WO2022227826A1 - Igbt模组、电机控制器和车辆 - Google Patents

Igbt模组、电机控制器和车辆 Download PDF

Info

Publication number
WO2022227826A1
WO2022227826A1 PCT/CN2022/077470 CN2022077470W WO2022227826A1 WO 2022227826 A1 WO2022227826 A1 WO 2022227826A1 CN 2022077470 W CN2022077470 W CN 2022077470W WO 2022227826 A1 WO2022227826 A1 WO 2022227826A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation plate
igbt module
wafer
liquid
Prior art date
Application number
PCT/CN2022/077470
Other languages
English (en)
French (fr)
Inventor
杨广明
齐阿喜
张星春
喻轶龙
喻凤传
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP22794306.5A priority Critical patent/EP4300570A1/en
Priority to BR112023021934A priority patent/BR112023021934A2/pt
Priority to AU2022264526A priority patent/AU2022264526A1/en
Publication of WO2022227826A1 publication Critical patent/WO2022227826A1/zh
Priority to US18/372,387 priority patent/US20240021714A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49565Side rails of the lead frame, e.g. with perforations, sprocket holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06565Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices having the same size and there being no auxiliary carrier between the devices

Definitions

  • the present disclosure relates to the technical field of vehicles, and in particular, to an IGBT module, a motor controller and a vehicle.
  • the IGBT module in the related art usually includes a wafer and a heat dissipation plate.
  • the heat dissipation plate is in contact with one side of the wafer to dissipate heat from the wafer.
  • the power density of the circle is difficult to improve. Therefore, some IGBT modules are provided with heat dissipation plates on opposite sides of the wafer, and the heat dissipation of the wafer is changed from one side to two sides to improve the power density of the wafer, but the two heat dissipation plates of these IGBT modules
  • the plates and wafers are not properly arranged, resulting in low stability of the connection between the two heat sink plates and the wafer, and poor sealing effect, resulting in low reliability of the electrical connection of the IGBT module.
  • an object of the present disclosure is to provide an IGBT module, which not only can perform double-sided heat dissipation, has high heat dissipation efficiency, but also has the advantages of reliable connection and good sealing effect.
  • the present disclosure also proposes a motor controller having the above-mentioned IGBT module.
  • the present disclosure also proposes a vehicle having the above motor controller.
  • the IGBT module includes a wafer, a first heat dissipation plate and a second heat dissipation plate, the first heat dissipation plate and the first heat dissipation plate.
  • Two heat sinks are arranged on both sides of the wafer in the thickness direction.
  • the side of the first heat sink facing away from the second heat sink has a plurality of first heat sink pins arranged at intervals.
  • the second heat sink plate The side facing away from the first heat dissipation plate has a plurality of second heat dissipation pins arranged at intervals; an insulating waterproof casing, the insulating waterproof casing wraps the wafer from the first heat dissipation plate and the first heat dissipation plate. Two exposed parts of the heat sink.
  • the IGBT module according to the embodiment of the present disclosure can not only perform double-sided heat dissipation, and has high heat dissipation efficiency, but also has the advantages of reliable connection and good sealing effect.
  • a first insulating and heat-conducting sheet is provided between the first heat dissipation plate and the wafer; and a second insulating and heat-conducting sheet is provided between the second heat dissipation plate and the wafer .
  • one end of the wafer is connected with a DC connector and the other end is connected with an AC connector, and the DC connector and the AC connector are respectively connected from opposite sides of the insulating waterproof housing. Extend on both sides.
  • the DC connector includes a first DC negative input copper bar, a DC positive input copper bar, and a second DC negative input copper bar;
  • the AC connector includes an AC output copper bar;
  • the other end of the wafer is also provided with a signal lead.
  • the IGBT module further includes: an axial waterproof member, the axial waterproof member is provided on an end face of one end of the insulating waterproof casing and extends along the axial direction of the end face;
  • the radial waterproof member is arranged on the outer peripheral surface of the other end of the insulating waterproof shell and extends along the circumferential direction of the outer peripheral surface.
  • an end surface of the one end of the insulating waterproof housing is configured with a ring groove, and the axial waterproof member is assembled to the annular groove; the radial waterproof member is connected to the insulating waterproof member.
  • the shell is integrally formed.
  • At least one of the first heat dissipation plate and the second heat dissipation plate is provided with support ribs, and the support ribs are supported on the first heat dissipation plate and the second heat dissipation plate
  • a accommodating cavity is formed between the first heat dissipation plate and the second heat dissipation plate, and the wafer is arranged in the accommodating cavity.
  • the support rib is provided on one of the first heat dissipation plate and the second heat dissipation plate, and the support rib is provided with a limit rib extending along its length direction,
  • the width of the limiting rib is smaller than the width of the supporting rib
  • the second heat dissipation plate and the other one of the second heat dissipation plate are provided with a limiting groove
  • the limiting rib is matched with the limiting groove .
  • the support ribs are provided on opposite two edges of the second heat dissipation plate and extend along the length direction of the edges respectively; The other end of each support rib is spaced from the edge adjacent to the edge where the edge extends.
  • a surface of the first heat dissipation plate facing away from the second heat dissipation plate is provided with a first sink groove, and the first sink groove extends on the outer periphery of the first heat dissipation plate the circumferential direction of the second heat dissipation plate; the surface of the second heat dissipation plate facing away from the second heat dissipation plate is provided with a second sink groove, and the second sink groove extends in the circumferential direction of the outer periphery of the second heat dissipation plate; so The first sink groove and the second sink groove are filled with the insulating waterproof casing.
  • the outer surface of the wafer is covered with an insulating heat dissipation layer.
  • a motor controller includes: a liquid-cooling casing, a cooling chamber is defined in the liquid-cooling casing, and the liquid-cooling casing is provided with a The cooling chamber communicates with a liquid inlet and a liquid outlet, and two opposite side walls of the cooling chamber are respectively provided with insertion holes and insertion holes; the IGBT mold according to the embodiment of the first aspect of the present disclosure
  • the IGBT module is inserted into the cooling chamber through the insertion hole and protrudes out of the cooling chamber through the insertion hole, and the opposite side surfaces of the IGBT module in the thickness direction are connected to the cooling chamber
  • the inner wall of the chamber forms a liquid gap, and both ends of the IGBT module are sealed with the liquid cooling housing to close the insertion hole and the insertion hole.
  • the motor controller of the embodiment of the present disclosure by using the IGBT module according to the embodiment of the first aspect of the present disclosure, not only double-sided heat dissipation can be performed, the heat dissipation efficiency is high, but also the connection is reliable and the sealing effect is good. .
  • An embodiment according to the third aspect of the present disclosure provides a vehicle, comprising: the motor controller according to the embodiment of the second aspect of the present disclosure.
  • the vehicle according to the embodiment of the present disclosure has the advantages of good heat dissipation effect and reliable electrical connection by using the motor controller according to the embodiment of the second aspect of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an IGBT module according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an IGBT module from another perspective according to an embodiment of the present disclosure
  • FIG. 3 is an exploded view of an IGBT module according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view of an IGBT module according to an embodiment of the present disclosure.
