WO2022228069A1 - 一种地图、地图生成方法、地图使用方法及装置 - Google Patents

一种地图、地图生成方法、地图使用方法及装置 Download PDF

Info

Publication number
WO2022228069A1
WO2022228069A1 PCT/CN2022/085477 CN2022085477W WO2022228069A1 WO 2022228069 A1 WO2022228069 A1 WO 2022228069A1 CN 2022085477 W CN2022085477 W CN 2022085477W WO 2022228069 A1 WO2022228069 A1 WO 2022228069A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
driving area
lane
positioning quality
road
Prior art date
Application number
PCT/CN2022/085477
Other languages
English (en)
French (fr)
Inventor
王兴冰
刘建琴
石峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022228069A1 publication Critical patent/WO2022228069A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3423Multimodal routing, i.e. combining two or more modes of transportation, where the modes can be any of, e.g. driving, walking, cycling, public transport
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/3673Labelling using text of road map data items, e.g. road names, POI names
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • G01C21/3694Output thereof on a road map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • the present application relates to the technical field of autonomous driving, and in particular, to a map, a method for generating a map, a method and a device for using a map.
  • High Definition Map also known as high-definition map or high-precision map
  • HD Map High Definition Map
  • the high-precision map contains static information and dynamic information, and can realize the loading of map information by means of cloud collaboration, vehicle-road collaboration, etc., to assist vehicle perception, positioning, planning and control.
  • the generation of high-precision maps depends on the positioning data of location points. Since the collection of positioning data is easily affected by the surrounding environment, the quality of the positioning data obtained on different map elements (such as roads, lanes, etc.) in the high-precision map is not high. one. If the positioning data of low quality in the high-precision map is used in the process of automatic driving, the inaccurate positioning will easily lead to deviation of the navigation route, and even affect the driving safety of the vehicle.
  • the embodiments of the present application disclose a map, a method for generating a map, a method and a device for using the map, so that a vehicle or portable terminal using the map can selectively use the positioning information in the high-precision map, thereby improving the safety of automatic driving.
  • an embodiment of the present application provides a method for generating a map.
  • the method includes: obtaining positioning position information of a set of track points, positioning quality reference information, and position information of multiple driving areas in the map, where the multiple driving areas include Areas, roads or lanes in the map; according to the location information and the location information of multiple driving areas, associate a group of track points with the first driving area in the multiple driving areas, where the first driving area is the area in the map, road or lane; obtain the statistical value of the positioning quality according to the positioning quality reference information; generate the positioning quality indication information, the positioning quality indication information is used to indicate that the positioning quality in the first driving area is the positioning quality statistical value; add the positioning quality indication information to the map middle.
  • the statistical value obtained based on the positioning quality reference information of the group of trajectory points is used as the positioning quality of the driving area, compared with the prior art.
  • the location quality indication information enables map users to independently choose to avoid driving areas with poor location quality, or to selectively locate
  • the positioning information with poor quality is set with a lower confidence level, which improves the travel safety rate of the vehicle.
  • the first trajectory point and the second trajectory point are any two adjacent trajectory points in a group of trajectory points, and a group of trajectory points is associated with the first trajectory point in the plurality of driving areas
  • the process of a driving area may be: when the first trajectory point and the second trajectory point are not located at the intersection in the map, the vertical distance between the first trajectory point and the first driving area satisfies the first preset condition, and the first trajectory point
  • the heading angle between the heading corresponding to a trajectory point and the heading of the first driving area satisfies the second preset condition
  • associate a group of trajectory points with the first driving area, and the first driving area is a road in the map Or the lane in the map; the heading corresponding to the first track point is the heading from the first track point to the second track point.
  • trajectory points in the non-intersection based on the vertical distance from the trajectory point to the driving area, and the heading angle between the heading between adjacent trajectory points and the heading of the driving area, determine a set of trajectory points related to the trajectory point.
  • the associated road or lane realizes the accurate matching of the track point with the road or lane in the map, which is beneficial to improve the accuracy and reliability of the positioning quality estimated based on the positioning quality reference information of the set of track points.
  • a group of trajectory points is located in an intersection in the map
  • the process of associating a group of trajectory points with the first driving area in the plurality of driving areas may be: associating a group of trajectory points To the first driving area in the intersection, the first driving area is the only road or lane in the intersection that connects the second driving area adjacent to the intersection and the third driving area adjacent to the intersection, a trajectory before a set of trajectory points The points are located in the second driving area, and a trajectory point after a set of trajectory points is located in the third driving area.
  • the first driving area is a road in the map
  • the first driving area includes a plurality of lanes in the map
  • the method further includes: according to each trajectory point in a set of trajectory points, to The distance of each of the lanes, at least one track point is selected from a set of track points, and one lane is selected from a plurality of lanes, and a lane is the nearest track point from each of the at least one track point among the plurality of lanes Lane; obtain the statistical value of lane positioning quality according to the positioning quality reference information of at least one track point; generate lane positioning quality indication information, and the lane positioning quality indication information is used to indicate that the positioning quality in a lane is the statistical value of lane positioning quality; Quality indicators are added to the map.
  • the process of associating a set of track points with the first driving area in the plurality of driving areas may be: according to the positioning position information of the set of track points and the plurality of first driving areas Corner point coordinates, determine that a group of trajectory points are located in the first driving area, and the first driving area is an area in the map; associate a group of trajectory points with the first driving area.
  • an embodiment of the present application provides a method for using a map.
  • the method includes: receiving positioning quality indication information and driving area indication information in a map, where the positioning quality indication information is used to indicate the positioning quality in the driving area, and the driving area
  • the indication information is used to indicate the driving area, the driving area is the area, road or lane in the map, and the positioning quality in the driving area is the statistical value of the positioning quality of multiple track points in the driving area; according to the positioning quality indication information and the driving area indication information For path planning, driving decisions or vehicle control.
  • a map including positioning quality indication information and driving area indication information is provided, so that the terminal can avoid driving areas with poor positioning quality in time based on the map, so as to avoid driving areas with better positioning quality (for example, If you drive within the road, lane, etc.), you can obtain accurate location information, which is beneficial to improve the accuracy of route planning, driving decision-making, and travel safety.
  • the positioning quality indication information is displayed on the display device.
  • the positioning quality indication information in the map can be displayed intuitively and clearly.
  • the statistical value of positioning quality includes the average positioning accuracy, the average DOP value, the average number of observable satellites, or the statistics of whether the positioning position of the trajectory point is a fixed solution.
  • the average positioning accuracy is the error standard deviation of multiple position information relative to the reference true value.
  • the smaller the average positioning accuracy, the better the positioning quality; the larger the average number of observable satellites, the better the positioning quality; the average precision factor DOP The value is used to measure the average value of the error caused by the geometric position of the satellite relative to the observer (for example, the data collection vehicle that collects the location point).
  • the positioning quality is better than the positioning quality when the positioning position is a non-fixed solution.
  • the positioning position is a fixed solution, which means that the corresponding ambiguity when the positioning position is calculated based on the carrier phase is an integer.
  • an embodiment of the present application provides a map, the map includes positioning quality indication information and driving area indication information, the positioning quality indication information is used to indicate the positioning quality in the driving area, and the driving area indication information is used to indicate the driving area , the driving area is an area, road or lane in the map, and the positioning quality in the driving area is the statistical value of the positioning quality of multiple track points in the driving area.
  • the above-mentioned map provides the positioning quality of the driving area with reference value and high reliability, and can provide the user of the map with more accurate prior information on the positioning quality of the driving area in the map.
  • the positioning quality statistical value includes an average positioning accuracy, an average precision factor DOP value, an average number of observable satellites, or a statistical situation of whether the positioning position of the trajectory point is a fixed solution .
  • the map further includes time information, where the time information is used to indicate the effective time of the positioning quality in the driving area.
  • the introduction of time information fully considers the impact of the surrounding environment (for example, vegetation changes with seasons and climate changes) on the positioning quality, and limits the effective time of the positioning quality in the driving area based on the time information.
  • the reliability and reference value of the positioning quality indicator information is the reliability and reference value of the positioning quality indicator information.
  • an embodiment of the present application provides a map generation device, the device comprising: an acquisition unit configured to acquire positioning position information of a group of track points, positioning quality reference information, and position information of multiple driving areas in the map,
  • the multiple driving areas include areas, roads or lanes in the map;
  • the association unit is configured to associate a set of track points with the first driving area in the multiple driving areas according to the positioning position information and the position information of the multiple driving areas,
  • the first driving area is an area, road or lane in the map;
  • the computing unit is used to obtain the statistical value of the positioning quality according to the positioning quality reference information;
  • the processing unit is used to generate the positioning quality indication information, and the positioning quality indication information is used to indicate the first
  • the positioning quality in the driving area is the positioning quality statistical value;
  • the processing unit is also used to add the positioning quality indication information into the map.
  • the map is generated by a server, and the map generating apparatus may be a map server, or may be a component or a chip in the map server.
  • the map may also be generated by the roadside equipment, vehicle or mobile terminal, and the map generating apparatus may also be the roadside equipment, vehicle or mobile terminal, or a component or chip of the roadside equipment, vehicle or mobile terminal.
  • the first trajectory point and the second trajectory point are any two adjacent trajectory points in a group of trajectory points
  • the association unit is specifically used for: an implementation of the second aspect
  • the vertical distance between the first trajectory point and the first driving area satisfies the first preset condition, and the corresponding
  • associate a group of track points with the first driving area, and the first driving area is a road in the map or a lane in the map ;
  • the heading corresponding to the first track point is the heading from the first track point to the second track point.
  • a group of trajectory points is located in an intersection in the map, and the associating unit is specifically configured to: associate a group of trajectory points with a first driving area within the intersection, and the first driving area is within the intersection.
  • the first driving area is a road in the map, and the first driving area includes a plurality of lanes in the map.
  • the distance of each of the multiple lanes, at least one track point is selected from a set of track points, and one lane is selected from multiple lanes, and one lane is the closest to each track point among the at least one track point among the multiple lanes.
  • the calculation unit is also used to obtain the statistical value of the lane positioning quality according to the positioning quality reference information of at least one track point; the processing unit is also used to generate the lane positioning quality indication information, and the lane positioning quality indication information is used to indicate a lane.
  • the positioning quality of is the statistical value of the lane positioning quality; the lane positioning quality indication information is added to the map.
  • the associating unit is specifically configured to: determine that a group of trajectory points are located in the first driving area according to the positioning position information of a group of trajectory points and a plurality of corner coordinates of the first driving area,
  • the first travel area is an area in the map; a set of track points is associated with the first travel area.
  • an embodiment of the present application provides a map using device, the device includes: a receiving unit, configured to receive positioning quality indication information and driving area indication information in a map, and the positioning quality indication information is used to indicate the location quality indication information in the driving area.
  • Positioning quality the driving area indication information is used to indicate the driving area, the driving area is the area, road or lane in the map, and the positioning quality in the driving area is the statistical value of the positioning quality of multiple track points in the driving area; processing unit, used for Carry out route planning, driving decision or vehicle control according to positioning quality indication information and driving area indication information.
  • the map-using device may be a vehicle, a component that can be used in a vehicle (such as a navigation device or an automatic driving device in a vehicle), or a chip that can be used in a vehicle.
  • the apparatus further includes a display unit, and the display unit is configured to display the positioning quality indication information in the map.
  • the positioning quality statistical value includes the average positioning accuracy, the average precision factor DOP value, the average number of satellites that can be observed, or the statistics of whether the positioning position of the trajectory point is a fixed solution.
  • an embodiment of the present application provides a method for using a map, the method comprising: receiving a map, where the map includes positioning quality indication information and driving area indication information, where the positioning quality indication information is used to indicate the positioning quality in the driving area , the driving area indication information is used to indicate the driving area, the driving area is the area, road or lane in the map, and the positioning quality in the driving area is the statistical value of the positioning quality of multiple track points in the driving area; A map is displayed on the device.
  • the received map is stored so that it can be quickly recalled at any time later, and the map is displayed on the display device, so that the user can intuitively and clearly understand the positioning quality of each driving area in the map.
  • navigation route planning, driving decision or vehicle control is performed according to the positioning quality indication information and the driving area indication information.
  • the positioning quality of each driving area in the map can be quickly known, so that the driving area with poor positioning quality can be avoided in time during the driving process, and the driving area with better positioning quality can be avoided.
  • Regional driving is beneficial to improve the accuracy of navigation path planning, driving decision-making or vehicle control.
  • an embodiment of the present application provides a map using device, the device includes: a receiving unit, configured to receive a map, the map includes positioning quality indication information and driving area indication information, and the positioning quality indication information is used to indicate the driving area.
  • the positioning quality in the driving area, the driving area indication information is used to indicate the driving area, the driving area is the area, road or lane in the map, and the positioning quality in the driving area is the statistical value of the positioning quality of multiple track points in the driving area; the storage unit, Used to store the map, or, the display unit, used to display the map.
  • the map-using device may be a vehicle, a component that can be used in a vehicle (such as a navigation device or an automatic driving device in a vehicle), or a chip that can be used in a vehicle.
  • the apparatus further includes: a processing unit, configured to perform navigation route planning, driving decision or vehicle control according to the positioning quality indication information and the driving area indication information.
  • an embodiment of the present application provides a computer program product, the computer program product includes a map, the map includes positioning quality indication information and driving area indication information, and the positioning quality indication information is used to indicate the positioning quality in the driving area,
  • the driving area indication information is used to indicate the driving area, the driving area is the area, road or lane in the map, and the positioning quality in the driving area is the statistical value of the positioning quality of multiple track points in the driving area.
  • the statistical value of positioning quality includes the average positioning accuracy, the average precision factor DOP value, the average number of satellites that can be observed, or the statistics of whether the positioning position of the trajectory point is a fixed solution.
  • the map further includes time information, where the time information is used to indicate the effective time of the positioning quality in the driving area.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a map, the map includes positioning quality indication information and driving area indication information, and the positioning quality indication information is used to indicate driving The positioning quality in the area, the driving area indication information is used to indicate the driving area, the driving area is the area, road or lane in the map, and the positioning quality in the driving area is the positioning quality statistics of multiple track points in the driving area.
  • the statistical value of positioning quality includes the average positioning accuracy, the average DOP value, the average number of satellites that can be observed, or the statistics of whether the positioning position of the trajectory point is a fixed solution.
  • the map further includes time information, where the time information is used to indicate the effective time of the positioning quality in the driving area.
  • an embodiment of the present application provides a map generation device, the device includes a processor and a memory, the processor and the memory are connected or coupled together through a bus; wherein, the memory is used to store program instructions; the processor calls The program instructions in the memory are used to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the map is generated by a server, and the map generating apparatus may be a map server, or may be a component or a chip in the map server.
  • the map may also be generated by the roadside equipment, vehicle or mobile terminal, and the map generating apparatus may also be the roadside equipment, vehicle or mobile terminal, or a component or chip of the roadside equipment, vehicle or mobile terminal.
  • an embodiment of the present application provides a map using device, the device includes a processor and a memory, the processor and the memory are connected or coupled together through a bus; wherein, the memory is used to store program instructions; the processor Program instructions in the memory are invoked to perform the method of the second aspect or any possible implementation of the second aspect.
  • the map-using device may be a vehicle, a component that can be used in a vehicle (such as a navigation device or an automatic driving device in a vehicle), or a chip that can be used in a vehicle.
  • an embodiment of the present application provides a map using device, the device includes a processor and a memory, the processor and the memory are connected or coupled together through a bus; wherein, the memory is used to store program instructions; the processor The program instructions in the memory are invoked to execute the method of the sixth aspect or any possible implementation manner of the sixth aspect.
  • the map-using device may be a vehicle, a component that can be used in a vehicle (such as a navigation device or an automatic driving device in a vehicle), or a chip that can be used in a vehicle.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable medium stores program code for execution by an apparatus, where the program code includes a program code for executing the first aspect or the first aspect Instructions for the method in any of the possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable medium stores program code for execution by an apparatus, where the program code includes a program code for executing the second aspect or the second aspect Instructions for the method in any of the possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable medium stores program codes for execution by an apparatus, and the program codes include a computer-readable storage medium for executing the sixth aspect or the sixth aspect. Instructions for the method in any of the possible implementations.
  • an embodiment of the present application provides a computer program product that, when the computer program product is executed by a processor, implements the first aspect or the method in any possible implementation manner of the first aspect.
  • the computer program product can be, for example, a software installation package, and when the method provided by any of the possible designs of the aforementioned first aspect needs to be used, the computer program product can be downloaded and executed on the processor, to implement the method in the first aspect or any possible embodiment of the first aspect.
  • an embodiment of the present application provides a computer program product that, when the computer program product is executed by a processor, implements the second aspect or the method in any possible implementation manner of the second aspect.
  • the computer program product can be, for example, a software installation package, and when the method provided by any of the possible designs of the aforementioned second aspect needs to be used, the computer program product can be downloaded and executed on the processor, to implement the method in the second aspect or any possible embodiments of the second aspect.
  • an embodiment of the present application provides a computer program product that, when the computer program product is executed by a processor, implements the sixth aspect or the method in any possible implementation manner of the sixth aspect.
  • the computer program product can be, for example, a software installation package, and when the method provided by any of the possible designs of the sixth aspect needs to be used, the computer program product can be downloaded and executed on the processor, to implement the method in the sixth aspect or any possible embodiment of the sixth aspect.
  • an embodiment of the present application provides a vehicle, the vehicle includes the map using device according to the fifth, seventh, eleventh, or twelfth aspect, or includes the fifth, seventh, eleventh, or twelfth aspect.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a region of a high-precision map
  • FIG. 3 is a flowchart of a method for associating a trajectory point with a road ID in a high-precision map provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a region-road provided by an embodiment of the present application.
  • Fig. 5 is another kind of area-road schematic diagram provided by the embodiment of the present application.
  • FIG. 6 is a flowchart of a method for associating a trajectory point with a lane ID in a high-precision map provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of a road-lane provided by an embodiment of the present application.
  • FIG. 8A is another schematic diagram of a road-lane provided by an embodiment of the present application.
  • 8B is another schematic diagram of a road-lane provided by an embodiment of the present application.
  • FIG. 9 is a method flowchart of a map generation method provided by an embodiment of the present application.
  • FIG. 10 is a method flowchart of a method for using a map provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an application scenario provided by this embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a map generation device provided in this embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a map using device provided in this embodiment of the present application.
  • FIG. 14 is a schematic functional structure diagram of a map generation apparatus provided in this embodiment of the present application.
  • FIG. 15 is a schematic functional structure diagram of a map using device provided in this embodiment of the present application.
  • High-precision maps are auxiliary maps for autonomous driving.
  • the high-precision map shows areas, roads and lanes, where a lane can be an upstream lane or a downstream lane, each lane has a unique lane ID, each road includes multiple lanes, each road has a unique road ID, and each An area consists of multiple sections of roads, and each area has a unique area ID.
  • the high-precision map also includes intersections. The intersection can be an intersection, and there are also roads and lanes in the intersection.
  • the high-precision map also shows the connection between roads and the connection between lanes and lanes. It should be noted that each area in the high-precision map has a corresponding area range.
  • the location coordinates (for example, latitude and longitude coordinates) of the four corners of the area can determine the area range of the area; each road has a corresponding road Range, for example, the start point coordinates and end point coordinates of the road can determine the road range of the road, and the start point coordinates and end point coordinates of the road can also determine the road centerline of the road; each lane has a corresponding lane range, for example, The starting coordinates of the lane and the ending coordinates of the lane can determine the lane range of the lane, and the starting coordinates and ending coordinates of the lane can also determine the lane centerline of the lane; each intersection has a corresponding intersection range.
  • the location coordinates (eg, latitude and longitude coordinates) of each corner point determine the intersection range of the intersection.
  • the high-precision map also displays parameters such as the slope, curvature, and heading of the road.
  • the generation of high-precision maps depends on the positioning data of the location points. Since the quality of the collected positioning data is easily affected by the surrounding environment (for example, tall buildings and trees, etc.), satellite occlusion, etc., for example, the more tall buildings and trees beside the road, the more The more serious the occlusion of the satellite signal, the greater the deviation of the positioning data collected on the road, and the lower the quality of the positioning data. Therefore, the quality of the positioning data obtained on different map elements (eg, roads, lanes, etc.) in HD maps varies. If the positioning data of low quality in the high-precision map is used in the process of automatic driving, the inaccurate positioning will easily lead to deviation of the navigation route, and even affect the driving safety of the vehicle.
  • the surrounding environment for example, tall buildings and trees, etc.
  • satellite occlusion, etc. for example, the more tall buildings and trees beside the road, the more The more serious the occlusion of the satellite signal, the greater the deviation of the positioning data collected on the road, and the lower the quality of
  • an embodiment of the present application proposes positioning quality indication information, which provides positioning quality with high reliability and strong reference value, so that map users can avoid driving with poor positioning quality Therefore, when driving in a driving area with better positioning quality (for example, roads, lanes, etc.), accurate positioning data can be obtained, which is conducive to improving the accuracy of route planning, driving decision-making, and travel safety.
  • Fig. 1 exemplarily shows a system architecture diagram.
  • the system is used for generating positioning quality indication information, or generating a map containing the positioning quality indication information.
  • the system includes data acquisition equipment, mapping equipment and terminals, wherein the data acquisition equipment and the mapping equipment can be connected wirelessly or wiredly, and the mapping equipment and the terminal can be connected wirelessly.
  • the data acquisition equipment is generally installed on the data acquisition vehicle, and the data acquisition equipment is used to collect the raw data required to generate the positioning quality indication information.
  • the data acquisition device can be an RTK device, and the RTK device includes any one of GPS and GNSS, and the positioning information is obtained based on the RTK measurement method.
  • an RTK device can be used to record the location information of each track point and the quality information of each track point collected when the data collection vehicle it is in is driving in each lane, and the quality information of the location point is used to indicate the location at the location point. quality.
  • the mapping device is used to generate positioning quality indication information according to a plurality of position information, a plurality of quality information of a set of track points and the position information of a plurality of driving areas in the map, and the positioning quality indication information is used to indicate the positioning quality of the driving area.
  • Driving areas are areas, roads, or lanes in the map.
  • the mapping device may be a device with computing functions, such as a computer, a server, a multi-access edge computing (Multi-Acess Edge Computing, MEC), and the like.
  • the terminal can be a vehicle, for example, an ordinary vehicle or an autonomous vehicle.
  • the vehicle can generally refer to a car, a car, a tourist bus, a bicycle, a tricycle, an electric vehicle, a motorcycle, a truck, etc., and a vehicle can also be an electric vehicle or a hybrid vehicle. , extended-range electric vehicles, plug-in hybrid electric vehicles, etc.
  • the terminal can also be a roadside unit (Road Side Unit, RSU), an on-board unit (On board Unit, OBU), a portable mobile device (for example, Mobile phones, tablets, etc.), or other sensors or devices that can communicate with the drawing device, such as components and chips of the portable mobile device, which are not specifically limited in the embodiments of the present application.
  • FIG. 1 is only an exemplary architecture diagram, but does not limit the number of network elements included in the system shown in FIG. 1 .
  • FIG. 1 may also include other functional entities.
  • the methods provided in the embodiments of the present application may be applied to the communication system shown in FIG. 1 .
  • the methods provided in the embodiments of the present application may also be applied to other communication systems, which are not limited in the embodiments of the present application.
  • the terminal may take a vehicle as an example to illustrate the solution, but the embodiment of the present application does not limit the terminal to be only a vehicle.
