vehicle as an example, but it is not limited that the drawing device in the embodiment of the present application is only a server and the terminal is not limited to only a vehicle.
  • the method includes but is not limited to the following steps:
  • the server sends a map to the vehicle.
  • the server sends a map to the vehicle, the map includes positioning quality indication information and association relationship indication information, the positioning quality indication information is used to indicate the positioning quality in the first driving area, and the association relationship indication information is used to indicate the first driving area.
  • the positioning quality in the first driving area is the statistical value of the positioning quality of multiple position points in the driving area.
  • the positioning quality indication information includes the error standard deviation of the positioning value relative to the reference true value, the ratio of the fixed solution of the positioning value, the ratio of the positioning value whose positioning accuracy meets the requirements, the average number of observable satellites or the average precision factor DOP value.
  • the map may be sent to the vehicle by the server in any manner of broadcast, multicast or unicast.
  • the server may send the map including the positioning quality indication information and the association relationship indication information to the roadside unit, and the roadside unit may send the map to the vehicle.
  • the map may be generated by the server according to the embodiment of FIG. 6 , or may be generated by other devices according to the embodiment of FIG. 6 and sent to the server, which is not specifically limited in this embodiment of the present application.
  • the vehicle receives the map, and obtains the positioning quality indication information and the association relationship indication information in the map.
  • the vehicle receives the map, and obtains the positioning quality indication information and the association relationship indication information in the map.
  • the map received by the vehicle may be sent by the server, or may be sent by the server through the roadside unit, which is not specifically limited in the embodiment of the present application.
  • the positioning quality indication information includes the mapping relationship between the identification of the driving area and the positioning quality
  • the association relationship indication information includes the mapping relationship between the identification of the driving area and the identification of the map element
  • the map element is the area in the map. , road or driveway.
  • the association relationship indication information is an identifier of at least one map element.
  • the association relationship indication information includes an identifier of the first driving area and an identifier of at least one map element.
  • the specific mapping relationship between the identifier of the first driving area and the identifier of at least one map element reference may be made to the relevant description of S203 in FIG. 6 , which will not be repeated here.
  • the positioning quality indication information can be expressed as Table 4, and the association relationship indication information can be expressed as Table 5.
  • the positioning quality of the area id1 is: the average number of observable satellites is 6, according to Table 5, it can be known that the area id1 is area 1 in the map, then combining Table 4 and Table 5, it can be known that the positioning quality of area 1 in the map is: the average number of observable satellites is 6.
  • Identification of the driving area positioning quality area id1 The average number of observable satellites is 6 area id2 The average number of observable satellites is 4 ... ...
  • the map also includes low-quality positioning area indication information, and the low-quality positioning area indication information is used to indicate a first map element in the first driving area, and the first map element is an area, a road or a lane in the map, And there is at least one location point whose positioning quality is lower than the threshold in the first map element.
  • the indication information of the low-quality positioning area reference may be made to the relevant description of the above-mentioned S204, which will not be repeated here.
  • the vehicle performs path planning, driving decision or vehicle control according to the positioning quality indication information and the association relationship indication information.
  • the vehicle can know the positioning quality of each driving area in the map in advance according to the positioning quality indication information and the association relationship indication information, and then assists itself in path planning, driving decision-making or vehicle control, so as to effectively avoid the positioning quality Poor areas, roads or lanes to improve their own travel safety rate.
  • FIG. 8 is a schematic diagram of an application scenario provided by an embodiment of the present application. Assuming that the vehicle wants to reach the destination point F from point A, the vehicle knows the location of each road except the BC road according to the positioning quality indication information and the association relationship indication information. The positioning quality of other roads except the poor quality is good, then the navigation route determined by the vehicle after the path planning is: A-B-E-F-C-D, it can be seen that the BC road with poor positioning quality is avoided, and the vehicle is on the navigation route. The positioning on the road is accurate, which improves the safety rate of the vehicle.
  • the vehicle wants to reach the destination point F from point A, and the vehicle knows that the positioning quality of the BC lane in FIG. 8 is the worst according to the positioning quality indication information and the association relationship indication information, when the vehicle travels to point B , the driving decision made by the vehicle is to turn left into the BE lane to avoid the BC lane with the worst positioning quality, and choose to drive on the lane with better positioning quality as much as possible.
  • the map also includes low-quality positioning area indication information, and from the low-quality positioning area indication information, the area with the worst positioning quality, the road with the worst positioning quality, or the worst positioning quality in the map can be directly obtained. Therefore, path planning, driving decision-making or vehicle control can be carried out according to the indication information of low-quality positioning areas, so that these low-quality marked areas, roads or lanes can be avoided in navigation route planning, which can effectively improve the positioning quality of vehicles and travel safety.
  • the vehicle may store the received map, and call it at any time when needed later.
  • the vehicle can display the received map on the display screen, so that the user can intuitively and clearly understand the positioning quality of each driving area in the map.
  • the map using device may be not only a vehicle, but also a component in the vehicle (such as a navigation device or an automatic driving device in the vehicle), and may also be a chip that can be used in the vehicle.
  • the implementation of the embodiments of the present application provides a map including positioning quality indication information and association relationship indication information, so that the vehicle can timely avoid the driving area with poor positioning quality based on the map, or selectively locate the positioning quality.
  • the positioning information with poor quality is set with a lower confidence level, so that when driving in a driving area with better positioning quality (for example, roads, lanes, etc.), accurate positioning position information can be obtained, which is conducive to improving route planning and driving decision-making. accuracy and travel safety.
  • FIG. 9 is a schematic structural diagram of an apparatus for generating a map according to an embodiment of the present application.
  • the apparatus 30 at least includes a processor 110 , a memory 111 , and a receiver 112 .
  • the apparatus 30 also includes a transmitter 113 .
  • the receiver 112 and transmitter 113 may also be replaced by communication interfaces for providing information input and/or output to the processor 110 .
  • the memory 111, the receiver 112, the transmitter 113 and the processor 110 are connected or coupled through a bus.
  • the apparatus 30 may be the drawing device in the embodiment of FIG. 1 , the drawing device in FIG. 6 or the server in FIG. 7 .
  • the apparatus 30 is used to implement the methods described in the foregoing embodiments in FIG. 5 and FIG. 6 , and may also be used to implement the server-side method described in the embodiment in FIG. 7 .
  • the receiver 112 may be configured to obtain a plurality of positioning information of the first plurality of position points and a plurality of positioning quality reference information defining the first plurality of position points. In some possible embodiments, the receiver 112 is further configured to acquire first positioning information and first positioning quality reference information of the first location point. In some possible embodiments, the transmitter 113 is configured to send a map, where the map includes first positioning quality indication information and first association relationship indication information. Receiver 112 and transmitter 113 may include antennas and chipsets for communicating with devices, sensors, or other physical devices in the vehicle, either directly or over an air interface. The receiver 112 and the transmitter 113 may be wired interfaces or wireless interfaces. The wired interface may be an Ethernet interface, a Local Interconnect Network (LIN), etc., and the wireless interface may be a cellular network interface or a wireless local area network interface, or the like.
  • LIN Local Interconnect Network
  • the processor 110 may be configured to generate first positioning quality indication information and first association relationship indication information. In some possible embodiments, the processor 110 is further configured to generate low-quality positioning area indication information and update the first positioning quality indication information. For example, the processor 110 may be configured to perform the steps shown in S102-S105 in FIG. 5 .
  • the processor 110 may be composed of one or more general-purpose processors, such as a central processing unit (Central Processing Unit, CPU), or a combination of a CPU and a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), a programmable logic device (Programmable Logic Device, PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field programmable gate array (Field-Programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • GAL General array logic
  • the memory 111 may include a volatile memory (Volatile Memory), such as a random access memory (Random Access Memory, RAM); the memory 111 may also include a non-volatile memory (Non-Volatile Memory), such as a read-only memory (Read- Only Memory (ROM), flash memory (Flash Memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); the memory 111 may also include a combination of the above types.
  • the memory 111 can store programs and data, wherein the stored programs include: map generation algorithms, map update algorithms, etc., and the stored data include: positioning information of location points, first multiple positioning quality reference information, second multiple positioning quality Reference information, high-precision maps, etc.
  • the memory 111 may exist alone, or may be integrated inside the processor 110 .
  • FIG. 9 is only an example of a device 30, and the computing device 30 may include more or less components than those shown in FIG. 9, or have components configured in different ways. Meanwhile, various components shown in FIG. 9 may be implemented in hardware, software, or a combination of hardware and software.
  • FIG. 10 is a schematic structural diagram of a map using device provided by an embodiment of the present application.
  • the device 40 at least includes a processor 210 , a memory 211 , a receiver 212 and a display 213 , and the receiver 212 can provide information to the processor 210 enter.
  • the memory 211, the receiver 212, the display 213 and the processor 210 are connected or coupled through a bus.
  • the device 40 may be the terminal in FIG. 1 , or may be the vehicle in the embodiment in FIG. 7 . In this embodiment of the present application, the device 40 is used to implement the vehicle-side method described in the above embodiment of FIG. 7 .
  • the receiver 212 is configured to receive the positioning quality indication information and the associated indication information in the map, for example, the receiver 212 may be configured to perform S302 in FIG. 7 . In some possible embodiments, the receiver 212 is further configured to receive low-quality positioning area indication information in which the map is located.
  • Receiver 112 may include antennas and chipsets for communicating with servers, roadside units, sensors, or other physical devices, either directly or over an air interface.
  • the receiver 212 may be a wireless interface, eg, a cellular network interface or a wireless local area network interface, or the like.
  • the processor 210 is configured to perform path planning, driving decision or vehicle control according to the positioning quality indication information and the association relationship indication information.
  • the processor 210 may be configured to execute S303 in FIG. 7 .
  • the processor 210 may be composed of one or more general-purpose processors, such as a central processing unit (Central Processing Unit, CPU), or a combination of a CPU and a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), a programmable logic device (Programmable Logic Device, PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field programmable gate array (Field-Programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • GAL General array logic
  • the memory 211 may include a volatile memory (Volatile Memory), such as a random access memory (Random Access Memory, RAM); the memory 211 may also include a non-volatile memory (Non-Volatile Memory), such as a read-only memory (Read- Only Memory (ROM), flash memory (Flash Memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); the memory 211 may also include a combination of the above types.
  • the memory 211 can store programs and data, wherein the stored programs include: vehicle control programs, navigation planning programs, etc., and the stored data include: positioning quality indication information, association relationship indication information, low-quality positioning area indication information, and the like.
  • the memory 211 may exist alone, or may be integrated inside the processor 110 .
  • the display 213 is used to display the above-mentioned map, and the display 213 may be a display screen, and the display screen may be a liquid crystal display (Liquid Crystal Display, LCD), an organic or inorganic light-emitting diode (Organic Light-Emitting Diode, OLED), an active matrix organic light-emitting two. Polar body panel (Active Matrix/Organic Light Emitting Diode, AMOLED), etc.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • AMOLED Active Matrix/Organic Light Emitting Diode
  • FIG. 10 is only an example of an apparatus 40, and the apparatus 40 may include more or less components than those shown in FIG. 10, or have a different arrangement of the components. Meanwhile, various components shown in FIG. 10 may be implemented in hardware, software, or a combination of hardware and software.
  • FIG. 11 is a schematic functional structure diagram of a map generation apparatus provided by an embodiment of the present application.
  • the apparatus 31 includes an acquisition unit 310 , an association unit 311 , a statistics unit 312 , and a processing unit 313 .
  • the device 31 may be implemented by hardware, software or a combination of software and hardware.
  • the obtaining unit 310 is used to obtain a plurality of positioning information of the first plurality of position points and the first plurality of positioning quality reference information of the first plurality of position points;
  • the statistics unit 312 is used to obtain the first plurality of positioning quality reference information according to the The first positioning quality indication information is generated with reference to the information, and the first positioning quality indication information is used to indicate the positioning quality in the first driving area;
  • the associating unit 311 is used for generating the first association relationship indication information according to the plurality of positioning information, and the first association
  • the relationship indication information is used to indicate an association relationship between the first driving area and at least one map element in the map, and the map element includes an area, a road or a lane;
  • the processing unit 313 is used to associate the first positioning quality indication information with the first association relationship Instructions are added to the map.
  • Each functional module of the apparatus 31 can be used to implement the method described in the embodiment of FIG. 6 .
  • the acquiring unit 310 can be used to execute S201
  • the statistics unit 312 can be used to execute S202
  • the association unit 311 can be used to execute S203
  • the processing unit 313 can be used to execute S204.
  • the apparatus 31 further includes a sending unit (not shown in FIG. 11 ), configured to send the map to which the first positioning quality indication information and the first association relationship indication information are added, and the sending unit can be used to execute FIG. 7 in S301.
  • a sending unit (not shown in FIG. 11 ), configured to send the map to which the first positioning quality indication information and the first association relationship indication information are added, and the sending unit can be used to execute FIG. 7 in S301.
  • Each functional module of the device 31 can be used to implement the method described in the embodiment of FIG. 5 , and for the sake of brevity of the description, details are not repeated here.
  • FIG. 12 is a schematic functional structure diagram of a map using device provided by an embodiment of the present application.
  • the device 41 includes a receiving unit 410 and a processing unit 411 .
  • the apparatus 41 further includes a display unit 412 .
  • the device 41 can be implemented by hardware, software or a combination of software and hardware.
  • the receiving unit 410 is used to receive the positioning quality indication information and the association relationship indication information in the map, the positioning quality indication information is used to indicate the positioning quality in the first driving area, and the association relationship indication information is used to indicate that the first driving area and the An association relationship between at least one map element in the map, the map element includes an area, a road or a lane; the processing unit 411 is configured to perform path planning, driving decision or vehicle control according to the positioning quality indication information and the association relationship indication information.
  • the display unit 412 is used to display a map.
  • Each functional module of the apparatus 41 can be used to implement the method described in the embodiment of FIG. 7 .
  • the receiving unit 410 can be used to execute S302
  • the processing unit 411 can be used to execute S303.
  • the storage medium includes read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), programmable read-only memory (Programmable Read-only Memory, PROM), erasable programmable read-only memory ( Erasable Programmable Read Only Memory, EPROM), One-time Programmable Read-Only Memory (OTPROM), Electronically-Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disk storage, magnetic disk storage, tape storage, or any other computer-readable medium that can be used to carry or store data.
  • Read-Only Memory Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-only Memory
  • PROM Programmable Read-only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution.
  • the computer software product is stored in a storage medium, including a number of instructions for So that a device (which may be a personal computer, a server, or a network device, a robot, a single-chip microcomputer, a chip, a robot, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.