  • FIG 5 is another cross-sectional view of an IGBT module according to an embodiment of the present disclosure.
  • FIG. 6 is an assembly schematic diagram of an axial waterproof member of an IGBT module according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a first heat dissipation plate of an IGBT module according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a second heat dissipation plate of an IGBT module according to an embodiment of the present disclosure
  • FIG. 9 is an assembly schematic diagram of an IGBT module and a liquid-cooled housing according to an embodiment of the present disclosure.
  • FIG. 10 is an exploded view of an IGBT module and a liquid-cooled housing according to an embodiment of the present disclosure
  • FIG. 11 is a schematic circuit diagram of an IGBT module according to an embodiment of the present disclosure.
  • IGBT module 1 motor controller 2
  • DC connector 600 first DC negative input copper bar 610, DC positive input copper bar 620, second DC negative input copper bar 630, AC connector 640, AC output copper bar 641, signal lead 650,
  • Liquid cooling housing 800 cooling chamber 810, insertion hole 811, insertion hole 812, limit ring edge 813, inclined surface 814, liquid passing gap 820,
  • the IGBT upper bridge arm 910 , the diode upper bridge arm 920 , the IGBT lower bridge arm 930 , and the diode lower bridge arm 940 are connected to The IGBT upper bridge arm 910 , the diode upper bridge arm 920 , the IGBT lower bridge arm 930 , and the diode lower bridge arm 940 .
  • first feature may include one or more of such features.
  • the IGBT module 1 according to the embodiment of the present disclosure is described below with reference to the accompanying drawings.
  • the IGBT module 1 includes a wafer 100 , a first heat dissipation plate 200 , a second heat dissipation plate 300 and an insulating waterproof casing 400 .
  • the first heat dissipation plate 200 and the second heat dissipation plate 300 are respectively disposed on both sides of the wafer 100 in the thickness direction.
  • the side of the first heat dissipation plate 200 facing away from the second heat dissipation plate 300 has a plurality of first heat dissipation pins 210 arranged at intervals.
  • the side of the second heat dissipation plate 300 facing away from the first heat dissipation plate 200 has a plurality of second heat dissipation pins 310 arranged at intervals.
  • the insulating waterproof casing 400 covers the first heat dissipation plate 200 and the second heat dissipation plate 300 of the wafer 100 exposed part.
  • the insulating waterproof casing 400 may be a plastic part, and the insulating waterproof casing 400 may be formed by injection molding. Moreover, the insulating waterproof casing 400 can be connected to the part of the first heat dissipation plate 200 without the first heat dissipation pin 210 and the part of the second heat dissipation plate 300 without the second heat dissipation pin 310 . The insulating waterproof casing 400 covers at least the part of the wafer 100 exposed from the first heat dissipation plate 200 and the second heat dissipation plate 300 .
  • the first heat dissipation plate 200 faces away from the second heat dissipation plate 300 .
  • One side has a plurality of first heat dissipation pins 210 arranged at intervals
  • a side of the second heat dissipation plate 300 facing away from the first heat dissipation plate 200 has a plurality of second heat dissipation pins 310 arranged at intervals.
  • the wafer 100 can be dissipated on both sides, that is, the heat generated by the wafer 100 can be quickly dissipated through the first heat dissipation plate 200 and the second heat dissipation plate 300, and the heat dissipation effect is better.
  • the arrangement of the plurality of first heat dissipation pins 210 and the plurality of second heat dissipation pins 310 can further increase the contact area between the IGBT module 1 and the cooling liquid, thereby further accelerating the heat dissipation efficiency of the IGBT module 1 .
  • the insulating waterproof case 400 covers the part of the wafer 100 exposed from the first heat dissipation plate 200 and the second heat dissipation plate 300 , for example, the first heat dissipation plate 200 and the second heat dissipation plate 300 can cover the thickness direction of the wafer 100
  • the opposite sides of the wafer 100 can be covered by the insulating waterproof casing 400 to improve the sealing performance of the IGBT module 1, thereby further improving the waterproof performance of the IGBT module 1, and increasing the IGBT module 1 reliability of the electrical connection.
  • the insulating waterproof casing 400 can be connected to the wafer 100 , the first heat dissipation plate 200 and the second heat dissipation plate 300 , that is, the three of the wafer 100 , the first heat dissipation plate 200 and the second heat dissipation plate 300 are improved. relative position stability.
  • the first heat dissipation plate 200 and the second heat dissipation plate 300 may be metal parts, which can shield the electromagnetic interference generated by the large current when the wafer 100 is working, which is beneficial to improve the EMC (Electromagnetic Compatibility) effect.
  • the IGBT module 1 according to the embodiment of the present disclosure can not only perform double-sided heat dissipation, and has high heat dissipation efficiency, but also has the advantages of reliable connection and good sealing effect.
  • the insulating waterproof casing 400 is a nano-injection molded part, which has the advantages of simple processing, low cost, light weight, and high overall structural strength, and the nano-injection-molded insulating waterproof casing 400 is suitable for crystal The sealing effect of the circle 100 is better.
  • the nano-injection molding of the insulating waterproof casing 400 there is no need to use an additional mechanical connection structure to fix the first heat dissipation plate 200 and the second heat dissipation plate 300, which can make the IGBT module 1 become thinner and smaller.
  • first heat dissipation plate 200 and the second heat dissipation plate 300 are both aluminum alloy parts, and the heat dissipation performance of the aluminum alloy parts is good, which can further improve the heat dissipation effect of the first heat dissipation plate 200 and the second heat dissipation plate 300 on the wafer 100.
  • the aluminum alloy parts are easy to be T-processed, the aluminum alloy parts are more easily used for nano-injection molding of the insulating waterproof casing 400 .
  • a first insulating and thermally conductive sheet 500 is provided between the first heat dissipation plate 200 and the wafer 100
  • a first heat dissipation sheet 500 is provided between the second heat dissipation plate 300 and the wafer 100 .
  • the first insulating and thermally conductive sheet 500 and the second insulating and thermally conductive sheet 510 are respectively located on opposite sides of the wafer 100 in the thickness direction, and the first heat dissipation plate 200 and one side of the wafer 100 in the thickness direction sandwich the first The insulating and thermally conductive sheet 500, the second heat dissipation plate 300 and the other side of the wafer 100 in the thickness direction sandwich the second insulating and thermally conductive sheet 510.
  • the first insulating heat-conducting sheet 500 can prevent the electrical conduction between the wafer 100 and the first heat dissipation plate 200, and at the same time guide the heat on the thickness side of the wafer 100 to the first heat-dissipating plate 200 for heat dissipation, and the second insulating heat-conducting sheet 510 can avoid
  • the wafer 100 and the second heat dissipation plate 300 are electrically connected, and the heat on the other side of the thickness of the wafer 100 is directed to the second heat dissipation plate 300 for heat dissipation, thus taking into account the safety of electrical connection and heat dissipation efficiency.
  • one end of the wafer 100 is connected with a DC connector 600 and the other end is connected with an AC connector 640 , and the DC connector 600 and the AC connector 640 are respectively connected from Opposite sides of the insulating waterproof case 400 protrude.
  • the DC connector 600 and the AC connector 640 are respectively disposed at both ends of the wafer 100, and both the DC connector 600 and the AC connector 640 are located outside the insulating waterproof casing 400, which can not only avoid the DC connector 600 and the AC connector
  • the connection parts 640 interfere with each other, which is beneficial to improve EMC (electromagnetic compatibility) and facilitate the electrical connection between the wafer 100 and other electrical parts of the vehicle.
  • the DC connector 600 includes a first DC negative input copper bar 610 , a DC positive input copper bar 620 and a second DC negative input copper bar 630 .