  • the trajectory points are collected when the data collection vehicle equipped with RTK equipment is driving on each lane in the high-precision map in advance.
  • Each track point has corresponding position information and quality information, wherein the position information of the track point is used to indicate the position of the track point in the high-precision map, and the position information of the track point includes longitude coordinates and latitude coordinates; the quality information of the track point Including the number of observable satellites at the location point, the Dilution of Precision (DOP) value of the location point, whether the location information of the location point is a fixed solution, the location point relative to the true value in the three directions of east, north and vertical one or more of the offsets on , etc.
  • the quality information of the track point can be used to measure the positioning quality of the track point in the HD map.
  • the association process of trajectory points specifically includes three parts:
  • the first part associate the track point with the area ID in the high-precision map
  • each area ID in the high-precision map is used to indicate an area in the high-precision map, and the area range corresponding to each area ID is determined by the coordinates of multiple corner points of the area. For each track point in the multiple track points, compare each track point with the area range corresponding to each area ID in the high-precision map according to the position information of each track point. When the track point is located in the target in the high-precision map When the area corresponding to the area ID is within the range, the track point is associated with the target area ID. Thus, the track points corresponding to each area ID can be obtained. It should be noted that the process of judging whether the track point is within the area indicated by a certain area ID may also be referred to as the process of judging the positional relationship between the track point and the area indicated by the area ID.
  • the areas in the high-precision map are divided multiple times according to crosses, there are several levels of areas in the high-precision map. The higher the level of the area, the larger the area corresponding to the area. Each area has a unique area ID. It can be understood that a high-level area in a high-precision map includes multiple low-level areas, that is, a high-level area ID corresponds to multiple low-level area IDs. Therefore, when there are different levels of area IDs in the high-precision map, it can be found that one track point is associated with multiple different levels of area IDs.
  • the area ID in the high-precision map associated with the track points in the embodiment of the present application is the low-level area ID
  • the area indicated by the low-level area ID is the high-precision area ID.
  • the positional relationship between the track points and each low-level area ID in the high-precision map can be directly judged to determine the relationship between the track points and the track points. area ID.
  • the corresponding relationship between the low-level area IDs and the high-level area IDs in the high-precision map can also be used.
  • the track point is associated with the high-level area ID in the high-precision map, so that all the area IDs associated with the track point in the high-precision map can be obtained.
  • Figure 2 is a schematic diagram of the area division of a high-precision map.
  • the area IDs corresponding to one level are: 1-00, 1- 01, 1-10 and 1-11
  • the area IDs belonging to another level are 1-00-00, 1-00-01, 1-00-10 and 1-00-11 (these four correspond to 1-00 ), 1-01-00, 1-01-01, 1-01-10, and 1-01-11 (these four correspond to 1-01), 1-10-00, 1-10-01, 1- 10-10 and 1-10-11 (the four correspond to 1-10), and 1-11-00, 1-11-01, 1-11-10, and 1-11-11 (the four correspond to 1 -11 corresponds to) these 16 area IDs.
  • the area level to which 1-00 belongs is higher than the area level to which 1-00-01 belongs.
  • the area range of each area can be determined by the coordinates of the four corner points of the area, that is, the rectangular frame determined by the coordinates of the four corner points of each area is the area range corresponding to the area.
  • trajectory point 1 first compare the position information of the trajectory point 1 with the corresponding area ranges of the 16 low-level area IDs in Figure 2, until it is determined that the trajectory point 1 is located in one of the 16 low-level area IDs. within the area indicated by the ID. For example, if it is judged that the track point 1 is not located in the area indicated by 1-00-00, then continue to judge whether the track point 1 is located in the area indicated by 1-00-01, that is, determine whether the track point 1 is within the area indicated by 1-00-10 Within the area range determined by the coordinates of the corresponding four corner points, if the trajectory point 1 is located in the area indicated by 1-00-101, then associate the trajectory point 1 with the area ID "1-00-01". If the track point 1 is not located in the area indicated by 1-00-01, continue to judge the positional relationship between the track point 1 and the area indicated by the remaining low-level area IDs until the area ID associated with the track point 1 is found.
  • the high-level area ID associated with the track point 1 in FIG. 2 can also be determined. There is a correspondence between the area ID "1-00-01" and the high-level area ID "1-00", therefore, the track point 1 can also be associated with the area ID "1-00".
  • the positional relationship between the trajectory point 1 and the areas indicated by the high-level area IDs (ie, 1-00, 1-01, 1-10, and 1-11) in FIG. 2 can also be judged first. , it is assumed that the trajectory point 1 is located in the area indicated by 1-00. 1-00-11” corresponds to, further, the track point 1 corresponds to the low-level area ID corresponding to 1-00 in FIG. 2 (ie 1-00-00, 1-00-01, 1-00-10 and 1 -00-11) to determine the positional relationship, if it is determined that the track point 1 is located in the area indicated by 1-00-01, then the track point 1 is associated with the area ID "1-00-01".
  • the set 1 of the smallest area in the high-precision map including the longitude coordinates can also be determined according to the longitude coordinates in the position information of the track points, and then the high-precision map can be determined according to the latitude coordinates in the position information of the track points.
  • the map contains set 2 of the smallest area with the latitude coordinates.
  • the area ID obtained by finding the intersection of set 1 and set 2 is the area ID associated with the track point in the high-precision map.
  • the second part associate the track point with the road ID in the high-precision map
  • Each track point is only associated with one road ID in the HD map.
  • the so-called association between the track point and the road ID in the high-precision map means that the track point is located on the road indicated by the road ID in the high-precision map.
  • the area ID associated with the track point in the high-precision map can be determined from the above-mentioned first part. Since the area indicated by the area ID in the high-precision map includes multiple sections of roads, each section of road has a unique road ID, which can be obtained. The multiple road IDs corresponding to the area ID in the high-precision map greatly reduce the number of road IDs to be compared and improve the processing efficiency. Then, according to the position information of the track point and the endpoint coordinates corresponding to each of the plurality of road IDs, the road ID uniquely associated with the track point is determined from the plurality of road IDs.
  • each road ID in the high-precision map can also be directly obtained, and according to the position information of the trajectory point and the endpoint coordinates corresponding to each road ID in the high-precision map, the unique association with the trajectory point is determined from each road ID. road ID.
  • Fig. 3 is a flow chart of a method for determining the association between a trajectory point and a road ID provided by an embodiment of the present application, and may wish to take the trajectory point 1 as an example to describe the association process between the trajectory point and the road ID in the high-precision map,
  • the method includes but is not limited to the following steps:
  • the area where the track point 1 is located is the area indicated by the low-level area ID1 associated with the track point 1 in the above, and the area indicated by the low-level area ID1 is the smallest area division unit in the high-precision map.
  • the high-precision map stores the mapping information of the area ID and the road ID, multiple road IDs corresponding to the area ID1 can be obtained from the high-precision map according to the area ID1.
  • each intersection in the high-precision map has a corresponding coordinate range, and the coordinate range corresponding to the intersection is determined by each corner point (or referred to as an inflection point) of the intersection.
  • For each intersection in the high-precision map determine whether the trajectory point 1 is within the coordinate range of a certain intersection in each intersection. If the trajectory point 1 is not located in the coordinate range of each intersection, it means that the trajectory point 1 is not located in the high-precision map.
  • execute S13 if it is determined that the trajectory point 1 is located within the coordinate range of a certain intersection (for example, intersection 1), it means that the trajectory point 1 is located at a certain intersection in the high-precision map, and execute S16.
  • S13 Perform initial screening on the plurality of road IDs based on the location information of the track point 1 and the coordinates of the start and end points corresponding to the plurality of road IDs to obtain a road ID set 1 that meets the preset condition 1.
  • the start and end coordinates corresponding to the road ID can be obtained from the high-precision map, where the start coordinates represent the start point of the road indicated by the road ID, and the end coordinates represent the road. The end of the road indicated by the ID. Screen the multiple road IDs based on the location information of the track point 1 and the coordinates of the start and end points corresponding to the multiple road IDs, and obtain a road ID set 1 that meets the preset condition 1 from the multiple road IDs.
  • the starting point coordinate and the ending point coordinate corresponding to the road ID are the starting point coordinate and the ending point coordinate of the road center line indicated by the road ID.
  • the starting point and ending point of the road corresponding to the road ID are defined according to the driving direction of the vehicle on the road, that is, the position where the vehicle just enters the road when it enters the road is called the starting point of the road, and the position where the vehicle just leaves the road when it exits the road. called the end of the road.
  • the coordinates of the starting point and the coordinates of the ending point corresponding to the road ID are both represented by longitude and latitude.
  • the road ID1 As an example to explain the preset condition 1 in detail.
  • the location information of the trajectory point 1 and the start and end coordinates of the road ID1 it can be judged whether the trajectory point 1 is within the coordinate range corresponding to the road ID1.
  • the road ID1 meets the preset condition 1; if the track point 1 is not within the coordinate range corresponding to the road ID1, the road ID1 does not meet the preset condition 1.
  • the track point 1 is sequentially compared with each road ID in the plurality of road IDs, and a road ID set 1 that meets the preset condition 1 is preliminarily screened from the plurality of road IDs.
  • the so-called road ID1 meets the preset condition 1 (or the track point 1 is located in the coordinate range corresponding to the road ID1) means: the longitude coordinates of the track point 1 are located in the start point coordinates of the road ID1 and the end point coordinates of the road ID1. Within the longitude range determined by the longitude, or the latitude coordinates of the track point 1 are located in at least one of the latitude range determined by the latitude in the start coordinates of the road ID1 and the latitude range determined by the end coordinates of the road ID1.
  • FIG. 4 is a schematic diagram of an area-road scene provided by an embodiment of the present application.
  • FIG. 4 shows that there are 11 roads in a certain area in the high-precision map, wherein road 1, road 2, road 3 and Road 4 is connected between adjacent two, road 5, road 6, road 7 and road 8 are connected between adjacent two, road 9, road 10 and road 11 are connected between adjacent two is connected.
  • 11 roads only Road 3, Road 7 and Road 11 are located in the intersection surface, and the black triangles in Figure 4 represent the trajectory points.
  • the road shown in FIG. 4 can be regarded as the road centerline of the corresponding road.
  • the road ID set 1 of the filtered track point 1 includes road 1 , road 5 and road 10 .
  • the preset condition 1 is used to screen the multi-segment roads in the area where the track point is located, so as to quickly eliminate the roads that do not meet the conditions in the area where the track point is located, which greatly reduces the number of road IDs to be processed in the follow-up. Effectively The consumption of computing resources is saved, and the processing speed of determining the road ID associated with the track point is accelerated.
  • S14 Calculate the distance from the track point 1 to the road indicated by each road ID in the road ID set 1, and calculate the heading corresponding to the track point 1 according to the adjacent track points of the track point 1, and the heading corresponding to the track point 1 and each road The heading angle between the headings.
  • road i is any road ID in the road ID set 1:
  • the second item, the heading corresponding to the track point 1 Calculate the heading corresponding to the track point 1 according to the position information of the track point 1 and the position information of the adjacent track points of the track point 1.
  • the adjacent trajectory point of the trajectory point 1 may be the previous adjacent trajectory point of the trajectory point 1 or the next adjacent trajectory point of the trajectory point 1, which is not specifically limited in this application.
  • the heading corresponding to trajectory point 1 is the direction in which the previous adjacent trajectory point of trajectory point 1 points to trajectory point 1;
  • the heading corresponding to trajectory point 1 is the direction that trajectory point 1 points to the next adjacent trajectory point of trajectory point 1.
  • Fig. 4 also shows track point 2, track point 2 is the next adjacent track point of track point 1, then the course corresponding to track point 1 is the course that track point 1 points to track point 2 .
  • the third item, the heading angle between the heading corresponding to the track point 1 and the heading of the road i the heading corresponding to the track point 1 can be obtained from the second item above, and the heading of the road i can be based on the starting point coordinates of the road i and the road The coordinates of the end point of i are calculated and obtained, and finally the included heading angle between the two is calculated according to the heading corresponding to the track point 1 and the heading of the road i.
  • the heading of the road means that the starting point of the road points to the end point of the road.
  • the heading of the road may also be obtained directly from the high-precision map, which is not specifically limited in the embodiment of the present application.
  • each road ID in the road ID set 1 corresponds to a vertical distance and a heading angle.
  • each road ID in the road ID set 1 corresponds to a vertical distance and a heading angle
  • it is determined whether the vertical distance and heading angle corresponding to each road ID in the road ID set 1 satisfy the preset condition 2 take the target road ID that satisfies the preset condition 2 as the road ID uniquely associated with the trajectory point 1 in the road ID set 1 .
  • the preset condition 2 may be: in the road ID set 1, the vertical distance corresponding to the target road ID is the smallest and the heading angle corresponding to the target road ID is the smallest.
  • the preset condition 2 may be: the vertical distance corresponding to the target road ID is less than or equal to the preset distance threshold and the heading angle corresponding to the target road ID is less than or equal to the preset angle threshold.
  • Fig. 4 For example, taking Fig. 4 as an example, assuming that road 1 and road 10 in Fig. 4 are both downstream roads (that is, vehicles drive from left to right), and road 5 is an upstream road (that is, vehicles drive from right to left), then Road 1 and Road 10 are in the same direction, while Road 1 and Road 10 are opposite to Road 5 respectively. It can be seen from the above S13 that the road ID set 1 of the track point 1 includes the road 1, the road 5 and the road 10. According to the above S14, the vertical distance and the heading angle corresponding to each road in the road 1, the road 5 and the road 10 are calculated in turn.
  • the vertical distance corresponding to road 1 is distance 1 and the heading angle corresponding to road 1 is 0 degrees
  • the vertical distance corresponding to road 5 is distance 5 and the heading angle corresponding to road 5 is 180 degrees
  • the vertical distance corresponding to road 10 is distance
  • the heading angle corresponding to 10 and road 10 is 0 degrees
  • trajectory point 1 when the trajectory point 1 is located in the intersection, since the connection relationship between each section of road in the intersection and the two sections of roads adjacent to the intersection outside the intersection in the high-precision map is uniquely determined, it can be determined according to the trajectory
  • the first road ID adjacent to the intersection where the front trajectory point of point 1 is located and the second road ID adjacent to the intersection where the rear trajectory point of trajectory point 1 is located determines the road ID uniquely associated with trajectory point 1.
  • the front trajectory point of trajectory point 1 and the rear trajectory point of trajectory point 1 are not located in the intersection, and the first road ID is different from the second road ID. It should be noted that the road indicated by the first road ID corresponds to the road entering the intersection where the trajectory point 1 is located, and the road indicated by the second road ID corresponds to the road exiting the intersection where the trajectory point 1 is located.
  • the collection time of the preceding track point of the track point 1 is earlier than the collection time of the track point 1
  • the collection time of the track point 1 is earlier than the collection time of the rear track point of the track point 1
  • the road IDs corresponding to the trajectory point 1, the front trajectory point of the trajectory point 1, and the rear trajectory point of the trajectory point 1 are all different, and the three belong to the same trajectory line. It should be noted that there may be at least one trajectory point located at the intersection where the trajectory point 1 is located between the front trajectory point of the trajectory point 1 and the trajectory point 1; At least one trajectory point within the intersection where point 1 is located.
  • FIG. 5 is a schematic diagram of an area-road provided by an embodiment of the present application.
  • FIG. 5 shows that there are 12 sections of roads in a certain area in the high-precision map.
  • Road 3 and road 4 are connected between adjacent two, road 5 and road 6 are connected, road 6 is connected with road 7, road 10 and road 11 respectively, road 7 is connected with road 8, and road 10 is connected with road 9 , road 11 is connected with road 12.
  • road 3, road 7, road 10 and road 11 are located in the intersection surface. It may be assumed that road 3, road 7, road 10 and road 11 are located in the same intersection and the intersection ID is intersection 1 (Fig. 5). gray area), and the black triangles in Fig. 5 represent trajectory points.
  • the trajectory point 1 is located in the intersection 1. It can be seen from Figure 5 that the roads in the intersection 1 include road 3, road 7, road 10 and road 11, and the trajectory point 2 is taken as the trajectory. The front trajectory point of point 1 and trajectory point 3 are used as the rear trajectory point of trajectory point 1. If trajectory point 2 is located on road 2 and trajectory point 3 is located on road 4, because the road inside the intersection in the high-precision map is different from the road outside the intersection.
  • connection relationship between the two adjacent roads at the intersection is determined, it can be determined that track 1 is located on road 3, so the unique road ID associated with track point 1 is road 3; if track point 2 is located on road 6 and track point 3 If it is located on the road 12, it can be determined that the track point 1 is located on the road 11, so it can be determined that the road ID uniquely associated with the track point 1 is the road 11.
  • the third part associate the track point with the lane ID in the high-precision map
  • Each track point is only associated with one lane ID in the HD map.
  • the so-called association between the track point and the lane ID in the high-precision map means that the track point is located in the lane indicated by the lane ID in the high-precision map.
  • the road ID uniquely associated with the track point in the high-precision map can be determined by the above-mentioned second part, because the road indicated by the road ID in the high-precision map includes multiple lanes, and each lane has a unique lane ID, The multiple lane IDs corresponding to the road ID in the high-precision map can be obtained, and then the lane ID uniquely associated with the track point is determined from the multiple lane IDs according to the position information of the track point and the endpoint coordinates corresponding to each lane ID.
  • each lane ID in the high-precision map can also be directly obtained, and according to the position information of the track point and the endpoint coordinates corresponding to each lane ID in the high-precision map, the unique association with the track point is determined from each lane ID. the lane ID.
  • FIG. 6 is a flow chart of a method for associating a track point and a lane ID provided by an embodiment of the present application. It may be possible to take the track 1 as an example to describe the association process between the track point and the lane ID in the high-precision map. This method Including but not limited to the following steps:
  • the road after determining that the road ID associated with track point 1 in the high-precision map is road ID1, since the mapping information of road ID and lane ID is stored in the high-precision map, the road can be obtained from the high-precision map according to road ID1 Multiple lane IDs corresponding to ID1.
  • the step of judging whether the track 1 is within the intersection of the high-precision map has been performed in S12 in FIG. 1 .
  • the relevant description in S12 please refer to the relevant description in S12 , which will not be repeated here.
  • the road indicated by the road ID1 associated with the trajectory point 1 is also not located in the intersection, and the multiple lane IDs corresponding to the road ID1 indicate the road.
  • the lane is also not located in the intersection; if the trajectory point 1 is located in the intersection in the high-precision map, the road indicated by the road ID1 associated with the trajectory point 1 is also located in the intersection, and the multiple lane IDs corresponding to the road ID1 indicate Lanes are also located within intersections.
  • the so-called distance from track point 1 to the lane indicated by lane c refers to: the vertical distance from track point 1 to the lane center line of lane c, the lane
  • the lane center line of c can be determined by the coordinates of the starting point of lane c and the coordinates of the end point of lane c, wherein the coordinates of the starting point of lane c and the end point coordinates of lane c can be obtained from the high-precision map.
  • FIG. 7 is a schematic diagram of a road-lane provided by an embodiment of the present application, and FIG. 7 shows two sections of roads in a high-precision map, wherein road 1 includes lane 11 and lane 12, and road 2 includes lane 21 and lane 22.
  • Each dotted line in FIG. 7 represents the lane centerline of the lane, wherein neither road 1 nor road 2 is located in the intersection, so lane 11, lane 12, lane 21 and lane 22 are also not located in the intersection.
  • the black triangle in Figure 7 represents the trajectory point 1.
  • the road ID associated with track point 1 in the high-precision map has been determined to be road 1
  • road 1 since road 1 is not located at the intersection, it is only necessary to calculate the vertical distance between track point 1 and the lane centerline of each lane in road 1. If the track The vertical distance between point 1 and the lane center line of lane 11 is distance 1, and the vertical distance between track point 1 and the lane center line of lane 12 is distance 2. It is easy to know that distance 2 is less than distance 1. Therefore, it matches the trajectory point 1.
  • the lane is lane 12, so track point 1 is associated with lane 12.
  • trajectory point 1 when the trajectory point 1 is located in the intersection, since the connection relationship between each lane in the intersection and the two lanes adjacent to the intersection outside the intersection in the high-precision map is uniquely determined, it can be determined according to the trajectory
  • the front trajectory point of trajectory point 1 and the rear trajectory point of trajectory point 1 are not located in the intersection, and the first lane ID is different from the second lane ID. It should be noted that the lane indicated by the first lane ID is equivalent to the lane entering the intersection where the trajectory point 1 is located, and the lane indicated by the second lane ID is equivalent to the lane exiting the intersection where the trajectory point 1 is located.
  • the collection time of the preceding track point of the track point 1 is earlier than the collection time of the track point 1
  • the collection time of the track point 1 is earlier than the collection time of the rear track point of the track point 1
  • the lane IDs corresponding to the track point 1, the front track point of the track point 1, and the rear track point of the track point 1 are all different, but the three are located on the same track line. It should be noted that there may be at least one track point located at the intersection where track point 1 is located between the front track point of track point 1 and track point 1; At least one trajectory point within the intersection where point 1 is located.
  • intersection 1 For example, suppose that the intersection where track point 1 is located is intersection 1, and lane 1 is a lane within intersection 1, wherein lane 1 is connected to two lanes (ie, lane 2 and lane 3) that are not in the intersection, and the vehicles are driven in sequence.
  • lane 2 can be referred to as the lane entering the intersection 1
  • lane 3 can be referred to as the lane going out of the intersection 1.
  • FIG. 8A and 8B both of which are schematic diagrams of an intersection
  • FIG. 8A and FIG. 8B show that the non-road roads in the high-precision map include road 1, road 2, ..., road 7 and road 8
  • These eight sections of roads, and these eight sections of roads are numbered clockwise with a certain intersection as the center.
  • the gray square area in Figures 8A and 8B is the intersection, each direction of the intersection corresponds to two sections of roads that are not within the intersection, and the headings of the two sections of roads corresponding to the same direction at the intersection differ by 180 degrees.
  • a certain direction of the intersection corresponds to road 1 and road 2, and road 1 and road 2 are opposite.
  • road 1 and road 6 are in the same direction
  • road 1 is a road entering the intersection
  • road 6 is a road leaving the intersection.
  • the black triangle in the road ID1 represents the trajectory point 1, and the trajectory point 1 is located in the intersection.
  • the dotted line in represents the lane center line of the lane ID1-1, and the two ends of the lane ID1-1 are respectively connected with the lane 1-1 and the lane 6-1.
  • the track point 3 is the rear track point of the track point and the track point 3 is located in the lane 6-1.
  • the connection relationship of the lanes in the intersection it can be determined that the track point 1 is located in the lane ID1-1, therefore, the track point 1 is associated with the lane ID1-1.
  • the trajectory point 1 is determined to be associated with the road ID1
  • the black triangle in the road ID1 represents the trajectory point 1
  • the trajectory point 1 is located in the intersection, assuming that the road 1
  • the four dashed lines in ID1 respectively represent the lane center lines of the four lanes, which are denoted as lane ID1-1, lane ID1-2, lane ID1-3 and lane ID1-4 from left to right, among which, lane ID1-1 connects lane 1- 1 and Lane 6-1, Lane ID1-2 connects Lane 1-1 and Lane 6-2, Lane ID1-3 connects Lane 1-2 and Lane 6-1, Lane ID1-4 connects Lane 1-2 and Lane 6- 2.
  • track point 2 is the front track point of track point 1
  • track point 3 is the rear track point of track point
  • track point 2 is associated with lane 1-1
  • track point 3 is associated with lane 6-2
  • the intersection Only the lane ID1-2 connects the lane 1-1 and the lane 6-2, so it can be determined that the track point 1 is located in the lane ID1-2. Therefore, the only associated lane ID of the track point 1 is the lane ID1-2.
  • the method for associating the above-mentioned track points and lane IDs in the non-intersection can be realized by the above-mentioned S23.
  • the trajectory point 1 when the trajectory point 1 is located in the intersection in the high-precision map, the trajectory point can also be determined according to one of the front trajectory point and the rear trajectory point of the trajectory point 1 and the heading corresponding to the trajectory point 1 1 Unique associated lane ID.
  • the front and rear track points of track point 1 can refer to the above-mentioned relevant descriptions.
  • the heading corresponding to track point 1 is obtained according to the position information of track point 1 and the position information of the adjacent track points of track point 1.
  • the lane ID of the intersection where the trajectory point 1 is located is determined according to the previous trajectory point of the trajectory point 1.
  • the multiple lane IDs of the connection relationship combined with the heading corresponding to the track point 1, determine the lane ID corresponding to the minimum value of the heading angle between the headings corresponding to the track point 1, and the lane ID is the unique association of the track point 1.
  • the description of FIG. 8B can refer to the above description. It is assumed that the track point 2 is determined to be the preceding track point of the track point 1, and the track point 2 is associated with the lane 1-1. According to the adjacent track points of the track point 1 Calculate the heading corresponding to track point 1. Since the lane entering the intersection is lane 1-1, compare the heading corresponding to track point 1 and the heading angle between the headings of lane ID1-1 and lane ID1-2 in road ID1, It is easy to know that in lane ID1-1 and lane ID1-2, the heading angle between the heading of lane ID1-2 and the heading corresponding to track point 1 is the smallest, so track point 1 is uniquely associated with lane ID1-2 in road ID1 .
  • the lane ID uniquely associated with the track point 1 may also be determined according to the lane ID of the intersection where the track point 1 exits and the heading corresponding to the track point 1 corresponding to the trailing track point of the track point 1 .
  • the description of FIG. 8B can refer to the above description, assuming that it is determined that the track point 3 is the rear track point of the track point 1, the track point 3 is associated with the lane 6-2, and the intersection with the lane 6-2 has The lanes of the connection relationship have lane ID1-2 and lane ID1-4.
  • the track point is compared with the area ID and road ID in the high-precision map. Before associating with the track point or lane ID, it is necessary to convert the coordinate system to which the position information of the track point belongs to the coordinate system corresponding to the coordinate information in the high-precision map, so that the coordinate system to which the position information of the track point belongs is the same as that in the high-precision map.
  • the coordinate system to which the coordinate information belongs is the same.
  • Track points accurately represent the positioning quality of each map element in the HD map.
  • the track points are sequentially associated with the area ID, road ID and lane ID in the high-precision map according to the principle from large to small, that is, first determine the area ID corresponding to the track point in the high-precision map, and then The road ID corresponding to the trajectory point in the high-precision map, and finally the lane ID corresponding to the trajectory point in the high-precision map is determined.
  • each lane ID in the high-precision map can also be directly obtained, and the uniquely associated lane ID of the track point in each lane ID is determined according to the position information of the track point and the endpoint coordinates corresponding to each lane ID.
  • the road ID associated with the track point in the high-precision map can be quickly determined according to the corresponding relationship between the lane ID and the road ID in the high-precision map, and according to the high-precision map The corresponding relationship between the road ID and the area ID can quickly determine the lane ID associated with the track point in the high-precision map, thereby realizing the association between the track point, the road ID and the area ID.