Abstract

本申请公开了一种地图、地图生成方法、地图使用方法及装置,该方法包括:获得多个位置点的多个定位信息和这多个位置点的多个定位质量参考信息;根据上述多个定位质量参考信息生成用于指示第一行驶区域内的定位质量的定位质量指示信息;根据上述多个定位信息生成用于指示第一行驶区域与地图中至少一个地图元素(例如,区域、道路或车道)之间关联关系的关联关系指示信息;最后,将定位质量指示信息和关联关系指示信息添加入地图中。实施本申请,能提供了更具定位参考性的地图,使得车辆等能够选择性的使用高精地图中的定位信息。

Description

一种地图、地图生成方法、地图使用方法及装置
本申请要求于2021年04月26日提交中国知识产权局、申请号为202110456265.2、申请名称为“一种地图、地图生成方法、地图使用方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶领域,尤其涉及一种地图、地图生成方法、地图使用方法及装置。
背景技术
高精地图(High Definition Map,HD Map)又称为高清地图或高精度地图,常作为自动驾驶的辅助地图。高精地图包含了静态信息和动态信息,能够以云端协同、车路协同等方式实现地图信息的加载,用于辅助车辆感知、定位、规划和控制。
高精地图的生成依赖于位置点的定位数据,由于定位数据的采集易受到周围环境影响,导致在高精地图中不同地图元素(例如,道路、车道等)上获得的定位数据的质量高低不一。如果在自动驾驶过程中使用高精地图中质量较低的定位数据,则定位不准容易造成导航路线发生偏差,甚至影响车辆的行驶安全。
发明内容
本申请实施例公开了一种地图、地图生成方法、地图使用方法及装置,使得使用地图的车辆或者便携终端能够选择性的使用高精地图中的定位信息,提高了自动驾驶的安全性。
第一方面,本申请实施例提供了一种地图生成方法,该方法包括:获得第一多个位置点的多个定位信息和第一多个位置点的第一多个定位质量参考信息;根据第一多个定位质量参考信息生成第一定位质量指示信息,第一定位质量指示信息用于指示第一行驶区域内的定位质量;根据多个定位信息生成第一关联关系指示信息,第一关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或者车道;将第一定位质量指示信息和第一关联关系指示信息添加入地图中。
上述方法中,基于多个位置点的多个定位信息参考获得某个行驶区域的定位质量以及根据这多个位置点的多个定位信息确定该行驶区域关联的地图中的至少一个地图元素,相对于现有技术中仅提供位置信息的地图,还在地图中提供了各行驶区域的定位质量指示信息和关联关系指示信息,该定位质量指示信息和关联关系指示信息使得地图使用者能够自主选择避开定位质量较差的行驶区域,或者选择性地为定位质量较差的定位信息设置较低的置信度,提高了车辆的出行安全率。
其中,行驶区域可以是地图中的区域、道路或车道,也可以是基于地图中的区域重新划分的区域,或者,基于地图中的道路重新划分的道路,或者基于地图中的车道重新划分的车道。基于行驶区域内的多个位置点获得的定位质量具有较高的可信度和参考价值。
需要说明的是,在本申请的各实施例中,第一行驶区域与地图中的至少一个地图元素之间存在关联关系,这种关联关系可以是映射关系,也可以是非映射关系。映射关系包括:第 一行驶区域的覆盖范围等同于地图中的一个地图元素的覆盖范围,即定位质量指示信息对应的行驶区域为地图中的一个地图元素,例如一条道路,或者一条车道;或者,第一行驶区域的覆盖范围等同于地图中的多个地图元素的覆盖范围,即定位质量指示信息对应的行驶区域为地图中的多个地图元素的整体,例如,多条道路覆盖的地理范围,或者多条车道覆盖的地理范围,或者多条道路和多条车道共同覆盖的地理范围。非映射关系包括:第一行驶区域的边界不完全由地图中地图元素的边界构成,表现为第一行驶区域的覆盖范围由地图中至少一个地图元素的部分区域组成,例如,第一行驶区域的覆盖范围为地图中道路1的东半段和道路2的西半段,所述关联关系说明第一行驶区域涉及道路1和道路2,该情况下,所谓第一关联关系指示信息所述指示的第一行驶区域与地图中的至少一个地图元素之间的关联关系,仅仅说明所述第一行驶区域涉及地图中的所述至少一个地图元素,而非第一行驶区域由地图中的所述至少一个地图元素组成。
在第一方面的一种实现方式中,第一定位质量指示信息包括多个定位信息相对于参考真值的误差标准差、多个定位信息中固定解的比率、多个定位信息中定位精度满足要求的定位信息的比率、第一多个位置点的平均可观测卫星颗数或者多个定位信息的平均精度因子DOP值。
实施上述实现方式,第一定位质量指示信息基于多个指标(例如,平均精度因子DOP值、固定解的比率、定位信息的误差标准差等)统计行驶区域的定位质量,提高了估算的行驶区域内的定位质量的可信度和准确率。
在第一方面的一种实现方式中,第一关联关系指示信息为至少一个地图元素的标识。
实施上述实现方式,将现有的地图中的区域、道路或车道作为定位质量指示信息所指示的第一行驶区域,从而基于定位质量指示信息可直接、快速地获得地图中每个地图元素对应的定位质量。
在第一方面的一种实现方式中,第一关联关系指示信息包括第一行驶区域的标识和至少一个地图元素的标识。
实施上述实现方式,第一行驶区域的标识与至少一个地图元素的标识之间存在关联胡关系,即第一行驶区域是基于地图中的至少一个地图元素进行重新划分的,为定位质量的统计提供了一个合理的范围,提高了估算的第一行驶区域内的定位质量的可信度和参考价值。
在第一方面的一种实现方式中,该方法还包括:根据第一多个定位质量参考信息生成低质量定位区域指示信息,低质量定位区域指示信息用于指示第一行驶区域内的第一地图元素,第一地图元素为至少一个地图元素中的一个地图元素,第一地图元素为区域、道路或者车道,且第一地图元素内存在定位质量低于阈值的至少一个位置点;将低质量定位区域指示信息添加入地图中。
实施上述实现方式,生成低质量定位区域指示信息,用于将定位质量低于阈值的位置点所在的地图元素在进行标记,使得地图使用者可根据低质量定位区域指示信息自主地避开定位质量差的行驶区域,提高了自动驾驶的安全性。
在第一方面的一种实现方式中,该方法还包括:获得第一位置点的第一定位信息和第一位置点的第一定位质量参考信息,第一位置点不在第一行驶区域内;根据第一定位质量参考信息生成第二定位质量指示信息,第二定位质量指示信息用于指示第二行驶区域内的定位质量;根据第一定位信息生成第二关联关系指示信息,第二关联关系指示信息用于指示第二行 驶区域与地图中的至少一个地图元素之间的关联关系;将第二定位质量指示信息和第二关联关系指示信息添加入地图中。
实施上述实现方式,还可以采集新的位置点,即第一位置点,且新的位置点不位于第一行驶区域内,在此情况下,可以基于新的位置点的定位信息和定位质量参考信息生成指示第二行驶区域的定位质量的第二定位质量指示信息以及指示第二行驶区域与地图中地图元素之间的映射关系的第二关联关系指示信息,丰富了地图的内容,使得地图提供定位质量指示信息和关联关系指示信息更加完整详细。
在第一方面的一种实现方式中,该方法还包括:获得第二多个定位质量参考信息,第二多个定位质量参考信息包括第一多个定位质量参考信息的更新值,或者第二多个位置点的多个定位质量参考信息,第二多个位置点位于第一行驶区域内;根据第一多个定位质量参考信息和第二多个定位质量参考信息生成第三定位质量指示信息;使用第三定位质量指示信息更新地图中的第一定位质量指示信息。
其中,第二多个定位质量参考信息包括第一多个定位质量参考信息的更新值,或者第二多个位置点的多个定位质量参考信息可以是下述任意一种:(1)第二多个定位质量参考信息为第一多个定位质量参考信息的更新值;(2)第二多个定位质量参考信息为第二多个位置点的多个定位质量参考信息,第二多个位置点位于第一行驶区域内;(3)第二多个定位质量参考信息包括第一多个定位质量参考信息的更新值和第二多个位置点的多个定位质量参考信息。
实施上述实现方式,由于季节变化、气候变化等会影响行驶区域旁树木、植被等的生成分布情况,故生成的第一定位质量指示信息在经过一段时间后可能不再准确,在此情况下,还可以获得一组新的定位质量参考信息,即第二多个定位质量参考信息,结合该组新的定位质量参考信息对地图中的第一定位指示信息进行更新,由此提高了地图对周围环境变化的适用性,提高了该地图的参考价值。
在第一方面的一种实现方式中,第一行驶区域内的定位质量为根据第一多个定位质量参考信息得到的统计值。
在第一方面的一种实现方式中,定位质量参考信息包括每个定位信息相对于参考真值的误差、每个定位信息是否为固定解、每个定位信息的定位精度、每个位置点处可观测的卫星颗数或者每个定位信息的精度因子DOP值。
其中,每个定位信息相对于参考真值的误差越小,则该定位信息处的定位质量越好;平每个位置点处可观测的卫星颗数越多,则该位置处的定位质量越好;精度因子DOP值用于度量卫星相对于观测者(例如,采集位置点的数据采集车)的几何位置所造成的误差量,每个定位信息的精度因子DOP值越小,则该定位信息处的定位质量越好;定位信息为固定解时的定位质量优于定位信息为非固定解时的定位质量,定位信息为固定解是指基于载波相位解算出该定位信息时对应的模糊度为整数。
第二方面,本申请实施例提供了一种地图使用方法,该方法包括:接收地图中的定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或者车道;根据定位质量指示信息和关联关系指示信息进行路径规划、驾驶决策或者车辆控制。
上述方法中,提供了一种包含定位质量指示信息和关联关系指示信息的地图,使得终端 基于该地图能及时避开定位质量较差的行驶区域,从而在定位质量较好的行驶区域(例如,道路、车道等)内行驶,即可获得准确的定位位置信息,有利于提高路线规划、驾驶决策等的准确率以及出行安全率。
在第二方面的一种实现方式中,定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
在第二方面的一种实现方式中,关联关系指示信息为至少一个地图元素的标识。
在第二方面的一种实现方式中,关联关系指示信息包括第一行驶区域的标识和至少一个地图元素的标识。
在第二方面的一种实现方式中,该方法还包括:接收低质量定位区域指示信息,低质量定位区域指示信息用于指示第一行驶区域内的第一地图元素,第一地图元素为至少一个地图元素中的一个地图元素,第一地图元素为区域、道路或者车道,且第一地图元素内存在定位质量低于阈值的至少一个位置点;根据低质量定位区域指示信息进行路径规划、驾驶决策或者车辆控制。
实施上述实现方式,地图使用者根据低质量定位区域指示信息可快速知晓地图中定位质量较差的地图元素,从而在做驾驶决策、路径规划等过程中可以自主地避开地图中定位质量较差的区域、道路或车道,有利于提高了路径规划、驾驶决策等操作的准确率。
在第二方面的一种实现方式中,第一行驶区域内的定位质量为根据第一行驶区域内多个定位点的多个定位质量参考信息得到的统计值。
第三方面,本申请实施例提供了一种地图生成装置,该装置包括:获取单元,用于获得第一多个位置点的多个定位信息和第一多个位置点的第一多个定位质量参考信息;统计单元,用于根据第一多个定位质量参考信息生成第一定位质量指示信息,第一定位质量指示信息用于指示第一行驶区域内的定位质量;关联单元,用于根据多个定位信息生成第一关联关系指示信息,第一关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间关联关系,地图元素包括区域、道路或者车道;处理单元,用于将第一定位质量指示信息和第一关联关系指示信息添加入地图中。
通常情况下,地图由服务器生成,则该地图生成装置可以为地图服务器,或者可以为地图服务器中的部件或者芯片。此外,地图也可能由路侧设备、车辆或者移动终端生成,则该地图生成装置还可以为该路侧设备、车辆或者移动终端,或者为路侧设备、车辆或者移动终端的部件或者芯片。
在第三方面的一种实现方式中,第一定位质量指示信息包括多个定位信息相对于参考真值的误差标准差、多个定位信息中固定解的比率、多个定位信息中定位精度满足要求的定位信息的比率、第一多个位置点的平均可观测卫星颗数或者多个定位信息的平均精度因子DOP值。
在第三方面的一种实现方式中,第一关联关系指示信息为至少一个地图元素的标识。
在第三方面的一种实现方式中,第一关联关系指示信息包括第一行驶区域的标识和至少一个地图元素的标识。
在第三方面的一种实现方式中,统计单元,还用于根据第一多个定位质量参考信息生成低质量定位区域指示信息,低质量定位区域指示信息用于指示第一行驶区域内的第一地图元 素,第一地图元素为至少一个地图元素中的一个地图元素,第一地图元素为区域、道路或者车道,且第一地图元素内存在定位质量低于阈值的至少一个位置点;处理单元,还用于将低质量定位区域指示信息添加入地图中。
在第三方面的一种实现方式中,获取单元,还用于获得第一位置点的第一定位信息和第一位置点的第一定位质量参考信息,第一位置点不在第一行驶区域内;统计单元,还用于根据第一定位质量参考信息生成第二定位质量指示信息,第二定位质量指示信息用于指示第二行驶区域内的定位质量;关联单元,还用于根据第一定位信息生成第二关联关系指示信息,第二关联关系指示信息用于指示第二行驶区域与地图中的至少一个地图元素之间的关联关系;处理单元,还用于将第二定位质量指示信息和第二关联关系指示信息添加入地图中。
在第三方面的一种实现方式中,获取单元,还用于获得第二多个定位质量参考信息,第二多个定位质量参考信息包括第一多个定位质量参考信息的更新值,或者第二多个位置点的多个定位质量参考信息,第二多个位置点位于第一行驶区域内;统计单元,还用于根据第一多个定位质量参考信息和第二多个定位质量参考信息生成第三定位质量指示信息;处理单元,还用于使用第三定位质量指示信息更新地图中的第一定位质量指示信息。
第四方面,本申请实施例提供了一种地图使用装置,该装置包括:接收单元,用于接收地图中的定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间关联关系,地图元素包括区域、道路或者车道;处理单元,用于根据定位质量指示信息和关联关系指示信息进行路径规划、驾驶决策或者车辆控制。
该地图使用装置可以为车辆,也可以为可使用于车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。
该地图使用装置可以为便携终端,例如手机、便携电脑或导航仪,也可以为可使用于便携终端内的部件,还可以为可使用于便携终端内的芯片。
在第四方面的一种实现方式中,定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
在第四方面的一种实现方式中,关联关系指示信息为至少一个地图元素的标识。
在第四方面的一种实现方式中,关联关系指示信息包括第一行驶区域的标识和至少一个地图元素的标识。
在第四方面的一种实现方式中,接收单元,还用于接收低质量定位区域指示信息,低质量定位区域指示信息用于指示第一行驶区域内的第一地图元素,第一地图元素为至少一个地图元素中的一个地图元素,第一地图元素为区域、道路或者车道,且第一地图元素内存在定位质量低于阈值的至少一个位置点;处理单元,还用于根据低质量定位区域指示信息进行路径规划、驾驶决策或者车辆控制。
在第四方面的一种实现方式中,第一行驶区域内的定位质量为根据第一行驶区域内多个定位点的多个定位质量参考信息得到的统计值。
第五方面,本申请实施例提供了一种地图,该地图包括定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或 者车道。
上述定位质量指示信息和关联关系指示信息在地图中可以以地图图层的形式存在。
上述地图中定位质量指示信息提供了具有参考价值的、可信度高的行驶区域的定位质量,地图中的关联关系指示信息指示了地图中地图元素对应的行驶区域,从而上述地图能为地图的使用者提供更准确的地图中地图元素的定位质量的先验信息。
在第五方面的一种实现方式中,该地图还包括时间信息,时间信息用于指示第一行驶区域内的定位质量的有效时间。
实施上述实现方式,时间信息的引入,充分考虑了周围环境(例如,植被随季节、气候的变化而变化)对定位质量的影响,基于时间信息限定行驶区域内的定位质量的有效时间,提高了行驶区域内的定位质量的可信度和可参考价值。
在第五方面的一种实现方式中,定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
在第五方面的一种实现方式中,第一行驶区域内的定位质量是根据第一行驶区域内多个定位点的多个定位质量参考信息得到的统计值。
第六方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质用于存储地图,该地图包括定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或者车道。
上述定位质量指示信息和关联关系指示信息在地图中可以以地图图层的形式存在。在第六方面的一种实现方式中,该地图还包括时间信息,时间信息用于指示第一行驶区域内的定位质量的有效时间。
在第六方面的一种实现方式中,定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
在第六方面的一种实现方式中,第一行驶区域内的定位质量是根据第一行驶区域内多个定位点的多个定位质量参考信息得到的统计值。
第七方面,本申请实施例提供了一种计算机程序产品,该计算机程序产品包括地图,该地图包括定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或者车道。
上述定位质量指示信息和关联关系指示信息在地图中可以以地图图层的形式存在。
在第七方面的一种实现方式中,该地图还包括时间信息,时间信息用于指示第一行驶区域内的定位质量的有效时间。
在第七方面的一种实现方式中,定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
在第七方面的一种实现方式中,第一行驶区域内的定位质量是根据第一行驶区域内多个定位点的多个定位质量参考信息得到的统计值。
第八方面,本申请实施例提供了一种地图使用方法,该方法包括:接收地图,所述地图包括定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或者车道;存储地图,或者,在显示装置上显示地图。
上述方法中,将接收的地图进行存储以便后续时可以随时快速调用,将地图显示在显示装置上,可供用户直观清晰地了解地图中各地图元素的定位质量。
在第八方面的一种实施方式中,根据定位质量指示信息和关联关系指示信息进行导航路线规划、驾驶决策或车辆控制。
实施上述方式,基于定位质量指示信息和关联关系指示信息,可快速知晓地图中各个行驶区域的定位质量,从而在行驶过程中及时避开定位质量较差的行驶区域,而在定位质量较好的区域行驶,有利于提高导航路径规划、驾驶决策或车辆控制的准确率。
在第八方面的一种实施方式中,定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
第九方面,本申请实施例提供了一种地图使用装置,该装置包括:接收单元,用于接收地图,所述地图包括定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或者车道;存储单元,用于存储地图,或者,显示单元,用于显示地图。
该地图使用装置可以为车辆,也可以为可使用于车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。
该地图使用装置可以为便携终端,例如手机、便携电脑或导航仪,也可以为可使用于便携终端内的部件,还可以为可使用于便携终端内的芯片。在第九方面的一种实施方式中,所述装置还包括处理单元,用于根据定位质量指示信息和关联关系指示信息进行导航路线规划、驾驶决策或车辆控制。
在第九方面的一种实施方式中,定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
第十方面,本申请实施例提供了一种地图生成装置,该装置包括处理器和存储器,处理器和存储器通过总线连接或者耦合在一起;其中,存储器用于存储程序指令;所述处理器调用所述存储器中的程序指令,以执行第一方面或者第一方面的任一可能的实现方式中的方法。通常情况下,地图由服务器生成,则该地图生成装置可以为地图服务器,或者可以为地图服务器中的部件或者芯片。此外,地图也可能由路侧设备、车辆或者移动终端生成,则该地图生成装置还可以为该路侧设备、车辆或者移动终端,或者为路侧设备、车辆或者移动终端的部件或者芯片。
第十一方面,本申请实施例提供了一种地图使用装置,该装置包括处理器和存储器,处理器和存储器通过总线连接或者耦合在一起;其中,存储器用于存储程序指令;所述处理器调用所述存储器中的程序指令,以执行第二方面或者第二方面的任一可能的实现方式中的方法。该地图使用装置可以为车辆,也可以为可使用于车辆内的部件(如车辆内的导航装置或 者自动驾驶装置),还可以为可使用于车辆内的芯片。该地图使用装置可以为便携终端,例如手机、便携电脑或导航仪,也可以为可使用于便携终端内的部件,还可以为可使用于便携终端内的芯片。
第十二方面,本申请实施例提供了一种地图使用装置,该装置包括处理器和存储器,处理器和存储器通过总线连接或者耦合在一起;其中,存储器用于存储程序指令;所述处理器调用所述存储器中的程序指令,以执行第八方面或者第八方面的任一可能的实现方式中的方法。该地图使用装置可以为车辆,也可以为可使用于车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。该地图使用装置可以为便携终端,例如手机、便携电脑或导航仪,也可以为可使用于便携终端内的部件,还可以为可使用于便携终端内的芯片。
第十三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储用于装置执行的程序代码,所述程序代码包括用于执行第一方面或者第一方面的任一可能的实现方式中的方法的指令。
第十四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储用于装置执行的程序代码,所述程序代码包括用于执行第二方面或者第二方面的任一可能的实现方式中的方法的指令。
第十五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储用于装置执行的程序代码,所述程序代码包括用于执行第八方面或者第八方面的任一可能的实现方式中的方法的指令。
第十六方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品被处理器执行时,实现上述第一方面或者第一方面的任一可能的实现方式中的方法。该计算机程序产品,例如,可以为一个软件安装包,在需要使用前述第一方面的任一种可能的设计提供的方法的情况下,可以下载该计算机程序产品并在处理器上执行该计算机程序产品,以实现第一方面或者第一方面的任一可能的实施例中的所述方法。
第十七方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品被处理器执行时,实现上述第二方面或者第二方面的任一可能的实现方式中的方法。该计算机程序产品,例如,可以为一个软件安装包,在需要使用前述第二方面的任一种可能的设计提供的方法的情况下,可以下载该计算机程序产品并在处理器上执行该计算机程序产品,以实现第二方面或者第二方面的任一可能的实施例中的所述方法。
第十八方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品被处理器执行时,实现上述第八方面或者第八方面的任一可能的实现方式中的方法。该计算机程序产品,例如,可以为一个软件安装包,在需要使用前述第八方面的任一种可能的设计提供的方法的情况下,可以下载该计算机程序产品并在处理器上执行该计算机程序产品,以实现第八方面或者第八方面的任一可能的实施例中的所述方法。
第十九方面,本申请实施例提供了一种车辆,该车辆包括如上述第四、九、十一或十二方面的地图使用装置,或者包括如上述第四、九、十一或十二方面的任一可能的实现方式的地图使用装置。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种系统架构示意图;
图2是一种高精地图的区域示意图;
图3是一种高精地图的道路示意图;
图4是一种高精地图的道路-车道示意图;
图5是本申请实施例提供的一种定位质量指示信息的更新方法流程图;
图6本申请实施例提供的一种地图生成的方法流程图;
图7是本申请实施例提供的又一种地图使用的方法流程图;
图8是本申请本实施例提供的一种应用场景示意图;
图9是本申请本实施例提供的一种地图生成装置的结构示意图;
图10是本申请本实施例提供的一种地图使用装置的结构示意图;
图11是本申请本实施例提供的一种地图生成装置的功能结构示意图;
图12是本申请本实施例提供的一种地图使用装置的功能结构示意图。
具体实施方式
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。本申请实施例中的说明书和权利要求书中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
高精地图是自动驾驶的辅助地图。高精地图显示了区域、道路和车道,其中,车道可以是上游车道或下游车道,每个车道有唯一的车道ID,每段道路包括多条车道,每段道路有唯一的道路ID,每个区域包括多段道路,每个区域有唯一的区域ID。高精地图中还包括路口,路口可以是交叉路口,路口内也有道路和车道。另外,高精地图中还显示了道路与道路之间的连接关系以及车道与车道之间的连接关系。需要说明的是,高精地图中每个区域有对应的区域范围,例如,区域的四个角点的位置坐标(例如,经纬度坐标)可以确定该区域的区域范围;每个道路有对应的道路范围,例如,道路的起点坐标和道路的终点坐标可以确定该段道路的道路范围,道路的起点坐标和终点坐标还可以确定该道路的道路中心线;每个车道有对应的车道范围,例如,车道的起点坐标和车道的终点坐标可以确定该条车道的车道范围,车道的起点坐标和终点坐标等还可以确定该车道的车道中心线;每个路口有对应的路口范围,例如,路口的多个角点的位置坐标(例如,经纬度坐标)确定该路口的路口范围。除此之外,高精地图中还显示了道路的坡度、曲率、航向等参数。
高精地图的生成依赖于位置点的定位数据,由于采集的定位数据的质量容易受到周围环境(例如,高楼和树木等)、卫星遮挡等影响,例如,道路旁的高楼、树木等越多,导致卫星信号的遮挡越严重,则在该道路上采集到的定位数据存在的偏差越大,定位数据的质量也越低。因此,在高精地图中不同地图元素(例如,道路、车道等)上获得的定位数据的质量是高低不一的。若在自动驾驶过程中使用高精地图中质量较低的定位数据,则定位不准容易造成导航路线发生偏差,甚至影响车辆的行驶安全。
针对上述问题,本申请实施例提出一种地图生成方法,能为地图中各行驶区域的定位质 量的衡量提供了参考性强、可信度高的先验信息,使得使用地图的车辆或者便携终端能够选择性的使用高精地图中的定位信息,例如,自主选择了定位质量较好的行驶区域行驶而避开了该定位质量较差的行驶区域,提高了自动驾驶的安全性。
下面将结合附图,对本申请中的技术方案进行描述。
参见图1,图1示例性地给出了一种系统架构图。该系统用于生成定位质量指示信息和关联关系指示信息,或者,包含定位质量指示信息和关联关系指示信息的地图。定位质量指示信息用于指示地图中行驶区域的定位质量,关联关系指示信息用于指示地图中的行驶区域与参考地图(例如,高精地图)中的区域、道路或车道之间的映射关系。如图1所示,该系统包括数据采集设备、制图设备和终端,其中,数据采集设备和制图设备可以通过无线或有线的方式进行连接,制图设备与终端可以通过无线的方式进行连接。
数据采集设备一般安装于数据采集车上,数据采集设备用于采集生成定位质量指示信息所需的原始数据。数据采集设备可以是RTK设备,RTK设备包括GPS和GNSS中的任意一种,基于RTK测量方式获得轨迹点的定位信息。例如,RTK设备可用于记录其所在的数据采集车在各个车道内行驶时采集到的各个位置点的位置信息和各个位置点的质量信息。
制图设备用于根据多个位置点的多个位置信息、多个位置点的多个质量信息生成定位质量指示信息和关联关系指示信息,以及将定位质量指示信息和关联关系指示信息添加至参考地图(例如,高精地图)中。制图设备可以是具有计算功能的设备,例如:计算机、服务器、多接入边缘计算(Multi-Acess Edge Computing,MEC)等。
终端可以是车辆,例如,普通车辆或自动驾驶车辆,车辆可以泛指小轿车、汽车、旅游大巴车、自行车、三轮车、电动车、摩托车、货车等,车辆也可以是电动汽车、混合动力汽车、增程式电动汽车、插电式混合动力汽车等。除此之外,终端还可以是路侧单元(Road Side Unit,RSU)、车载单元(On board Unit,OBU)、便携移动设备(例如,手机、平板等),或者便携移动设备的部件、芯片等可以与制图设备通信的其他传感器或设备,本申请实施例不做具体限定。
需要说明的是,图1仅为示例性架构图,但不限定图1所示系统包括的网元的数量。虽然图1未示出,但除图1所示的功能实体外,图1还可以包括其他功能实体。另外,本申请实施例提供的方法可以应用于图1所示的通信系统,当然本申请实施例提供的方法也可以适用其他通信系统,本申请实施例对此不予限制。
需要说明的是,上述参考地图除了可以是高精地图外,还可以是包含区域、道路或车道其他类型的地图,本申请不做具体限定。为了叙述方便,下述中参考地图不妨以高精地图为例,但并不限定参考地图仅为高精地图。
首先,先介绍下位置点和用于描述行驶区域的定位质量的几个指标。
在生成定位质量指示信息之前,需先获得多个位置点,其中,这多个位置点是安装有RTK设备的数据采集车预先在高精地图所示的各个车道上行驶时采集到的。每个位置点有对应的位置信息和质量信息,其中,位置点的位置信息(也可以称作定位信息)用于指示位置点在高精地图中的位置,位置点的位置信息包括经度坐标、纬度坐标和高程坐标;位置点的质量信息(也可以称作定位质量参考信息)包括位置点处可观测的卫星颗数、位置点的精度因子 (Dilution of Precision,DOP)值、位置点的位置信息是否为固定解、位置点相对于真值在东、北和垂直三个方向上的偏移量等中的一种或多种,位置点的质量信息可用于衡量高精地图中该位置点处的定位质量。
需要说明的是,高精地图包括至少一个地图元素,地图元素为高精地图中的区域、道路或车道,每个地图元素有对应的ID标识,例如,区域由区域ID表示,道路由道路ID表示,车道由车道ID表示,其中,区域ID用于区分高精地图中不同的区域,一个区域ID与至少一个道路ID对应;道路ID用于区分高精地图中不同的道路,一个道路ID与至少一个车道ID对应;车道ID用于区分高精地图中不同的车道。而定位质量指示信息中包括至少一个行驶区域,行驶区域为定位质量指示信息中的区域、道路或车道。且定位质量指示信息中的行驶区域与高精地图中的地图元素之间具有关联关系。具体可参考下述定位质量指示信息中内容表示这一部分的相关描述,在此不再赘述。
具体地,对于定位质量指示信息中的任一行驶区域A(例如,区域、道路或车道),在定位质量指示信息中设置有下述指标中的一种或多种来表示该行驶区域的定位质量,下面具体描述5个指标:
(1)平均定位精度
平均定位精度用于表示行驶区域内的多个位置点相对于参考真值的误差标准差,具体地,即多个位置点相对于参考真值在水平和垂直两个方向上的定位误差的标准差。平均定位精度可用于衡量终端在行驶区域上的定位质量,具体地,平均定位精度越小,即平均定位误差越小,则终端在该行驶区域上的定位越准确。平均定位精度可表示为(σ H,σ V),其中,σ H表示水平平均定位精度,σ V表示垂直平均定位精度。需要说明的是,每个位置点对应的参考真值可以是组合导航设备或者RTK监测设备提供的,本申请实施例不做具体限定。
平均定位精度的计算公式表示成公式(1):
Figure PCTCN2022085759-appb-000001
其中,M表示定位质量指示信息中行驶区域A对应的位置点的数量,σ E表示行驶区域A对应的位置点相对于参考真值在东方向的平均偏移量,σ N表示行驶区域A对应的位置点相对于参考真值在北方向的平均偏移量,e i表示行驶区域A对应的第i个位置点对于参考真值在东方向的偏移量,n i表示行驶区域A对应的第i个位置点对于参考真值在北方向的偏移量,u i表示行驶区域A对应的第i个位置点对于参考真值在垂直方向的偏移量,σ V表示行驶区域A对应的位置点相对于参考真值在垂直方向的平均偏移量。
需要说明的是,上述公式(1)指示一种示例,平均定位精度的表达公式还可以是其他形式,例如,在一些可能的实施例中,上述公式(1)中的参数M也可以无需进行开根号处理, 本申请实施例不做具体限定。
(2)平均卫星颗数
平均卫星颗数用于表示行驶区域内的多个位置点的平均可观测卫星颗数,平均卫星颗数可用于衡量终端在行驶区域上的定位质量,具体地,平均卫星颗数越大,则终端在该行驶区域上的定位越准确。
平均卫星颗数的计算公式可表示为公式(2):
Figure PCTCN2022085759-appb-000002
其中,Avg satnum表示行驶区域A的平均卫星颗数,M表示RTK信息层中行驶区域A对应的位置点的数量,s i表示行驶区域A对应的第i个位置点的可观测卫星的数量。
需要说明的是,位置点对应的可观测卫星可以是全球定位系统(Global Positioning System,GPS)、全球导航卫星系统(Global Navigation Satellite System,GNSS)、北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)、俄国的格洛纳斯GLONASS系统、欧洲的伽利略卫星定位GALILEO系统中至少一种系统的卫星。
(3)平均精度因子DOP值
平均精度因子DOP值表示行驶区域内多个位置点的DOP值的平均值。平均DOP值可用于衡量行驶区域的定位质量,具体地,平均DOP值越小,则终端在该行驶区域上的定位越准确。
平均DOP值的计算公式可表示为公式(3):
Figure PCTCN2022085759-appb-000003
其中,Avg dop表示行驶区域A的平均DOP值,M表示RTK信息层中行驶区域A对应的位置点的数量,dop i表示行驶区域A对应的第i个位置点的DOP值。
需要说明的是,DOP值又可称精密值强弱度、精度稀释因子等,由于测量成果的好坏与被测量的人造卫星和信号接收设备之间的几何形状有关,故DOP值用于度量卫星相对于观测者(例如,采集位置点的数据采集车)的几何位置所造成的误差量,因此,DOP值越小,意味着天空中卫星分布程度越好,终端在行驶区域上的定位越准确。在一些可能的实施例中,DOP值可以是位置精度因子(Position Dilution of Precision,PDOP),表示位置点的纬度、经度和高程的误差平方和的开根号值。
(4)固定率
固定率表示行驶区域内的多个位置点的位信息中固定解的比率,即行驶区域内的固定解个数与该行驶区域内的位置点总数的比率。固定率可用于衡量行驶区域的定位质量,具体地,固定率越高,则终端在该行驶区域上的定位越准确。需要说明的是,位置点为固定解是基于载波相位解算出该位置点时对应的模糊度为整数,位置点是否为固定解是已知的。
固定率的计算公式可表示为公式(4):
Figure PCTCN2022085759-appb-000004
其中,η fix表示行驶区域A的固定率,M表示RTK信息层中行驶区域A对应的位置点的 数量,P fix表示行驶区域A对应的位置点为固定解的数量。
(5)精度覆盖率
精度覆盖率表示行驶区域内的多个位置点中定位精度满足预设精度要求的位置点的比率。精度覆盖率可也用于衡量行驶区域的定位质量,具体地,精度覆盖率越高,则终端在该行驶区域上的定位越准确。
精度覆盖率的计算公式可表示为公式(5):
Figure PCTCN2022085759-appb-000005
其中,φ表示行驶区域A的精度覆盖率,M表示行驶区域A对应的位置点的数量,N表示行驶区域A内位置点的定位精度满足预设精度要求的位置点的数量。
例如,假设预设精度要求为[≤T h,≤T v],其中,T h表示水平定位误差的门限值,T v表示垂直定位误差的门限值。若位置点1为行驶区域A对应的位置点中的任意一个,位置点1相对于参考真值在东方向、北方向和垂直方向的偏移量分别为e 1、n 1和u 1,计算位置点1的定位精度获得
Figure PCTCN2022085759-appb-000006
其中,
Figure PCTCN2022085759-appb-000007
表示位置点1的水平定位精度,|u 1|表示位置点1的垂直定位精度,所谓位置点1满足预设精度要求是指:
Figure PCTCN2022085759-appb-000008
且|u 1|≤T v
下面不妨以行驶区域A为上述定位质量指示信息中的车道id1为例说明定位质量指示信息中车道的定位质量的获得过程。假设定位质量指示信息中的车道id1与高精地图中的车道ID1对应(即一对一),车道ID1对应的位置点的个数为20个,其中,有16个位置点是固定解,有14个位置点满足上述预设精度要求,则定位质量指示信息中车道id1对应的位置点即为高精地图中车道ID1对应的轨迹点,基于上述公式(1)可知车道id1的平均定位精度为
Figure PCTCN2022085759-appb-000009
基于上述公式(2)可知车道id1的平均卫星颗数为
Figure PCTCN2022085759-appb-000010
基于上述公式(3)可知车道id1的平均DOP值为
Figure PCTCN2022085759-appb-000011
基于上述公式(4)可知车道id1的固定率为
Figure PCTCN2022085759-appb-000012
基于上述公式(5)可知车道id1的精度覆盖率为
Figure PCTCN2022085759-appb-000013
同理,还可以根据上述公式(1)-(5)可分别获得第一图层中任一道路id或任一区域id的平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率,为了说明书的简洁,在此不再赘述。
下面具体介绍定位质量指示信息中的具体内容,定位质量指示信息的内容表示可分为下述三个部分:
需要说明的是,定位质量指示信息用于指示行驶区域的定位质量,定位质量指示信息中的行驶区域可以与高精地图中的至少一个地图元素之间存在关联关系,该关联关系承载于生成的关联关系指示信息中。地图元素为高精地图中的区域、道路或车道。高精地图中的地图元素有对应的标识,例如,高精地图中的区域可用区域ID表示,高精地图中的道路可用道路ID表示,高精地图中的车道可用车道ID表示。
一具体实施中,行驶区域的标识可以是与该行驶区域对应的地图元素的标识。另一具体实施中,行驶区域的标识也可以是新建立的,例如,行驶区域为区域时,可用区域id表示;行驶区域为道路时,可用道路id表示;行驶区域为车道时,可用车道id表示。
第一部分:区域级的内容表示
具体地,在定位质量指示信息中建立了区域id,区域id指示的区域为定位质量指示信息中的一个行驶区域。区域id与高精地图中的车道ID是一对一的映射关系。另一具体实施中,区域id可以与高精地图中的区域ID相同。区域id指示的区域即为与该区域id对应的高精地图中区域ID指示的区域。定位质量指示信息中还包括区域id的定位质量信息,其中,区域id的定质量信息包括平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率中的一种或多种。区域id的定位质量信息是根据区域id内的多个位置点的质量信息获得的统计值。
参见图2,图2是一种高精地图中的区域划分示意图,可以看出,高精地图经一次十字划分获得四个区域,以顺时针的方式对这四个区域进行编号,则这四个区域的区域ID分别为1-00、1-01、1-10和1-11。根据位置点的位置信息和高精地图中每个区域的区域范围可确定每个区域ID对应的轨迹点。需要说明的是,高精地图中每个区域的区域范围可根据该区域的多个角点坐标确定。
基于图2,在定位质量指示信息中建立与图2所示高精地图中区域的标识相同的四个区域id,分别为1-00、1-01、1-10和1-11。以定位质量指示信息中的区域1-00为例,定位质量指示信息中区域1-00内的位置点即为图2中区域1-00的位置点,根据定位质量指示信息中区域1-00对应的多个位置点的质量信息集合上述公式(1)-(5)可分别获得定位质量指示信息中区域1-00对应的平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率。故与图2对应的定位质量指示信息中区域级的信息存储结构可表示为表1所示样子,如表1所示,表1中设置了区域id(例如,1-00、1-01、1-10和1-11),区域id对应的平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率。
表1
Figure PCTCN2022085759-appb-000014
可以看出,表1中所示的区域id与高精地图中的区域ID是相同的。在一些可能的实施例中,RTK信息层中的建立的区域id与高精地图中的区域ID不同,在此情况下,可以在表1中添加区域id与高精地图中区域ID之间的对应关系,例如,区域id“1”与高精地图中的区域ID“1-00”对应,即说明定位质量指示信息中的区域id“1”指示高精地图中的区域1-00。
在一些可能的实施例中,表1中还可以存储每个区域id对应的位置点的编号、轨迹点的位置信息(例如,经、纬度坐标)以及位置点的质量信息(例如,卫星颗数、DOP值等),本申请实施例不做具体限定。
第二部分:道路级的内容表示
一具体实施中,在定位质量指示信息中建立了道路id,道路id指示的道路可称作定位质量指示信息中的一个行驶区域。定位质量指示信息中的道路id可以与高精地图中的道路 ID存在关联关系。定位质量指示信息中还包括道路id的定位质量信息,其中,道路id的定质量信息包括平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率中的一种或多种。道路id的定位质量信息是根据道路id内的多个位置点的质量信息获得的统计值。
在定位质量指示信息中的道路id与高精地图中的多个道路ID对应时,有利于提高统计获得的定位质量信息的参考性、准确率,这是因为高精地图中的各段道路的长度长短不一,在位置点的采样频率以及数据采集车的车速一定的情况下,道路的长度越短,则在该道路上采集到的位置点的数量就越少。若某段道路对应的位置点稀少,则基于稀少的几个位置点不能较好地评估该段道路的定位质量,而定位质量指示信息中道路id与高精地图中的多个道路ID对应,相当于指示了高精地图中的多段道路,可有效增加参与道路id的定位质量评估的位置点的数量。
可以理解,在道路id对应高精地图中的多个道路ID时,道路id的定位质量信息可以是与该道路id对应的多个道路ID中的任一个道路ID的定位质量信息。
参见图3,图3是一种高精地图中某区域内的道路的显示图,图3中示出了9段道路,且各段道路长度不一,9段道路形成了两条道路连接线路,其中,道路连接线路1由道路1、道路2、道路3和道路4组成,具体地,道路1与道路2连接,道路2与道路3连接,道路3与道路4连接;道路连接线路2由道路5、道路6、道路7、道路8和道路9组成,具体地,道路5与道路6连接,道路6与道路7连接,道路7与道路8连接,道路8与道路9连接,道路3和道路8位于同一路口面内。
基于图3,假设建立了4个道路id,分别为a1、a2、a3和a4,其中,道路a1用于指示高精地图中的道路1和道路2,道路a2用于指示高精地图中的道路3和道路4,道路a3用于指示高精地图中的道路5、道路6和道路7,道路a4用于指示高精地图中的道路8和道路9。
可以根据各位置点的位置信息确定了每个位置点对应的道路ID,基于道路ID与定位质量指示信息中道路id之间的映射关系确定了各个道路id对应的位置点,则基于上述公式(1)-(5)以及每个道路id对应的位置点的质量信息可分别获得每个道路id对应的定位质量信息。因此,与图3对应的第一图层中道路级的具体内容可参考表2,如表2所示,表2中设置了道路id(例如,a1、a2、a3和a4)、道路id与高精地图中道路ID的对应关系(例如,a1与高精地图中的道路1和道路2对应)、道路id对应的平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率。在一些可能的实施例中,表2中可以存储道路id对应的位置点,道路id对应的位置点的数量为该道路id对应的各道路ID对应的位置点的数量之和。
表2
Figure PCTCN2022085759-appb-000015
Figure PCTCN2022085759-appb-000016
在一些可能的实施例中,定位质量指示信息中的道路id与高精地图中道路ID之间的对应关系为多对一,也就是说,定位质量指示信息中的多个道路id与高精地图中的同一道路ID对应。例如,假设定位质量指示信息中的道路a1和道路a2均与高精地图中的道路2对应,可以理解为,道路a1包括道路2的全部且道路a2包括道路2的全部,或者,道路2的一部分属于道路a1且道路2的另一部分属于道路a2。
在一些可能的实施例中,定位质量指示信息中的道路id也可以就是高精地图中的道路ID,或者说,定位质量指示信息中的道路id与高精地图中道路ID之间为一对一的映射关系,本申请实施例不做具体限定。
在一些可能的实施例中,定位质量指示信息中还可以存储道路id对应的起点坐标和终点坐标。
一具体实施中,当道路id与道路ID是一对一时,道路id对应的起点坐标为高精地图中与道路id对应的道路ID的起点坐标,道路id对应的终点坐标为高精地图中与道路id对应的道路ID的终点坐标。例如,假设定位质量指示信息中的道路a1与高精地图中的道路1对应,则存储的道路a1对应的起点坐标为道路1的起点坐标以及道路a1对应的终点坐标为道路1的终点坐标。
另一具体实施中,当道路id与高精地图中的多个道路ID对应时,道路id对应的起点坐标为这多个道路ID中首个道路ID的起点坐标,道路id对应的终点坐标为这多个道路ID中末尾道路ID的终点坐标。例如,参见表2,道路a1与高精地图中的道路1和道路2对应,其中,道路1和道路2连接,且车辆依次通过道路1、道路2,则存储的道路a1对应的起点坐标为道路1的起点坐标以及道路a1对应的终点坐标为道路2的终点坐标。
在一些可能的实施例中,还可以在定位质量指示信息中对高精地图中最低质量位置点所在的道路ID进行标记,以作为定位质量指示信息中的一个特征属性,方便终端可从定位质量指示信息中直接获取高精地图中定位质量较差的道路ID,从而有效避开该道路ID指示的道路,或者避开与该道路ID相关的其他道路ID指示的道路。例如,在确定某道路ID对应的位置点中包含低质量位置点时,则可以在表2中添加“低质量道路ID标记”这一列实现对低质量的道路ID的标记。
具体地,对于每个位置点来说,每个位置点的质量信息是已知的,每个位置点的质量信息包括DOP值、卫星颗数、位置点的位置信息是否为固定解、位置点的位置信息、位置点的位置信息相对于参考真值在东方向、北方向和垂直方向上的偏移量中的一种或多种,基于位置点相对于参考真值在东方向、北方向和垂直方向上的偏移量计算该位置点的定位精度,计算方式可参考上述精度覆盖率的叙述中有关位置点1的定位精度的叙述,在此不再赘述。
判断位置点为最低质量位置点的标准可以是下述任意一种:
标准A:满足DOP值大于预设阈值1、卫星颗数小于预设阈值2、位置点的定位精度大于预设阈值3中的至少一个条件;
标准B:位置点的质量评分大于预设阈值4,其中,位置点的质量评分是对位置点的DOP值、卫星颗数的倒数和位置点的定位精度的加权求和,位置点的定位精度的计算可参考上述 介绍。
例如,位置点的质量评分可表示为公式(6):
Figure PCTCN2022085759-appb-000017
其中,F i表示位置点i的质量评分,dop i表示第i个位置点的DOP值,
Figure PCTCN2022085759-appb-000018
表示位置点i的定位精度,s i表示位置点i的卫星颗数,λ 1、λ 2和λ 3分别表示位置点i的DOP值的权重、位置点i的定位精度的权重和位置点i的卫星颗数对应的权重,λ 1、λ 2和λ 3是基于人工经验预先设置的。
可以看出,在公式(6)中,在
Figure PCTCN2022085759-appb-000019
s i这两个参数不变的情况下,dop i越大,F i越大;在dop i、s i这两个参数不变的情况下,
Figure PCTCN2022085759-appb-000020
越大,F i越大;在
Figure PCTCN2022085759-appb-000021
dop i这两个参数不变的情况下,s i越小,F i越大。可以理解,F i越大,即位置点i的质量评分越高,则位置点i的质量越低。因此,当位置点i的质量评分大于预设阈值4时,则确定位置点i为最低质量位置点。
例如,基于上述任意一种标准判断高精地图中的每个道路ID对应的位置点中是否存在最低质量位置点,假设确定图3中道路6对应的位置点中存在最低质量位置点,则对高精地图中的道路6进行标记。参见表2,即在表2中“低质量道路ID标记”这一列将高精地图中的道路6进行画勾标记。另一具体实施中,对道路6进行低质量道路ID的标记方法还可以是在表2中的“低质量道路ID标记”这一列将高精地图中的道路6的值设置为非空。本申请实施例对表2中低质量道路ID的标记方法不做具体限定。
在一些可能的实施例中,表2中还可以存储高精地图中每个道路ID对应的位置点的编号、位置点的位置信息(例如,经、纬度坐标)以及位置点的质量信息(例如,卫星颗数、DOP值等),本申请实施例不做具体限定。
第三部分:车道级的内容表示
具体地,在定位质量指示信息中建立了车道id,车道id指示的车道可称作定位质量指示信息中的一个行驶区域。定位质量指示信息中的车道id可以与高精地图中的车道ID存在关联关系。定位质量指示信息中还包括车道id的定位质量信息,其中,车道id的定质量信息包括平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率中的一种或多种。车道id的定位质量信息是根据车道id内的多个位置点的质量信息获得的统计值。
参见图4,图4是一种高精地图中道路-车道的示意图,图4中示出了高精地图中的四段道路,分别为道路1、道路2、道路3和道路4,其中,道路1内包括车道11和车道12,道路2内包括车道21和车道22,道路3内包括车道31和车道32,道路4内包括车道41和车道42。另外,车道11与车道21连接,车道12与车道22连接,车道21与车道31连接,车道22与车道32连接,车道31与车道41连接,车道32与车道42连接。
基于图4,在定位质量指示信息中建立了4个车道id,分别为l1、l2、l3和l4,其中,车道l1用于指示高精地图中的车道11和车道21,车道l2用于指示高精地图中的车道12和车道22,车道l3用于指示高精地图中的车道31和车道41,车道l4用于指示高精地图中的车道32和车道42。假设根据各轨迹点的位置信息确定了每个位置点对应的车道ID,基于车道ID与定位质量指示信息中车道id之间的映射关系确定了各个车道id对应的位置点,则基 于上述公式(1)-(5)以及每个车道id对应的位置点的质量信息可分别获得每个车道id对应的定位质量信息。因此,与图4对应的车道级的具体内容可参考表3,如表3所示,表3中设置了车道id(例如,l1、l2、l3和l4)、车道id与高精地图中车道ID的对应关系(例如,l1与高精地图中的车道11和车道21对应)、车道id对应的平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率。在一些可能的实施例中,表3中可以存储车道id对应的位置点,可以理解,车道id对应的位置点的数量为该车道id对应的各车道ID对应的位置点的数量之和。
表3
Figure PCTCN2022085759-appb-000022
在一些可能的实施例中,定位质量指示信息中的车道id与高精地图中车道ID之间的对应关系为多对一,也就是说,定位质量指示信息中的多个车道id与高精地图中的同一车道ID对应。例如,假设定位质量指示信息中的车道c1和车道c2均与高精地图中的车道21对应,可以理解为,车道c1包括车道21的全部且车道c2包括车道21的全部,或者,车道21的一部分属于车道c1且车道21的另一部分属于车道c2。
在一些可能的实施例中,定位质量指示信息中的车道id也可以就是高精地图中的车道ID,或者定位质量指示信息中车道id与高精地图中车道ID之间为一对一的映射关系,本申请实施例不做具体限定。
在一些可能的实施例中,定位质量指示信息中还可以存储车道id对应的起点坐标和终点坐标。一具体实施中,当车道id与车道ID是一一对应时,例如,假设定位质量指示信息中的车道l1与高精地图中的车道11对应,则存储的车道l1对应的起点坐标为车道11的起点坐标以及车道l1对应的终点坐标为车道11的终点坐标。另一具体实施中,当车道id与高精地图中的多个车道ID对应时,例如,参见表2,车道l1与高精地图中的车道11和车道21对应,其中,车道11和车道22连接,且车辆依次通过车道11、车道21,则存储的车道l1对应的起点坐标为车道11的起点坐标以及车道l1对应的终点坐标为车道21的终点坐标。
在一些可能的实施例中,还可以对高精地图中最低质量位置点所在的车道ID进行标记,以作为定位质量指示信息中的一个特征属性,方便终端可从定位质量指示信息中直接获取高精地图中定位质量较差的车道ID,从而有效避开该车道ID指示的车道,或者,与该车道ID相关的其他车道ID指示的车道。例如,在确定某车道ID对应的轨迹点中包含最低质量位置点时,则可以在表3中添加“低质量车道ID标记”这一列实现对低质量的车道ID的标记。
需要说明的是,关于位置点是否为最低质量位置点的判断可参考上述第二部分的相关描述,为了说明书的简洁,在此不再赘述。
例如,基于上述任意一种标准判断高精地图中的每个车道ID对应的位置点中是否存在低质量位置点,假设确定图4中车道21对应的位置点中存在低质量位置点,则在对高精地图中的车道21进行标记。参见表3,即在表3中“低质量车道ID标记”这一列将高精地图中的车道21进行画勾标记。另一具体实施中,对车道21进行低质量车道ID的标记方法还可以是在表3中的“低质量车道ID标记”这一列将高精地图中的车道21的值设置为非空。本申请实施例对表3中低质量车道ID的标记方法不做具体限定。
在一些可能的实施例中,在定位质量指示信息中还可以添加车道id与道路id之间的对应关系、以及道路id与区域id的对应关系。以定位质量指示信息中添加道路id与区域id的对应关系为例,若上述表2中的道路a1与上述好表1中的区域1-00存在对应关系,即说明道路a1指示的高精地图中的道路位于区域1-00指示的高精地图的区域中。
在一些可能的实施例中,表3中还可以存储高精地图中每个车道ID对应的位置点的编号、位置点的位置信息(例如,经、纬度坐标)以及位置点的质量信息(例如,卫星颗数、DOP值等),本申请实施例不做具体限定。
一具体实施中,定位质量指示信息可以按照区域、道路、车道的划分可依次表示为上述表1、表2和表3这三张映射表,一具体实施中,也可以将这三张映射表融合为一张映射表中,本申请实施例不做具体限定。另一具体实施中,对于上述表1、表2和表3中的任意一张表,也可以拆分为多个部分进行表示,不妨以表3为例,可拆分为三个表,第一个表用于存储车道id以及车道id对应的定位质量,第二个表用于存储车道id与高精地图中的车道ID之间的映射关系,第三个表用于存储高精地图中被标记为低质量的车道ID。
可以看到,上述实施例定义了行驶区域(例如,区域、道路或车道)的内容表示结构,使得定位质量指示信息提供的行驶区域的定位质量具有较强的参考价值和可信度,另外,基于行驶区域与高精地图中至少一个地图元素之间的关联关系,使得基于定位质量指示信息能准确地获取高精地图中对应区域、道路或车道的定位质量;且低质量定位区域标记的设置有利于终端快速知晓高精地图中低质量的地图元素(例如,道路或车道),为终端的驾驶决策、导航规划等提供了先验信息。
另外,在满足下述任一种情况下,需采集新的质量信息以实现定位质量指示信息1的更新,其中,定位质量指示信息1是基于历史采集的位置点生成的:
(1)基于历史位置点的质量信息建立的定位质量指示信息1只是包括高精地图中部分区域ID、道路ID或车道ID,也就是说,历史位置点的数据不全导致定位质量指示信息1的内容相较于高精地图有缺失;
(2)随着季节变化、植被生长变化等导致定位质量指示信息1中的定位质量信息不再适用,即定位质量指示信息1中统计获得的定位质量的准确率降低。
其中,新的位置信息可以是历史位置点的质量信息的更新值,也可以是不同于历史位置点的新位置点的质量信息,也可以是包括历史位置点的质量信息的更新值和不同于历史位置点的新位置点的质量信息,本申请实施例不做具体限定。
因此,当发生上述任一种情况下,可以结合新的质量信息和历史的质量信息对定位质量 指示信息1中的内容进行更新。参见图5,图5是本申请实施例提供的一种定位质量指示信息更新的方法流程图,应用于制图设备,该方法包括但不限于以下步骤:
S101、获取定位质量指示信息1和位置点组1。
在本申请实施例中,位置点组1是新采集的位置点数据,位置点组1包括多个位置点,每个位置点有对应的位置信息和质量信息,关于位置点的位置信息和质量信息具体可参考上述实施例中的相关叙述,在此不再赘述。需要说明的是,位置点组1中的各位置点包括再次被采集的位置点和初次被采集的位置点中的一种或多种,本申请实施例不做具体限定。
定位质量指示信息1包括高精地图中地图元素的标识和地图元素对应的定位质量信息,地图元素对应的定位质量信息包括平均定位精度、平均卫星颗数、平均DOP值、固定率和精度覆盖率中的一种或多种。需要说明的是,定位质量指示信息1是预先根据位置点组2生成的,位置点组2包括多个位置点的多个位置信息和多个位置点的质量信息。定位质量指示信息1可以表示为上述表1-表3所示的表格形式,也可以表示为图形,本申请实施例不做具体限定。
一具体实施中,位置点组1可以是数据采集车或数据采集设备发送给制图设备的。定位质量指示信息1可以是预存储在制图设备的存储器中,也可以是制图设备从其他设备(例如,车辆、云服务器等)处获取的。
S102、根据高精地图对位置点组1中的位置点2进行关联,获得高精地图中与位置点2关联的目标地图元素ID。
在本申请实施例,地图元素为高精地图中的区域、道路或车道,因此,目标地图元素ID可以是区域ID、道路ID或车道ID。需要说明的是,位置点组1中的每个位置点有唯一关联的区域ID、道路ID和车道ID。
位置点2为位置点组1中的任一位置点,以位置点2为例说明位置点组1中的每个位置点与高精地图中地图元素的标识的关联过程:
一具体实施中,对于关联的区域ID的确定,将位置点2的位置信息与高精地图中各个区域的区域范围进行比较,确定位置点2在区域ID1的区域范围内,则将位置点2高精地图中的区域ID1关联。
一具体实施中,对于关联的道路ID的确定,根据位置点2的位置信息与高精地图中各个道路的位置信息进行位置关系的判断,在位置点2位于高精地图中的道路ID1的道路范围内时,则将位置点2高精地图中的道路ID1关联。
一具体实施中,对于关联的车道ID的确定,根据位置点2的位置信息与高精地图中各个车道的位置信息进行位置关系的判断,在位置点2位于高精地图中的车道ID1的车道范围内时,则将位置点2高精地图中的车道ID1关联。
S103、判断定位质量指示信息1中是否存在位置点2关联的目标地图元素ID。
在本申请实施例中,判断定位质量指示信息1中是否存在位置点2关联的目标地图元素ID是指:判断定位质量指示信息1中是否存在地图元素ID与位置点2对应的目标地图元素ID相同,若存在,则执行S104;若不存在,则执行S105。
需要说明的是,由S102可知,与位置点2关联的目标地图元素ID可以是区域ID1、道路ID1或车道ID1,则判断定位质量指示信息1中是否存在位置点2关联的目标地图元素ID是指:判断定位质量指示信息1中是否包括区域ID1,或者判断定位质量指示信息1中是否 包括道路ID1,或者判断定位质量指示信息1中是否包括车道ID1。
S104、在定位质量指示信息1中添加目标地图元素ID以及目标地图元素ID对应的定位质量信息。
在本申请实施例中,在定位质量指示信息1中不存在位置点2关联的目标地图元素ID的情况下,即说明定位质量信息1中没有与目标地图元素ID相关的数据,故在定位质量指示信息1中添加目标地图元素ID,并根据与目标地图元素ID关联的位置点的质量信息获得目标地图元素ID对应的定位质量信息,并将目标地图元素ID对应的定位质量信息添加至定位质量指示信息1中。
一具体实施中,当目标地图元素ID为区域ID1时,由于定位质量指示信息1中不包括区域ID1,则在定位质量指示信息1的区域级内容表示中添加区域ID1,例如,在上述表1中“区域id(高精地图的区域ID)”这一列中添加“区域ID1”,并根据上述公式(1)-(5)获得区域ID1对应的定位质量信息,并将区域ID1对应的定位质量信息添加至定位质量指示信息1中。
一具体实施中,当目标地图元素ID为道路ID1时,由于定位质量指示信息1中不包括道路ID1,则在定位质量指示信息1的道路级内容表示中添加道路ID1,例如,在上述表2中“高精地图中道路ID”这一列中添加“道路ID1”。但由于表2中道路id与高精地图中道路ID存在映射关系,所谓在表2中“高精地图中道路ID”这一列中添加“道路ID1”包括下述方式A和方式B:
方式A:在道路ID1与表2中罗列的各个道路ID均没有连接关系时,在表2的“高精地图中道路ID”这一列中添加“道路ID1”后,还可以在表2中为道路ID1新建立一个道路id,例如,道路a5,并将其与道路ID1对应。在此情况下,根据与道路ID1关联的位置点的执行信息以及上述公式(1)-(5)获得道路ID1对应的定位质量信息,并将道路ID1对应的定位质量添加至表2中的相应位置。
方式B:当道路ID1与表2中的某个道路ID(例如,道路1)具有连接关系时,即道路ID1与道路1连接,另外,表2中的道路1与道路a1对应,则可以将“道路ID1”添加至表2的“高精地图中道路ID”这一列中与“道路a1”对应的位置,则意味着,表2中的道路a1与高精地图中的道路a1、道路1和道路2对应。在此情况下,添加道路ID1对应的定位质量信息是指基于位置点2的质量信息以及道路1和道路2各自已关联的历史位置点的质量信息重新计算和更新道路a1对应的定位质量信息。
一具体实施中,当目标地图元素ID为车道ID1时,由于定位质量指示信息1中不包括车道ID1,则在定位质量指示信息1的车道级内容表示中添加车道ID1,例如,在上述表3中“高精地图中车道ID”这一列中添加“车道ID1”。但由于表3中车道id与高精地图中车道ID存在映射关系,所谓在表3中“高精地图中车道ID”这一列中添加“车道ID1”包括下述方式C和方式D:
方式C:在车道ID1与表3中罗列的各个车道ID均没有连接关系时,在表3的“高精地图中车道ID”这一列中添加“车道ID1”后,还可以在表3中为车道ID1新建立一个车道id,例如,车道l5,并将其与车道ID1对应。在此情况下,根据与车道ID1关联的位置点的质量信息以及上述公式(1)-(5)获得车道ID1对应的定位质量信息,并将车道ID1对应的定位质量信息添加至表3中的相应位置。
方式D:当车道ID1与表3中的某个车道ID(例如,车道11)具有连接关系时,即车道ID1与车道11连接,另外,表3中的车道11与车道l1对应,则可以将“车道ID1”添加至表3的“高精地图中车道ID”这一列中与“车道l1”对应的位置,则意味着,表3中的车道l1与高精地图中的车道ID1、车道11和车道21对应。在此情况下,添加车道ID1对应的定位质量信息是指基于位置点2的质量信息以及车道11和车道21各自已关联的历史位置点的质量信息重新计算和更新车道l1对应的定位质量信息。
一具体实施中,定位质量指示信息1中还可以不包括区域ID1、道路ID1和车道ID1中的任意两者,或者,定位质量指示信息1中还可以均不包括区域ID1、道路ID1和车道ID1这三者,本申请实施例不做具体限定。在此情况下,区域ID1、道路ID1和车道ID1中的任意一者不存在于定位质量指示信息1中,可依据上述相应方法进行相关处理。
S105、结合位置点2的质量信息更新定位质量指示信息1中目标地图元素ID对应的定位质量信息。
在本申请实施例中,在定位质量指示信息1中存在位置点2关联的目标地图元素ID的情况下,结合位置点2的质量信息更新目标地图元素ID对应的定位质量信息,具体地,可以根据位置点2的质量信息和目标地图元素ID已关联的历史位置点的质量信息重新计算目标地图元素ID对应的定位质量信息。
需要说明的是,定位质量指示信息1中存在位置点2关联的目标地图元素ID间接说明了:数据采集车在已采集过位置点所在的区域、道路或车道上再次采集了该位置点,而本次采集位置点时周围的植被或对应的季节相较于之前可能发生了变化,也就是说,本次采集获得的轨迹点2的质量信息是更新值。因此,对定位质量指示信息1进行相应的更新能真实地反映当下高精地图中各地图元素的定位质量。
以目标地图元素ID为S101中的区域ID1为例,假设区域ID1为高精地图中的区域1-00,且定位质量指示信息1的区域级内容表示为表1所示样子,则易知表1中存在区域1-00,即定位质量指示信息1中已存在区域ID1,在此情况下,需要结合位置点2的质量信息和区域I-00对应的历史位置点的质量信息对区域1-00对应的定位质量信息进行更新,更新过程中可参考上述公式(1)-(5)。在一些可能的实施例中,若表1中罗列了区域id对应的位置点,还可以将位置点2添加至区域1-00对应的位置点集合中。
以目标地图元素ID为S101中的道路ID1为例,假设区域ID1为高精地图中的道路1,且定位质量指示信息1的道路级内容表示为表2所示样子,则易知表2中存在道路1,即定位质量指示信息1中已存在道路ID1,在此情况下,需要更新道路1对应的定位质量信息,可以理解,道路1对应的定位质量信息等同于表2中道路a1对应的定位质量信息,因此,更新道路1对应的定位质量信息可以是:结合位置点2的质量信息、道路1对应的历史位置点的质量信息和道路2对应的历史位置点的质量信息重新计算道路a1对应的定位质量信息,更新过程中可参考上述公式(1)-(5)。在一些可能的实施例中,在表2中设置有道路ID的定位质量信息时,更新道路1对应的定位质量信息也可以是:根据位置点2的质量信息和道路1对应的历史位置点的质量信息更新道路1的定位质量信息。在一些可能的实施例中,若表2中罗列了道路ID对应的位置点,还可以将位置点2添加至道路1对应的位置点集合中。
以目标地图元素ID为S101中的车道ID1为例,假设车道ID1为高精地图中的车道11,且定位质量指示信息1的车道级内容表示为表3所示样子,则易知表3中存在车道11,即定 位质量指示信息1中已存在车道ID1,在此情况下,需要更新车道11对应的定位质量信息。可以理解,车道11对应的定位质量信息等同于表3中车道l1对应的定位质量信息,因此,更新车道11对应的定位质量信息可以是:结合位置点2的质量信息、车道11对应的历史位置点的质量信息和车道21对应的历史位置点的质量信息重新计算车道l1对应的定位质量信息,更新过程中可参考上述公式(1)-(5)。在一些可能的实施例中,在表3中设置有车道ID的定位质量信息时,更新车道11对应的定位质量信息也可以是:根据位置点2的质量信息和车道11对应的历史位置点的质量信息更新车道11的定位质量信息。在一些可能的实施例中,若表3中罗列了车道ID对应的位置点,还可以将位置点2添加至车道11对应的位置点集合中。
在一些可能的实施例中,定位质量指示信息1中还可以存在区域ID1、道路ID1和车道ID1中的任意两者,或者,定位质量指示信息1中还可以均存在区域ID1、道路ID1和车道ID1这三者,本申请实施例不做具体限定。在此情况下,区域ID1、道路ID1和车道ID1中的任意一者已存在于定位质量指示信息1中,可依据上述相应方法进行相关处理。
可以看到,实施本申请实施例,结合在同一地图元素(例如,车道等)上新采集的位置点的质量信息和历史获取的质量信息对定位质量指示信息中地图元素的定位质量进行更新,使得更新后的定位质量指示信息较好地适应植被变化、季节变化对高精地图中地图元素的定位质量信息的影响,以及能准确指示高精地图中的地图元素在当下环境中的定位质量。
参见图6,图6是本申请实施例提供的又一种地图生成方法的流程图。图6可独立于图5实施例,也可以是对图5实施例的补充。该方法包括但不限于以下步骤:
S201、制图设备获得第一多个位置点的多个定位信息和所述第一多个位置点的第一多个定位质量参考信息。
具体,第一多个位置点的多个定位信息和第一定位质量参考信息可以是数据采集车或数据采集设备发送给制图设备的。
其中,第一多个位置点可以理解为一个位置点集合,该位置点集合包括多个位置点,且每个位置点有对应的定位信息和定位质量参考信息。轨迹点的定位信息用于指示该位置点在高精地图中的位置,例如,位置点的定位信息可以用经度和纬度等表示;位置点的定位质量参考信息可用于衡量该位置点处的定位质量,位置点的定位质量参考信息包括位置点的定位精度、位置点的DOP值、在位置点观测到的卫星数量或者位置点的定位位置信息是否为固定解。需要说明的是,轨迹点的定位位置信息即为上述实施例中轨迹点的位置信息,轨迹点的定位质量参考信息即为上述实施例中轨迹点的质量信息。
例如,位置点的定位精度可以根据位置点相对于真值在东、北和垂直三个方向上的偏移量获得。位置点的DOP值用于度量卫星相对于观测者(例如,采集位置点的数据采集车)的几何位置所造成的误差量。位置点的定位位置信息为固定解是指基于载波相位解算出该位置点的定位位置信息时对应的模糊度为整数,且固定解时对应的定位质量优于非固定解对应的定位质量。
S202、制图设备根据第一多个定位质量参考信息生成第一定位质量指示信息。
在本申请实施例中,制图设备根据第一多个定位质量参考信息生成第一定位质量指示信息,第一定位质量指示信息用于指示第一行驶区域内的定位质量。需要说明的是,第一定位 质量指示信息可以以表格、图形、文本等形式进行表示,本申请实施例不做具体限定。
一具体实施中,第一行驶区域内的定位质量是根据第一多个定位质量参考信息得到的统计值,提高了估算的第一行驶区域内的定位质量的可信度以及准确率。
一具体实施中,第一定位质量指示信息包括上述多个定位信息相对于参考真值的误差标准差、上述多个定位信息中固定解的比率、所述多个定位信息中定位精度满足要求的定位信息的比率、所述第一多个位置点的平均可观测卫星颗数或者所述多个定位信息的平均精度因子DOP值。需要说明的是,多个定位信息相对于参考真值的误差标准差即为上述实施例中的“平均定位精度”,多个定位信息中固定解的比率即为上述实施例中的“固定率”,多个定位信息中定位精度满足要求的定位信息的比率即为上述实施例中的“精度覆盖率”,第一多个位置点的平均可观测卫星颗数即为上述实施例中的“平均卫星颗数”,多个定位信息的平均精度因子DOP值即为上述实施例中的“平均精度因子DOP值”。
S203、制图设备根据所述多个定位信息生成第一关联关系指示信息。
在本申请实施例中,制图设备根据上述多个定位信息生成第一关联关系指示信息,第一关联关系指示信息用于指示第一行驶区域与高精地图中的至少一个地图元素之间的关联关系,所述地图元素包括高精地图中的区域、道路或者车道。
一具体实施中,第一关联关系指示信息为至少一个地图元素的标识。例如,参见上述表1,表1中的第一列即为高精地图中的区域ID,即区域的标识,每个区域ID相当于一个行驶区域。
一具体实施中,第一关联关系指示信息包括第一行驶区域的标识和至少一个地图元素的标识。也就是说,第一关联关系指示信息中既有行驶区域的标识又有地图元素的标识。例如,参见上述表2,表2中的第一列罗列的道路id,相当于是行驶区域的标识,表2中的第二列罗列的高精地图中道路ID,相当于地图元素的标识,表2中第一列和第二列组成的信息即为第一关联关系指示信息的一个举例。
需要说明的是,在本申请的各实施例中,定位质量指示信息中的行驶区域的标识与高精地图中的地图元素的标识之间存在关联关系,这种关联关系可以是映射关系,也可以是非映射关系,本申请实施例不做具体限定。定位质量指示信息中的行驶区域的标识可以是上述表1中的区域id、上述表2中的道路id或上述表3中的车道id。不妨以道路为例说明行驶区域的标识与地图元素的标识之间的映射关系,一个道路id可以与高精地图中的至少一个道路ID对应,也可以是多个道路id与高精地图中的一个道路ID对应。
对上述多个道路id与高精地图中的一个道路ID对应进行进一步解释:假设道路1为道路ID,道路a1和道路a2均为道路id,若道路a1和道路a2均与道路1对应,即高精地图中的道路被划分至定位质量指示信息中的两个行驶区域道路a1和道路a2,可以理解为道路a1包括道路1的全部和道路a2包括道路1的全部,也可以理解为道路1的一部分属于道路a1且道路1的另一部分属于道路a2。
S204、制图设备将第一定位质量指示信息和第一关联关系指示信息添加至高精地图中。
在本申请实施例中,制图设备在生成第一定位质量指示信息和第一关联关系指示信息后,还可以将第一定位质量指示信息和第一关联关系指示信息添加至高精地图中,使得高精地图直观清晰地显示了高精地图中任一区域、任一道路或任一车道的定位质量的统计值。
在一些可能的实施例中,制图设备还可以根据第一多个定位质量参考信息生成低质量定 位区域指示信息,低质量定位区域指示信息用于指示第一行驶区域内的第一地图元素,第一地图元素为高精地图中的区域、道路或者车道,且第一地图元素内存在定位质量低于阈值的至少一个位置点;将所述低质量定位区域指示信息添加入高精地图中。需要说明的是,低质量定位区域指示信息的功能即为用于标记上述实施例中最低质量轨迹点所在的高精地图中的地图元素,例如,表2中的低质量道路ID,或者,表3中的低质量车道ID,具体可参考上述实施例中有关表2或表3的相关叙述。
在一些可能的实施例中,在新采集的轨迹点不位于第一行驶区域内的情况下,制图设备还可以生成新采集的轨迹点对应的行驶区域的定位质量指示信息和关联关系指示信息。具体地,获得第一位置点的第一定位信息和第一位置点的第一定位质量参考信息,第一位置点不在第一行驶区域内;根据第一定位质量参考信息生成第二定位质量指示信息,第二定位质量指示信息用于指示第二行驶区域内的定位质量;根据第一定位信息生成第二关联关系指示信息,第二关联关系指示信息用于指示第二行驶区域与高精地图中的至少一个地图元素之间的关联关系;将第二定位质量指示信息和第二关联关系指示信息添加入高精地图中。需要说明的是,此实施例相当于上述图5实施例中S104的相关叙述,第一位置点即为图5中的轨迹点2。
在一些可能的实施例中,在新采集的轨迹点仍位于第一行驶区域内时,制图设备可以对第一定位质量指示信息进行更新。具体地,获得第二多个定位质量参考信息,第二多个定位质量参考信息包括第一多个定位质量参考信息的更新值,或者第二多个位置点的多个定位质量参考信息,第二多个位置点位于第一行驶区域内;根据第一多个定位质量参考信息和第二多个定位质量参考信息生成第三定位质量指示信息;使用第三定位质量指示信息更新高精地图中的第一定位质量指示信息。需要说明的是,此实施例具体可参考图5实施例中S105的相关叙述,图5中的轨迹点2即为第二多个位置点中的任意一个。
在一些可能的实施例中,第一定位质量指示信息、第一关联关系指示信息和高精地图也可以分开独立存储,当需要使用第一定位质量指示信息和第一关联关系指示信息时,在已知终端所在的高精地图中的某地图元素(不妨称为目标地图元素)的情况下,基于第一关联关系指示信息和第一定位质量指示信息可快速查找目标地图元素对应的定位质量信息。
通常情况下,定位质量指示信息可由地图服务器生成,则该制图设备可以为地图服务器,或者可以为地图服务器中的部件或者芯片。此外,定位质量指示信息也可能由路侧设备、车辆或者移动终端生成,则该制图设备还可以为该路侧设备、车辆或者移动终端,或者为路侧设备、车辆或者移动终端的部件或者芯片。
可以看到,实施本申请实施例,为高精地图中加入了定位质量指示信息,该定位质量指示信息提供了较为准确的定位质量的先验信息。另外,基于定位质量指示信息中行驶区域与地图中的区域、道路或车道之间的映射关系能够为高精地图中的区域、道路或车道提供具有参考意义的、可信的定位质量的统计值,使得使用地图的车辆或者便携终端能够选择性的使用高精地图中的定位信息,提高了自动驾驶的安全性。
参见图7,图7是本申请实施例提供的又一种地图使用方法的流程图,图7可以独立于图5、图6实施例,也可以是对图5和图6实施例的补充。在图7中,制图设备不妨以服务器为例、终端不妨以车辆为例进行说明,但并不限定本申请实施例中制图设备仅为服务器以 及并不限制终端仅为车辆。该方法包括但不限于以下步骤:
S301、服务器向车辆发送地图。
在本申请实施例中,服务器向车辆发送地图,地图包括定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或者车道。需要说明的是,第一行驶区域内的定位质量为该行驶区域内多个位置点的定位质量统计值。
其中,定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
一具体实施中,地图可以是服务器以广播、组播或单播中的任意一种方式发送给车辆的。
另一具体实施中,服务器可以将包含定位质量指示信息和关联关系指示信息的地图发送给路侧单元,由路侧单元将该地图发送给车辆。
需要说明的是,地图可以是服务器根据图6实施例生成的,也可以其他设备根据图6实施例生成的地图并发送给服务器,本申请实施例不做具体限定。
S302、车辆接收地图,并获取地图中的定位质量指示信息和关联关系指示信息。
相应地,车辆接收地图,并获取地图中的定位质量指示信息和关联关系指示信息。需要说明的是,车辆接收的地图可以是服务器发送的,也可以是服务器通过路侧单元发送的,本申请实施例不做具体限定。
一具体实施中,定位质量指示信息包括行驶区域的标识与定位质量之间的映射关系,关联关系指示信息包括行驶区域的标识与地图元素的标识之间的映射关系,地图元素为地图中的区域、道路或车道。
一具体实施中,关联关系指示信息为至少一个地图元素的标识。
一具体实施中,关联关系指示信息包括第一行驶区域的标识和至少一个地图元素的标识。第一行驶区域的标识与至少一个地图元素的标识之间的映射关系具体可参考图6中S203的相关叙述,在此不再赘述。
例如,定位质量指示信息可表示为表4,关联关系指示信息可表示为表5,例如,在表4中,区域id1的定位质量为:平均可观测卫星颗数为6,根据表5可知区域id1为地图中的区域1,则结合表4和表5可知地图中的区域1的定位质量为:平均可观测卫星颗数为6。
表4
行驶区域的标识 定位质量
区域id1 平均可观测卫星颗数为6
区域id2 平均可观测卫星颗数为4
表5
行驶区域的标识 地图元素的标识
区域id1 区域1
区域id2 道路2
一具体实施中,地图中还包括低质量定位区域指示信息,低质量定位区域指示信息用于 指示第一行驶区域内的第一地图元素,第一地图元素为地图中的区域、道路或者车道,且第一地图元素内存在定位质量低于阈值的至少一个位置点。需要说明的是,关于低质量定位区域指示信息的叙述可参考上述S204的相关叙述,在此不再赘述。
S303、车辆根据定位质量指示信息和关联关系指示信息进行路径规划、驾驶决策或车辆控制。
在本申请实施例中,车辆根据定位质量指示信息和关联关系指示信息可预先知晓地图中各个行驶区域的定位质量,则辅助自身进行路径规划、驾驶决策或者车辆控制,从而可以有效避开定位质量较差的区域、道路或车道,以提高自身的出行安全率。
参见图8,图8是本申请实施例提供的一种应用场景示意图,假设车辆欲从A点到达目的地F点,车辆根据定位质量指示信息和关联关系指示信息知晓各个道路除了BC道路的定位质量较差外其他道路的定位质量均较好,则车辆进行路径规划后确定的导航路线为:A-B-E-F-C-D,可以看出,避开了定位质量较差的BC道路,且车辆在该导航路线上各个道路上的定位准确,提高了车辆的出行安全率。
又例如,参见图8,假设车辆欲从A点到达目的地F点,车辆根据定位质量指示信息和关联关系指示信息知晓图8中BC车道的定位质量最差,则当车辆行驶至B点时,车辆做出的驾驶决策为左转进入BE车道以避开定位质量最差的BC车道,尽可能选择在定位质量较好的车道上行驶。
在一些可能的实施例中,地图中还包括低质量定位区域指示信息,从低质量定位区域指示信息中可直接获取地图中定位质量最差的区域、定位质量最差的道路或者定位质量最差的车道,因此,可根据低质量定位区域指示信息进行路径规划、驾驶决策或者车辆控制,从而可以在导航路线规划中避开这些低质量标记的区域、道路或车道,能有效提高车辆的定位质量和出行安全率。
在一些可能的实施例中,车辆可以将接收到的地图进行存储,待后续需要再随时调用。或者,车辆可以将接收到的地图显示在显示屏上,可供用户直观清晰地了解地图中各行驶区域的定位质量。
此实施例中地图使用装置除了可以是车辆,还可以是车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。
可以看到,实施本申请实施例,提供了一种包含定位质量指示信息和关联关系指示信息的地图,使得车辆基于该地图能及时避开定位质量较差的行驶区域,或者选择性地为定位质量较差的定位信息设置较低的置信度,从而在定位质量较好的行驶区域(例如,道路、车道等)内行驶,即可获得准确的定位位置信息,有利于提高路线规划、驾驶决策等的准确率以及出行安全率。
参见图9,图9是本申请实施例提供的一种地图生成装置的结构示意图,装置30至少包括处理器110、存储器111和接收器112。在一些可能的实施例中,装置30还包括发送器113。该接收器112和发送器113也可以替换为通信接口,用于为处理器110提供信息输入和/或输出。可选的,存储器111、接收器112、发送器113和处理器110通过总线连接或耦合。装置30可为图1实施例中的制图设备,也可以是图6中的制图设备或者图7中的服务器。
本申请实施例中,装置30用于实现上述图5和图6实施例所描述的方法,也可用于实现 图7实施例所描述的服务器侧的方法。
接收器112可用于获取第一多个位置点的多个定位信息和第一多个位置点的定义多个定位质量参考信息。在一些可能的实施例中,接收器112还可用于获取第一位置点的第一定位信息和第一定位质量参考信息。在一些可能实施例中,发送器113用于发送地图,该地图包括第一定位质量指示信息和第一关联关系指示信息。接收器112和发送器113可包括用于直接或通过空中接口与车内的设备、传感器或其它实体设备通信的天线和芯片集。接收器112和发送器113可以是有线接口或者无线接口。有线接口可以是以太网接口、局域互联网络(Local Interconnect Network,LIN)等,无线接口可以是蜂窝网络接口或无线局域网接口等。
处理器110可用于生成第一定位质量指示信息和第一关联关系指示信息。在一些可能的实施例中,处理器110还用于生成低质量定位区域指示信息以及对第一定位质量指示信息进行更新。例如,处理器110可用于执行图5中S102-S105所示步骤。处理器110可以由一个或者多个通用处理器构成,例如中央处理器(Central Processing Unit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。
存储器111可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器111也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器111还可以包括上述种类的组合。存储器111可以存储程序以及数据,其中,存储的程序包括:地图生成算法、地图更新算法等,存储的数据包括:位置点的定位信息、第一多个定位质量参考信息、第二多个定位质量参考信息、高精地图等。存储器111可以单独存在,也可以集成于处理器110内部。
此外,图9仅仅是一个装置30的例子,计算装置30可能包含相比于图9展示的更多或者更少的组件,或者有不同的组件配置方式。同时,图9中展示的各种组件可以用硬件、软件或者硬件与软件的结合方式实施。
参见图10,图10是本申请实施例提供的一种地图使用装置的结构示意图,装置40至少包括处理器210、存储器211、接收器212和显示器213,接收器212可为处理器210提供信息输入。可选的,存储器211、接收器212、显示器213和处理器210通过总线连接或耦合。装置40可为图1的终端,也可以是图7实施例中的车辆。本申请实施例中,装置40用于实现上述图7实施例描述的车辆侧的方法。
接收器212用于接收地图中的定位质量指示信息和关联指示信息,例如,接收器212可用于执行图7中的S302。在一些可能的实施例中,接收器212还用于接收地图在中的低质量定位区域指示信息。接收器112可包括用于直接或通过空中接口与服务器、路侧单元、传感器或其它实体设备通信的天线和芯片集。接收器212可以是无线接口,例如,蜂窝网络接口或者无线局域网接口等。
处理器210用于根据定位质量指示信息和关联关系指示信息进行路径规划、驾驶决策或 者车辆控制,例如,处理器210可用于执行图7中的S303。处理器210可以由一个或者多个通用处理器构成,例如中央处理器(Central Processing Unit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。
存储器211可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器211也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器211还可以包括上述种类的组合。存储器211可以存储程序以及数据,其中,存储的程序包括:车辆控制程序、导航规划程序等,存储的数据包括:定位质量指示信息、关联关系指示信息、低质量定位区域指示信息等。存储器211可以单独存在,也可以集成于处理器110内部。
显示器213用于显示上述地图,显示器213可以是显示屏,显示屏可以是液晶显示器(Liquid Crystal Display,LCD)、有机或无机发光二极管(Organic Light-Emitting Diode,OLED)、有源矩阵有机发光二极体面板(Active Matrix/Organic Light Emitting Diode,AMOLED)等。
此外,图10仅仅是一个装置40的例子,装置40可能包含相比于图10展示的更多或者更少的组件,或者有不同的组件配置方式。同时,图10中展示的各种组件可以用硬件、软件或者硬件与软件的结合方式实施。
参见图11,图11是本申请实施例提供的一种地图生成装置的功能结构示意图,装置31包括获取单元310、关联单元311、统计单元312和处理单元313。该装置31可以通过硬件、软件或者软硬件结合的方式来实现。
其中,获取单元310,用于获得第一多个位置点的多个定位信息和第一多个位置点的第一多个定位质量参考信息;统计单元312,用于根据第一多个定位质量参考信息生成第一定位质量指示信息,第一定位质量指示信息用于指示第一行驶区域内的定位质量;关联单元311,用于根据多个定位信息生成第一关联关系指示信息,第一关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间关联关系,地图元素包括区域、道路或者车道;处理单元313,用于将第一定位质量指示信息和第一关联关系指示信息添加入地图中。
该装置31的各功能模块可用于实现图6实施例所描述的方法。在图6实施例中,获取单元310可用于执行S201,统计单元312可用于执行S202,关联单元311可用于执行S203,处理单元313可用于执行S204。
在一些可能的实施例中,装置31还包括发送单元(图11中未示),用于发送添加了第一定位质量指示信息和第一关联关系指示信息的地图,发送单元可用于执行图7中的S301。
该装置31的各功能模块可用于实现图5实施例所描述的方法,为了说明书的简洁,在此不再赘述。
参见图12,图12是本申请实施例提供的一种地图使用装置的功能结构示意图,装置41 包括接收单元410和处理单元411。在一些可能的实施例中,装置41还包括显示单元412。该装置41可以通过硬件、软件或者软硬件结合的方式来实现。
其中,接收单元410,用于接收地图中的定位质量指示信息和关联关系指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量,关联关系指示信息用于指示第一行驶区域与地图中的至少一个地图元素之间关联关系,地图元素包括区域、道路或者车道;处理单元411,用于根据定位质量指示信息和关联关系指示信息进行路径规划、驾驶决策或者车辆控制。显示单元412用于显示地图。
该装置41的各功能模块可用于实现图7实施例所描述的方法。在图7实施例中,接收单元410可用于执行S302,处理单元411可用于执行S303。
在本文上述的实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
需要说明的是,本领域普通技术人员可以看到上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是个人计算机,服务器,或者网络设备、机器人、单片机、芯片、机器人等)执行本申请各个实施例所述方法的全部或部分步骤。

Claims (49)

  1. 一种地图生成方法,其特征在于,所述方法包括:
    获得第一多个位置点的多个定位信息和所述第一多个位置点的第一多个定位质量参考信息;
    根据所述第一多个定位质量参考信息生成第一定位质量指示信息,所述第一定位质量指示信息用于指示第一行驶区域内的定位质量;
    根据所述多个定位信息生成第一关联关系指示信息,所述第一关联关系指示信息用于指示所述第一行驶区域与地图中的至少一个地图元素之间的关联关系,所述地图元素包括区域、道路或者车道;
    将所述第一定位质量指示信息和所述第一关联关系指示信息添加入所述地图中。
  2. 根据权利要求1所述的方法,其特征在于,所述第一定位质量指示信息包括所述多个定位信息相对于参考真值的误差标准差、所述多个定位信息中固定解的比率、所述多个定位信息中定位精度满足要求的定位信息的比率、所述第一多个位置点的平均可观测卫星颗数或者所述多个定位信息的平均精度因子DOP值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一关联关系指示信息为所述至少一个地图元素的标识。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一关联关系指示信息包括所述第一行驶区域的标识和所述至少一个地图元素的标识。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一多个定位质量参考信息生成低质量定位区域指示信息,所述低质量定位区域指示信息用于指示所述第一行驶区域内的第一地图元素,所述第一地图元素为所述至少一个地图元素中的一个地图元素,所述第一地图元素为区域、道路或者车道,且所述第一地图元素内存在定位质量低于阈值的至少一个位置点;
    将所述低质量定位区域指示信息添加入所述地图中。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    获得第一位置点的第一定位信息和所述第一位置点的第一定位质量参考信息,所述第一位置点不在所述第一行驶区域内;
    根据所述第一定位质量参考信息生成第二定位质量指示信息,所述第二定位质量指示信息用于指示第二行驶区域内的定位质量;
    根据所述第一定位信息生成第二关联关系指示信息,所述第二关联关系指示信息用于指示所述第二行驶区域与地图中的至少一个地图元素之间的关联关系;
    将所述第二定位质量指示信息和所述第二关联关系指示信息添加入所述地图中。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    获得第二多个定位质量参考信息,所述第二多个定位质量参考信息包括所述第一多个定位质量参考信息的更新值,或者第二多个位置点的多个定位质量参考信息,所述第二多个位置点位于所述第一行驶区域内;
    根据所述第一多个定位质量参考信息和所述第二多个定位质量参考信息生成第三定位质量指示信息;
    使用所述第三定位质量指示信息更新所述地图中的所述第一定位质量指示信息。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一行驶区域内的定位质量为根据所述第一多个定位质量参考信息得到的统计值。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,定位质量参考信息包括每个定位信息相对于参考真值的误差、每个定位信息是否为固定解、每个定位信息的定位精度、每个位置点处可观测的卫星颗数或者每个定位信息的精度因子DOP值。
  10. 一种地图使用方法,其特征在于,所述方法包括:
    接收地图中的定位质量指示信息和关联关系指示信息,所述定位质量指示信息用于指示第一行驶区域内的定位质量,所述关联关系指示信息用于指示所述第一行驶区域与地图中的至少一个地图元素之间的关联关系,所述地图元素包括区域、道路或者车道;
    根据所述定位质量指示信息和所述关联关系指示信息进行路径规划、驾驶决策或者车辆控制。
  11. 根据权利要求10所述的方法,其特征在于,所述定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
  12. 根据权利要求10或11所述的方法,其特征在于,所述关联关系指示信息为所述至少一个地图元素的标识。
  13. 根据权利要求10或11所述的方法,其特征在于,所述关联关系指示信息包括所述第一行驶区域的标识和所述至少一个地图元素的标识。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述方法还包括:
    接收低质量定位区域指示信息,所述低质量定位区域指示信息用于指示所述第一行驶区域内的第一地图元素,所述第一地图元素为所述至少一个地图元素中的一个地图元素,所述第一地图元素为区域、道路或者车道,且所述第一地图元素内存在定位质量低于阈值的至少一个位置点;
    根据所述低质量定位区域指示信息进行路径规划、驾驶决策或者车辆控制。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述第一行驶区域内的定位质量为根据所述第一行驶区域内多个定位点的多个定位质量参考信息得到的统计值。
  16. 一种地图生成装置,其特征在于,所述装置包括:
    获取单元,用于获得第一多个位置点的多个定位信息和所述第一多个位置点的第一多个定位质量参考信息;
    统计单元,用于根据所述第一多个定位质量参考信息生成第一定位质量指示信息,所述第一定位质量指示信息用于指示第一行驶区域内的定位质量;
    关联单元,用于根据所述多个定位信息生成第一关联关系指示信息,所述第一关联关系指示信息用于指示所述第一行驶区域与地图中的至少一个地图元素之间关联关系,所述地图元素包括区域、道路或者车道;
    处理单元,用于将所述第一定位质量指示信息和所述第一关联关系指示信息添加入所述地图中。
  17. 根据权利要求16所述的装置,其特征在于,所述第一定位质量指示信息包括所述多个定位信息相对于参考真值的误差标准差、所述多个定位信息中固定解的比率、所述多个定 位信息中定位精度满足要求的定位信息的比率、所述第一多个位置点的平均可观测卫星颗数或者所述多个定位信息的平均精度因子DOP值。
  18. 根据权利要求16或17所述的装置,其特征在于,所述第一关联关系指示信息为所述至少一个地图元素的标识。
  19. 根据权利要求16或17所述的装置,其特征在于,所述第一关联关系指示信息包括所述第一行驶区域的标识和所述至少一个地图元素的标识。
  20. 根据权利要求16-19任一项所述的装置,其特征在于,
    所述统计单元,还用于根据所述第一多个定位质量参考信息生成低质量定位区域指示信息,所述低质量定位区域指示信息用于指示所述第一行驶区域内的第一地图元素,所述第一地图元素为所述至少一个地图元素中的一个地图元素,所述第一地图元素为区域、道路或者车道,且所述第一地图元素内存在定位质量低于阈值的至少一个位置点;
    所述处理单元,还用于将所述低质量定位区域指示信息添加入所述地图中。
  21. 根据权利要求16-20任一项所述的装置,其特征在于,
    所述获取单元,还用于获得第一位置点的第一定位信息和所述第一位置点的第一定位质量参考信息,所述第一位置点不在所述第一行驶区域内;
    所述统计单元,还用于根据所述第一定位质量参考信息生成第二定位质量指示信息,所述第二定位质量指示信息用于指示第二行驶区域内的定位质量;
    所述关联单元,还用于根据所述第一定位信息生成第二关联关系指示信息,所述第二关联关系指示信息用于指示所述第二行驶区域与地图中的至少一个地图元素之间的关联关系;
    所述处理单元,还用于将所述第二定位质量指示信息和所述第二关联关系指示信息添加入所述地图中。
  22. 根据权利要求16-20任一项所述的装置,其特征在于,
    所述获取单元,还用于获得第二多个定位质量参考信息,所述第二多个定位质量参考信息包括所述第一多个定位质量参考信息的更新值,或者第二多个位置点的多个定位质量参考信息,所述第二多个位置点位于所述第一行驶区域内;
    所述统计单元,还用于根据所述第一多个定位质量参考信息和所述第二多个定位质量参考信息生成第三定位质量指示信息;
    所述处理单元,还用于使用所述第三定位质量指示信息更新所述地图中的所述第一定位质量指示信息。
  23. 一种地图使用装置,其特征在于,所述装置包括:
    接收单元,用于接收地图中的定位质量指示信息和关联关系指示信息,所述定位质量指示信息用于指示第一行驶区域内的定位质量,所述关联关系指示信息用于指示所述第一行驶区域与地图中的至少一个地图元素之间关联关系,所述地图元素包括区域、道路或者车道;
    处理单元,用于根据所述定位质量指示信息和所述关联关系指示信息进行路径规划、驾驶决策或者车辆控制。
  24. 根据权利要求23所述的装置,其特征在于,所述定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
  25. 根据权利要求23或24所述的装置,其特征在于,所述关联关系指示信息为所述至少 一个地图元素的标识。
  26. 根据权利要求23或24所述的装置,其特征在于,所述关联关系指示信息包括所述第一行驶区域的标识和所述至少一个地图元素的标识。
  27. 根据权利要求23-26任一项所述的装置,其特征在于,
    所述接收单元,还用于接收低质量定位区域指示信息,所述低质量定位区域指示信息用于指示所述第一行驶区域内的第一地图元素,所述第一地图元素为所述至少一个地图元素中的一个地图元素,所述第一地图元素为区域、道路或者车道,且所述第一地图元素内存在定位质量低于阈值的至少一个位置点;
    所述处理单元,还用于根据所述低质量定位区域指示信息进行路径规划、驾驶决策或者车辆控制。
  28. 根据权利要求23-27任一项所述的装置,其特征在于,所述第一行驶区域内的定位质量为根据所述第一行驶区域内多个定位点的多个定位质量参考信息得到的统计值。
  29. 一种地图,其特征在于,所述地图包括定位质量指示信息和关联关系指示信息,所述定位质量指示信息用于指示第一行驶区域内的定位质量,所述关联关系指示信息用于指示所述第一行驶区域与地图中的至少一个地图元素之间的关联关系,所述地图元素包括区域、道路或者车道。
  30. 根据权利要求29所述的地图,其特征在于,所述地图还包括时间信息,所述时间信息用于指示所述第一行驶区域内的定位质量的有效时间。
  31. 根据权利要求29或30所述的地图,其特征在于,所述定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
  32. 根据权利要求29-31任一项所述的地图,其特征在于,所述第一行驶区域内的定位质量是根据所述第一行驶区域内多个定位点的多个定位质量参考信息得到的统计值。
  33. 一种地图使用方法,其特征在于,所述方法包括:接收地图,所述地图包括定位质量指示信息和关联关系指示信息,所述定位质量指示信息用于指示第一行驶区域内的定位质量,所述关联关系指示信息用于指示所述第一行驶区域与所述地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道路或者车道;
    存储所述地图,或者,在显示装置上显示所述地图。
  34. 根据权利要求33所述的方法,其特征在于,所述方法还包括:
    根据所述定位质量指示信息和所述关联关系指示信息进行导航路线规划、驾驶决策或车辆控制。
  35. 根据权利要求33或34所述的方法,其特征在于,所述定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
  36. 一种地图使用装置,其特征在于,所述装置包括:
    接收单元,用于接收地图,所述地图包括定位质量指示信息和关联关系指示信息,所述定位质量指示信息用于指示第一行驶区域内的定位质量,所述关联关系指示信息用于指示所述第一行驶区域与所述地图中的至少一个地图元素之间的关联关系,地图元素包括区域、道 路或者车道;
    存储单元,用于存储所述地图,或者,显示单元,用于显示所述地图。
  37. 根据权利要求36所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据所述定位质量指示信息和所述关联关系指示信息进行导航路线规划、驾驶决策或车辆控制。
  38. 根据权利要求36或37所述的装置,其特征在于,所述定位质量指示信息包括定位值相对于参考真值的误差标准差、定位值固定解的比率、定位精度满足要求的定位值的比率、平均可观测卫星颗数或者平均精度因子DOP值。
  39. 一种地图生成装置,其特征在于,所述装置包括所述装置包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以使所述装置执行如权利要求1-9任一项所述的方法。
  40. 一种地图使用装置,其特征在于,所述装置包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以使所述装置执行如权利要求10-15任一项所述的方法。
  41. 一种地图使用装置,其特征在于,所述装置包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以使所述装置执行如权利要求33-35任一项所述的方法。
  42. 一种车辆,其特征在于,所述车辆包括如权利要求23-28或40或36-38或41任一项所述的地图使用装置。
  43. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,实现如权利要求1-9任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,实现如权利要求10-15任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,实现如权利要求33-35任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有如权利要求29-32任一项所述的地图。
  47. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在处理器上运行时,实现如权利要求1-9任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在处理器上运行时,实现如权利要求10-15任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在处理器上运行时,实现如权利要求33-35任一项所述的方法。
PCT/CN2022/085759 2021-04-26 2022-04-08 一种地图、地图生成方法、地图使用方法及装置 WO2022228082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110456265.2A CN115248833A (zh) 2021-04-26 2021-04-26 一种地图、地图生成方法、地图使用方法及装置
CN202110456265.2 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022228082A1 true WO2022228082A1 (zh) 2022-11-03

Family

ID=83696743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085759 WO2022228082A1 (zh) 2021-04-26 2022-04-08 一种地图、地图生成方法、地图使用方法及装置

Country Status (2)

Country Link
CN (1) CN115248833A (zh)
WO (1) WO2022228082A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797376A (zh) * 2011-09-15 2014-05-14 极星公司 用于收集与接入点有关的信息的装置和方法
CN110045402A (zh) * 2019-04-16 2019-07-23 北京四维图新科技股份有限公司 Gnss定位质量信息推送方法、装置、设备及存储介质
CN111024084A (zh) * 2019-12-17 2020-04-17 国汽(北京)智能网联汽车研究院有限公司 自动驾驶车辆的自动驾驶方法、装置、设备及存储介质
US20200209370A1 (en) * 2018-12-28 2020-07-02 Didi Research America, Llc Interface for improved high definition map generation
CN111854771A (zh) * 2020-06-09 2020-10-30 北京百度网讯科技有限公司 地图质量的检测处理方法、装置、电子设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797376A (zh) * 2011-09-15 2014-05-14 极星公司 用于收集与接入点有关的信息的装置和方法
US20200209370A1 (en) * 2018-12-28 2020-07-02 Didi Research America, Llc Interface for improved high definition map generation
CN110045402A (zh) * 2019-04-16 2019-07-23 北京四维图新科技股份有限公司 Gnss定位质量信息推送方法、装置、设备及存储介质
CN111024084A (zh) * 2019-12-17 2020-04-17 国汽(北京)智能网联汽车研究院有限公司 自动驾驶车辆的自动驾驶方法、装置、设备及存储介质
CN111854771A (zh) * 2020-06-09 2020-10-30 北京百度网讯科技有限公司 地图质量的检测处理方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN115248833A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CA3011825C (en) Simplifying gps data for map building and distance calculation
CN107449433B (zh) 用于收集用于更新地理数据库的观测数据的方法及装置
US10151592B2 (en) Map matching quality evaluation
US9689702B2 (en) Navigation system with map mechanism and method of operation thereof
US9134429B2 (en) Positioning device, method and program with absolute positioning and relative positioning modes
KR101210597B1 (ko) 이동체의 맵 매칭 장치 및 그 방법
US10393852B2 (en) Method and system of location estimation and navigation of autonomous vehicles
US20150285649A1 (en) Method and apparatus for determining traffic route in electronic map
WO2020189079A1 (ja) 自己位置推定装置、それを備えた自動運転システム、および、自己生成地図共有装置
US10145691B2 (en) Ambiguity map match rating
US9599476B2 (en) Seamless network generation
US20200193170A1 (en) Determining Position Data
US11704897B2 (en) Lane count estimation
WO2017161475A1 (zh) 生成电子地图及规划路线的方法和设备
EP4141600A1 (en) Positioning method and positioning apparatus
US20220338014A1 (en) Trustworthiness evaluation for gnss-based location estimates
WO2022228069A1 (zh) 一种地图、地图生成方法、地图使用方法及装置
WO2022228082A1 (zh) 一种地图、地图生成方法、地图使用方法及装置
US11474511B2 (en) Method, apparatus and computer program product for determining a measure of probe quality
EP4009084A1 (en) Aligning in-vehicle mobile device and vehicle bodies for improved global positioning
WO2022228079A1 (zh) 一种地图、地图生成方法、地图使用方法及装置
CN115195788A (zh) 应用于车辆中的路径修正方法、装置及电子设备
CN110398243A (zh) 一种车辆定位方法及装置
US20200278215A1 (en) Map collection system, map server device, in-vehicle device and map collection method
US20230048365A1 (en) Corrected trajectory mapping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794553

Country of ref document: EP

Kind code of ref document: A1