  • the AC connection The component 640 includes an AC output copper bar 641 , and the other end of the wafer 100 is further provided with a signal lead 650 . This not only facilitates electrical connection, but also avoids mutual interference between direct current and alternating current.
  • the vehicle has a DC power supply, a control board, a diode, a driving board and a motor and other structures.
  • the positive pole of the DC power supply of the vehicle is connected to the DC positive input copper bar 620
  • the negative pole of the DC power supply of the vehicle is connected to the first DC negative input copper bar 610 and the second DC negative input copper bar 630
  • the first DC negative input copper bar 610 The DC positive input copper bar 620 and the second DC negative input copper bar 630 introduce the DC power of the DC power source into the IGBT upper bridge arm 910, the diode upper bridge arm 920, the IGBT lower bridge arm 930, and the diode lower bridge arm 940 to convert into AC power , the alternating current is then input to the motor of the vehicle through the alternating current output copper bar 641 .
  • the signal in the working process of the IGBT module 1 converting the direct current into the alternating current and the temperature rise induction signal can be introduced into the control board through the signal lead 650 through the driving board.
  • the IGBT module 1 further includes an axial waterproof member 700 and a radial waterproof member 710 .
  • the axial waterproof member 700 is arranged on the end face of one end of the insulating waterproof casing 400 and extends along the axial direction of the end face, and the radial waterproof member 710 is arranged on the outer peripheral surface of the other end of the insulating waterproof casing 400 along the circumference of the outer peripheral surface. to extend.
  • the axial waterproof member 700 may be an O-ring.
  • the axial waterproof member 700 is disposed at one end of the IGBT module 1 adjacent to the DC connection member 600 , and the axial waterproof member 700 is attached to the limit ring edge of the liquid cooling housing 800 described below. 813, so as to realize the sealing of one end of the IGBT module 1 adjacent to the DC connector 600, the radial waterproof member 710 surrounds one end of the IGBT module 1 adjacent to the AC connector 640, and the radial waterproof member 710 is attached to the following description.
  • the inner wall surface of the liquid-cooled casing 800 can be sealed, so as to realize the sealing of one end of the IGBT module 1 adjacent to the AC connector 640 , so that both ends of the IGBT module 1 have a good waterproof effect.
  • an end face of one end of the insulating waterproof casing 400 is configured with a ring groove 410 , the axial waterproof member 700 is assembled in the annular groove 410 , and the radial waterproof member 710 is integrally formed with the insulating waterproof casing 400 .
  • the annular groove 410 can provide installation space for the axial waterproof member 700 to ensure the installation stability of the axial waterproof member 700 and prevent the axial waterproof member 700 from being separated from the IGBT module 1 due to excessive deformation.
  • a portion of the axial waterproof member 700 protrudes out of the ring groove 410 , so that the axial waterproof member 700 can be deformed to achieve sealing when the axial waterproof member 700 is fitted with the limit ring edge 813 below.
  • the radial waterproof member 710 and the insulating waterproof casing 400 are integrally injection-molded, so that the radial waterproof member 710 has a higher connection strength with the insulating waterproof casing 400 , the first heat dissipation plate 200 and the second heat dissipation plate 300 , and is processed and formed. More simply, the radial waterproof member 710 can have a better sealing effect.
  • At least one of the first heat dissipation plate 200 and the second heat dissipation plate 300 is provided with support ribs 320 , and the support ribs 320 are supported on the first heat dissipation plate 200 and the second heat dissipation plate 300 to form an accommodation cavity 330 between the first heat dissipation plate 200 and the second heat dissipation plate 300 , and the wafer 100 is arranged in the accommodation cavity 330 .
  • the accommodating cavity 330 may be configured in a shape suitable for the wafer 100 .
  • the wafer 100 By setting the receiving cavity 330 , the wafer 100 can be mounted, and the first heat dissipation plate 200 and the second heat dissipation plate 300 can protect the wafer 100 from being crushed and damaged.
  • the support rib 320 is provided on one of the first heat dissipation plate 200 and the second heat dissipation plate 300 , and the support rib 320 is provided with a rib extending along its length direction.
  • Limiting ribs 321 the width of the limiting ribs 321 is smaller than the width of the supporting ribs 320
  • the other one of the first heat dissipation plate 200 and the second heat dissipation plate 300 is provided with a limiting groove 220
  • the limiting ribs 321 are matched with the limiting grooves 220 .
  • the support ribs 320 may be disposed on opposite sides of the second heat dissipation plate 300
  • the limit ribs 321 may be disposed on the support ribs 320
  • the limit grooves 220 may be disposed on the first heat dissipation plate 200
  • the two limiting ribs 321 are matched with the two limiting grooves 220 in a one-to-one correspondence.
  • the relative positions of the first heat dissipation plate 200 and the second heat dissipation plate 300 in the circumferential direction, the length direction and the width direction of the first heat dissipation plate 200 can be pre-fixed. Shaking occurs between the first heat dissipation plate 200 and the second heat dissipation plate 300 , which facilitates the connection of the insulating waterproof casing 400 to the first heat dissipation plate 200 and the second heat dissipation plate 300 through nano-injection.
  • the support ribs 320 are provided on two opposite edges of the second heat dissipation plate 300 and extend along the length direction of the edges respectively.
  • One end of each support rib 320 is configured with a The other end of each support rib 320 is spaced apart from the edge adjacent to the edge of the bent portion 322 extending toward the edge adjacent to the edge.
  • the support ribs 320 may be spaced apart from the AC connector 640 and the DC connector 600 to avoid affecting the connection between the AC connector 640 and the DC connector 600 and the wafer 100 in the accommodating cavity 330 .
  • the bent portion 322 can be disposed at one end of the support rib 320 adjacent to the AC connector 640 .
  • the bent portion 322 can not only improve the structural strength of the support rib 320 , but also can perform the bending process on the wafer 100 in the width direction of the wafer 100 . limit.
  • one end of the wafer 100 facing the DC connector 600 is provided with a signal lead 650. Since the signal lead 650 occupies a large space, the other end of each support rib 320 is spaced from the edge adjacent to the edge. In this way, the interference between the support rib 320 and the signal lead 650 can be avoided, and the installation is more convenient.
  • a surface of the first heat dissipation plate 200 facing away from the second heat dissipation plate 300 is provided with a first sink groove 230 , and the first sink groove 230 extends in the first heat sink 230 .
  • the circumferential direction of the outer peripheral edge of the heat dissipation plate 200 is provided with a second sink groove 340 , and the second sink groove 340 extends in the circumferential direction of the outer periphery of the second heat dissipation plate 300 .
  • the first sink groove 230 and the second sink groove 340 are filled with the insulating waterproof casing 400 .
  • the first sink groove 230 is recessed toward the second heat sink 300 from the surface of the first heat dissipation plate 200 facing away from the second heat dissipation plate 300
  • the second sink groove 340 is formed by the back surface of the second heat dissipation plate 300 .
  • the surface of the first heat dissipation plate 200 is recessed toward the first heat dissipation plate 200 .
  • the arrangement of the first sink groove 230 and the second sink groove 340 facilitates injection molding to form the insulating waterproof casing 400 to form positioning with the first sink groove 230 and the second sink groove 340 , so as to prevent the insulating waterproof casing 400 from covering the first heat dissipation plate 200
  • the first heat dissipation pin 210 and the second heat dissipation pin 310 of the second heat dissipation plate 300 in this way, both the heat dissipation effect and the positioning effect are taken into account.
  • the outer surface of the wafer 100 is covered with an insulating heat dissipation layer (not shown in the figure).