  • the track point 1 If the track point 1 is not located in the intersection of the high-precision map, first obtain the ID of each lane in the high-precision map, according to the coordinate range of each lane in the high-precision map (that is, the start and end coordinates of the lane) and the track point
  • the location information of 1 filters out the lane ID set that meets the preset condition 3, calculates the vertical distance from the track point 1 to the lane center line corresponding to each lane ID in the lane ID set, and calculates the heading and lane ID set corresponding to the track point 1
  • the heading angle between the lane headings corresponding to each lane ID in Each lane ID in the set is screened, and the target lane ID that satisfies the preset condition 4 in the lane ID set is used as the lane ID uniquely associated with the track point 1.
  • the preset condition 3 may be that the longitude coordinates of the track point 1 are located within the longitude range limited by the start and end coordinates corresponding to the lane ID, or the latitude coordinates of the track point 1 are within the start and end coordinates corresponding to the lane ID.
  • Preset condition 4 may be that the vertical distance corresponding to the target lane ID is less than the threshold 1 and the heading angle corresponding to the target lane ID is less than the threshold 2.
  • the process of preferentially determining the lane ID associated with the track point 1 is similar to the process of determining the road ID associated with the track point 1 in the above S13-S15. Therefore, for details, please refer to the relevant descriptions in the above S13-S15.
  • the track point 1 is located in the intersection of the high-precision map
  • the lane IDs entering and exiting intersection 1 determine the lane ID that is uniquely associated with trajectory point 1.
  • the lane ID uniquely associated with the track point 1 may also be determined based on the heading corresponding to the track point 1 according to one of the front track point and the rear track point of the track point 1 .
  • the heading corresponding to the above lane ID can be obtained from a high-precision map, or can be obtained by calculation according to the coordinates of the starting point and the ending point corresponding to the lane, which is not specifically limited in the embodiment of the present application.
  • the heading corresponding to the track point 1 For the calculation of the heading corresponding to the track point 1, reference may be made to the relevant description in the above S14, which is not repeated here for the sake of brevity of the description.
  • FIG. 9 is a flowchart of a map generation method provided by an embodiment of the present application, which is applied to a drawing device. The method includes but is not limited to the following steps:
  • the mapping device may acquire a set of trajectory points from the data acquisition device or the data acquisition vehicle, for example, receive a set of trajectory points sent by the data acquisition vehicle.
  • the map may be a high-precision map, or other types of maps including areas, roads, and lanes, which are not specifically limited in this embodiment of the present application.
  • the map may be pre-stored in the memory of the mapping device, and the mapping device obtains the location information of multiple driving areas in the map by calling the map in its own memory.
  • the map may also be obtained by the mapping device from other devices (eg, vehicles, cloud servers, etc.). Multiple driving areas in the map include areas, roads, or lanes in the map.
  • each track point has corresponding positioning position information and positioning quality reference information, and the positioning position information of the track point is used to indicate the position of the position point in the high-precision map. latitude, etc.; the positioning quality reference information of the location point can be used to measure the positioning quality of the location point in the map.
  • the location quality reference information of the location point includes the location accuracy of the location point, the DOP value of the location point, and the observed data at the location point. Whether the number of satellites or the positioning position information of the position point is a fixed solution. It should be noted that the positioning position information of the track point is the position information of the track point in the above embodiment, and the positioning quality reference information of the track point is the quality information of the track point in the above embodiment.
  • the group of track points is associated with the first travel area in the plurality of travel areas, and the first travel area is in the map area, road or driveway.
  • the association process is specifically described by taking the first trajectory point and the second trajectory point as an example: the first trajectory point and the second trajectory point are any two adjacent trajectory points in the group of trajectory points, and the first trajectory point and the second trajectory point are any two adjacent trajectory points in the group.
  • the trajectory point and the second trajectory point are not located at the intersection in the map, the vertical distance between the first trajectory point and the first driving area satisfies the first preset condition, and the heading corresponding to the first trajectory point is the same as the first driving area.
  • the set of track points is associated with the first driving area, and the first driving area is the road in the map or the lane in the map; the first track point corresponds to The heading of is the heading from the first track point to the second track point.
  • the above-mentioned embodiment is suitable for associating a group of trajectory points with a certain road in the map.
  • the first trajectory point is the trajectory point 1
  • the second trajectory point is the next adjacent trajectory point of the trajectory point
  • the first preset condition and the first and second preset conditions are equivalent to the preset condition 2 in the foregoing embodiment.
  • the above-mentioned embodiment is also applicable to associating a group of track points with a certain lane in the map.
  • the first preset condition and the first and second preset conditions are equivalent to the preset condition 4 in the above-mentioned embodiment, which is not repeated here.
  • the group of trajectory points is located in the intersection in the map, in this case, associating the group of trajectory points with the first driving area may be: associating the group of trajectory points with the first driving area in the intersection.
  • the first driving area is the only road or lane in the intersection that connects the second driving area adjacent to the intersection and the third driving area adjacent to the intersection, and a trajectory point before the set of trajectory points is located in the second driving area.
  • one trajectory point after the group of trajectory points is located in the third travel area.
  • the above embodiment is suitable for associating the trajectory point with a certain road in the intersection when the trajectory point is located in the intersection in the map, which corresponds to the relevant description of S16 in the above-mentioned embodiment of FIG. 3 , in this case, the second driving area can be is the road indicated by the first road ID in S16, then the third driving area is equivalent to the road indicated by the second road ID in the above S16, and the first driving area is the road connecting the first road ID and the second road ID within the intersection. .
  • the above embodiment is suitable for associating the trajectory point with a certain lane in the intersection when the trajectory point is located in the intersection in the map, which corresponds to the relevant description of S24 in the above-mentioned embodiment of FIG. 6 .
  • the second driving area can be is the lane indicated by the first lane ID in S24
  • the third driving area is equivalent to the lane indicated by the second lane ID in the above S24
  • the first driving area is the lane connecting the first lane ID and the second lane ID within the intersection. .
  • the first driving area is the area in the map.
  • associating the set of trajectory points with the first travel area corresponds to the description of determining the area ID associated with the track point in the first part of the above-mentioned embodiment.
  • the first driving area can be an area indicated by any area ID in the map, for example, the first driving area is an area 1-00-00, this group of track points is the multiple track points in the area 1-00-00.
  • the set of track points includes at least one track point, and each track point has corresponding positioning quality reference information.
  • the positioning quality reference information of the track points please refer to the relevant description in S101 above.
  • the statistical value of the positioning quality is obtained according to the positioning quality reference information of the set of track points.
  • the statistical value of positioning quality includes the average positioning accuracy, the average precision factor DOP value, the average number of observable satellites, or the statistics of whether the positioning position of the trajectory point is a fixed solution.
  • the average positioning accuracy is the error standard deviation of the position information of multiple track points relative to the reference true value.
  • the DOP value is used to measure the average value of the error caused by the geometric position of the satellite relative to the observer (for example, the data collection vehicle that collects the location point).
  • the smaller the average precision factor DOP value the better the positioning quality; the positioning position is fixed
  • the positioning quality of the solution is better than the positioning quality of the non-fixed position information.
  • the fixed position of the positioning position means that the corresponding ambiguity when the positioning position is solved based on the carrier phase is an integer.
  • the positioning quality statistical value is obtained according to the statistics of the number of observable satellites of each track point in the set of track points, and the positioning quality statistical value is The average number of observable satellites corresponding to the set of track points, the more the average number of observable satellites corresponding to the set of track points, the better the positioning quality of the driving area where the set of track points is located.
  • the positioning quality indication information is generated based on the positioning quality statistics. Since the set of track points is associated with the first driving area, the positioning quality indication information is used to indicate that the positioning quality in the first driving area is the positioning quality statistics value.
  • the first driving area is an area, road or lane in the map.
  • the positioning quality indication information may be represented in the form of a table, a graph, a text, etc., which is not specifically limited in this embodiment of the present application. It should be noted that the positioning quality indication information may also be referred to as a positioning quality information layer, a positioning quality mapping table, or the like.
  • the positioning quality indication information can be expressed as shown in Table 1.
  • Table 1 the mapping relationship between the driving area and the positioning quality is listed.
  • the positioning quality of area 1 in the map includes: the average observable satellite satellite The number is 6; the positioning quality of area 2 in the map includes: the average number of observable satellites is 6.
  • the average number of observable satellites is 6 Area 2 in the map
  • the average number of observable satellites is 4 ... ...
  • the positioning quality indication information may also be added to the map.
  • the corresponding positioning quality can be marked at the corresponding area or at the corresponding road or at the corresponding lane in the map.
  • the association method in S102 may also be: the first driving area is a road in the map, the first driving area includes multiple lanes in the map, and the set of track points is associated with the first driving area In the case of , select at least one track point from the set of track points according to the distance from each track point in the set of track points to each of the multiple lanes in the first driving area, and select from the above-mentioned multiple lanes One lane, for example, lane A, then lane A is the lane closest to each of the at least one track point among the above-mentioned multiple lanes; the lane positioning quality is obtained according to the positioning quality reference information of the at least one track point Statistics.
  • lane positioning quality indication information can be generated based on the lane positioning quality statistical value, and the lane positioning quality indication information is used to indicate that the positioning quality in lane A is the lane positioning quality statistical value; the lane positioning quality indication information is added to the map.
  • the map to which the positioning quality indication information is added may also be stored, or the map to which the positioning quality indication information is added may be sent to the terminal. Repeat.
  • time information may also be added, and the time information is used to indicate the effective time of the positioning quality in the driving area. Since the positioning quality obtained based on the positioning quality reference information of the track points collected in different periods is different, for example, because the trees in winter basically only have trunks, and the trees in summer generally have lush branches and leaves, therefore, based on the data collected in winter The positioning quality obtained by the track points is generally better than that obtained based on the track points collected in the summer period. Therefore, time information can be introduced to define the effective time of the positioning quality of the driving area.
  • the positioning quality indication information can be generated by a map server, and the drawing device that executes the method shown in FIG. 9 can be a map server, or can be a component or a chip in the map server.
  • the positioning quality indication information may also be generated by a roadside device, a vehicle or a mobile terminal, and the drawing device for executing the method shown in FIG. 9 may also be the roadside device, vehicle or mobile terminal, or the roadside device, vehicle or mobile terminal. Or components or chips of mobile terminals.
  • the positioning quality indication information of each driving area is provided in the map.
  • the positioning quality indication information enables map users to independently choose to avoid driving areas with poor positioning quality, or selectively set a higher positioning quality for the positioning information with poor positioning quality.
  • the low confidence level improves the travel safety rate of the vehicle.
  • FIG. 10 is a flowchart of a method for using a map provided by an embodiment of the present application.
  • FIG. 10 may be independent of the embodiment of FIG. 9 , or may be a supplement to the embodiment of FIG. 9 .
  • the drawing device may be described by taking the server as an example, and the terminal may be described by taking the vehicle as an example, but the drawing device in the embodiment of the present application is not limited to be only the server and the terminal is not limited to be only the vehicle.
  • the method includes but is not limited to the following steps:
  • the server sends a map to the vehicle.
  • the server sends a map to the vehicle, the map includes positioning quality indication information and driving area indication information, the positioning quality indication information is used to indicate the positioning quality in the driving area, the driving area indication information is used to indicate the driving area, and the driving area indication information is used to indicate the driving area.
  • Areas are areas, roads, or lanes in the map.
  • the positioning quality in the driving area is the statistical value of the positioning quality of multiple track points in the driving area.
  • the statistical value of the positioning quality includes the average positioning accuracy, the average precision factor DOP value, the average number of satellites that can be observed, or the statistics of whether the positioning position of the trajectory point is a fixed solution.
  • the positioning quality indication information and the driving area indication information are carried in the map, and the map may be sent to the vehicle by the server in any manner of broadcast, multicast or unicast.
  • the server may send the map including the positioning quality indication information and the driving area indication information to the roadside unit, and the roadside unit may transmit the map to the vehicle.
  • the map may be generated by the server according to the manner shown in FIG. 9 , or may be generated by other devices according to the manner shown in FIG. 9 and sent to the server, which is not specifically limited in this embodiment of the present application.
  • the vehicle receives the map, and obtains the positioning quality indication information and the driving area indication information in the map.
  • the vehicle receives the map, and obtains the positioning quality indication information and the driving area indication information in the map.
  • the map received by the vehicle may be sent by the server, or may be sent by the server through the roadside unit, which is not specifically limited in the embodiment of the present application.
  • the positioning quality indication information includes the mapping relationship between the driving area number and the positioning quality
  • the driving area indication information includes the mapping relationship between the driving area number and the identification of the map element in the map
  • the map element is the area in the map, the road or driveway.
  • the positioning quality indication information can be represented as Table 2, and the driving area indication information can be represented as Table 3.
  • the positioning quality of the driving area number 1 is: the average number of observable satellites is 6, according to Table 3 It can be known that the driving area number 1 is the area 1 in the map, and the positioning quality of the area 1 in the map can be known by combining Table 1 and Table 2: the average number of observable satellites is 6.
  • Driving area number positioning quality 1 The average number of observable satellites is 6
  • the average number of observable satellites is 4 ... ...
  • the vehicle performs path planning, driving decision or vehicle control according to the positioning quality indication information and the driving area indication information.
  • the vehicle can know the positioning quality of each driving area in the map in advance according to the positioning quality indication information and the driving area indication information, and then assists itself in path planning, driving decision-making or vehicle control, so as to effectively avoid the positioning quality Poor areas, roads or lanes to improve their own travel safety rate.
  • FIG. 11 is a schematic diagram of an application scenario provided by an embodiment of the present application. Assuming that the vehicle wants to reach the destination point F from point A, the vehicle knows the location of each road except the BC road according to the positioning quality indication information and the driving area indication information. The positioning quality of other roads except the poor quality is good, then the navigation route determined by the vehicle after the path planning is: A-B-E-F-C-D, it can be seen that the BC road with poor positioning quality is avoided, and the vehicle is on the navigation route. The positioning on the road is accurate, which improves the safety rate of the vehicle.
  • the vehicle knows that the positioning quality of the BC lane in FIG. 11 is the worst according to the positioning quality indication information and the driving area indication information, then when the vehicle travels to point B , the driving decision made by the vehicle is to turn left into the BE lane to avoid the BC lane with the worst positioning quality, and choose to drive on the lane with better positioning quality as much as possible.
  • the vehicle may store the received map, and call it at any time when needed later.
  • the vehicle can display the received map on the display screen, so that the user can intuitively and clearly understand the positioning quality of each driving area in the map.
  • the map using device may be not only a vehicle, but also a component in the vehicle (such as a navigation device or an automatic driving device in the vehicle), and may also be a chip that can be used in the vehicle.
  • the implementation of the embodiments of the present application provides a map including positioning quality indication information and driving area indication information, so that the vehicle can timely avoid driving areas with poor positioning quality based on the map, or selectively locate the driving area.
  • the positioning information with poor quality is set with a lower confidence level, so that when driving in a driving area with better positioning quality (for example, roads, lanes, etc.), accurate positioning position information can be obtained, which is conducive to improving route planning and driving decision-making. accuracy and travel safety.
  • FIG. 12 is a schematic structural diagram of an apparatus for generating a map according to an embodiment of the present application.
  • the apparatus 30 at least includes a processor 110 , a memory 111 and a receiver 112 .
  • the apparatus 30 also includes a transmitter 113 .
  • the receiver 112 and transmitter 113 may also be replaced with communication interfaces for providing information input and/or output to the processor 110 .
  • the memory 111, the receiver 112, the transmitter 113 and the processor 110 are connected or coupled through a bus.
  • the apparatus 30 may be the drawing device in the embodiment of FIG. 1 , or may be the server in FIG. 10 .
  • the apparatus 30 is used to implement the method described in the above embodiment of FIG. 9 , and may also be used to implement the server-side method described in the embodiment of FIG. 10 .
  • the receiver 112 is used to obtain the positioning position information of a set of track points, the positioning quality reference information and the position information of multiple driving areas in the map.
  • the transmitter 113 is configured to send the generated positioning quality indication information, or send a map, where the map includes the positioning quality indication information and the driving area indication information.
  • Receiver 112 and transmitter 113 may include antennas and chipsets for communicating with devices, sensors, or other physical devices in the vehicle, either directly or over an air interface.
  • Transmitter 113 and receiver 112 constitute a communication module that may be configured to receive and transmit information according to one or more other types of wireless communications (eg, protocols), such as Bluetooth, IEEE 802.11 communication protocols, Cellular technology, Worldwide Interoperability for Microwave Access (WiMAX) or LTE (Long Term Evolution, Long Term Evolution), ZigBee protocol, Dedicated Short Range Communications (DSRC) and RFID (Radio Frequency Identification, radio frequency) identification) communication, etc.
  • protocols eg, protocols
  • Bluetooth WiMAX
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution, Long Term Evolution
  • ZigBee protocol Long Term Evolution, Long Term Evolution
  • DSRC Dedicated Short Range Communications
  • RFID Radio Frequency Identification, radio frequency
  • the receiver 112 and the transmitter 113 may be wired interfaces or wireless interfaces.
  • the wired interface may be an Ethernet interface, a Local Interconnect Network (LIN), etc.
  • the wireless interface may be a cellular network interface or a wireless local area network interface, or the like.
  • the processor 110 may be configured to perform associating a set of trajectory points with the first driving area according to the positioning position information of the set of trajectory points and the position information of the plurality of driving areas, generating positioning quality indication information indicating the positioning quality of the first driving area, etc. operate.
  • the processor 110 may be composed of one or more general-purpose processors, such as a central processing unit (Central Processing Unit, CPU), or a combination of a CPU and a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), a programmable logic device (Programmable Logic Device, PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field programmable gate array (Field-Programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • GAL General array logic
  • the memory 111 may include a volatile memory (Volatile Memory), such as a random access memory (Random Access Memory, RAM); the memory 111 may also include a non-volatile memory (Non-Volatile Memory), such as a read-only memory (Read- Only Memory (ROM), flash memory (Flash Memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); the memory 111 may also include a combination of the above types.
  • the memory 111 can store programs and data, wherein the stored programs include: vertical distance calculation algorithm, heading angle calculation program, association establishment algorithm, etc.
  • the stored data includes: positioning position information of track points, positioning quality reference information, driving area The mapping relationship between positioning quality and so on.
  • the memory 111 may exist alone, or may be integrated inside the processor 110 .
  • FIG. 11 is only an example of an apparatus 30, and the apparatus 30 may include more or less components than those shown in FIG. 11, or have a different arrangement of the components. Meanwhile, various components shown in FIG. 11 may be implemented in hardware, software, or a combination of hardware and software.
  • FIG. 13 is a schematic structural diagram of an apparatus for using a map provided by an embodiment of the present application.
  • the apparatus 40 at least includes a processor 210 , a memory 211 , a receiver 212 and a display 213 , and the receiver 212 can provide information to the processor 210 enter.
  • the memory 211, the receiver 212, the display 213 and the processor 210 are connected or coupled through a bus.
  • the device 40 may be the terminal in FIG. 1 , or may be the vehicle in the embodiment in FIG. 10 . In this embodiment of the present application, the device 40 is used to implement the vehicle-side method described in the above embodiment of FIG. 10 .
  • the receiver 212 is used for receiving the positioning quality indication information and the driving area indication information in the map.
  • the receiver 212 can be used for executing S202 in FIG. 10 .
  • Receiver 112 may include antennas and chipsets for communicating with servers, drive test units, sensors, or other physical devices, either directly or over an air interface.
  • the receiver 212 may be a wireless interface, eg, a cellular network interface or a wireless local area network interface, or the like.
  • the processor 210 is configured to perform route planning, driving decision or vehicle control according to the positioning quality indication information and the driving area indication information.
  • the processor 210 may be used to execute S203 in FIG. 10 .
  • the processor 210 may be composed of one or more general-purpose processors, such as a central processing unit (Central Processing Unit, CPU), or a combination of a CPU and a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), a programmable logic device (Programmable Logic Device, PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field programmable gate array (Field-Programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • GAL General array logic
  • the memory 211 may include a volatile memory (Volatile Memory), such as a random access memory (Random Access Memory, RAM); the memory 211 may also include a non-volatile memory (Non-Volatile Memory), such as a read-only memory (Read- Only Memory (ROM), flash memory (Flash Memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); the memory 211 may also include a combination of the above types.
  • the memory 211 can store programs and data, wherein the stored programs include: vehicle control programs, navigation planning programs, etc., and the stored data includes: positioning quality indication information, driving area indication information, and the like.
  • the memory 211 may exist alone, or may be integrated inside the processor 110 .
  • the display 213 is used to display the positioning quality indication information in the map, and the display 213 may be a display screen, and the display screen may be a liquid crystal display (Liquid Crystal Display, LCD), an organic or inorganic light-emitting diode (Organic Light-Emitting Diode, OLED), a Source matrix organic light emitting diode panel (Active Matrix/Organic Light Emitting Diode, AMOLED), etc.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • AMOLED Active Matrix/Organic Light Emitting Diode
  • FIG. 13 is only an example of an apparatus 40, and the apparatus 40 may include more or less components than those shown in FIG. 13, or have a different arrangement of components. Meanwhile, various components shown in FIG. 13 may be implemented in hardware, software, or a combination of hardware and software.
  • FIG. 14 is a schematic functional structure diagram of a map generation apparatus provided by an embodiment of the present application.
  • the apparatus 31 includes an acquisition unit 310 , an association unit 311 , a calculation unit 312 , and a processing unit 313 .
  • the device 31 may be implemented by hardware, software or a combination of software and hardware.
  • the obtaining unit 310 is used to obtain the positioning position information of a group of track points, the positioning quality reference information and the position information of multiple driving areas in the map, where the multiple driving areas include areas, roads or lanes in the map; the associating unit 311 , which is used to associate a set of track points with the first driving area in the multiple driving areas according to the positioning position information and the position information of the multiple driving areas, and the first driving area is the area, road or lane in the map; the computing unit 312, for obtaining the positioning quality statistical value according to the positioning quality reference information; the processing unit 313, for generating positioning quality indication information, where the positioning quality indication information is used to indicate that the positioning quality in the first driving area is the positioning quality statistical value; and Positioning quality indicators are added to the map.
  • Each functional module of the device 31 can be used to implement the method described in the embodiment of FIG. 9 .
  • the obtaining unit 310 can be used to execute S101
  • the association unit 311 can be used to execute S102
  • the calculation unit 312 can be used to execute S103
  • the processing unit 313 can be used to execute S104 and S105.
  • the apparatus 31 further includes a sending unit, configured to send the map to which the positioning quality indication information is added, and the sending unit may be configured to execute S201 in Fig. 10 .
  • Each functional module of the device 31 can be used to implement the methods described in the embodiments of FIG. 3 and FIG. 6 , and for the sake of brevity of the description, details are not repeated here.
  • FIG. 15 is a schematic functional structure diagram of an apparatus for using a map provided by an embodiment of the present application.
  • the apparatus 41 includes a receiving unit 410 and a processing unit 411 .
  • the apparatus 41 further includes a display unit 412 .
  • the device 41 can be implemented by hardware, software or a combination of software and hardware.
  • the receiving unit 410 is used to receive the positioning quality indication information and the driving area indication information in the map, the positioning quality indication information is used to indicate the positioning quality in the driving area, the driving area indication information is used to indicate the driving area, and the driving area is the map
  • the positioning quality in the driving area is the statistical value of the positioning quality of multiple track points in the driving area;
  • the processing unit 411 is used for path planning and driving decision-making according to the positioning quality indication information and the driving area indication information or vehicle control.
  • the display unit 412 is used for displaying the positioning quality indication information in the map.
  • Each functional module of the apparatus 41 can be used to implement the method described in the embodiment of FIG. 10 .
  • the receiving unit 410 can be used to execute S202
  • the processing unit 411 can be used to execute S203.
  • the storage medium includes read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), programmable read-only memory (Programmable Read-only Memory, PROM), erasable programmable read-only memory ( Erasable Programmable Read Only Memory, EPROM), One-time Programmable Read-Only Memory (OTPROM), Electronically-Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disk storage, magnetic disk storage, tape storage, or any other computer-readable medium that can be used to carry or store data.
  • Read-Only Memory Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-only Memory
  • PROM Programmable Read-only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or the whole or part of the technical solution.
  • the computer program product is stored in a storage medium, including a number of instructions for So that a device (which may be a personal computer, a server, or a network device, a robot, a single-chip microcomputer, a chip, a robot, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.