  • the insulating and heat-dissipating layer is made of insulating and heat-dissipating resin.
  • the insulating heat dissipation layer wraps the circumferential edge of the wafer 100 , so as to ensure the heat dissipation performance of the wafer 100 , avoid electrical conduction between the wafer 100 and external objects, and improve circuit reliability.
  • the motor controller 2 according to the embodiment of the present disclosure is described below.
  • the motor controller 2 includes a liquid cooling housing 800 and an IGBT module 1 .
  • the liquid cooling housing 800 defines a cooling chamber 810.
  • the liquid cooling housing 800 is provided with a liquid inlet (not shown in the figure) and a liquid outlet (not shown in the figure) that communicate with the cooling chamber 810.
  • the cooling chamber Two opposite side walls of 810 are respectively provided with insertion holes 811 and insertion holes 812 .
  • the IGBT module 1 is inserted into the cooling chamber 810 through the insertion hole 811 and extends out of the cooling chamber 810 through the insertion hole 812 .
  • the opposite sides of the IGBT module 1 in the thickness direction form a liquid gap 820 with the inner wall of the cooling chamber 810 .
  • both ends of the IGBT module 1 are sealed with the liquid cooling case 800 to close the insertion hole 811 and the insertion hole 812 .
  • the liquid cooling housing 800 may be formed into a rectangular parallelepiped by die-casting and machining, and the IGBT module 1 is provided with a wafer 100 with a relatively large heat generation between the DC connector 600 and the AC connector 640 ,
  • the IGBT module 1 plays a waterproof role by covering the insulating waterproof casing 400 between the DC connector 600 and the AC connector 640 .
  • the AC connector 640 protrudes from the insertion hole 811 of the liquid cooling housing 800
  • the DC connector 600 protrudes from the insertion hole 812 of the liquid cooling housing 800
  • the wafer 100 is in the cooling chamber 810 .
  • the liquid cooling housing 800 is fed with cooling liquid from the liquid inlet, the cooling liquid flows to the cooling chamber 810 and passes through the liquid passing gap 820 , and then flows out from the liquid outlet after cooling the IGBT module 1 .
  • the opposite sides in the thickness direction of the IGBT module 1 are completely soaked by the cooling liquid, and the part of the IGBT module 1 that generates a larger amount of heat has a larger contact cooling area with the cooling liquid, thereby realizing double-sided heat dissipation.
  • both ends of the IGBT module 1 are sealed with the liquid-cooled casing 800 , and a closed cooling liquid flow path is formed between the liquid-cooled casing 800 and the IGBT module 1 , thereby sealing the space for inserting the IGBT module 1 .
  • the density of IGBT module 1 can achieve the purpose of increasing the power of IGBT module 1.
  • the motor controller 2 of the embodiment of the present disclosure by using the IGBT module 1 according to the above-mentioned embodiment of the present disclosure, not only can double-sided heat dissipation be achieved, the heat dissipation effect is good, but also the connection is stable and the sealing effect is good.
  • the inner peripheral wall of the insertion hole 812 is configured with a limit ring 813 extending along its circumferential direction, and one end of the IGBT module 1 stops against the limit.
  • the position ring edge 813 is sealed with the limit ring edge 813
  • the other end of the IGBT module 1 is sealed with the inner peripheral wall surface of the insertion hole 811 .
  • the axial waterproof member 700 of the IGBT module 1 can be interference fit with the limit ring edge 813
  • the radial waterproof member 710 of the IGBT module 1 can be interference fitted with the inner peripheral wall of the insertion hole 811 .
  • the limit ring edge 813 can block the IGBT module 1 at the insertion hole 812 to prevent the IGBT module 1 from detaching from the liquid cooling housing 800 from the insertion hole 812 , and the limit ring edge 813 can position the IGBT module 1 effect.
  • the axial waterproof member 700 can be matched with the side of the limit ring 813 facing the IGBT module 1 to prevent the cooling liquid from flowing out from the insertion hole 812, so as to facilitate the insertion and removal of the IGBT module 1 and the liquid cooling housing 800. hole 811 out of the seal.
  • the surface of the liquid cooling housing 800 provided with the insertion hole 812 is provided with an inclined surface 814 , the inclined surface 814 is disposed around the insertion hole 812 , and the inclined surface 814 extends along the direction of the insertion hole 812 .
  • the direction of the insertion hole 812 is gradually inclined toward the inside of the cooling chamber 810 .
  • the inclined surface 814 can be disposed on the side of the limit ring edge 813 facing away from the IGBT module 1 , so that the inclined surface 814 is integrated in the limit ring edge 813 , reducing the structural complexity of the liquid cooling housing 800 and improving production efficiency.
  • the liquid cooling housing 800 is formed by metal die casting.
  • the electrical distance between the DC connector 600 and the liquid cooling housing 800 can be increased, so as to avoid problems such as short circuit, so as to meet the electrical safety requirements.
  • the liquid-cooled casing 800 made of metal can shield the wafer 100, further avoiding electromagnetic interference caused by a large current when the motor controller 2 is working, and is beneficial to improve the EMC (electromagnetic compatibility) effect.
  • the multiple cooling chambers 810 are arranged along the length direction of the liquid cooling housing 800 , the liquid inlet, the multiple cooling chambers 810 The chamber 810 and the liquid outlet are communicated in sequence, a plurality of insertion holes 811 are provided on one side surface of the liquid cooling case 800 in the width direction, and a plurality of insertion holes 812 are provided on the other side in the width direction of the liquid cooling case 800 surface.
  • the plurality of IGBT modules 1 are inserted into the plurality of cooling chambers 810 through the plurality of insertion holes 811 in a one-to-one correspondence and protrude from the plurality of cooling chambers 810 through the plurality of insertion holes 812 .
  • a plurality of cooling chambers 810 may be arranged in a straight line, the cooling liquid may flow into each cooling chamber 810 sequentially from the liquid inlet, and finally flow out from the liquid outlet, and the cooling liquid in each cooling chamber 810 corresponds to it respectively
  • the IGBT modules 1 are dissipated, and the cooling liquid flows to the plurality of cooling chambers 810 in turn, so that the cooling liquid can perform sufficient heat exchange with the IGBT modules 1 in the plurality of cooling chambers 810, so that the cooling liquid can be efficiently utilized .
  • the liquid inlet and the liquid outlet may be located at two ends of the liquid cooling housing 800 respectively, and the cooling liquid flows along the length direction of the liquid cooling housing 800 , so that the cooling liquid flows more smoothly in the plurality of cooling chambers 810 .
  • the cooling liquid flows along the length direction of the liquid-cooled housing 800 , so that the cooling liquid can flow over a long distance to achieve the effect of sufficient cooling.
  • the IGBT module 1 is inserted along the width direction of the liquid-cooled housing 800 and matches the flow direction of the cooling liquid, so that the cooling liquid can sufficiently flow through the opposite sides of the IGBT module 1 in the thickness direction.
  • the flow direction of the cooling liquid along the interior of the liquid-cooled housing 800 it is not limited to set the liquid inlet and the liquid outlet at opposite ends of the liquid-cooled housing 800, and the liquid inlet and the liquid outlet are also It can be located on the same end of the liquid cooling housing 800, and the specific implementation can be matched according to the flow direction of the cooling liquid.
  • a vehicle according to an embodiment of the present disclosure is described below.
  • the vehicle according to the embodiment of the present disclosure includes the motor controller 2 according to the above-described embodiment of the present disclosure.
  • the vehicle according to the embodiment of the present disclosure has the advantages of good heat dissipation effect and reliable electrical connection by using the motor controller 2 according to the above-mentioned embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Control Of Direct Current Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本申请实施例提供一种IGBT模组、电机控制器和车辆,所述IGBT模组包括晶圆、第一散热板和第二散热板,所述第一散热板和所述第二散热板分设于所述晶圆的厚度方向的两侧,所述第一散热板的背向所述第二散热板的一面具有间隔设置的多个第一散热针,所述第二散热板的背向所述第一散热板的一面具有间隔设置的多个第二散热针;绝缘防水壳体,所述绝缘防水壳体包覆所述晶圆从所述第一散热板和所述第二散热板露出的部分。

Description

IGBT模组、电机控制器和车辆
本申请要求于2021年04月28日提交中国专利局、申请号为202110466720.7、申请名称为“IGBT模组、电机控制器和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及车辆技术领域,尤其是涉及一种IGBT模组、电机控制器和车辆。
背景技术
相关技术中的IGBT模组,通常包括晶圆和散热板,散热板与晶圆的一侧面接触,以为晶圆散热,但是由于晶圆的只是进行单面散热,因此散热效果较差,导致晶圆的功率密度难以提升。由此,一些IGBT模组在晶圆的相对两侧均设有散热板,将晶圆的散热由单面改成双面,以提高晶圆的功率密度,但是这些IGBT模组的两个散热板以及晶圆未合理设置,导致两个散热板与晶圆三者之间的连接稳定性低,且密封效果较差,从而导致IGBT模组的电连接可靠性较低。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种IGBT模组,该IGBT模组不仅能够进行双面散热,散热效率高,而且具有连接可靠且密封效果好等优点。
本公开还提出了一种具有上述IGBT模组的电机控制器。
本公开还提出了一种具有上述电机控制器的车辆。
为了实现上述目的,根据本公开的第一方面实施例提出一种IGBT模组,所述IGBT模组包括晶圆、第一散热板和第二散热板,所述第一散热板和所述第二散热板分设于所述晶圆的厚度方向的两侧,所述第一散热板的背向所述第二散热板的一面具有间隔设置的多个第一散热针,所述第二散热板的背向所述第一散热板的一面具有间隔设置的多个第二散热针;绝缘防水壳体,所述绝缘防水壳体包覆所述晶圆从所述第一散热板和所述第二散热板露出的部分。
根据本公开实施例的IGBT模组不仅能够进行双面散热,散热效率高,而且具有连接可靠且密封效果好等优点。
根据本公开的一些具体实施例,所述第一散热板和所述晶圆之间设有第一绝缘导热片;所述第二散热板和所述晶圆之间设有第二绝缘导热片。
根据本公开的一些具体实施例,所述晶圆的一端连接有直流连接件且另一端连接有交流连接件,所述直流连接件和所述交流连接件分别从所述绝缘防水壳体的相对两侧伸出。
根据本公开的一些具体实施例,所述直流连接件包括第一直流负极输入铜排、直流正极输入铜排和第二直流负极输入铜排;所述交流连接件包括交流输出铜排;所述晶圆的所述另一端还设有信号引线。
根据本公开的一些具体实施例,所述的IGBT模组还包括:轴向防水件,所述轴向防水件 设于所述绝缘防水壳体的一端的端面且沿该端面的轴向延伸;径向防水件,所述径向防水件设于所述绝缘防水壳体的另一端的外周面且沿该外周面的周向延伸。
根据本公开的一些具体实施例,所述绝缘防水壳体的所述一端的端面构造有环槽,所述轴向防水件装配于所述环槽;所述径向防水件与所述绝缘防水壳体一体成型。
根据本公开的一些具体实施例,所述第一散热板和所述第二散热板中的至少一个上设有支撑筋,所述支撑筋支撑在所述第一散热板和所述第二散热板之间以在所述第一散热板和所述第二散热板之间形成容纳腔,所述晶圆设于所述容纳腔内。
根据本公开的一些具体实施例,所述支撑筋设于所述第一散热板和所述第二散热板中的一个上,所述支撑筋上设有沿其长度方向延伸的限位筋,所述限位筋的宽度小于所述支撑筋的宽度,所述第二散热板和所述第二散热板中的另一个上设有限位槽,所述限位筋配合于所述限位槽。
根据本公开的一些具体实施例,所述支撑筋设于所述第二散热板的相对两边沿且分别沿所在边沿的长度方向延伸;每个支撑筋的一端构造有向与所在边沿相邻的边沿延伸的折弯部,每个所述支撑筋的另一端间隔于与所在边沿相邻的边沿。
根据本公开的一些具体实施例,所述第一散热板的背向所述第二散热板的表面设有第一沉槽,所述第一沉槽延伸在所述第一散热板的外周缘的周向;所述第二散热板的背向所述第二散热板的表面设有第二沉槽,所述第二沉槽延伸在所述第二散热板的外周缘的周向;所述第一沉槽和所述第二沉槽被所述绝缘防水壳体填充。
根据本公开的一些具体实施例,所述晶圆的外表面包覆有绝缘散热层。
根据本公开的第二方面的实施例提出一种电机控制器,所述电机控制器包括:液冷壳体,所述液冷壳体内限定有冷却腔室,所述液冷壳体设有与所述冷却腔室连通的进液口和出液口,所述冷却腔室的相对两侧壁分别设有插入孔和插出孔;根据本公开的第一方面的实施例所述的IGBT模组,所述IGBT模组通过所述插入孔插入所述冷却腔室且通过所述插出孔伸出所述冷却腔,所述IGBT模组厚度方向的相对两侧表面均与所述冷却腔室的内壁形成过液间隙,所述IGBT模组的两端均与所述液冷壳体密封以封闭所述插入孔和所述插出孔。
根据本公开实施例的电机控制器,通过利用根据本公开的第一方面的实施例所述的IGBT模组,不仅能够进行双面散热,散热效率高,而且具有连接可靠且密封效果好等优点。
根据本公开的第三方面的实施例提出一种车辆,包括:根据本公开的第二方面的实施例所述的电机控制器。
根据本公开实施例的车辆,通过利用根据本公开的第二方面的实施例所述的电机控制器,具有散热效果好且电连接可靠等优点。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的IGBT模组的结构示意图;
图2是根据本公开实施例的IGBT模组的另一视角的结构示意图;
图3是根据本公开实施例的IGBT模组的爆炸图;
图4是根据本公开实施例的IGBT模组的剖视图;
图5是根据本公开实施例的IGBT模组的另一剖视图;
图6是根据本公开实施例的IGBT模组的轴向防水件的装配示意图;
图7是根据本公开实施例的IGBT模组的第一散热板的结构示意图;
图8是根据本公开实施例的IGBT模组的第二散热板的结构示意图;
图9是根据本公开实施例的IGBT模组和液冷壳体的装配示意图;
图10是根据本公开实施例的IGBT模组和液冷壳体的爆炸图;
图11是根据本公开实施例的IGBT模组的电路示意图。
附图标记:
IGBT模组1、电机控制器2、
晶圆100、
第一散热板200、第一散热针210、限位槽220、第一沉槽230、
第二散热板300、第二散热针310、支撑筋320、限位筋321、折弯部322、容纳腔330、第二沉槽340、
绝缘防水壳体400、环槽410、
第一绝缘导热片500、第二绝缘导热片510、
直流连接件600、第一直流负极输入铜排610、直流正极输入铜排620、第二直流负极输入铜排630、交流连接件640、交流输出铜排641、信号引线650、
轴向防水件700、径向防水件710、
液冷壳体800、冷却腔室810、插入孔811、插出孔812、限位环沿813、斜面814、过液间隙820、
IGBT上桥臂910、二极管上桥臂920、IGBT下桥臂930、二极管下桥臂940。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。
在本公开的描述中,“多个”的含义是两个或两个以上,“若干”的含义是一个或多个。
下面参考附图描述根据本公开实施例的IGBT模组1。
如图1-图11所示,根据本公开实施例的IGBT模组1包括晶圆100、第一散热板200、第二散热板300和绝缘防水壳体400。
第一散热板200和第二散热板300分设于晶圆100的厚度方向的两侧,第一散热板200的背向第二散热板300的一面具有间隔设置的多个第一散热针210,第二散热板300的背向第一散热板200的一面具有间隔设置的多个第二散热针310,绝缘防水壳体400包覆晶圆100 的从第一散热板200和第二散热板300露出的部分。
本公开的一些实施例中,绝缘防水壳体400可以为塑胶件,且绝缘防水壳体400可以通过注塑的方式成型。并且,绝缘防水壳体400可以与第一散热板200未设第一散热针210的部分以及第二散热板300未设第二散热针310的部分连接。其中,绝缘防水壳体400至少包覆晶圆100的从第一散热板200和第二散热板300露出的部分。
根据本公开实施例的IGBT模组1,通过将第一散热板200和第二散热板300分设于晶圆100的厚度方向的两侧,第一散热板200的背向第二散热板300的一面具有间隔设置的多个第一散热针210,第二散热板300的背向第一散热板200的一面具有间隔设置的多个第二散热针310。这样通过第一散热板200和第二散热板300,晶圆100能够进行双面散热,即晶圆100产生的热量经过第一散热板200和第二散热板300能够快速散发,散热效果较好。并且,多个第一散热针210和多个第二散热针310的设置,可以进一步增加IGBT模组1与冷却液的接触面积,从而进一步加快IGBT模组1的散热效率。
此外,绝缘防水壳体400包覆晶圆100的从第一散热板200和第二散热板300露出的部分,例如,第一散热板200和第二散热板300能够覆盖晶圆100的厚度方向的相对两侧面,再通过绝缘防水壳体400能够包覆晶圆100的周向的侧面,提高IGBT模组1的密封性,从而进一步提高IGBT模组1的防水性能,增加了IGBT模组1的电连接的可靠性。并且,绝缘防水壳体400能够与晶圆100、第一散热板200和第二散热板300三者均连接,即提高了晶圆100、第一散热板200和第二散热板300三者的相对位置的稳定性。
同时,第一散热板200和第二散热板300可以为金属件,金属件能够屏蔽晶圆100工作时因较大电流产生的电磁干扰,有利于提升EMC(电磁兼容)效果。
如此,根据本公开实施例的IGBT模组1不仅能够进行双面散热,散热效率高,而且具有连接可靠且密封效果好等优点。
根据本公开的一些具体实施例,绝缘防水壳体400为纳米注塑件,纳米注塑件具有加工简单,成本低,质量轻且整体结构强度高等优点,且纳米注塑成型的绝缘防水壳体400对于晶圆100的密封效果更好,同时,通过将绝缘防水壳体400采用纳米注塑成型,不需要采用额外的机械连接结构来固定第一散热板200和第二散热板300,能够使IGBT模组1变得更薄,体积更小。并且,第一散热板200和第二散热板300均为铝合金件,铝合金件的散热性能较好,能够进一步提高第一散热板200和第二散热板300对于晶圆100的散热效果,另外,由于铝合金件易于做T处理,因此铝合金件更易用于实现绝缘防水壳体400的纳米注塑成型。
根据本公开的一些具体实施例,如图3-图5所示,第一散热板200和晶圆100之间设有第一绝缘导热片500,第二散热板300和晶圆100之间设有第二绝缘导热片510。
本公开的一些实施例中,第一绝缘导热片500和第二绝缘导热片510分别位于晶圆100厚度方向的相对两侧,第一散热板200和晶圆100厚度方向的一面夹持第一绝缘导热片500,第二散热板300和晶圆100厚度方向的另一面夹持第二绝缘导热片510。
第一绝缘导热片500能够避免晶圆100与第一散热板200之间电导通,同时将晶圆100厚度一侧的热量导向第一散热板200以进行散热,第二绝缘导热片510能够避免晶圆100与第二散热板300之间电导通,同时将晶圆100厚度另一侧的热量导向第二散热板300以进行散热,这样兼顾了电连接的安全性和散热效率。
根据本公开的一些具体实施例,如图1-图5所示,晶圆100的一端连接有直流连接件600且另一端连接有交流连接件640,直流连接件600和交流连接件640分别从绝缘防水壳体400的相对两侧伸出。
这样,将直流连接件600和交流连接件640分别设置在晶圆100的两端,且直流连接件600和交流连接件640均位于绝缘防水壳体400外,不仅可以避免直流连接件600和交流连接件640相互干扰,有利于提升EMC(电磁兼容),而且便于晶圆100与车辆的其他电气件进行电连接。
本公开的一些实施例中,如图1-图5所示,直流连接件600包括第一直流负极输入铜排610、直流正极输入铜排620和第二直流负极输入铜排630,交流连接件640包括交流输出铜排641,晶圆100的另一端还设有信号引线650。这样不仅有利于进行电连接,而且能够避免直流电和交流电之间产生相互干涉。
结合图11,举例描述IGBT模组1的电流转换过程:
其中,车辆具有直流电源、控制板、二极管、驱动板和电机等结构。
车辆的直流电源的正极连接于直流正极输入铜排620,车辆的直流电源的负极连接于第一直流负极输入铜排610和第二直流负极输入铜排630,第一直流负极输入铜排610、直流正极输入铜排620和第二直流负极输入铜排630将直流电源的直流电导入IGBT上桥臂910、二极管上桥臂920、IGBT下桥臂930、二极管下桥臂940以转换成交流电,交流电再经交流输出铜排641输入到车辆的电机。其中,IGBT模组1进行直电流转换为交流电的工作过程中的信号以及温升感应信号等可以通过信号引线650经驱动板传入控制板内。
根据本公开的一些具体实施例,如图5和图6所示,IGBT模组1还包括轴向防水件700和径向防水件710。
轴向防水件700设于绝缘防水壳体400的一端的端面且沿该端面的轴向延伸,径向防水件710设于绝缘防水壳体400的另一端的外周面且沿该外周面的周向延伸。其中,轴向防水件700可以为O型密封圈。
本公开的一些实施例中,轴向防水件700设于IGBT模组1的邻近直流连接件600的一端,轴向防水件700贴合于下文所述的液冷壳体800的限位环沿813,从而实现IGBT模组1的邻近直流连接件600的一端的密封,径向防水件710环绕于IGBT模组1的邻近交流连接件640的一端,径向防水件710贴合于下文所述的液冷壳体800的内壁面,从而实现IGBT模组1的邻近交流连接件640的一端的密封,因此使IGBT模组1的两端都具有较好的防水效果。
本公开的一些实施例中,绝缘防水壳体400的一端的端面构造有环槽410,轴向防水件700装配于环槽410,径向防水件710与绝缘防水壳体400一体成型。
可以理解的是,环槽410能够为轴向防水件700提供安装空间,以保证轴向防水件700的安装稳定性,防止轴向防水件700由于形变过大而脱离IGBT模组1。轴向防水件700的部分凸出于环槽410,从而轴向防水件700与下文的限位环沿813贴合时能够产生变形而实现密封。另外,径向防水件710与绝缘防水壳体400一体注塑成型,这样径向防水件710与绝缘防水壳体400、第一散热板200以及第二散热板300的连接强度更高,且加工成型更加简便,径向防水件710能够具有更好的密封效果。
根据本公开的一些具体实施例,如图7和图8所示,第一散热板200和第二散热板300中的至少一个上设有支撑筋320,支撑筋320支撑在第一散热板200和第二散热板300之间以在第一散热板200和第二散热板300之间形成容纳腔330,晶圆100设于容纳腔330内。其中,容纳腔330可以构造成与晶圆100相适应的形状。
通过设置容纳腔330,可以用于安装晶圆100,且第一散热板200和第二散热板300能够保护晶圆100不被挤压损坏。
本公开的一些实施例中,如图7和图8所示,支撑筋320设于第一散热板200和第二散 热板300中的一个上,支撑筋320上设有沿其长度方向延伸的限位筋321,限位筋321的宽度小于支撑筋320的宽度,第一散热板200和第二散热板300中的另一个上设有限位槽220,限位筋321配合于限位槽220。
本公开的一些实施例中,支撑筋320可以设于第二散热板300的相对的两侧边,限位筋321设于支撑筋320上,限位槽220可以设于第一散热板200的相对两侧边,两个限位筋321一一对应地配合于两个限位槽220。
通过限位筋321与限位槽220相配合,能够使第一散热板200和第二散热板300在第一散热板200的周向、长度方向以及宽度方向的相对位置均实现预固定,避免第一散热板200与第二散热板300之间发生晃动,便于将绝缘防水壳体400通过纳米注塑与第一散热板200与第二散热板300连接。
本公开的一些实施例中,如图7和他8所示,支撑筋320设于第二散热板300的相对两边沿且分别沿所在边沿的长度方向延伸,每个支撑筋320的一端构造有向与所在边沿相邻的边沿延伸的折弯部322,每个支撑筋320的另一端间隔于与所在边沿相邻的边沿。
本公开的一些实施例中,支撑筋320可以与交流连接件640以及直流连接件600间隔,以避免影响交流连接件640以及直流连接件600与容纳腔330内的晶圆100连接。
另外,折弯部322可以设于支撑筋320的邻近交流连接件640的一端,折弯部322不仅可以提高支撑筋320的结构强度,同时可以在晶圆100的宽度方向上对晶圆100进行限位。此外,晶圆100的朝向直流连接件600的一端设有信号引线650,由于信号引线650所占用的空间较大,通过将每个支撑筋320的另一端间隔于与所在边沿相邻的边沿,这样可以避免支撑筋320与信号引线650发生干涉,安装更加方便。
根据本公开的一些具体实施例,如图7和图8所示,第一散热板200的背向第二散热板300的表面设有第一沉槽230,第一沉槽230延伸在第一散热板200的外周缘的周向。第二散热板300的背向第二散热板300的表面设有第二沉槽340,第二沉槽340延伸在第二散热板300的外周缘的周向。第一沉槽230和第二沉槽340被绝缘防水壳体400填充。
本公开的一些实施例中,第一沉槽230由第一散热板200的背向第二散热板300的表面向第二散热板300凹陷,第二沉槽340由第二散热板300的背向第一散热板200的表面向第一散热板200凹陷。
通过第一沉槽230和第二沉槽340的设置,便于注塑形成绝缘防水壳体400与第一沉槽230和第二沉槽340形成定位,避免绝缘防水壳体400覆盖第一散热板200的第一散热针210以及第二散热板300的第二散热针310,如此,兼顾了散热效果和定位效果。
根据本公开的一些具体实施例,晶圆100的外表面包覆有绝缘散热层(图中未示意)。
本公开的一些实施例中,绝缘散热层为绝缘散热树脂制造而成。绝缘散热层包裹晶圆100的的周向边缘,这样能够在保证晶圆100的散热性能的同时,避免晶圆100与外界物体发生电导通,提高电路可靠性。
下面描述根据本公开实施例的电机控制器2。
根据本公开实施例电机控制器2包括液冷壳体800和IGBT模组1。
液冷壳体800内限定有冷却腔室810,液冷壳体800设有与冷却腔室810连通的进液口(图中未示意)和出液口(图中未示意),冷却腔室810的相对两侧壁分别设有插入孔811和插出孔812。IGBT模组1通过插入孔811插入冷却腔室810且通过插出孔812伸出冷却腔室810,IGBT模组1厚度方向的相对两侧表面均与冷却腔室810的内壁形成过液间隙820,IGBT模组1的两端均与液冷壳体800密封以封闭插入孔811和插出孔812。
本公开的一些实施例中,液冷壳体800可以通过压铸配合机加工构造成长方体,IGBT模组1在直流连接件600和交流连接件640之间设有发热量较大的晶圆100,IGBT模组1在直流连接件600和交流连接件640之间通过包覆绝缘防水壳体400起到防水的作用。交流连接件640从液冷壳体800的插入孔811伸出,直流连接件600从液冷壳体800的插出孔812伸出,晶圆100处于冷却腔室810内。
液冷壳体800从进液口通入冷却液,冷却液流至冷却腔室810并从过液间隙820通过,对IGBT模组1冷却后从出液口流出。如此,IGBT模组1的厚度方向的相对两侧面完全被冷却液浸泡,IGBT模组1发热量较大的部分与冷却液具有更大的接触冷却面积,从而实现双面散热。
并且,IGBT模组1的两端均与液冷壳体800密封,在液冷壳体800和IGBT模组1之间形成封闭的冷却液流路,从而封闭用于插装IGBT模组1的插入孔811和插出孔812,如此,液冷壳体800可以采用一体件,无需进行额外的焊接等连接工艺,生产工艺更加简单,且成本更低,液冷壳体800可以适应较高功率密度的IGBT模组1,达到提升IGBT模组1功率的目的。
根据本公开实施例的电机控制器2,通过利用根据本公开上述实施例的IGBT模组1,不仅能够进行双面散热,散热效果好,而且具有连接稳定且密封效果好等优点。
根据本公开的一些具体实施例,如图9和图10所示,插出孔812的内周壁面构造有沿其周向延伸的限位环沿813,IGBT模组1的一端止抵于限位环沿813且与限位环沿813密封,IGBT模组1的另一端与插入孔811的内周壁面密封。
举例而言,IGBT模组1的轴向防水件700可以与限位环沿813过盈配合,IGBT模组1的径向防水件710与插入孔811的内周壁面过盈配合。
限位环沿813可以在插出孔812处挡住IGBT模组1,防止IGBT模组1从插出孔812脱离液冷壳体800,限位环沿813可以对IGBT模组1起到定位的作用。同时,轴向防水件700能够配合于限位环沿813的朝向IGBT模组1的一侧,防止冷却液从插出孔812流出,便于实现IGBT模组1与液冷壳体800在插出孔811出的密封。
根据本公开的一些具体实施例,如图9和图10所示,液冷壳体800的设有插出孔812的表面设有斜面814,斜面814围绕插出孔812设置,斜面814沿朝向插出孔812的方向逐渐向冷却腔室810的内部倾斜。
其中,斜面814可以设置于限位环沿813的背向IGBT模组1的一侧,以使斜面814集成于限位环沿813,降低液冷壳体800的结构复杂度,提高生产效率。
举例而言,液冷壳体800通过金属压铸而成。通过设置围绕插出孔812的斜面814,可以加大直流连接件600与液冷壳体800的电气距离,避免发生短路等问题,从而满足电气安全要求。并且,金属制成的液冷壳体800能够对晶圆100产生屏蔽作用,进一步避免了电机控制器2工作时因较大电流产生的电磁干扰,有利于提升EMC(电磁兼容)效果。
根据本公开的一些具体实施例,如图9和图10所示,冷却腔室810为多个,多个冷却腔室810沿液冷壳体800的长度方向排列,进液口、多个冷却腔室810和出液口依次连通,多个插入孔811设于液冷壳体800的宽度方向的一侧表面,多个插出孔812设于液冷壳体800的宽度方向的另一侧表面。IGBT模组1为多个,多个IGBT模组1一一对应地通过多个插入孔811插入多个冷却腔室810且通过多个插出孔812伸出多个冷却腔室810。
例如,多个冷却腔室810可以沿直线排列,冷却液可以从进液口依次流入每一个冷却腔室810,最后从出液口流出,每个冷却腔室810内通过冷却液分别对与其对应的IGBT模组1 进行散热,并且冷却液依次流至多个冷却腔室810,使冷却液对多个冷却腔室810内的IGBT模组1进行充分的热交换,从而冷却液能够得到高效的利用。
另外,进液口和出液口可以分别位于液冷壳体800的两端,并且冷却液沿液冷壳体800的长度方向流动,从而冷却液在多个冷却腔室810内的流动更加顺畅。而且冷却液沿液冷壳体800的长度方向流动,可以使冷却液流经较长的距离,达到充分冷却的效果。IGBT模组1沿液冷壳体800的宽度方向插装,与冷却液的流动方向匹配,使冷却液能够充分流经IGBT模组1的厚度方向的相对两侧表面。
当然,通过对冷却液沿液冷壳体800内部流动方向的调整,并不局限于将进液口和出液口设于液冷壳体800的相对两端,进液口和出液口也可位于液冷壳体800的同一端,具体实施方式可根据冷却液流动方向进行匹配。
下面描述根据本公开实施例的车辆。
根据本公开实施例的车辆包括根据本公开上述实施例的电机控制器2。
根据本公开实施例的车辆,通过利用根据本公开上述实施例的电机控制器2,具有散热效果好且电连接可靠等优点。
根据本公开实施例的IGBT模组1、电机控制器2和车辆的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“具体实施例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种IGBT模组,其特征在于,包括:
    晶圆;
    第一散热板和第二散热板,所述第一散热板和所述第二散热板分设于所述晶圆的厚度方向的两侧,所述第一散热板的背向所述第二散热板的一面具有间隔设置的多个第一散热针,所述第二散热板的背向所述第一散热板的一面具有间隔设置的多个第二散热针;
    绝缘防水壳体,所述绝缘防水壳体包覆所述晶圆从所述第一散热板和所述第二散热板露出的部分。
  2. 根据权利要求1所述的IGBT模组,其特征在于,所述第一散热板和所述晶圆之间设有第一绝缘导热片;
    所述第二散热板和所述晶圆之间设有第二绝缘导热片。
  3. 根据权利要求1所述的IGBT模组,其特征在于,所述晶圆的一端连接有直流连接件且另一端连接有交流连接件,所述直流连接件和所述交流连接件分别从所述绝缘防水壳体的相对两侧伸出。
  4. 根据权利要求3所述的IGBT模组,其特征在于,所述直流连接件包括第一直流负极输入铜排、直流正极输入铜排和第二直流负极输入铜排;
    所述交流连接件包括交流输出铜排;
    所述晶圆的所述另一端还设有信号引线。
  5. 根据权利要求1所述的IGBT模组,其特征在于,还包括:
    轴向防水件,所述轴向防水件设于所述绝缘防水壳体的一端的端面且沿该端面的轴向延伸;
    径向防水件,所述径向防水件设于所述绝缘防水壳体的另一端的外周面且沿该外周面的周向延伸。
  6. 根据权利要求5所述的IGBT模组,其特征在于,所述绝缘防水壳体的所述一端的端面构造有环槽,所述轴向防水件装配于所述环槽;
    所述径向防水件与所述绝缘防水壳体一体成型。
  7. 根据权利要求1所述的IGBT模组,其特征在于,所述第一散热板和所述第二散热板中的至少一个上设有支撑筋,所述支撑筋支撑在所述第一散热板和所述第二散热板之间以在所述第一散热板和所述第二散热板之间形成容纳腔,所述晶圆设于所述容纳腔。
  8. 根据权利要求7所述的IGBT模组,其特征在于,所述支撑筋设于所述第一散热板和所述第二散热板中的一个上,所述支撑筋上设有沿其长度方向延伸的限位筋,所述限位筋的宽度小于所述支撑筋的宽度,所述第一散热板和所述第二散热板中的另一个上设有限位槽,所述限位筋配合于所述限位槽。
  9. 根据权利要求7所述的IGBT模组,其特征在于,所述支撑筋设于所述第二散热板的相对两边沿且分别沿所在边沿的长度方向延伸;
    每个支撑筋的一端构造有向与所在边沿相邻的边沿延伸的折弯部,每个所述支撑筋的另一端间隔于与所在边沿相邻的边沿。
  10. 根据权利要求1所述的IGBT模组,其特征在于,所述第一散热板的背向所述第二散热板的表面设有第一沉槽,所述第一沉槽延伸在所述第一散热板的外周缘的周向;
    所述第二散热板的背向所述第一散热板的表面设有第二沉槽,所述第二沉槽延伸在所述 第二散热板的外周缘的周向;
    所述第一沉槽和所述第二沉槽被所述绝缘防水壳体填充。
  11. 根据权利要求1所述的IGBT模组,其特征在于,所述晶圆的外表面包覆有绝缘散热层。
  12. 一种电机控制器,其特征在于,包括:
    液冷壳体,所述液冷壳体内限定有冷却腔室,所述液冷壳体设有与所述冷却腔室连通的进液口和出液口,所述冷却腔室的相对两侧壁分别设有插入孔和插出孔;
    根据权利要求1-11中任一项所述的IGBT模组,所述IGBT模组通过所述插入孔插入所述冷却腔室且通过所述插出孔伸出所述冷却腔,所述IGBT模组厚度方向的相对两侧表面均与所述冷却腔室的内壁形成过液间隙,所述IGBT模组的两端均与所述液冷壳体密封以封闭所述插入孔和所述插出孔。
  13. 一种车辆,其特征在于,包括:根据权利要求12中任一项所述的电机控制器。
PCT/CN2022/077470 2021-04-28 2022-02-23 Igbt模组、电机控制器和车辆 WO2022227826A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22794306.5A EP4300570A1 (en) 2021-04-28 2022-02-23 Igbt module, electric motor controller, and vehicle
BR112023021934A BR112023021934A2 (pt) 2021-04-28 2022-02-23 Módulo de igbt, controlador de motor, e, veículo
AU2022264526A AU2022264526A1 (en) 2021-04-28 2022-02-23 Igbt module, electric motor controller, and vehicle
US18/372,387 US20240021714A1 (en) 2021-04-28 2023-09-25 Igbt module, motor controller, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110466720.7 2021-04-28
CN202110466720.7A CN115249672A (zh) 2021-04-28 2021-04-28 Igbt模组、电机控制器和车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/372,387 Continuation US20240021714A1 (en) 2021-04-28 2023-09-25 Igbt module, motor controller, and vehicle

Publications (1)

Publication Number Publication Date
WO2022227826A1 true WO2022227826A1 (zh) 2022-11-03

Family

ID=83696596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077470 WO2022227826A1 (zh) 2021-04-28 2022-02-23 Igbt模组、电机控制器和车辆

Country Status (6)

Country Link
US (1) US20240021714A1 (zh)
EP (1) EP4300570A1 (zh)
CN (1) CN115249672A (zh)
AU (1) AU2022264526A1 (zh)
BR (1) BR112023021934A2 (zh)
WO (1) WO2022227826A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217546A (ja) * 2010-04-01 2011-10-27 Hitachi Automotive Systems Ltd パワーモジュール及びそれを用いた電力変換装置
WO2013105332A1 (ja) * 2012-01-10 2013-07-18 日立オートモティブシステムズ株式会社 パワー半導体モジュール、パワーモジュールおよびパワーモジュールの製造方法
CN103348468A (zh) * 2011-03-04 2013-10-09 日立汽车系统株式会社 半导体组件及半导体组件的制造方法
CN111373524A (zh) * 2017-11-30 2020-07-03 日立汽车系统株式会社 功率半导体装置及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217546A (ja) * 2010-04-01 2011-10-27 Hitachi Automotive Systems Ltd パワーモジュール及びそれを用いた電力変換装置
CN103348468A (zh) * 2011-03-04 2013-10-09 日立汽车系统株式会社 半导体组件及半导体组件的制造方法
WO2013105332A1 (ja) * 2012-01-10 2013-07-18 日立オートモティブシステムズ株式会社 パワー半導体モジュール、パワーモジュールおよびパワーモジュールの製造方法
CN111373524A (zh) * 2017-11-30 2020-07-03 日立汽车系统株式会社 功率半导体装置及其制造方法

Also Published As

Publication number Publication date
CN115249672A (zh) 2022-10-28
EP4300570A1 (en) 2024-01-03
AU2022264526A1 (en) 2023-10-19
BR112023021934A2 (pt) 2023-12-19
US20240021714A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
EP3518413B1 (en) Power conversion device
JP6429889B2 (ja) 電力変換装置
JP2012186882A (ja) 端子台
JP2015198168A (ja) 電子装置、電力変換装置及び回転電機
CN110370964B (zh) 端子防水散热机构和充电枪
CN214707588U (zh) 电机控制器和车辆
WO2023279940A1 (zh) 电机控制器和具有其的车辆
TW201546603A (zh) 電力變換裝置
US10461656B2 (en) Power conversion device having a cover that covers DC positive and negative terminals
CN112042092B (zh) 电源装置
US12021459B2 (en) Power conversion device
US20240023295A1 (en) Motor controller and vehicle with the same
CN210309967U (zh) 端子冷却机构和充电枪
WO2022227826A1 (zh) Igbt模组、电机控制器和车辆
CN215453694U (zh) 电机控制器和具有其的车辆
JPWO2014020808A1 (ja) 冷却構造体及び電力変換装置
JP6187582B2 (ja) 電力変換装置
CN214822623U (zh) 一种电动汽车用集成控制器
CN211128745U (zh) 电机控制器
CN211128734U (zh) 母排电容组件散热装置及电动汽车驱动电机控制器
CN216820444U (zh) 一种新型散热式电源盒
CN218735700U (zh) 一种散热结构及电源
CN218386903U (zh) 一种充电器的散热外壳及充电器
CN218102831U (zh) 电机控制器、电驱动总成系统和车辆
CN221043589U (zh) 功率器件模块、电源模块、供电系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794306

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: AU2022264526

Country of ref document: AU

Ref document number: 2022264526

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022794306

Country of ref document: EP

Effective date: 20230927

ENP Entry into the national phase

Ref document number: 2022264526

Country of ref document: AU

Date of ref document: 20220223

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021934

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023021934

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231020