Abstract

一种地图、地图生成方法、地图使用方法及装置(30,40,31,41),地图生成方法包括:获得一组轨迹点的定位位置信息、定位质量参考信息和地图中多个行驶区域的位置信息(S101),根据一组轨迹点的定位位置信息和多个行驶区域的位置信息,将该组轨迹点与多个行驶区域中的第一行驶区域关联(S102),根据该组轨迹点的定位质量参考信息获得定位质量统计值(S103),最后,可将该行驶区域内的定位质量统计值添加至地图中。一种更具定位参考性的地图,使得地图使用者能够选择性的使用地图中的定位信息。

Description

一种地图、地图生成方法、地图使用方法及装置
本申请要求于2021年04月25日提交中国知识产权局、申请号为202110449790.1、申请名称为“一种地图、地图生成方法、地图使用方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶技术领域,尤其涉及一种地图、地图生成方法、地图使用方法及装置。
背景技术
高精地图(High Definition Map,HD Map)又称为高清地图或高精度地图,常作为自动驾驶的辅助地图。高精地图包含了静态信息和动态信息,能够以云端协同、车路协同等方式实现地图信息的加载,用于辅助车辆感知、定位、规划和控制。
高精地图的生成依赖于位置点的定位数据,由于定位数据的采集易受到周围环境影响,导致在高精地图中不同地图元素(例如,道路、车道等)上获得的定位数据的质量高低不一。如果在自动驾驶过程中使用高精地图中质量较低的定位数据,则定位不准容易造成导航路线发生偏差,甚至影响车辆的行驶安全。
发明内容
本申请实施例公开了一种地图、地图生成方法、地图使用方法及装置,使得使用地图的车辆或者便携终端能够选择性的使用高精地图中的定位信息,提高了自动驾驶的安全性。
第一方面,本申请实施例提供了一种地图生成方法,该方法包括:获得一组轨迹点的定位位置信息、定位质量参考信息和地图中多个行驶区域的位置信息,多个行驶区域包括地图中的区域、道路或者车道;根据定位位置信息和多个行驶区域的位置信息,将一组轨迹点关联到多个行驶区域中的第一行驶区域,第一行驶区域为地图中的区域、道路或者车道;根据定位质量参考信息获得定位质量统计值;生成定位质量指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量为定位质量统计值;将定位质量指示信息添加入地图中。
上述方法中,通过将一组轨迹点与地图中的某个行驶区域相关联,以基于该组轨迹点的定位质量参考信息获取的统计值作为该行驶区域的定位质量,相对于现有技术中仅提供位置信息的地图,还在地图中提供了各行驶区域的定位质量指示信息,该定位质量指示信息使得地图使用者能够自主选择避开定位质量较差的行驶区域,或者选择性地为定位质量较差的定位信息设置较低的置信度,提高了车辆的出行安全率。
在第一方面的一种实施方式中,第一轨迹点和第二轨迹点为一组轨迹点中的任意两个相邻的轨迹点,将一组轨迹点关联到多个行驶区域中的第一行驶区域的过程可以是:在第一轨迹点和第二轨迹点不位于地图中的路口的情况下,在第一轨迹点距离第一行驶区域的垂直距离满足第一预设条件,且第一轨迹点对应的航向与第一行驶区域的航向之间的航向夹角满足第二预设条件的情况下,将一组轨迹点与第一行驶区域关联,第一行驶区域为地图中的道路或者地图中的车道;第一轨迹点对应的航向为由第一轨迹点行驶到第二轨迹点的航向。
实施上述实现方式,对于非路口内的轨迹点,基于轨迹点至行驶区域的垂直距离,以及相邻轨迹点之间的航向与行驶区域的航向之间的航向夹角,确定与一组轨迹点关联的道路或车道,实现了轨迹点与地图中的道路或车道的准确匹配,有利于提高基于该组轨迹点的定位质量参考信息估算的定位质量的准确率和可信度。
在第一方面的一种实施方式中,一组轨迹点位于地图中的路口内,将一组轨迹点关联到多个行驶区域中的第一行驶区域的过程可以是:将一组轨迹点关联到路口内的第一行驶区域,第一行驶区域是路口内唯一连接与路口相邻的第二行驶区域和与路口相邻的第三行驶区域的道路或者车道,一组轨迹点之前的一个轨迹点位于第二行驶区域内,一组轨迹点之后的一个轨迹点位于第三行驶区域。
实施上述实现方式,对于路口内的轨迹点,根据路口内的道路(或车道)与该路口外与该路口相邻的两条道路(或车道)之间的连接关系,可以快速确定路口内的轨迹点关联的道路(或车道),提高了轨迹点与地图中道路(或车道)的匹配效率,节省了处理时间。
在第一方面的一种实施方式中,第一行驶区域为地图中的道路,第一行驶区域包括地图中的多个车道,该方法还包括:根据一组轨迹点中每个轨迹点到多个车道中每个车道的距离,从一组轨迹点中选择至少一个轨迹点,从多个车道中选择一个车道,一个车道为多个车道中距离至少一个轨迹点中的每个轨迹点最近的车道;根据至少一个轨迹点的定位质量参考信息获得车道定位质量统计值;生成车道定位质量指示信息,车道定位质量指示信息用于指示一个车道内的定位质量为车道定位质量统计值;将车道定位质量指示信息添加入地图中。
实施上述实现方式,对于非路口内的轨迹点,在确定一组轨迹点与地图中的某道路(例如,目标道路)关联的情况下,可以仅根据垂直距离快速确定目标道路内的多条车道中与轨迹点关联的车道,提高了轨迹点与地图中车道的匹配效率以及匹配准确率,节省了处理时间。
在第一方面的一种实施方式中,将一组轨迹点关联到多个行驶区域中的第一行驶区域的过程可以是:根据一组轨迹点的定位位置信息和第一行驶区域的多个角点坐标,确定一组轨迹点位于第一行驶区域内,第一行驶区域为地图中的区域;将一组轨迹点与第一行驶区域关联。
实施上述实现方式,仅通过判断轨迹点的定位位置信息是否第一行驶区域内,即可快速确定轨迹点是否与第一行驶区域关联,提高了轨迹点与地图中区域的匹配效率以及匹配准确率,节省了处理时间。
第二方面,本申请实施例提供了一种地图使用方法,该方法包括:接收地图中的定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道,行驶区域内的定位质量为行驶区域内多个轨迹点的定位质量统计值;根据定位质量指示信息和行驶区域指示信息进行路径规划、驾驶决策或者车辆控制。
上述方法中,提供了一种包含定位质量指示信息和行驶区域指示信息的地图,使得终端基于该地图能及时避开定位质量较差的行驶区域,从而在定位质量较好的行驶区域(例如,道路、车道等)内行驶,即可获得准确的定位位置信息,有利于提高路线规划、驾驶决策等的准确率以及出行安全率。
在第二方面的一种实施方式中,将定位质量指示信息显示于显示装置上。
实施上述实现方式,可以直观清晰地显示地图中的定位质量指示信息。
在第二方面的一种实施方式中,定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者轨迹点的定位位置是否为固定解的统计情况。
其中,平均定位精度为多个位置信息相对于参考真值的误差标准差,平均定位精度越小,定位质量越好;平均可观测到的卫星数量越大,定位质量越好;平均精度因子DOP值用于度量卫星相对于观测者(例如,采集位置点的数据采集车)的几何位置所造成的误差量的平均值,平均精度因子DOP值越小,定位质量越好;定位位置为固定解时的定位质量优于定位位置为非固定解时的定位质量,定位位置为固定解是指基于载波相位解算出该定位位置时对应的模糊度为整数。
第三方面,本申请实施例提供了一种地图,该地图包括定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道,行驶区域内的定位质量为行驶区域内多个轨迹点的定位质量统计值。
上述地图提供了具有参考价值的、可信度高的行驶区域的定位质量,能为地图的使用者提供更准确的地图中行驶区域的定位质量的先验信息。
在第三方面的一种实施方式中,所述定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者所述轨迹点的定位位置是否为固定解的统计情况。
在第三方面的一种实施方式中,该地图还包括时间信息,时间信息用于指示行驶区域内的定位质量的有效时间。
实施上述实现方式,时间信息的引入,充分考虑了周围环境(例如,植被随季节、气候的变化而变化)对定位质量的影响,基于时间信息限定行驶区域内的定位质量的有效时间,提高了定位质量指示信息的可信度和可参考价值。
第四方面,本申请实施例提供了一种地图生成装置,该装置包括:获取单元,用于获得一组轨迹点的定位位置信息、定位质量参考信息和地图中多个行驶区域的位置信息,多个行驶区域包括地图中的区域、道路或者车道;关联单元,用于根据定位位置信息和多个行驶区域的位置信息,将一组轨迹点关联到多个行驶区域中的第一行驶区域,第一行驶区域为地图中的区域、道路或者车道;计算单元,用于根据定位质量参考信息获得定位质量统计值;处理单元,用于生成定位质量指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量为定位质量统计值;处理单元,还用于将定位质量指示信息添加入地图中。通常情况下,地图由服务器生成,则该地图生成装置可以为地图服务器,或者可以为地图服务器中的部件或者芯片。此外,地图也可能由路侧设备、车辆或者移动终端生成,则该地图生成装置还可以为该路侧设备、车辆或者移动终端,或者为路侧设备、车辆或者移动终端的部件或者芯片。
在第四方面的一种实施方式中,第一轨迹点和第二轨迹点为一组轨迹点中的任意两个相邻的轨迹点,关联单元具体用于:在第二方面的一种实施方式中,在第一轨迹点和第二轨迹点不位于地图中的路口的情况下,在第一轨迹点距离第一行驶区域的垂直距离满足第一预设条件,且第一轨迹点对应的航向与第一行驶区域的航向之间的航向夹角满足第二预设条件的情况下,将一组轨迹点与第一行驶区域关联,第一行驶区域为地图中的道路或者地图中的车道;第一轨迹点对应的航向为由第一轨迹点行驶到第二轨迹点的航向。
在第四方面的一种实施方式中,一组轨迹点位于地图中的路口内,关联单元具体用于:将一组轨迹点关联到路口内的第一行驶区域,第一行驶区域是路口内唯一连接与路口相邻的 第二行驶区域和与路口相邻的第三行驶区域的道路或者车道,一组轨迹点之前的一个轨迹点位于第二行驶区域内,一组轨迹点之后的一个轨迹点位于第三行驶区域。
在第四方面的一种实施方式中,第一行驶区域为地图中的道路,第一行驶区域包括地图中的多个车道,关联单元,还用于根据一组轨迹点中每个轨迹点到多个车道中每个车道的距离,从一组轨迹点中选择至少一个轨迹点,从多个车道中选择一个车道,一个车道为多个车道中距离至少一个轨迹点中的每个轨迹点最近的车道;计算单元,还用于根据至少一个轨迹点的定位质量参考信息获得车道定位质量统计值;处理单元,还用于生成车道定位质量指示信息,车道定位质量指示信息用于指示一个车道内的定位质量为车道定位质量统计值;将车道定位质量指示信息添加入地图中。
在第四方面的一种实施方式中,关联单元具体用于:根据一组轨迹点的定位位置信息和第一行驶区域的多个角点坐标,确定一组轨迹点位于第一行驶区域内,第一行驶区域为地图中的区域;将一组轨迹点与第一行驶区域关联。
第五方面,本申请实施例提供了一种地图使用装置,该装置包括:接收单元,用于接收地图中的定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道,行驶区域内的定位质量为行驶区域内多个轨迹点的定位质量统计值;处理单元,用于根据定位质量指示信息和行驶区域指示信息进行路径规划、驾驶决策或者车辆控制。
该地图使用装置可以为车辆,也可以为可使用于车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。
在第五方面的一种实施方式中,该装置还包括显示单元,显示单元用于显示地图中的定位质量指示信息。
在第五方面的一种实施方式中,定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者轨迹点的定位位置是否为固定解的统计情况。
第六方面,本申请实施例提供了一种地图使用方法,该方法包括:接收地图,所述地图包括定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道,行驶区域内的定位质量为行驶区域内多个轨迹点的定位质量统计值;存储地图,或者,在显示装置上显示地图。
上述方法中,将接收的地图进行存储以便后续时可以随时快速调用,将地图显示在显示装置上,可供用户直观清晰地了解地图中各行驶区域的定位质量。
在第六方面的一种实施方式中,根据定位质量指示信息和行驶区域指示信息进行导航路线规划、驾驶决策或车辆控制。
实施上述方式,基于定位质量指示信息和行驶区域指示信息,可快速知晓地图中各个行驶区域的定位质量,从而在行驶过程中及时避开定位质量较差的行驶区域,而在定位质量较好的区域行驶,有利于提高导航路径规划、驾驶决策或车辆控制的准确率。
第七方面,本申请实施例提供了一种地图使用装置,该装置包括:接收单元,用于接收地图,该地图包括定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道,行驶区域内的定位质量为行驶区域内多个轨迹点的定位质量统计值;存储单元,用 于存储地图,或者,显示单元,用于显示地图。该地图使用装置可以为车辆,也可以为可使用于车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。
在第七方面的一种实施方式中,该装置还包括:处理单元,用于根据定位质量指示信息和行驶区域指示信息进行导航路线规划、驾驶决策或车辆控制。
第八方面,本申请实施例提供了一种计算机程序产品,该计算机程序产品包括地图,该地图包括定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道,行驶区域内的定位质量为行驶区域内多个轨迹点的定位质量统计值。
在第八方面的一种实施方式中,定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者所述轨迹点的定位位置是否为固定解的统计情况。
在第八方面的一种实施方式中,该地图还包括时间信息,时间信息用于指示行驶区域内的定位质量的有效时间。
第九方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质用于存储地图,该地图包括定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道,行驶区域内的定位质量为行驶区域内多个轨迹点的定位质量统计值。
在第九方面的一种实施方式中,定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者所述轨迹点的定位位置是否为固定解的统计情况。
在第九方面的一种实施方式中,该地图还包括时间信息,时间信息用于指示行驶区域内的定位质量的有效时间。
第十方面,本申请实施例提供了一种地图生成装置,该装置包括处理器和存储器,处理器和存储器通过总线连接或者耦合在一起;其中,存储器用于存储程序指令;所述处理器调用所述存储器中的程序指令,以执行第一方面或者第一方面的任一可能的实现方式中的方法。通常情况下,地图由服务器生成,则该地图生成装置可以为地图服务器,或者可以为地图服务器中的部件或者芯片。此外,地图也可能由路侧设备、车辆或者移动终端生成,则该地图生成装置还可以为该路侧设备、车辆或者移动终端,或者为路侧设备、车辆或者移动终端的部件或者芯片。
第十一方面,本申请实施例提供了一种地图使用装置,该装置包括处理器和存储器,处理器和存储器通过总线连接或者耦合在一起;其中,存储器用于存储程序指令;所述处理器调用所述存储器中的程序指令,以执行第二方面或者第二方面的任一可能的实现方式中的方法。该地图使用装置可以为车辆,也可以为可使用于车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。
第十二方面,本申请实施例提供了一种地图使用装置,该装置包括处理器和存储器,处理器和存储器通过总线连接或者耦合在一起;其中,存储器用于存储程序指令;所述处理器调用所述存储器中的程序指令,以执行第六方面或者第六方面的任一可能的实现方式中的方法。该地图使用装置可以为车辆,也可以为可使用于车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。
第十三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储 用于装置执行的程序代码,所述程序代码包括用于执行第一方面或者第一方面的任一可能的实现方式中的方法的指令。
第十四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储用于装置执行的程序代码,所述程序代码包括用于执行第二方面或者第二方面的任一可能的实现方式中的方法的指令。
第十五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读介质存储用于装置执行的程序代码,所述程序代码包括用于执行第六方面或者第六方面的任一可能的实现方式中的方法的指令。
第十六方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品被处理器执行时,实现上述第一方面或者第一方面的任一可能的实现方式中的方法。该计算机程序产品例如可以为一个软件安装包,在需要使用前述第一方面的任一种可能的设计提供的方法的情况下,可以下载该计算机程序产品并在处理器上执行该计算机程序产品,以实现第一方面或者第一方面的任一可能的实施例中的所述方法。
第十七方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品被处理器执行时,实现上述第二方面或者第二方面的任一可能的实现方式中的方法。该计算机程序产品例如可以为一个软件安装包,在需要使用前述第二方面的任一种可能的设计提供的方法的情况下,可以下载该计算机程序产品并在处理器上执行该计算机程序产品,以实现第二方面或者第二方面的任一可能的实施例中的所述方法。
第十八方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品被处理器执行时,实现上述第六方面或者第六方面的任一可能的实现方式中的方法。该计算机程序产品例如可以为一个软件安装包,在需要使用前述第六方面的任一种可能的设计提供的方法的情况下,可以下载该计算机程序产品并在处理器上执行该计算机程序产品,以实现第六方面或者第六方面的任一可能的实施例中的所述方法。
第十九方面,本申请实施例提供了一种车辆,该车辆包括如上述第五、七、十一或十二方面的地图使用装置,或者包括如上述第五、七、十一或十二方面的任一可能的实现方式的地图使用装置。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种系统架构示意图;
图2是一种高精地图的区域示意图;
图3是本申请实施例提供的一种轨迹点与高精地图中道路I D关联的方法流程图;
图4是本申请实施例提供的一种区域-道路示意图;
图5是本申请实施例提供的又一种区域-道路示意图;
图6是本申请实施例提供的一种轨迹点与高精地图中车道I D关联的方法流程图;
图7是本申请实施例提供的一种道路-车道示意图;
图8A是本申请实施例提供的又一种道路-车道示意图;
图8B是本申请实施例提供的又一种道路-车道示意图;
图9是本申请实施例提供的一种地图生成方法的方法流程图;
图10是本申请实施例提供的一种地图使用方法的方法流程图;
图11是本申请本实施例提供的一种应用场景示意图;
图12是本申请本实施例提供的一种地图生成装置的结构示意图;
图13是本申请本实施例提供的一种地图使用装置的结构示意图;
图14是本申请本实施例提供的一种地图生成装置的功能结构示意图;
图15是本申请本实施例提供的一种地图使用装置的功能结构示意图。
具体实施方式
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。本申请实施例中的说明书和权利要求书中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
高精地图是自动驾驶的辅助地图。高精地图显示了区域、道路和车道,其中,车道可以是上游车道或下游车道,每个车道有唯一的车道ID,每段道路包括多条车道,每段道路有唯一的道路ID,每个区域包括多段道路,每个区域有唯一的区域ID。高精地图中还包括路口,路口可以是交叉路口,路口内也有道路和车道。另外,高精地图中还显示了道路与道路之间的连接关系以及车道与车道之间的连接关系。需要说明的是,高精地图中每个区域有对应的区域范围,例如,区域的四个角点的位置坐标(例如,经纬度坐标)可以确定该区域的区域范围;每个道路有对应的道路范围,例如,道路的起点坐标和道路的终点坐标可以确定该段道路的道路范围,道路的起点坐标和终点坐标还可以确定该道路的道路中心线;每个车道有对应的车道范围,例如,车道的起点坐标和车道的终点坐标可以确定该条车道的车道范围,车道的起点坐标和终点坐标等还可以确定该车道的车道中心线;每个路口有对应的路口范围,例如,路口的多个角点的位置坐标(例如,经纬度坐标)确定该路口的路口范围。除此之外,高精地图中还显示了道路的坡度、曲率、航向等参数。
高精地图的生成依赖于位置点的定位数据,由于采集的定位数据的质量容易受到周围环境(例如,高楼和树木等)、卫星遮挡等影响,例如,道路旁的高楼、树木等越多,导致卫星信号的遮挡越严重,则在该道路上采集到的定位数据存在的偏差越大,定位数据的质量也越低。因此,在高精地图中不同地图元素(例如,道路、车道等)上获得的定位数据的质量是高低不一的。若在自动驾驶过程中使用高精地图中质量较低的定位数据,则定位不准容易造成导航路线发生偏差,甚至影响车辆的行驶安全。
针对上述问题,本申请实施例提出一种定位质量指示信息,该定位质量指示信息提供了可信度高、具有较强参考价值的定位质量,使得地图的使用者可避开定位质量差的行驶区域,从而在定位质量较好的行驶区域(例如,道路、车道等)内行驶,即可获得准确的定位数据,有利于提高路线规划、驾驶决策等的准确率以及出行安全率。
下面将结合附图,对本申请中的技术方案进行描述。
参见图1,图1示例性地给出了一种系统架构图。该系统用于生成定位质量指示信息,或者,生成包含定位质量指示信息的地图。如图1所示,该系统包括数据采集设备、制图设 备和终端,其中,数据采集设备和制图设备可以通过无线或有线的方式进行连接,制图设备与终端可以通过无线的方式进行连接。
数据采集设备一般安装于数据采集车上,数据采集设备用于采集生成定位质量指示信息所需的原始数据。数据采集设备可以是RTK设备,RTK设备包括GPS和GNSS中的任意一种,基于RTK测量方式获得定位信息。例如,RTK设备可用于记录其所在的数据采集车在各个车道内行驶时采集到的各个轨迹点的位置信息和各个轨迹点的质量信息,位置点的质量信息用于指示该位置点处的定位质量。
制图设备用于根据一组轨迹点的多个位置信息、多个质量信息以及地图中多个行驶区域的位置信息,生成定位质量指示信息,定位质量指示信息用于指示行驶区域的定位质量。行驶区域为地图中的区域、道路或车道。制图设备可以是具有计算功能的设备,例如:计算机、服务器、多接入边缘计算(Multi-Acess Edge Computing,MEC)等。
终端可以是车辆,例如,普通车辆或自动驾驶车辆,车辆可以泛指小轿车、汽车、旅游大巴车、自行车、三轮车、电动车、摩托车、货车等,车辆也可以是电动汽车、混合动力汽车、增程式电动汽车、插电式混合动力汽车等,除此之外,终端还可以是路侧单元(Road Side Unit,RSU)、车载单元(On board Unit,OBU)、便携移动设备(例如,手机、平板等),或者便携移动设备的部件、芯片等可以与制图设备通信的其他传感器或设备,本申请实施例不做具体限定。
需要说明的是,图1仅为示例性架构图,但不限定图1所示系统包括的网元的数量。虽然图1未示出,但除图1所示的功能实体外,图1还可以包括其他功能实体。另外,本申请实施例提供的方法可以应用于图1所示的通信系统,当然本申请实施例提供的方法也可以适用其他通信系统,本申请实施例对此不予限制。
需要说明的是,为了叙述方便,下述中终端不妨以车辆为例进行方案的示例性阐述,但本申请实施例并不限定终端仅为车辆。
需要说明的是,轨迹点是安装有RTK设备的数据采集车预先在高精地图中的各个车道上行驶时采集到的。每个轨迹点有对应的位置信息和质量信息,其中,轨迹点的位置信息用于指示轨迹点在高精地图中的位置,轨迹点的位置信息包括经度坐标和纬度坐标;轨迹点的质量信息包括位置点处可观测的卫星颗数、位置点的精度因子(Dilution of Precision,DOP)值、位置点的位置信息是否为固定解、位置点相对于真值在东、北和垂直三个方向上的偏移量等中的一种或多种。轨迹点的质量信息可用于衡量高精地图中该轨迹点处的定位质量。
轨迹点的关联过程具体包括三个部分:
第一部分、将轨迹点与高精地图中的区域ID关联
具体地,高精地图中每个区域ID用于指示高精地图中的一块区域,每个区域ID对应的区域范围由该区域的多个角点坐标确定。对于多个轨迹点中的每个轨迹点,根据每个轨迹点的位置信息将每个轨迹点依次与高精地图中各个区域ID对应的区域范围进行比较,当轨迹点位于高精地图中目标区域ID对应的区域范围内时,则将该轨迹点与目标区域ID进行关联。由此,即可获得各个区域ID对应的轨迹点。需要说明的是,判断轨迹点是否在某区域ID指示的区域内的过程,也可以称作轨迹点与区域ID指示的区域进行位置关系判断的过程。
在一些可能的实施例中,由于高精地图中的区域按照十字进行多次划分的,故高精地图 中存在若干级别的区域,区域的级别越高,则区域对应的区域范围越大。每个区域有唯一的区域ID,可以理解,高精地图中高级别的区域包括多个低级别的区域,即高级别的区域ID与多个低级别的区域ID对应。因此,在高精地图中存在不同级别的区域ID时,可找到一个轨迹点与多个不同级别的区域ID关联。在高精地图中存在多个级别的区域ID的情况下,本申请实施例中轨迹点的关联的高精地图中的区域ID为低级别的区域ID,低级别的区域ID指示的区域是高精地图中区域划分的最小单位。
一具体实施中,在高精地图中存在多个级别的区别ID的情况下,可以直接将轨迹点依次与高精地图中各个低级别的区域ID进行位置关系判断,以确定与轨迹点相关联的区域ID。
另一具体实施中,在高精地图中存在多个级别的区别ID的情况下,还可以先确定轨迹点与高精地图中高级别的区域ID的关联性,再确定轨迹点与该高级别的区域ID对应的各低级别的区域ID之间的关联性,有效缩短了确定轨迹点关联的高精地图中区域ID所消耗的时间。
在一些可能的实施例中,除了可以将轨迹点与高精地图中低级别的区域ID关联,还可以依据高精地图中低级别的区域ID与高级别的区域ID之间的对应关系,将轨迹点与高精地图中高级别的区域ID关联,由此可获取高精地图与该轨迹点相关联的所有区域ID。
参见图2,图2是一种高精地图的区域划分示意图,如图2所示,高精地图中存在两个级别的区域ID,其中一个级别对应的区域ID有:1-00、1-01、1-10和1-11,属于另一个级别的区域ID有1-00-00、1-00-01、1-00-10和1-00-11(这四个与1-00对应),1-01-00、1-01-01、1-01-10和1-01-11(这四个与1-01对应),1-10-00、1-10-01、1-10-10和1-10-11(这四个与1-10对应),以及1-11-00、1-11-01、1-11-10和1-11-11(这四个与1-11对应)这16个区域ID。以1-00和1-00-01为例,可以看出,1-00所属的区域级别高于1-00-01所属的区域级别。各个区域的区域范围可通过该区域的四个角点的坐标确定,即每个区域四个角点的坐标确定的矩形框即为该区域对应的区域范围。
以轨迹点1为例,将轨迹点1的位置信息先依次与图2中16个低级别的区域ID对应区域范围进行比较,直至确定轨迹点1位于16个低级别的区域ID中某一区域ID指示的区域内。例如,假设经判断轨迹点1不位于1-00-00指示的区域内,则继续判断轨迹点1是否位于1-00-01指示的区域内,即判断轨迹点1是否在1-00-10对应的四个角点坐标确定的区域范围内,若轨迹点1位于1-00-101指示的区域内,则将轨迹点1与区域ID“1-00-01”关联。若轨迹点1不位于1-00-01指示的区域内,则继续将轨迹点1与剩余低级别的区域ID指示的区域进行位置关系判断直至找到与轨迹点1相关联的区域ID。
在一些可能的实施例中,在确定轨迹点1与1-00-01关联的情况下,还可以确定图2中与轨迹点1关联的高级别的区域ID,由于高精地图中低级别的区域ID“1-00-01”与高级别的区域ID“1-00”之间存在对应关系,因此,还可以将轨迹点1与区域ID“1-00”关联。
又例如,以轨迹点1为例,还可以将轨迹点1先与图2中高级别的区域ID(即1-00、1-01、1-10和1-11)指示的区域进行位置关系判断,假设确定了轨迹点1位于1-00指示的区域内,在图2中,由于1-00与低级别的区域ID“1-00-00、1-00-01、1-00-10和1-00-11”对应,进一步地,将轨迹点1与图2中1-00对应的低级别的区域ID(即1-00-00、1-00-01、1-00-10和1-00-11)指示的区域进行位置关系判断,假设确定了轨迹点1位于1-00-01指示的区域内,则将轨迹点1与区域ID“1-00-01”关联。
在一些可能的实施例中,还可以根据轨迹点的位置信息中的经度坐标确定高精地图中包 含该经度坐标的最小区域的集合1,再根据轨迹点的位置信息中的纬度坐标确定高精地图中包含该纬度坐标的最小区域的集合2,最后,求取集合1和集合2的交集得到的区域ID即为高精地图中与该轨迹点关联的区域ID。
第二部分、将轨迹点与高精地图中的道路ID关联
每个轨迹点仅与高精地图中的一个道路ID关联。所谓轨迹点与高精地图中的道路ID关联是指:轨迹点位于高精地图中该道路ID指示的道路中。
一具体实施中,由上述第一部分可以确定高精地图中与轨迹点关联的区域ID,由于高精地图中区域ID指示的区域内包括多段道路,每段道路有唯一的道路ID,即可获取高精地图中该区域ID对应的多个道路ID,大大减少了待比较的道路ID的数量,提高了处理效率。再根据轨迹点的位置信息与多个道路ID各个道路ID对应的端点坐标,从多个道路ID中确定与该轨迹点唯一关联的道路ID。
另一具体实施中,也可以直接获取高精地图中的各个道路ID,根据轨迹点的位置信息和高精地图中各个道路ID对应的端点坐标,从各个道路ID中确定与该轨迹点唯一关联的道路ID。
参见图3,图3是本申请实施例提供的一种确定轨迹点与道路ID关联的方法流程图,不妨以轨迹点1为例对轨迹点与高精地图中道路ID的关联过程进行叙述,该方法包括但不限于以下步骤:
S11、获取轨迹点1所在的区域ID1对应的多个道路ID。
其中,轨迹点1所在区域即为上述中与轨迹点1关联的低级别的区域ID1指示的区域,低级别的区域ID1指示的区域是高精地图中最小区域划分单元。在确定轨迹点1所在的区域ID1后,由于高精地图中存储有区域ID与道路ID的映射信息,根据区域ID1可从高精地图中获取区域ID1对应的多个道路ID。
S12、判断轨迹点1是否在高精地图中的路口内。
具体地,高精地图中的每个路口有对应的坐标范围,路口对应的坐标范围由路口的各个角点(或称为拐点)确定。针对高精地图中的各个路口,判断轨迹点1是否在各个路口中某个路口的坐标范围内,若轨迹点1均不位于各个路口所在的坐标范围内,则说明轨迹点1不位于高精地图中的任一路口内,执行S13;若判断出轨迹点1位于某个路口(例如,路口1)的坐标范围内,则说明轨迹点1位于高精地图中的某一路口内,执行S16。
S13、基于轨迹点1的位置信息和多个道路ID对应的起点、终点坐标对这多个道路ID进行初次筛选,获得符合预设条件1的道路ID集合1。
可选地,在轨迹点1不位于路口内的情况下,可从高精地图中获取道路ID对应的起点坐标和终点坐标,起点坐标表示该道路ID指示的道路的起点,终点坐标表示该道路ID指示的道路的终点。基于轨迹点1的位置信息和多个道路ID对应的起点、终点坐标对多个道路ID进行筛选,从多个道路ID中获取符合预设条件1的道路ID集合1。
其中,道路ID对应的起点坐标和终点坐标是道路ID指示的道路中心线的起点坐标和终点坐标。道路ID对应的道路的起点和道路的终点是根据车辆在道路上的行驶方向定义的,即车辆驶入道路时刚进入道路的位置称为道路的起点,车辆驶出道路时刚离开道路的位置称为道路的终点。需要说明的是,道路ID对应的起点坐标和终点坐标均由经度和纬度表示。
不妨以道路ID1为例具体说明预设条件1,根据轨迹点1的位置信息和道路ID1的起点 坐标和终点坐标可以判断轨迹点1是否在道路ID1对应的坐标范围内,当轨迹点1位于道路ID1对应的坐标范围内,则道路ID1符合预设条件1;若轨迹点1不位于道路ID1对应的坐标范围内,则道路ID1不符合预设条件1。由此依次比较轨迹点1与多个道路ID中的每个道路ID,从多个道路ID中初步筛选出符合预设条件1的道路ID集合1。
所谓道路ID1符合预设条件1(或称轨迹点1位于道路ID1对应的坐标范围内)是指:满足轨迹点1的经度坐标位于道路ID1的起点坐标中的经度与道路ID1的终点坐标中的经度确定的经度范围区间内,或者,轨迹点1的纬度坐标位于道路ID1的起点坐标中的纬度与道路ID1的终点坐标中的纬度确定的纬度范围区间内这两者中的至少一种。
参见图4,图4是本申请实施例提供的一种区域-道路场景示意图,图4中示出了高精地图中某区域内有11段道路,其中,道路1、道路2、道路3和道路4中相邻两者之间是连接的,道路5、道路6、道路7和道路8中相邻两者之间是连接的,道路9、道路10和道路11中相邻两者之间是连接的。11段道路中仅有道路3、道路7和道路11位于路口面内,图4中的黑色三角形表示轨迹点。需要说明的是,图4所示道路可看作对应道路的道路中心线。
假设图4所示区域即为上述S11中的区域ID1,由于区域ID1内有11段道路,故与区域ID1对应的道路ID也有11个,轨迹点1位于非路口内,依次比较轨迹点1与图4中11个道路ID中的各个道路ID,从11个道路ID中筛选出符合预设条件1的道路ID集合1。结合上述关于预设条件1的相关说明,易知,轨迹点1位于道路1、道路5、道路10和道路3对应的坐标范围内,由于轨迹点1不位于路口内,而道路3位于路口内,因此,筛选出的轨迹点1的道路ID集合1包括道路1、道路5和道路10。
需要说明的是,通过预设条件1对轨迹点所在区域内的多段道路进行筛选,以快速剔除轨迹点所在区域内不满足条件的道路,大大减少了后续待处理的道路ID的数量,有效了节省了计算资源的消耗,加速了确定与轨迹点关联的道路ID的处理速度。
S14、计算轨迹点1至道路ID集合1中每个道路ID指示的道路的距离,并根据轨迹点1的相邻轨迹点计算轨迹点1对应的航向,以及轨迹点1对应的航向与各道路的航向之间的航向夹角。
在轨迹点1不位于路口内的情况下,以道路i为例说明这一步骤中需计算的三项内容,道路i为道路ID集合1中的任一道路ID:
第一项、轨迹点1至道路i指示的道路的距离:轨迹点1至道路i指示的道路的距离是指轨迹点1至道路i的道路中心线的垂直距离,道路i的道路中心线可由道路i对应的起点坐标和道路i对应的终点坐标确定。
第二项、轨迹点1对应的航向:根据轨迹点1的位置信息和轨迹点1的相邻轨迹点的位置信息计算轨迹点1对应的航向,其中,由于轨迹点的采集是有时间先后顺序的,因此,轨迹点1的相邻轨迹点可以是轨迹点1的上一个相邻轨迹点,也可以是轨迹点1的下一个相邻轨迹点,本申请不做具体限定。当轨迹点1的相邻轨迹点为轨迹点1的上一个相邻轨迹点时,则轨迹点1对应的航向为轨迹点1的上一个相邻轨迹点指向轨迹点1这一方向;当轨迹点1的相邻轨迹点为轨迹点1的下一个相邻轨迹点时,则轨迹点1对应的航向为轨迹点1指向轨迹点1的下一个相邻轨迹点这一方向。
例如,参见图4,图4中还示出了轨迹点2,轨迹点2为轨迹点1的下一个相邻轨迹点,则轨迹点1对应的航向为轨迹点1指向轨迹点2这一航向。
第三项、轨迹点1对应的航向与道路i的航向之间的航向夹角:由上述第二项可获得轨迹点1对应的航向,而道路i的航向可基于道路i的起点坐标和道路i的终点坐标计算获得,最后根据轨迹点1对应的航向和道路i的航向计算两者之间的航向夹角。其中,道路的航向表示道路的起点指向道路的终点这一方向。在一些可能的实施例中,道路的航向也可以直接从高精地图中获取,本申请实施例不做具体限定。
由此,对道路ID集合1中的每个道路ID执行上述步骤,即可获得轨迹点1至道路ID集合1中每个道路ID指示的道路的垂直距离(可简称“垂直距离”),以及轨迹点1对应的航向与各道路的航向之间的航向夹角(可简称“航向夹角”)。由此可知,道路ID集合1中的每个道路ID都对应一个垂直距离和一个航向夹角。
S15、根据预设条件2对道路ID集合1中各个道路ID进行筛选,以确定道路ID集合1中轨迹点1唯一关联的道路ID。
具体地,由于道路ID集合1中的每个道路ID都对应一个垂直距离和一个航向夹角,判断道路ID集合1中的每个道路ID对应的垂直距离和航向夹角是否满足预设条件2,将满足预设条件2的目标道路ID作为道路ID集合1中与轨迹点1唯一关联的道路ID。
一具体实施中,预设条件2可以是:在道路ID集合1中,目标道路ID对应的垂直距离最小且目标道路ID对应的航向夹角最小。
另一具体实施中,预设条件2可以是:目标道路ID对应的垂直距离小于等于预设距离阈值且目标道路ID对应的航向夹角小于等于预设夹角阈值。
例如,以图4为例,假设图4中的道路1和道路10均为下游道路(即车辆从左向右行驶),而道路5是上游道路(即车辆从右向左行驶),则说明道路1和道路10是同向的,而道路1、道路10分别与道路5反向。由上述S13可知,轨迹点1的道路ID集合1包括道路1、道路5和道路10,依据上述S14依次计算道路1、道路5和道路10中每个道路对应的垂直距离和航向夹角,假设道路1对应的垂直距离为距离1以及道路1对应的航向夹角为0度,道路5对应的垂直距离为距离5以及道路5对应的航向夹角为180度,道路10对应的垂直距离为距离10以及道路10对应的航向夹角为0度,且距离10>距离5>距离1,易知,轨迹点1的道路ID集合1中道路1对应的垂直距离最短且道路1对应的航向夹角最小,因此,确定高精地图中与轨迹点1唯一关联的道路ID为道路1。
S16、根据轨迹点1的前轨迹点所在的与该路口相邻的第一道路ID和轨迹点1的后轨迹点所在的与该路口相邻的第二道路ID,确定轨迹点1唯一关联的道路ID。
具体地,当轨迹点1位于路口内的情况下,由于高精地图中路口内每段道路与该路口外与该路口相邻的两段道路之间的连接关系是唯一确定的,可以根据轨迹点1的前轨迹点所在的与该路口相邻的第一道路ID和轨迹点1的后轨迹点所在的与该路口相邻的第二道路ID,确定轨迹点1唯一关联的道路ID。
其中,轨迹点1的前轨迹点和轨迹点1的后轨迹点均不位于路口内,第一道路ID与第二道路ID不同。需要说明的是,第一道路ID指示的道路相当于是进入轨迹点1所在路口的道路,第二道路ID指示的道路相当于驶出轨迹点1所在路口的道路。
可以理解,轨迹点1的前轨迹点的采集时刻早于轨迹点1的采集时刻,轨迹点1的采集时刻早于轨迹点1的后轨迹点的采集时刻。另外,轨迹点1、轨迹点1的前轨迹点、轨迹点1的后轨迹点三者对应的道路ID均不相同,且三者属于同一轨迹线。需要说明的是,轨迹点1 的前轨迹点与轨迹点1之间可能存在位于轨迹点1所在路口内的至少一个轨迹点;轨迹点1与轨迹点1的后轨迹点之间可能存在位于轨迹点1所在路口内的至少一个轨迹点。
参见图5,图5是本申请实施例提供的一种区域-道路示意图,图5中,图5中示出了高精地图中某区域内有12段道路,其中,道路1、道路2、道路3和道路4中相邻两者之间是连接的,道路5和道路6连接,道路6分别与道路7、道路10和道路11连接,道路7与道路8连接,道路10与道路9连接,道路11与道路12连接。12段道路中仅有道路3、道路7、道路10和道路11位于路口面内,不妨假设道路3、道路7、道路10和道路11位于同一路口内且路口ID为路口1(图5中的灰色区域),图5中的黑色三角形表示轨迹点。
如图5中的轨迹点1,经判断得出轨迹点1位于路口1内,从图5可知,路口1内的道路有道路3、道路7、道路10和道路11,取轨迹点2作为轨迹点1的前轨迹点以及轨迹点3作为轨迹点1的后轨迹点,若轨迹点2位于道路2上,轨迹点3位于道路4上,由于高精地图中路口内的道路与该路口外与该路口相邻的两段道路之间的连接关系是确定的,则可确定轨迹1位于道路3,故轨迹点1唯一关联的道路ID为道路3;若轨迹点2位于道路6以及轨迹点3位于道路12,则可确定轨迹点1位于道路11,故可确定轨迹点1唯一关联的道路ID为道路11。
第三部分、将轨迹点与高精地图中的车道ID关联
每个轨迹点仅与高精地图中的一个车道ID关联。所谓轨迹点与高精地图中的车道ID关联是指:轨迹点位于高精地图中该车道ID指示的车道中。
一具体实施中,由上述第二部分可以确定高精地图中与轨迹点唯一关联的道路ID,由于高精地图中道路ID指示的道路中包括多条车道,每条车道有唯一的车道ID,即可获取高精地图中该道路ID对应的多个车道ID,再根据轨迹点的位置信息与各个车道ID对应的端点坐标从多个车道ID中确定与该轨迹点唯一关联的车道ID。
另一具体实施中,还可以直接获取高精地图中的各个车道ID,根据轨迹点的位置信息和高精地图中各个车道ID对应的端点坐标,从各个车道ID中确定与该轨迹点唯一关联的车道ID。此实施例具体可参考后文的相关叙述,在此不再赘述。
参见图6,图6是本申请实施例提供的一种轨迹点与车道ID的关联方法流程图,不妨以轨迹1为例对轨迹点与高精地图中车道ID的关联过程进行叙述,该方法包括但不限于以下步骤:
S21、获取与轨迹点1关联的道路ID1对应的多个车道ID。
具体地,在确定高精地图中与轨迹点1相关联的道路ID为道路ID1后,由于高精地图中存储有道路ID与车道ID的映射信息,根据道路ID1可从高精地图中获取道路ID1对应的多个车道ID。
S22、判断轨迹点1是否在高精地图的路口内。
具体地,判断轨迹1是否在高精地图的路口内这一步骤在图1中的S12中已执行,本步骤具体可参考S12中的相关叙述,在此不再赘述。
需要说明的是,在轨迹点1不位于高精地图中的路口内的情况下,与轨迹点1关联的道路ID1指示的道路也不位于路口内,且道路ID1对应的多个车道ID指示的车道也不位于路口内;在轨迹点1位于高精地图中的路口内的情况下,与轨迹点1关联的道路ID1指示的道路也位于路口内,且道路ID1对应的多个车道ID指示的车道也位于路口内。
当轨迹点1不位于高精地图的路口内的情况下,执行S23;在轨迹点1位于高精地图的路口内的情况下,执行S24。
S23、计算轨迹点1至道路ID1对应的多个车道ID中每个车道ID指示的车道的距离,将最小距离对应的车道ID作为轨迹点1唯一关联的车道ID。
具体地,假设车道c为道路ID1对应的多个车道ID中的任意一个,所谓轨迹点1至车道c指示的车道的距离是指:轨迹点1至车道c的车道中心线的垂直距离,车道c的车道中心线可由车道c的起点坐标和车道c的终点坐标确定,其中,车道c的起点坐标和车道c的终点坐标可从高精地图中获取。
依据上述方式获得轨迹点1至道路ID1对应的多个车道ID中每个车道ID的垂直距离,可获得轨迹点1对应的多个垂直距离,确定轨迹点1对应的多个垂直距离中的最小垂直距离,并将最小垂直距离对应的车道ID作为轨迹点1唯一关联的车道ID。
参见图7,图7是本申请实施例提供的道路-车道示意图,图7示出了高精地图中的两段道路,其中,道路1包括车道11和车道12,道路2包括车道21和车道22,图7中的每条虚线表示车道的车道中心线,其中,道路1和道路2均不位于路口内,故车道11、车道12、车道21和车道22也不位于路口内。图7中的黑色三角形表示轨迹点1。假设已确定高精地图中与轨迹点1关联的道路ID为道路1,由于道路1不位于路口内,只需计算轨迹点1距离道路1内各条车道的车道中心线的垂直距离,若轨迹点1距离车道11的车道中心线的垂直距离为距离1,轨迹点1距离车道12的车道中心线的垂直距离为距离2,易知,距离2小于距离1,因此,与轨迹点1匹配的车道为车道12,故将轨迹点1与车道12关联。
S24、根据轨迹点1的前轨迹点所在的与该路口相邻的第一车道ID和轨迹点1的后轨迹点所在的与该路口相邻的第二车道ID,确定轨迹点1唯一关联的车道ID。
具体地,在轨迹点1位于路口内的情况下,由于高精地图中路口内每条车道与该路口外与该路口相邻的两条车道之间的连接关系是唯一确定的,可以根据轨迹点1的前轨迹点所在的与该路口相邻的第一车道ID和轨迹点1的后轨迹点所在的与该路口相邻的第二车道ID,确定道路ID1对应的多个车道ID中轨迹点1唯一关联的车道ID。
其中,轨迹点1的前轨迹点和轨迹点1的后轨迹点均不位于路口内,第一车道ID与第二车道ID不同。需要说明的是,第一车道ID指示的车道相当于是进入轨迹点1所在路口的车道,第二车道ID指示的车道相当于驶出轨迹点1所在路口的车道。
可以理解,轨迹点1的前轨迹点的采集时刻早于轨迹点1的采集时刻,轨迹点1的采集时刻早于轨迹点1的后轨迹点的采集时刻。另外,轨迹点1、轨迹点1的前轨迹点、轨迹点1的后轨迹点三者对应的车道ID均不相同,但三者位于同一条轨迹线上。需要说明的是,轨迹点1的前轨迹点与轨迹点1之间可能存在位于轨迹点1所在路口内的至少一个轨迹点;轨迹点1与轨迹点1的后轨迹点之间可能存在位于轨迹点1所在路口内的至少一个轨迹点。
例如,假设轨迹点1所在的路口为路口1,车道1为路口1内的一条车道,其中,车道1与非路口内的两条车道(即车道2和车道3)连接,且车辆行驶时依次通过车道2、车道1和车道3,则车道2可称作进入路口1的车道,车道3可称作驶出路口1的车道。
参见图8A和图8B,图8A和图8B均是一种路口示意图,图8A和图8B中示出了高精地图中非路内的道路有道路1、道路2、…、道路7和道路8这八段道路,且这八段道路以某十字路口为中心顺时针编号。图8A和图8B中的灰色的正方形区域即为路口,路口的每个方向 与非路口内的两段道路对应,且路口的同一方向对应的两段道路的航向相差180度。例如,在图8A中,路口的某一方向对应道路1和道路2,且道路1和道路2反向。在图8A中,道路1和道路6同向,且道路1是进入路口的道路,道路6是驶出路口的道路。
不妨以图8A中的路口内连接道路1和道路6的道路ID1为例,假设已确定轨迹点1与道路ID1关联,道路ID1中的黑色三角形表示轨迹点1,轨迹点1位于路口内,假设道路1中仅有一条车道,不妨记作车道1-1;道路6中仅有一条车道,不妨记作车道6-1;道路ID1中仅有一条车道,不妨记作车道ID1-1,道路ID1中的虚线表示车道ID1-1的车道中心线,且车道ID1-1两端分别与车道1-1、车道6-1连接。假设轨迹点2为轨迹点1的前轨迹点且轨迹点2位于车道1-1上,轨迹点3为轨迹点的后轨迹点且轨迹点3位于车道6-1,则根据路口内车道与非路口内车道的连接关系,可以确定轨迹点1位于车道ID1-1,因此,轨迹点1与车道ID1-1关联。
以图8B中路口内连接道路1和道路6的道路ID1为例,假设已确定轨迹点1与道路ID1关联,道路ID1中的黑色三角形表示轨迹点1,轨迹点1位于路口内,假设道路1内有两条车道,记作车道1-1和车道1-2,道路6内有两条车道,记作车道6-1和车道6-2,道路ID1里有四条车道,为了简化表示,道路ID1中四条虚线分别表示四条车道的车道中心线,从左至右分别记作车道ID1-1、车道ID1-2、车道ID1-3和车道ID1-4,其中,车道ID1-1连接车道1-1和车道6-1,车道ID1-2连接车道1-1和车道6-2,车道ID1-3连接车道1-2和车道6-1,车道ID1-4连接车道1-2和车道6-2。假设轨迹点2为轨迹点1的前轨迹点,轨迹点3为轨迹点的后轨迹点,若已确定轨迹点2与车道1-1关联以及轨迹点3与车道6-2关联,则路口内仅有车道ID1-2连接车道1-1和车道6-2,故可以确定轨迹点1位于车道ID1-2,因此,轨迹点1唯一关联的车道ID为与车道ID1-2。
需要说明的是,上述非路口内的轨迹点与车道ID的关联方法可通过上述S23实现。
在一些可能的实施例中,在轨迹点1位于高精地图中路口内的情况下,也可以根据轨迹点1的前轨迹点、后轨迹点中的一个和轨迹点1对应的航向确定轨迹点1唯一关联的车道ID。
其中,轨迹点1的前轨迹点、后轨迹点可参考上述相关说明,轨迹点1对应的航向是根据轨迹点1的位置信息和轨迹点1的相邻轨迹点的位置信息获得的,轨迹点1对应的航向可参考上述S14的相关叙述,在此不再赘述。
一具体实施中,根据轨迹点1的前轨迹点确定进入轨迹点1所在路口的车道ID,基于路口内的车道与非路口内的车道之间的连接关系,在与前轨迹点所在车道ID具有连接关系的多个车道ID中,结合轨迹点1对应的航向,确定与轨迹点1对应的航向之间的航向夹角的最小值对应的车道ID,该车道ID即为轨迹点1唯一关联的车道ID。
例如,参见图8B,关于图8B的叙述可参考上述说明,假设确定了轨迹点2是轨迹点1的前轨迹点,轨迹点2与车道1-1关联,根据轨迹点1的相邻轨迹点计算轨迹点1对应的航向,由于进入该路口的车道是车道1-1,故比较轨迹点1对应的航向与道路ID1中车道ID1-1和车道ID1-2的航向之间的航向夹角,易知,车道ID1-1和车道ID1-2中,车道ID1-2的航向与轨迹点1对应的航向之间的航向夹角最小,故轨迹点1与道路ID1中的车道ID1-2唯一关联。
一具体实施中,还可以根据轨迹点1的后轨迹点对应的驶出轨迹点1所在路口的车道ID和轨迹点1对应的航向确定轨迹点1唯一关联的车道ID。例如,参见图8B,关于图8B的叙 述可参考上述说明,假设确定了轨迹点3是轨迹点1的后轨迹点,轨迹点3与车道6-2关联,而路口内与车道6-2具有连接关系的车道有车道ID1-2和车道ID1-4,根据轨迹点1的相邻轨迹点计算轨迹点1对应的航向,比较轨迹点1对应的航向与道路ID1中车道ID1-2和车道ID1-4的航向之间的航向夹角,易知,车道ID1-2的航向与轨迹点1对应的航向之间的航向夹角最小,故轨迹点1与道路ID1中的车道ID1-2唯一关联。
在一些可能的实施例中,在轨迹点的位置信息所属的坐标系与高精地图中的坐标信息所属的坐标系不一致的情况下,在将轨迹点与高精地图中的区域ID、道路ID或车道ID进行关联前,需要先将轨迹点的位置信息所属的坐标系转换为与高精地图中的坐标信息对应的坐标系,以使轨迹点的位置信息所属的坐标系与高精地图中的坐标信息所属的坐标系相同。
综上,实现了轨迹点与高精地图中区域ID、道路ID和车道ID的准确关联,实现了将轨迹点较好地匹配到高精地图中的各个地图元素上,有利于后续已关联的轨迹点准确表示高精地图中各个地图元素的定位质量。
由上述可以看出,按照从大到小的原则将轨迹点依次与高精地图中的区域ID、道路ID和车道ID进行关联,即先确定高精地图中与轨迹点对应的区域ID,然后高精地图中与轨迹点对应的道路ID,最后确定高精地图中与轨迹点对应的车道ID。
在一些可能的实施例中,还可以直接获取高精地图中的各个车道ID,根据轨迹点的位置信息和各个车道ID对应的端点坐标,确定各个车道ID中轨迹点唯一关联的车道ID。在已知轨迹点关联的车道ID的情况下,再根据高精地图中车道ID与道路ID之间的对应关系可以快速确定高精地图中与该轨迹点关联的道路ID,以及根据高精地图中道路ID与区域ID之间的对应关系可以快速确定高精地图中与该轨迹点关联的车道ID,从而实现了轨迹点与道路ID和区域ID的关联。
在一些可能的实施例中,也可以只实现将轨迹点与高精地图中的区域、道路或车道关联,本申请实施例不做具体限定。
具体地,不妨以轨迹点1为例,说明确定轨迹点高精地图中车道ID关联的另一种方法:
在轨迹点1不位于高精地图路口内的情况下,先获取高精地图中的各个车道ID,根据高精地图中每条车道的坐标范围(即车道的起点坐标和终点坐标)和轨迹点1的位置信息筛选出符合预设条件3的车道ID集合,计算轨迹点1至车道ID集合中每个车道ID对应的车道中心线的垂直距离,以及计算轨迹点1对应的航向与车道ID集合中每个车道ID对应的车道航向之间的航向夹角,由此,车道ID集合中每个车道ID均对应计算好的一个垂直距离和航向夹角,基于垂直距离和航向夹角对车道ID集合中的各个车道ID进行筛选,将车道ID集合中满足预设条件4的目标车道ID作为轨迹点1唯一关联的车道ID。其中,预设条件3可以是满足轨迹点1的经度坐标位于车道ID对应的起点坐标和终点坐标限制的经度范围区间内,或者,轨迹点1的纬度坐标位于车道ID对应的起点坐标和终点坐标限制的纬度范围区间内这两个条件中的一种或多种。预设条件4可以是目标车道ID对应的垂直距离小于阈值1且目标车道ID对应的航向夹角小于阈值2。在此实施例中,轨迹点1对应的航向可参考S14的相关叙述。优先确定轨迹点1关联的车道ID的过程类似于上述S13-S15中确定与轨迹点1关联的道路ID的过程,因此,具体可参考上述S13-S15中的相关叙述。
在轨迹点1位于高精地图路口内的情况下,假设轨迹点1位于路口1内,从高精地图中 获取路口1内的各个车道ID,然后根据轨迹点1的前轨迹点、后轨迹点进出路口1的车道ID确定与轨迹点1唯一关联的车道ID。在一些可能的实施例中,还可以基于根据轨迹点1的前轨迹点和后轨迹点中的一个和轨迹点1对应的航向确定轨迹点1唯一关联的车道ID。具体过程可参考上述S24中的相关叙述,为了说明书的简洁,在此不再赘述。
需要说明的是,上述车道ID对应的航向可从高精地图中获取,也可以根据车道对应的起点坐标和终点坐标计算获得,本申请实施例不做具体限定。轨迹点1对应的航向的计算可参考上述S14中的相关叙述,为了说明书的简洁,在此不再赘述。
综上,其他轨迹点可以采取如上述轨迹点1的操作方法以确定高精地图中与自身关联的车道ID。最后结合高精地图中车道ID与道路ID之间的对应关系、道路ID与区域ID之间的对应关系,即可确定与轨迹点对应的道路ID、区域ID。
参见图9,图9是本申请实施例提供的一种地图生成方法的流程图,应用于制图设备。该方法包括但不限于以下步骤:
S101、获取一组轨迹点的定位位置信息、定位质量参考信息和地图中多个行驶区域的位置信息。
在本申请实施例中,制图设备可以从数据采集设备或数据采集车处获取一组轨迹点,例如,接收数据采集车发送的一组轨迹点。地图可以是高精地图,或者包括区域、道路和车道的其他类型的地图,本申请实施例不做具体限定。一具体实施中,地图可以是预先存储于制图设备的存储器中,制图设备通过调用自身存储器中的地图获取地图中多个行驶区域的位置信息。另一具体实施中,地图也可以是制图设备从其他设备(例如,车辆、云服务器等)处获取的。地图中多个行驶区域包括地图中的区域、道路或车道。
其中,每个轨迹点有对应的定位位置信息和定位质量参考信息,轨迹点的定位位置信息用于指示该位置点在高精地图中的位置,例如,位置点的定位位置信息可以用经度和纬度等表示;位置点的定位质量参考信息可用于衡量地图中该位置点处的定位质量,位置点的定位质量参考信息包括位置点的定位精度、位置点的DOP值、在位置点观测到的卫星数量或者位置点的定位位置信息是否为固定解。需要说明的是,轨迹点的定位位置信息即为上述实施例中轨迹点的位置信息,轨迹点的定位质量参考信息即为上述实施例中轨迹点的质量信息。
S102、根据一组轨迹点的定位位置信息和多个行驶区域的位置信息,将该组轨迹点与多个行驶区域中的第一行驶区域关联。
在本申请实施例中,根据一组轨迹点的定位位置信息和多个行驶区域的位置信息,将该组轨迹点与多个行驶区域中的第一行驶区域关联,第一行驶区域为地图中的区域、道路或车道。
一具体实施中,以第一轨迹点和第二轨迹点为例具体说明关联过程:第一轨迹点和第二轨迹点为该组轨迹点中的任意两个相邻的轨迹点,在第一轨迹点和第二轨迹点不位于地图中的路口的情况下,在第一轨迹点距离第一行驶区域的垂直距离满足第一预设条件,且第一轨迹点对应的航向与第一行驶区域的航向之间的航向夹角满足第二预设条件的情况下,将该组轨迹点与第一行驶区域关联,第一行驶区域为地图中的道路或者地图中的车道;第一轨迹点对应的航向为由第一轨迹点行驶到第二轨迹点的航向。
可以看出,上述实施方式适用于将一组轨迹点关联至地图中的某一道路,具体可参考上 述图3实施例中S14-S15的相关叙述,其中,第一轨迹点即为轨迹点1,第二轨迹点即为轨迹点的下一个相邻轨迹点,第一预设条件和第一二预设条件相当于上述实施例中的预设条件2。
上述实施方式也适用于将一组轨迹点关联至地图中的某一车道,具体可参考上述实施例中关于优先确定轨迹点关联的车道ID的相关叙述,第一预设条件和第一二预设条件相当于上述实施例中的预设条件4,在此不再赘述。
另一具体实施中,该组轨迹点位于地图中的路口内,在此情况下,将该组轨迹点关联至第一行驶区域可以是:将一组轨迹点关联到路口内的第一行驶区域,第一行驶区域是路口内唯一连接与该路口相邻的第二行驶区域和与该路口相邻的第三行驶区域的道路或者车道,该组轨迹点之前的一个轨迹点位于第二行驶区域内,该组轨迹点之后的一个轨迹点位于第三行驶区域内。
上述实施方式适用于在轨迹点位于地图中的路口内,将轨迹点与路口内的某一道路关联,与上述图3实施例中S16的相关叙述对应,在此情况下,第二行驶区域可以是S16中第一道路ID指示的道路,则第三行驶区域相当于上述S16中的第二道路ID指示的道路,第一行驶区域为该路口内连接第一道路ID和第二道路ID的道路。
上述实施方式适用于在轨迹点位于地图中的路口内,将轨迹点与路口内的某一车道关联,与上述图6实施例中S24的相关叙述对应,在此情况下,第二行驶区域可以是S24中第一车道ID指示的车道,则第三行驶区域相当于上述S24中的第二车道ID指示的车道,第一行驶区域为该路口内连接第一车道ID和第二车道ID的车道。
另一具体实施中,根据该组轨迹点的定位位置信息和第一行驶区域的多个角点坐标,确定该组轨迹点位于第一行驶区域内,第一行驶区域为所述地图中的区域,将所述一组轨迹点与所述第一行驶区域关联。此实施方式与上述实施例的第一部分中确定轨迹点关联的区域ID的叙述对应,可以理解,第一行驶区域可以是地图中的任一区域ID指示的区域,例如,第一行驶区域为区域1-00-00,该组轨迹点即为区域1-00-00内的多个轨迹点。
S103、根据该组轨迹点的定位质量参考信息获得定位质量统计值。
在本申请实施例中,该组轨迹点包括至少一个轨迹点,每个轨迹点有对应的定位质量参考信息,关于轨迹点的定位质量参考信息具体可参考上述S101中的相关叙述。根据该组轨迹点的定位质量参考信息获得定位质量统计值。
其中,定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测卫星数量或者所述轨迹点的定位位置是否为固定解的统计情况。
其中,平均定位精度为多个轨迹点的位置信息相对于参考真值的误差标准差,平均定位精度越小,定位质量越好;平均可观测卫星数量越大,定位质量越好;平均精度因子DOP值用于度量卫星相对于观测者(例如,采集位置点的数据采集车)的几何位置所造成的误差量的平均值,平均精度因子DOP值越小,定位质量越好;定位位置为固定解的定位质量优于位置信息为非固定解的定位质量,定位位置为固定解是指基于载波相位解算出该定位位置时对应的模糊度为整数。
例如,若轨迹点的定位质量参考信息为该轨迹点的可观测卫星颗数,根据该组轨迹点中每个轨迹点的可观测卫星颗数统计获得定位质量统计值,该定位质量统计值为该组轨迹点对应的平均可观测卫星颗数,该组轨迹点对应的平均可观测卫星颗数越多,则该组轨迹点所在 的行驶区域的定位质量越好。
S104、生成定位质量指示信息。
在本申请实施例中,基于定位质量统计值生成定位质量指示信息,由于该组轨迹点与第一行驶区域关联,故定位质量指示信息用于指示第一行驶区域内的定位质量为定位质量统计值。第一行驶区域为地图中的区域、道路或车道。
其中,定位质量指示信息可以以表格、图形、文本等形式进行表示,本申请实施例不做具体限定。需要说明的是,定位质量指示信息也可以称作定位质量信息层、定位质量映射表等。
例如,定位质量指示信息可以表示为表1所示样子,在表1中,罗列了行驶区域与定位质量之间的映射关系,例如,地图中的区域1的定位质量包括:平均可观测卫星颗数为6;地图中的区域2的定位质量包括:平均可观测卫星颗数为6。
表1
行驶区域 定位质量
地图中的区域1 平均可观测卫星颗数为6
地图中的区域2 平均可观测卫星颗数为4
S105、将定位质量指示信息添加至地图中。
在本申请实施例中,在生成定位质量指示信息后,还可以将定位质量指示信息添加至地图中,由于定位质量指示信息中的第一行驶区域与地图中的区域、道路或车道对应,故将定位质量指示信息添加至地图后,地图中相应的区域处或相应的道路处或相应的车道处可以标示对应的定位质量。
在一些可能的实施例中,S102中的关联方式还可以是:第一行驶区域为地图中的道路,第一行驶区域包括地图中的多个车道,在该组轨迹点与第一行驶区域关联的情况下,根据该组轨迹点中每个轨迹点到第一行驶区域内的多个车道中每个车道的距离,从该组轨迹点中选择至少一个轨迹点,从上述多个车道中选择一个车道,例如,车道A,则车道A为上述多个车道中距离所述至少一个轨迹点中的每个轨迹点最近的车道;根据所述至少一个轨迹点的定位质量参考信息获得车道定位质量统计值。然后,可基于车道定位质量统计值生成车道定位质量指示信息,车道定位质量指示信息用于指示车道A内的定位质量为车道定位质量统计值;将车道定位质量指示信息添加入地图中。
一具体实施中,还可以将添加了定位质量指示信息的地图进行存储,或者,向终端发送添加了定位质量指示信息的地图,终端的叙述可参考上述实施例中的相关叙述,在此不再赘述。
在一些可能的实施例中,还可以添加时间信息,时间信息用于指示行驶区域内的定位质量的有效时间。由于基于不同时期采集的轨迹点的定位质量参考信息获得的定位质量是不同的,例如,由于冬季的树木基本只剩下树干,而夏季的树木一般多为枝叶茂盛,因此,基于冬季时期采集的轨迹点获得的定位质量一般要优于基于夏季时期采集的轨迹点获得的定位质量。因此,可引入时间信息以限定行驶区域的定位质量的有效时间。
通常情况下,定位质量指示信息可由地图服务器生成,则图9所示方法的执行主体制图设备可以为地图服务器,或者可以为地图服务器中的部件或者芯片。此外,定位质量指示信 息也可能由路侧设备、车辆或者移动终端生成,则图9所示方法的执行主体制图设备还可以为该路侧设备、车辆或者移动终端,或者为路侧设备、车辆或者移动终端的部件或者芯片。
可以看到,实施本申请实施例,实现了将轨迹点准确地关联到地图中的各个行驶区域,基于行驶区域关联的多个轨迹点的定位质量参考信息的统计值生成的该行驶区域的定位质量是具有参考价值的、高可信度的。在地图中提供了各行驶区域的定位质量指示信息,该定位质量指示信息使得地图使用者能够自主选择避开定位质量较差的行驶区域,或者选择性地为定位质量较差的定位信息设置较低的置信度,提高了车辆的出行安全率。
参见图10,图10是本申请实施例提供的一种地图使用方法的流程图,图10可以独立于图9实施例,也可以是对图9实施例的补充。在图9中,制图设备不妨以服务器为例、终端不妨以车辆为例进行说明,但并不限定本申请实施例中制图设备仅为服务器以及并不限定终端仅为车辆。该方法包括但不限于以下步骤:
S201、服务器向车辆发送地图。
在本申请实施例中,服务器向车辆发送地图,地图包括定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道。行驶区域内的定位质量为该行驶区域内多个轨迹点的定位质量统计值。
其中,定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者所述轨迹点的定位位置是否为固定解的统计情况。
一具体实施中,定位质量指示信息和行驶区域指示信息承载于地图中,地图可以是服务器以广播、组播或单播中的任意一种方式发送给车辆的。
另一具体实施中,服务器可以将包含定位质量指示信息和行驶区域指示信息的地图发送给路侧单元,由路侧单元将该地图发送给车辆。
需要说明的是,地图可以是服务器根据图9所示方式生成的,也可以其他设备根据图9所示方式生成的地图并发送给服务器,本申请实施例不做具体限定。
S202、车辆接收地图,并获取地图中的定位质量指示信息和行驶区域指示信息。
相应地,车辆接收地图,并获取地图中的定位质量指示信息和行驶区域指示信息。需要说明的是,车辆接收的地图可以是服务器发送的,也可以是服务器通过路侧单元发送的,本申请实施例不做具体限定。
一具体实施中,定位质量指示信息包括行驶区域编号与定位质量的映射关系,行驶区域指示信息包括行驶区域编号与地图中地图元素的标识之间的映射关系,地图元素为地图中的区域、道路或车道。
例如,定位质量指示信息可表示为表2,行驶区域指示信息可表示为表3,例如,在表2中,行驶区域编号1的定位质量为:平均可观测卫星颗数为6,根据表3可知行驶区域编号1为地图中的区域1,则结合表1和表2可知地图中的区域1的定位质量为:平均可观测卫星颗数为6。
表2
行驶区域编号 定位质量
1 平均可观测卫星颗数为6
2 平均可观测卫星颗数为4
表3
行驶区域编号 地图中地图元素的标识
1 区域1
2 道路2
S203、车辆根据定位质量指示信息和行驶区域指示信息进行路径规划、驾驶决策或车辆控制。
在本申请实施例中,车辆根据定位质量指示信息和行驶区域指示信息可预先知晓地图中各个行驶区域的定位质量,则辅助自身进行路径规划、驾驶决策或者车辆控制,从而可以有效避开定位质量较差的区域、道路或车道,以提高自身的出行安全率。
参见图11,图11是本申请实施例提供的一种应用场景示意图,假设车辆欲从A点到达目的地F点,车辆根据定位质量指示信息和行驶区域指示信息知晓各个道路除了BC道路的定位质量较差外其他道路的定位质量均较好,则车辆进行路径规划后确定的导航路线为:A-B-E-F-C-D,可以看出,避开了定位质量较差的BC道路,且车辆在该导航路线上各个道路上的定位准确,提高了车辆的出行安全率。
又例如,参见图11,假设车辆欲从A点到达目的地F点,车辆根据定位质量指示信息和行驶区域指示信息知晓图11中BC车道的定位质量最差,则当车辆行驶至B点时,车辆做出的驾驶决策为左转进入BE车道以避开定位质量最差的BC车道,尽可能选择在定位质量较好的车道上行驶。
在一些可能的实施例中,车辆可以将接收到的地图进行存储,待后续需要再随时调用。或者,车辆可以将接收到的地图显示在显示屏上,可供用户直观清晰地了解地图中各行驶区域的定位质量。
此实施例中地图使用装置除了可以是车辆,还可以是车辆内的部件(如车辆内的导航装置或者自动驾驶装置),还可以为可使用于车辆内的芯片。
可以看到,实施本申请实施例,提供了一种包含定位质量指示信息和行驶区域指示信息的地图,使得车辆基于该地图能及时避开定位质量较差的行驶区域,或者选择性地为定位质量较差的定位信息设置较低的置信度,从而在定位质量较好的行驶区域(例如,道路、车道等)内行驶,即可获得准确的定位位置信息,有利于提高路线规划、驾驶决策等的准确率以及出行安全率。
参见图12,图12是本申请实施例提供的一种地图生成装置的结构示意图,装置30至少包括处理器110、存储器111和接收器112。在一些可能的实施例中,装置30还包括发送器113。该接收器112和发送器113也可以替换为通信接口,用于为处理器110提供信息输入和/或输出。可选的,存储器111、接收器112、发送器113和处理器110通过总线连接或耦合。装置30可为图1实施例中的制图设备,也可以是图10中的服务器。
本申请实施例中,装置30用于实现上述图9实施例所描述的方法,也可用于实现图10实施例所描述的服务器侧的方法。
接收器112用于获得一组轨迹点的定位位置信息、定位质量参考信息和地图中多个行驶区域的位置信息。在一些可能的实施例中,发送器113用于发送生成的定位质量指示信息,或者发送地图,该地图包括定位质量指示信息和行驶区域指示信息。接收器112和发送器113可包括用于直接或通过空中接口与车内的设备、传感器或其它实体设备通信的天线和芯片集。发送器113和接收器112组成通信模块,通信模块可被配置为根据一个或多个其它类型的无线通信(例如,协议)来接收和发送信息,所述无线通信诸如蓝牙、IEEE 802.11通信协议、蜂窝技术、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)或LTE(Long Term Evolution,长期演进)、ZigBee协议、专用短程通信(Dedicated Short Range Communications,DSRC)以及RFID(Radio Frequency Identification,射频识别)通信,等等。
接收器112和发送器113可以是有线接口或者无线接口。有线接口可以是以太网接口、局域互联网络(Local Interconnect Network,LIN)等,无线接口可以是蜂窝网络接口或无线局域网接口等。
处理器110可用于执行根据一组轨迹点的定位位置信息和多个行驶区域的位置信息将一组轨迹点关联到第一行驶区域、生成指示第一行驶区域的定位质量的定位质量指示信息等操作。处理器110可以由一个或者多个通用处理器构成,例如中央处理器(Central Processing Unit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。
存储器111可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器111也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器111还可以包括上述种类的组合。存储器111可以存储程序以及数据,其中,存储的程序包括:垂直距离计算算法、航向夹角计算程序、关联建立算法等,存储的数据包括:轨迹点的定位位置信息、定位质量参考信息、行驶区域与定位质量之间的映射关系等。存储器111可以单独存在,也可以集成于处理器110内部。
此外,图11仅仅是一个装置30的例子,装置30可能包含相比于图11展示的更多或者更少的组件,或者有不同的组件配置方式。同时,图11中展示的各种组件可以用硬件、软件或者硬件与软件的结合方式实施。
参见图13,图13是本申请实施例提供的一种地图使用装置的结构示意图,装置40至少包括处理器210、存储器211、接收器212和显示器213,接收器212可为处理器210提供信息输入。可选的,存储器211、接收器212、显示器213和处理器210通过总线连接或耦合。装置40可为图1的终端,也可以是图10实施例中的车辆。本申请实施例中,装置40用于实现上述图10实施例描述的车辆侧的方法。
接收器212用于接收地图中的定位质量指示信息和行驶区域指示信息,例如,接收器212可用于执行图10中的S202。接收器112可包括用于直接或通过空中接口与服务器、路测单 元、传感器或其它实体设备通信的天线和芯片集。接收器212可以是无线接口,例如,蜂窝网络接口或者无线局域网接口等。
处理器210用于根据定位质量指示信息和行驶区域指示信息进行路径规划、驾驶决策或者车辆控制,例如,处理器210可用于执行图10中的S203。处理器210可以由一个或者多个通用处理器构成,例如中央处理器(Central Processing Unit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。
存储器211可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器211也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器211还可以包括上述种类的组合。存储器211可以存储程序以及数据,其中,存储的程序包括:车辆控制程序、导航规划程序等,存储的数据包括:定位质量指示信息、行驶区域指示信息等。存储器211可以单独存在,也可以集成于处理器110内部。
显示器213用于显示地图中的定位质量指示信息,显示器213可以是显示屏,显示屏可以是液晶显示器(Liquid Crystal Display,LCD)、有机或无机发光二极管(Organic Light-Emitting Diode,OLED)、有源矩阵有机发光二极体面板(Active Matrix/Organic Light Emitting Diode,AMOLED)等。
此外,图13仅仅是一个装置40的例子,装置40可能包含相比于图13展示的更多或者更少的组件,或者有不同的组件配置方式。同时,图13中展示的各种组件可以用硬件、软件或者硬件与软件的结合方式实施。
参见图14,图14是本申请实施例提供的一种地图生成装置的功能结构示意图,装置31包括获取单元310、关联单元311、计算单元312和处理单元313。该装置31可以通过硬件、软件或者软硬件结合的方式来实现。
其中,获取单元310,用于获得一组轨迹点的定位位置信息、定位质量参考信息和地图中多个行驶区域的位置信息,多个行驶区域包括地图中的区域、道路或者车道;关联单元311,用于根据定位位置信息和多个行驶区域的位置信息,将一组轨迹点关联到多个行驶区域中的第一行驶区域,第一行驶区域为地图中的区域、道路或者车道;计算单元312,用于根据定位质量参考信息获得定位质量统计值;处理单元313,用于生成定位质量指示信息,定位质量指示信息用于指示第一行驶区域内的定位质量为定位质量统计值;以及将定位质量指示信息添加入地图中。
该装置31的各功能模块可用于实现图9实施例所描述的方法。在图9实施例中,获取单元310可用于执行S101,关联单元311可用于执行S102,计算单元312可用于执行S103,处理单元313可用于执行S104和S105。
在一些可能的实施例中,装置31还包括发送单元,用于发送添加了该定位质量指示信息 的地图,发送单元可用于执行图10中的S201。
该装置31的各功能模块可用于实现图3和图6实施例所描述的方法,为了说明书的简洁,在此不再赘述。
参见图15,图15是本申请实施例提供的一种地图使用装置的功能结构示意图,装置41包括接收单元410和处理单元411。在一些可能的实施例中,装置41还包括显示单元412。该装置41可以通过硬件、软件或者软硬件结合的方式来实现。
其中,接收单元410,用于接收地图中的定位质量指示信息和行驶区域指示信息,定位质量指示信息用于指示行驶区域内的定位质量,行驶区域指示信息用于指示行驶区域,行驶区域为地图中的区域、道路或车道,行驶区域内的定位质量为行驶区域内多个轨迹点的定位质量统计值;处理单元411,用于根据定位质量指示信息和行驶区域指示信息进行路径规划、驾驶决策或者车辆控制。显示单元412用于显示地图中的定位质量指示信息。
该装置41的各功能模块可用于实现图10实施例所描述的方法。在图10实施例中,接收单元410可用于执行S202,处理单元411可用于执行S203。
在本文上述的实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
需要说明的是,本领域普通技术人员可以看到上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机程序产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是个人计算机,服务器,或者网络设备、机器人、单片机、芯片、机器人等)执行本申请各个实施例所述方法的全部或部分步骤。

Claims (34)

  1. 一种地图生成方法,其特征在于,所述方法包括:
    获得一组轨迹点的定位位置信息、定位质量参考信息和地图中多个行驶区域的位置信息,所述多个行驶区域包括所述地图中的区域、道路或者车道;
    根据所述定位位置信息和所述多个行驶区域的位置信息,将所述一组轨迹点关联到所述多个行驶区域中的第一行驶区域,所述第一行驶区域为所述地图中的区域、道路或者车道;
    根据所述定位质量参考信息获得定位质量统计值;
    生成定位质量指示信息,所述定位质量指示信息用于指示所述第一行驶区域内的定位质量为所述定位质量统计值;
    将所述定位质量指示信息添加入所述地图中。
  2. 根据权利要求1所述的方法,其特征在于,第一轨迹点和第二轨迹点为所述一组轨迹点中的任意两个相邻的轨迹点,所述根据所述定位位置信息和所述多个行驶区域的位置信息,将所述一组轨迹点关联到所述多个行驶区域中的第一行驶区域,包括:
    在所述第一轨迹点和所述第二轨迹点不位于所述地图中的路口的情况下,在所述第一轨迹点距离所述第一行驶区域的垂直距离满足第一预设条件,且所述第一轨迹点对应的航向与所述第一行驶区域的航向之间的航向夹角满足第二预设条件的情况下,将所述一组轨迹点与所述第一行驶区域关联,所述第一行驶区域为所述地图中的道路或者所述地图中的车道;所述第一轨迹点对应的航向为由所述第一轨迹点行驶到所述第二轨迹点的航向。
  3. 根据权利要求1所述的方法,其特征在于,所述一组轨迹点位于所述地图中的路口内,所述根据所述定位位置信息和所述多个行驶区域的位置信息,将所述一组轨迹点关联到所述多个行驶区域中的第一行驶区域,包括:
    将所述一组轨迹点关联到所述路口内的所述第一行驶区域,所述第一行驶区域是所述路口内唯一连接与所述路口相邻的第二行驶区域和与所述路口相邻的第三行驶区域的道路或者车道,所述一组轨迹点之前的一个轨迹点位于所述第二行驶区域内,所述一组轨迹点之后的一个轨迹点位于所述第三行驶区域。
  4. 根据权利要求2所述的方法,其特征在于,所述第一行驶区域为所述地图中的道路,所述第一行驶区域包括所述地图中的多个车道,所述方法还包括:
    根据所述一组轨迹点中每个轨迹点到所述多个车道中每个车道的距离,从所述一组轨迹点中选择至少一个轨迹点,从所述多个车道中选择一个车道,所述一个车道为所述多个车道中距离所述至少一个轨迹点中的每个轨迹点最近的车道;
    根据所述至少一个轨迹点的定位质量参考信息获得车道定位质量统计值;
    生成车道定位质量指示信息,所述车道定位质量指示信息用于指示所述一个车道内的定位质量为所述车道定位质量统计值;
    将所述车道定位质量指示信息添加入所述地图中。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述定位位置信息和所述多个行驶区域的位置信息,将所述一组轨迹点关联到所述多个行驶区域中的第一行驶区域,包括:
    根据所述一组轨迹点的定位位置信息和所述第一行驶区域的多个角点坐标,确定所述一组轨迹点位于所述第一行驶区域内,所述第一行驶区域为所述地图中的区域;
    将所述一组轨迹点与所述第一行驶区域关联。
  6. 一种地图使用方法,其特征在于,所述方法包括:
    接收地图中的定位质量指示信息和行驶区域指示信息,所述定位质量指示信息用于指示行驶区域内的定位质量,所述行驶区域指示信息用于指示所述行驶区域,所述行驶区域为地图中的区域、道路或车道,所述行驶区域内的定位质量为所述行驶区域内多个轨迹点的定位质量统计值;
    根据所述定位质量指示信息和所述行驶区域指示信息进行路径规划、驾驶决策或者车辆控制。
  7. 根据权利要求6所述的方法,其特征在于,将所述定位质量指示信息显示于显示装置上。
  8. 根据权利要求6或7所述的方法,其特征在于,所述定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者所述轨迹点的定位位置是否为固定解的统计情况。
  9. 一种地图,其特征在于,所述地图包括定位质量指示信息和行驶区域指示信息,所述定位质量指示信息用于指示行驶区域内的定位质量,所述行驶区域指示信息用于指示所述行驶区域,所述行驶区域为地图中的区域、道路或车道,所述行驶区域内的定位质量为所述行驶区域内多个轨迹点的定位质量统计值。
  10. 根据权利要求9所述的地图,其特征在于,所述定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者所述轨迹点的定位位置是否为固定解的统计情况。
  11. 根据权利要求9或10所述的地图,其特征在于,所述地图还包括时间信息,所述时间信息用于指示所述行驶区域内的定位质量的有效时间。
  12. 一种地图生成装置,其特征在于,所述装置包括:
    获取单元,用于获得一组轨迹点的定位位置信息、定位质量参考信息和地图中多个行驶区域的位置信息,所述多个行驶区域包括所述地图中的区域、道路或者车道;
    关联单元,用于根据所述定位位置信息和所述多个行驶区域的位置信息,将所述一组轨迹点关联到所述多个行驶区域中的第一行驶区域,所述第一行驶区域为所述地图中的区域、道路或者车道;
    计算单元,用于根据所述定位质量参考信息获得定位质量统计值;
    处理单元,用于生成定位质量指示信息,所述定位质量指示信息用于指示所述第一行驶区域内的定位质量为所述定位质量统计值;
    所述处理单元,还用于将所述定位质量指示信息添加入所述地图中。
  13. 根据权利要求12所述的装置,其特征在于,第一轨迹点和第二轨迹点为所述一组轨迹点中的任意两个相邻的轨迹点,所述关联单元,具体用于:
    在所述第一轨迹点和所述第二轨迹点不位于所述地图中的路口的情况下,在所述第一轨迹点距离所述第一行驶区域的垂直距离满足第一预设条件,且所述第一轨迹点对应的航向与所述第一行驶区域的航向之间的航向夹角满足第二预设条件的情况下,将所述一组轨迹点与所述第一行驶区域关联,所述第一行驶区域为所述地图中的道路或者所述地图中的车道;所述第一轨迹点对应的航向为由所述第一轨迹点行驶到所述第二轨迹点的航向。
  14. 根据权利要求12所述的装置,其特征在于,所述一组轨迹点位于所述地图中的路口 内,所述关联单元,具体用于:
    将所述一组轨迹点关联到所述路口内的所述第一行驶区域,所述第一行驶区域是所述路口内唯一连接与所述路口相邻的第二行驶区域和与所述路口相邻的第三行驶区域的道路或者车道,所述一组轨迹点之前的一个轨迹点位于所述第二行驶区域内,所述一组轨迹点之后的一个轨迹点位于所述第三行驶区域。
  15. 根据权利要求13所述的装置,其特征在于,所述第一行驶区域为所述地图中的道路,所述第一行驶区域包括所述地图中的多个车道,
    所述关联单元,还用于根据所述一组轨迹点中每个轨迹点到所述多个车道中每个车道的距离,从所述一组轨迹点中选择至少一个轨迹点,从所述多个车道中选择一个车道,所述一个车道为所述多个车道中距离所述至少一个轨迹点中的每个轨迹点最近的车道;
    所述计算单元,还用于根据所述至少一个轨迹点的定位质量参考信息获得车道定位质量统计值;
    所述处理单元,还用于生成车道定位质量指示信息,所述车道定位质量指示信息用于指示所述一个车道内的定位质量为所述车道定位质量统计值;将所述车道定位质量指示信息添加入所述地图中。
  16. 根据权利要求12所述的装置,其特征在于,所述关联单元具体用于:
    根据所述一组轨迹点的定位位置信息和所述第一行驶区域的多个角点坐标,确定所述一组轨迹点位于所述第一行驶区域内,所述第一行驶区域为所述地图中的区域;
    将所述一组轨迹点与所述第一行驶区域关联。
  17. 一种地图使用装置,其特征在于,所述装置包括:
    接收单元,用于接收地图中的定位质量指示信息和行驶区域指示信息,所述定位质量指示信息用于指示行驶区域内的定位质量,所述行驶区域指示信息用于指示所述行驶区域,所述行驶区域为地图中的区域、道路或车道,所述行驶区域内的定位质量为所述行驶区域内多个轨迹点的定位质量统计值;
    处理单元,用于根据所述定位质量指示信息和所述行驶区域指示信息进行路径规划、驾驶决策或者车辆控制。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括显示单元,所述显示单元所述显示所述地图中的定位质量指示信息。
  19. 根据权利要求17或18所述的装置,其特征在于,所述定位质量统计值包括平均定位精度、平均精度因子DOP值、平均可观测到的卫星数量或者所述轨迹点的定位位置是否为固定解的统计情况。
  20. 一种地图使用方法,其特征在于,所述方法包括:
    接收地图,所述地图包括定位质量指示信息和行驶区域指示信息,所述定位质量指示信息用于指示行驶区域内的定位质量,所述行驶区域指示信息用于指示所述行驶区域,所述行驶区域为所述地图中的区域、道路或车道,所述行驶区域内的定位质量为所述行驶区域内多个轨迹点的定位质量统计值;
    存储所述地图,或者,在显示装置上显示所述地图。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    根据所述定位质量指示信息和所述行驶区域指示信息进行导航路线规划、驾驶决策或车 辆控制。
  22. 一种地图使用装置,其特征在于,所述装置包括:
    接收单元,用于接收地图,所述地图包括定位质量指示信息和行驶区域指示信息,所述定位质量指示信息用于指示行驶区域内的定位质量,所述行驶区域指示信息用于指示所述行驶区域,所述行驶区域为所述地图中的区域、道路或车道,所述行驶区域内的定位质量为所述行驶区域内多个轨迹点的定位质量统计值;
    存储单元,用于存储所述地图,或者,显示单元用于显示所述地图。
  23. 根据权利要求22所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据所述定位质量指示信息和所述行驶区域指示信息进行导航路线规划、驾驶决策或车辆控制。
  24. 一种地图生成装置,其特征在于,所述装置包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以使所述装置执行如权利要求1-5任一项所述的方法。
  25. 一种地图使用装置,其特征在于,所述装置包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以使所述装置执行如权利要求6-8任一项所述的方法。
  26. 一种地图使用装置,其特征在于,所述装置包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以使所述装置执行如权利要求20或21所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在被处理器运行时,实现如权利要求1-5任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在被处理器运行时,实现如权利要求6-8任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有如权利要求9-11中任一项所述的地图。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在被处理器运行时,实现如权利要求20或21所述的方法。
  31. 一种车辆,其特征在于,所述车辆包括如权利要求17-19或25或22-23或26任一项所述的地图使用装置。
  32. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在处理器上运行时,实现如权利要求1-5任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在处理器上运行时,实现如权利要求6-8任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在处理器上运行时,实现如权利要求20或21所述的方法。
PCT/CN2022/085477 2021-04-25 2022-04-07 一种地图、地图生成方法、地图使用方法及装置 WO2022228069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110449790.1A CN115248046A (zh) 2021-04-25 2021-04-25 一种地图、地图生成方法、地图使用方法及装置
CN202110449790.1 2021-04-25

Publications (1)

Publication Number Publication Date
WO2022228069A1 true WO2022228069A1 (zh) 2022-11-03

Family

ID=83696409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085477 WO2022228069A1 (zh) 2021-04-25 2022-04-07 一种地图、地图生成方法、地图使用方法及装置

Country Status (2)

Country Link
CN (1) CN115248046A (zh)
WO (1) WO2022228069A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116718181B (zh) * 2023-08-11 2023-10-20 腾讯科技(深圳)有限公司 地图生成方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133553A (zh) * 2014-07-25 2016-11-16 奥迪股份公司 用于确定利用gnss定位的空间分辨的误差程度的方法
CN107200016A (zh) * 2017-05-26 2017-09-26 重庆长安汽车股份有限公司 道路自适应预测方法及采用该方法的车辆系统
CN109856649A (zh) * 2019-02-28 2019-06-07 百度在线网络技术(北京)有限公司 导航定位的误差分析方法、装置及存储介质
CN110426050A (zh) * 2019-08-07 2019-11-08 北京百度网讯科技有限公司 地图匹配纠正方法、装置、设备和存储介质
US20200309535A1 (en) * 2019-03-29 2020-10-01 Baidu Online Network Technology (Beijing) Co., Ltd. Method, device, server and medium for determining quality of trajectory-matching data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133553A (zh) * 2014-07-25 2016-11-16 奥迪股份公司 用于确定利用gnss定位的空间分辨的误差程度的方法
CN107200016A (zh) * 2017-05-26 2017-09-26 重庆长安汽车股份有限公司 道路自适应预测方法及采用该方法的车辆系统
CN109856649A (zh) * 2019-02-28 2019-06-07 百度在线网络技术(北京)有限公司 导航定位的误差分析方法、装置及存储介质
US20200309535A1 (en) * 2019-03-29 2020-10-01 Baidu Online Network Technology (Beijing) Co., Ltd. Method, device, server and medium for determining quality of trajectory-matching data
CN110426050A (zh) * 2019-08-07 2019-11-08 北京百度网讯科技有限公司 地图匹配纠正方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN115248046A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
US11204428B2 (en) Communication for high accuracy cooperative positioning solutions
US9689702B2 (en) Navigation system with map mechanism and method of operation thereof
US10553110B2 (en) Detection and estimation of variable speed signs
EP3663718B1 (en) Method and apparatus for estimating a localized position on a map
US10393852B2 (en) Method and system of location estimation and navigation of autonomous vehicles
US11341844B2 (en) Method and system for determining driving assisting data
US11686582B2 (en) Sensor plausibility using GPS road information
WO2019134180A1 (zh) 一种车辆定位方法、装置、电子设备及介质
CN108200552A (zh) 一种v2x通信方法和装置
US11215460B2 (en) Method and apparatus for map-based dynamic location sampling
EP3569984B1 (en) Method and apparatus for generating navigation guidance for an incomplete map
US11087616B2 (en) Method and apparatus for recommending services based on map-based dynamic location sampling
EP3671126A1 (en) Method, apparatus, and system for providing road closure graph inconsistency resolution
WO2022228069A1 (zh) 一种地图、地图生成方法、地图使用方法及装置
US11474511B2 (en) Method, apparatus and computer program product for determining a measure of probe quality
US20200249027A1 (en) Method and apparatus for data consumption reduction based on map-based dynamic location sampling
WO2022228079A1 (zh) 一种地图、地图生成方法、地图使用方法及装置
US20230206753A1 (en) Method, apparatus, and system for traffic prediction based on road segment travel time reliability
US20220207993A1 (en) Method, apparatus, and system for verifying a lane closure using probe data
US20220252422A1 (en) Method, apparatus, and system for constructing a high-resolution map for geospatial big data processing
WO2022228082A1 (zh) 一种地图、地图生成方法、地图使用方法及装置
US11391586B2 (en) Method and apparatus for discovery of semantic nodes for map-based dynamic location sampling
US20200249029A1 (en) Method and apparatus for path recovery when using map-based dynamic location sampling
US20220132272A1 (en) Selective enabling of offline positioning
US20240102810A1 (en) Systems and methods for optimizing the notification of modifications to a route

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE