WO2022227672A1 - 骨声纹传感器及其制作方法以及电子设备 - Google Patents

骨声纹传感器及其制作方法以及电子设备 Download PDF

Info

Publication number
WO2022227672A1
WO2022227672A1 PCT/CN2021/143027 CN2021143027W WO2022227672A1 WO 2022227672 A1 WO2022227672 A1 WO 2022227672A1 CN 2021143027 W CN2021143027 W CN 2021143027W WO 2022227672 A1 WO2022227672 A1 WO 2022227672A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
mass block
bone voiceprint
cavity
sensor
Prior art date
Application number
PCT/CN2021/143027
Other languages
English (en)
French (fr)
Inventor
孟晗
端木鲁玉
毕训训
阎堂柳
李东宁
Original Assignee
歌尔微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔微电子股份有限公司 filed Critical 歌尔微电子股份有限公司
Publication of WO2022227672A1 publication Critical patent/WO2022227672A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • the present disclosure relates to the technical field of electronic products, and more particularly, to a bone voiceprint sensor, a manufacturing method thereof, and an electronic device.
  • the bone voiceprint sensor is a vibration sensor that uses the slight vibration of the bones of the head and neck caused by people's speech to collect sound signals and convert them into electrical signals. Because it is different from traditional microphones that collect sound through air conduction, it can transmit sound with high clarity in a very noisy environment. In many occasions, such as fire scenes, firefighters wearing gas masks cannot speak directly into the microphone with their mouths. In this case, the bone voiceprint sensor can be used for sound conduction. With the development of electronic products, the application of bone voiceprint sensors is becoming more and more extensive.
  • the bone voiceprint sensor usually includes a vibration component and a microphone component.
  • the vibration component is used to sense external vibration information, and the microphone component converts the air flow change generated during vibration into an electrical signal to express the vibration information.
  • the vibration of the bone voiceprint sensor is usually required.
  • the components are provided with ventilation holes.
  • the vibration components are directly drilled, which not only has a deep drilling path, but also easily leads to poor consistency of the hole diameter and poor verticality of the hole wall; at the same time, due to the high temperature during drilling, the quality of the vibration components After the block is melted at high temperature, there will be holes around the edge of the vent hole. The hole will not only increase the height of the mass block, but also damage the diaphragm, thereby affecting the consistency of product performance and the overall yield.
  • An object of the present disclosure is to provide a bone voiceprint sensor, a method for manufacturing the same, and a new technical solution for an electronic device.
  • a bone voiceprint sensor comprising:
  • the sensor unit has a packaging cavity
  • the vibration pickup unit has a accommodating cavity, and the packaging cavity is communicated with the accommodating cavity;
  • the vibration pickup unit includes a vibration assembly, and the vibration assembly is arranged in the accommodating cavity;
  • the vibration assembly includes a connected vibrating membrane and a mass block, and the mass block is provided with a pre-opening groove, and the The pre-opening groove is configured as: through the pre-opening groove, there are air-permeable micro-holes penetrating through the vibration component;
  • the sensor unit and/or the vibration pickup unit is provided with a vent hole; the gas in the packaging cavity and the accommodating cavity is discharged through the air vent and the vent hole.
  • the vibration pickup unit includes a vibration pickup housing
  • the vibrating film includes a fixed part and a vibration part
  • the mass block is connected to the vibration part
  • the fixed part has a first surface and The second surface, the first surface of the fixing part is connected with the sensor unit, and the vibration pickup housing is connected with the second surface of the fixing part.
  • the pore size of the air-permeable micropores is 10um-30um.
  • the sensor unit includes a circuit substrate, a package cover, a microphone chip and an ASIC chip
  • the circuit substrate has a first surface and a second surface arranged opposite to each other; The first surface is connected and enclosed to form the package cavity, the microphone chip and the ASIC chip are located in the package cavity, and both the microphone chip and the ASIC chip are electrically connected to the circuit substrate.
  • a sound hole is provided on the circuit substrate at a position corresponding to the microphone chip.
  • the vibration component is connected to the second surface of the circuit substrate.
  • the mass block is made of metal.
  • a method for manufacturing a bone voiceprint sensor according to the first aspect comprising:
  • a pre-opening groove is set on the mass block, the mass block with the pre-opening groove is connected with the vibrating membrane to form a vibration assembly, and the pre-opening groove is opened to pass through the vibration assembly of breathable micropores;
  • the mass block is made by injection molding, and the pre-opening groove is integrally formed on the mass block.
  • an electronic device comprising the bone voiceprint sensor as described in the first aspect.
  • the bone voiceprint sensor provided by the embodiment of the present application can effectively improve the consistency of the hole diameter and the verticality of the hole wall by setting the pre-hole groove on the mass block, and can also effectively avoid the processing of the mass block. bad.
  • FIG. 1 is a schematic structural diagram of a bone voiceprint sensor according to an embodiment of the present disclosure.
  • 1 packaging cavity; 2: accommodating cavity; 201: first cavity; 202: second cavity; 3: diaphragm; 4: mass; 401: pre-opening groove; 6: Air vent; 7: Vibration pickup shell; 8: Circuit substrate; 801: Sound hole; 9: Package cover; 10: Microphone chip; 11: ASIC chip.
  • a bone voiceprint sensor includes a sensor unit and a vibration pickup unit, the sensor unit has an encapsulation cavity 1 ; the vibration pickup unit has an accommodation cavity 2 , and the encapsulation cavity 1 communicates with the accommodation cavity 2 ; Described vibration pickup unit includes vibration assembly, and described vibration assembly is arranged in described accommodating cavity 2; Described vibration assembly includes connected vibrating membrane 3 and mass block 4, and described mass block 4 is provided with pre-opening Hole grooves 401, the pre-hole grooves 401 are configured as: through the pre-hole grooves 401, air-permeable micro-holes 5 are opened through the vibration components; the sensor unit and/or the vibration pickup The unit is provided with a vent hole 6 ; the gas in the packaging cavity 1 and the accommodating cavity 2 is exhausted through the air-permeable micro-hole 5 and the vent hole 6 .
  • the bone voiceprint sensor since a groove is pre-opened on the mass block 4 constituting the vibration component, namely the pre-opened groove 401, when the mass block 4 is combined with the diaphragm 3 After forming the vibration component, when opening the air-permeable micro-holes 5 on the vibration component, the opening is carried out from the position of the pre-opening groove 401; at this time, at the position of the pre-opening groove 401, the thickness of the mass block 4 Thinning is carried out, so when opening the air-permeable micro-holes 5, the punching depth of the air-permeable micro-holes 5 can be reduced, so that the consistency of the hole diameter and the verticality of the hole wall can be effectively improved, thereby improving the bone voiceprint.
  • the surface of the mass block 4 is a flat structure, the nodules formed after the hole is opened will be higher than the surface of the mass block 4, which will affect the processing quality of the mass block 4; for example, the higher quality
  • the bump on the surface of the block 4 is very likely to touch other components of the vibration pickup unit during the vibration of the vibration component, and if the bump protrudes toward the direction close to the diaphragm 3, it is very likely to damage the diaphragm 3 , resulting in poor performance of the bone voiceprint sensor.
  • the pre-opening groove 401 is pre-opened on the surface of the mass block 4, the hole formed during the drilling process will be limited to the range of the groove, and the hole The nodules do not protrude from the surface of the mass block 4 , so that the above problems can be avoided, thereby effectively improving the assembly yield of the bone voiceprint sensor.
  • the vibration pickup unit includes a vibration pickup housing 7, the vibrating membrane 3 includes a fixed part and a vibration part, and the mass block 4 is connected to the vibration part; the The fixing part has a first surface and a second surface opposite to each other, the first surface of the fixing part is connected with the sensor unit, and the vibration pickup housing 7 is connected with the second surface of the fixing part.
  • the vibration pickup housing 7 in the vibration pickup unit can transmit the external bone vibration signal to the vibration component, and the vibration component is used to pick up the bone vibration signal to vibrate, so as to generate a response vibration signal.
  • the vibration component is installed in the vibration pick-up housing 7, and the vibration pick-up housing 7 can protect the vibration component.
  • the vibration pickup housing 7 is a structure with an open end at one end, and the open end of the vibration pickup housing 7 is connected to the second surface of the fixing portion of the diaphragm 3 .
  • the vibration pickup housing 7, the vibration film 3 and the sensor unit together form the receiving cavity 2 of the vibration pickup unit, and the vibration film 3 divides the receiving cavity 2 into a first cavity 201 close to the sensor unit and a first cavity 201 away from the sensor.
  • the second cavity 202 of the unit In the embodiment shown in FIG. 1 , the above-mentioned vent holes 6 are opened on the vibration pickup housing 7 , so that the gas generated in the packaging cavity 1 can enter through the first cavity 201 and the air-permeable micro-holes 5 .
  • the gas generated in the first cavity 201 can enter the second cavity 202 through the air-permeable micro-holes 5 and finally be discharged through the vent hole 6 .
  • the pore size of the air-permeable micropores 5 is 10um-30um.
  • the pore size of the air-permeable micropores 5 is specifically set in the range of 10um-30um. This is because if the pore size of the air-permeable micropores 5 is too small, for example, less than 10um, the air-permeable micropores 5 cannot effectively function. To the role of ventilation, which will affect the gas discharge efficiency. However, if the aperture of the air-permeable micro-holes 5 is too large, for example, greater than 30um, the vibration of the vibration component will be affected. Therefore, in this embodiment, the aperture of the air-permeable micro-holes 5 is set in the range of 10um-30um, so as to ensure that the air-permeable micro-holes 5 can be effectively ventilated without affecting the vibration of the vibration component.
  • the sensor unit includes a circuit substrate 8 , a package cover 9 , a microphone chip 10 and an ASIC chip 11 , and the circuit substrate 8 has a first surface and a second surface opposite to each other.
  • the package cover 9 is connected to the first surface of the circuit substrate 8 to form the package cavity 1, and the microphone chip 10 and the ASIC chip 11 are located in the package cavity 1, And the microphone chip 10 and the ASIC chip 11 are both electrically connected to the circuit substrate 8 .
  • the vibration pickup unit is used to pick up the bone vibration signal from the outside world (such as the wearer of electronic products, or other vibration sources) to generate the response vibration signal, and the sensor unit is used to receive the response vibration signal and according to the An electrical signal is generated in response to the received vibration signal.
  • the microphone chip 10 and the ASIC chip 11 in the sensor unit are both electrically connected to the circuit substrate 8.
  • the ASIC chip 11 is directly electrically connected to the circuit substrate 8 through metal wires
  • the microphone chip 10 is electrically connected to the ASIC chip 11 through metal wires. electrical connection.
  • the microphone chip 10 and the ASIC chip 11 are adhered to the first surface of the circuit substrate 8 by means of adhesive. More specifically, the microphone chip 10 is used to receive the response vibration signal and generate an electrical signal according to the received response vibration signal, and then the microphone chip 10 transmits the generated electrical signal to the ASIC chip 11, and the ASIC chip 11 processes the electrical signal. .
  • a sound hole 801 is formed on the circuit substrate 8 at a position corresponding to the microphone chip 10 .
  • the vibration pickup unit and the sensor unit are connected through the sound hole 801 formed on the circuit substrate 8 , so that the response vibration signal generated by the vibration pickup unit is transmitted to the microphone chip 10 through the sound hole 801 .
  • the vibration component is connected to the second surface of the circuit substrate 8 .
  • the vibration component in the vibration pickup unit is specifically connected to the circuit substrate 8 in the sensor unit, and the connection method may be, for example, bonding.
  • the mass block 4 is made of metal.
  • the mass block 4 is connected to the vibration part of the diaphragm 3, that is, the mass block 4 is suspended in the second cavity 202 through the diaphragm 3, and the mass block 4 vibrates with the diaphragm 3 to adjust the vibration of the diaphragm 3.
  • the vibration of the diaphragm 3 is better matched with the bone vibration signal of the wearer of the electronic product, so that the sensitivity of the bone voiceprint sensor can be improved.
  • the mass block 4 vibrates together with the vibrating membrane 3, which can increase the mass of the vibrating membrane 3 when it vibrates, thereby effectively avoiding the interference of external factors.
  • the mass block 4 needs to meet certain weight requirements, while the metal mass block 4 is easy to meet the weight requirements.
  • a method for manufacturing a bone voiceprint sensor as described above comprising:
  • a pre-hole groove 401 is set on the mass block 4 , and the mass block 4 with the pre-hole groove 401 is connected with the diaphragm 3 to form a vibration assembly.
  • the pre-hole groove 401 Open air-permeable micro-holes 5 penetrating the vibration component;
  • a pre-hole groove 401 is opened on the mass block 4, and then the mass block 4 is connected with the vibrating membrane 3 to form a vibration component, and then the permeable micro-holes 5 formed by punching are carried out. It is opened at the position of the pre-opening groove 401 already provided by the mass block 4, so that the setting of the pre-opening groove 401 can effectively improve the consistency of the hole diameter and the verticality of the hole wall, and can also effectively avoid the quality Block 4 is poorly machined.
  • the mass block 4 is made by injection molding, and the pre-opening groove 401 is integrally formed on the mass block 4 .
  • the pre-opening groove 401 is integrally formed on the mass block 4 .
  • Such a manufacturing process is simple, easy to operate, and has high processing efficiency.
  • an electronic device comprising the bone voiceprint sensor as described above.
  • the electronic device may be, but is not limited to, a headset, an earphone, a smart watch, a smart bracelet, an in-vehicle noise reduction device, a vibration sensing device, and other electronic devices that are well known to those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本公开公开了一种骨声纹传感器及其制作方法以及电子设备。该骨声纹传感器包括传感器单元和拾振单元,传感器单元具有封装腔体;拾振单元具有容纳腔体,封装腔体与容纳腔体相连通;拾振单元包括振动组件,振动组件设置于容纳腔体内;振动组件包括相连接的振膜及质量块,质量块上开设有预开孔凹槽,预开孔凹槽被配置为:经由预开孔凹槽开设有贯通振动组件的透气微孔;传感器单元和/或拾振单元开设有泄气孔;封装腔体及容纳腔体内的气体经由透气微孔及泄气孔排出。

Description

骨声纹传感器及其制作方法以及电子设备
本公开要求于2021年04月26日提交中国专利局,申请号为202110453277.X,申请名称为“骨声纹传感器及其制作方法以及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电子产品技术领域,更具体地,涉及一种骨声纹传感器及其制作方法以及电子设备。
背景技术
骨声纹传感器是利用人讲话时引起的头颈部骨骼的轻微振动,来把声音信号收集起来转为电信号的一种振动传感器。由于它不同于传统麦克风的通过空气传导采集声音,所以可以在很嘈杂的环境里把声音高清晰地传递出去。在许多场合如火灾现场,带着防毒面具的消防人员不能用嘴直接对着麦克风讲话,在此种情况下就可以利用骨声纹传感器来进行声音传导。随着电子产品的发展,骨声纹传感器的应用越来越广泛。
骨声纹传感器通常包括振动组件及麦克风组件,振动组件用来感应外界的振动信息,并通过麦克风组件将振动时产生的气流变化转换为电信号,以此来表达该振动信息。
在骨声纹传感器的制作组装过程中,由于需要涉及到焊接工艺,因此会在骨声纹传感器的腔体内产生大量气体,为了确保腔体内外的气压平衡,通常需要在骨声纹传感器的振动组件上开设透气孔。现有技术中都是直接对振动组件进行开孔,这样不仅打孔路径较深、容易导致打孔的孔径一致性差以及孔壁垂直性差;同时由于打孔时温度较高,振动组件中的质量块在高温下熔融后会在透气孔的边缘四周留下孔瘤,孔瘤不仅会导致质量块的高度增加,而且会损伤振膜,进而影响产品性能的一致性与整体良率。
有鉴于此,需要提供一种新的技术方案,以解决上述技术问题。
发明内容
本公开的一个目的是提供一种骨声纹传感器及其制作方法以及电子设备的新技术方案。
根据本公开的第一方面,提供了一种骨声纹传感器,所述骨声纹传感器包括:
传感器单元,所述传感器单元具有封装腔体;
拾振单元,所述拾振单元具有容纳腔体,所述封装腔体与所述容纳腔体相连通;
所述拾振单元包括振动组件,所述振动组件设置于所述容纳腔体内;所述振动组件包括相连接的振膜及质量块,所述质量块上开设有预开孔凹槽,所述预开孔凹槽被配置为:经由所述预开孔凹槽开设有贯通所述振动组件的透气微孔;
所述传感器单元和/或所述拾振单元开设有泄气孔;所述封装腔体及所述容纳腔体内的气体经由所述透气微孔及所述泄气孔排出。
可选地,所述拾振单元包括拾振壳体,所述振膜包括固定部和振动部,所述质量块与所述振动部连接;所述固定部具有相背设置的第一面和第二面,所述固定部的第一面与所述传感器单元连接,所述拾振壳体与所述固定部的第二面连接。
可选地,所述透气微孔的孔径为10um-30um。
可选地,所述传感器单元包括电路基板、封装盖体、麦克风芯片及ASIC芯片,所述电路基板具有相背设置的第一表面及第二表面;所述封装盖体与所述电路基板的第一表面连接并围合形成所述封装腔体,所述麦克风芯片及所述ASIC芯片位于所述封装腔体内,且所述麦克风芯片及所述ASIC芯片均与所述电路基板电连接。
可选地,所述电路基板上与所述麦克风芯片相对应的位置处开设有声孔。
可选地,所述振动组件与所述电路基板的第二表面连接。
可选地,所述质量块为金属材质。
根据本公开的第二方面,提供了一种如第一方面所述的骨声纹传感器 的制作方法,所述制作方法包括:
提供传感器单元、振膜及质量块;
在所述质量块上开设预开孔凹槽,将具有所述预开孔凹槽的质量块与所述振膜连接组成振动组件,在所述预开孔凹槽处开设贯通所述振动组件的透气微孔;
将所述振动组件与所述传感器单元连接。
可选地,所述质量块采用注塑成型制成,所述预开孔凹槽在所述质量块上为一体成型设置。
根据本公开的第三方面,提供了一种电子设备,所述电子设备包括如第一方面所述的骨声纹传感器。
本申请实施例提供的骨声纹传感器通过在质量块上设置预开孔凹槽,可以有效提高在振动组件上打孔的孔径一致性与孔壁的垂直性,并且还可以有效避免质量块加工不良。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开的原理。
图1是根据本公开的一个实施例的骨声纹传感器的结构示意图。
附图标记说明:
1:封装腔体;2:容纳腔体;201:第一腔体;202:第二腔体;3:振膜;4:质量块;401:预开孔凹槽;5:透气微孔;6:泄气孔;7:拾振壳体;8:电路基板;801:声孔;9:封装盖体;10:麦克风芯片;11:ASIC芯片。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参照图1所示,根据本公开的一个实施例,提供了一种骨声纹传感器。所述骨声纹传感器包括传感器单元及拾振单元,所述传感器单元具有封装腔体1;所述拾振单元具有容纳腔体2,所述封装腔体1与所述容纳腔体2相连通;所述拾振单元包括振动组件,所述振动组件设置于所述容纳腔体2内;所述振动组件包括相连接的振膜3及质量块4,所述质量块4上开设有预开孔凹槽401,所述预开孔凹槽401被配置为:经由所述预开孔凹槽401开设有贯通所述振动组件的透气微孔5;所述传感器单元和/或所述拾振单元开设有泄气孔6;所述封装腔体1及所述容纳腔体2内的气体经由所述透气微孔5及所述泄气孔6排出。
在本公开实施例提供的骨声纹传感器中,由于在组成振动组件的质量块4上预先开设有一个凹槽,即所述的预开孔凹槽401,当质量块4与振膜3结合组成振动组件后,在振动组件上开设透气微孔5时,就从预开孔凹槽401的位置进行开孔;此时由于在预开孔凹槽401的位置处,质量块4的厚度已经进行了减薄,因此在开设透气微孔5时,可以减小透气微孔5的打孔深度,这样就可以有效提高打孔的孔径一致性与孔壁的垂直性,从 而提高该骨声纹传感器的性能一致性。此外,在开设透气微孔5时,打孔过程中的高温会使质量块4的材料发生熔融,熔融再冷凝的材料以及打孔过程中的排出物会在透气微孔的边缘形成鼓包结构,该鼓包结构称之为孔瘤。在现有技术中,由于质量块4的表面为平整的结构,这样开孔后形成的孔瘤会高出质量块4的表面,这样就会影响质量块4的加工质量;例如,高出质量块4表面的孔瘤在振动组件振动的过程中极有可能会触碰到拾振单元的其他元件,并且如果孔瘤朝向靠近振膜3的方向凸出,则极有可能会损伤振膜3,从而造成骨声纹传感器的性能不良。而在本公开实施例提供的骨声纹传感器中,由于在质量块4的表面预先开设了预开孔凹槽401,这样打孔过程中形成的孔瘤会限制在凹槽的范围内,孔瘤不会凸出质量块4的表面,由此就可以避免上述问题,从而有效提高了骨声纹传感器的装配良率。
参照图1所示,在一个实施例中,所述拾振单元包括拾振壳体7,所述振膜3包括固定部和振动部,所述质量块4与所述振动部连接;所述固定部具有相背设置的第一面和第二面,所述固定部的第一面与所述传感器单元连接,所述拾振壳体7与所述固定部的第二面连接。
拾振单元中的拾振壳体7可以将外界的骨振动信号传递给振动组件,振动组件则用于拾取该骨振动信号而进行振动,以产生响应振动信号。振动组件安装于拾振壳体7内,拾振壳体7可以对振动组件进行保护。在该具体的例子中,拾振壳体7是一个一端具有敞口的结构,拾振壳体7的敞口端连接在振膜3的固定部的第二面上。拾振壳体7、振膜3及传感器单元共同围合形成了拾振单元的容纳腔体2,并且,振膜3将容纳腔体2分隔为了靠近传感器单元的第一腔体201和远离传感器单元的第二腔体202。在如图1所示的实施例中,在拾振壳体7上开设所述的泄气孔6,这样,封装腔体1内产生的气体可经由第一腔体201、透气微孔5进入到第二腔体202中并最终通过泄气孔6排出;第一腔体201内产生的气体则可经由透气微孔5进入到第二腔体202中并最终通过泄气孔6排出。在该骨声纹传感器中,由于打孔过程中形成的孔瘤会限制在预开孔凹槽401的范围内,孔瘤不会凸出质量块4的表面,因此在质量块4连同振膜3一起振动的过 程中,质量块4不会存在触碰到拾振壳体7的风险。
在一个实施例中,所述透气微孔5的孔径为10um-30um。
在该具体的例子中,将透气微孔5的孔径具体设置在10um-30um的范围内,这是由于,如果透气微孔5的孔径过小,例如小于10um,则透气微孔5无法有效起到通气的作用,这样就会影响气体的排出效率。而如果透气微孔5的孔径过大,例如大于30um,那么就会影响振动组件的振动。因此本实施例将透气微孔5的孔径设置在10um-30um的范围内,在确保透气微孔5可以有效透气的同时不会影响振动组件的振动。
参照图1所示,在一个实施例中,所述传感器单元包括电路基板8、封装盖体9、麦克风芯片10及ASIC芯片11,所述电路基板8具有相背设置的第一表面及第二表面;所述封装盖体9与所述电路基板8的第一表面连接并围合形成所述封装腔体1,所述麦克风芯片10及所述ASIC芯片11位于所述封装腔体1内,且所述麦克风芯片10及所述ASIC芯片11均与所述电路基板8电连接。
在该骨声纹传感器中,拾振单元用于拾取外界(如电子产品的佩戴者,或其他振动源)的骨振动信号而产生响应振动信号,而传感器单元则用于接收响应振动信号并且根据接收到的响应振动信号而产生电信号。传感器单元中的麦克风芯片10及ASIC芯片11均与电路基板8电连接,具体地,ASIC芯片11直接通过金属导线与电路基板8进行电连接,而麦克风芯片10则通过金属导线与ASIC芯片11进行电连接。具体地,麦克风芯片10及ASIC芯片11通过粘片胶粘接在电路基板8的第一表面。进一步具体地,麦克风芯片10用于接收响应振动信号并且根据接收到的响应振动信号而产生电信号,之后麦克风芯片10将产生的电信号传递给ASIC芯片11,ASIC芯片11则对电信号进行处理。
参照图1所示,在一个实施例中,进一步地,所述电路基板8上与所述麦克风芯片10相对应的位置处开设有声孔801。
在该具体的例子中,通过开设于电路基板8上的声孔801连通拾振单元与传感器单元,以使拾振单元产生的响应振动信号通过声孔801传递给麦克风芯片10。
在一个实施例中,进一步地,所述振动组件与所述电路基板8的第二表面连接。
在该具体的例子中,拾振单元中的振动组件具体是与传感器单元中的电路基板8进行连接,连接的方式例如可以是粘接。
在一个实施例中,进一步地,所述质量块4为金属材质。
质量块4连接在振膜3的振动部上,即质量块4通过振膜3悬置于第二腔体202中,质量块4跟随振膜3一起振动,对振膜3的振动进行调节,使振膜3的振动与电子产品佩戴者的骨振动信号匹配性更好,从而可提高该骨声纹传感器的灵敏度。而且,质量块4跟随振膜3一起振动,可增加振膜3振动时的质量,从而可以有效避免外界因素的干扰。质量块4需要满足一定的重量要求,而金属材质的质量块4则易于满足重量要求。
根据本公开的另一个实施例,提供了一种如上所述的骨声纹传感器的制作方法,所述制作方法包括:
提供传感器单元、振膜3及质量块4;
在所述质量块4上开设预开孔凹槽401,将具有所述预开孔凹槽401的质量块4与所述振膜3连接组成振动组件,在所述预开孔凹槽401处开设贯通所述振动组件的透气微孔5;
将所述振动组件与所述传感器单元连接。
在该骨声纹传感器的制作方法中,首先在质量块4上开设预开孔凹槽401,然后再将质量块4与振膜3连接组成振动组件,随后进行打孔形成的透气微孔5是开设于质量块4已经具备的预开孔凹槽401的位置处,这样预开孔凹槽401的设置可以有效提高打孔的孔径一致性与孔壁的垂直性,并且还可以有效避免质量块4加工不良。
在一个实施例中,进一步地,所述质量块4采用注塑成型制成,所述预开孔凹槽401在所述质量块4上为一体成型设置。
在该具体的例子中,在采用注塑成型制作质量块4时,将预开孔凹槽401一体成型形成在质量块4上,这样的加工制作工艺简单、易于操作、加工效率较高。
根据本公开的又一个实施例,提供了一种电子设备,所述电子设备包 括如上所述的骨声纹传感器。
所述电子设备可以是但不限于头戴设备、耳机、智能手表、智能手环、车载降噪设备及振动感测装置等本领域技术人员所熟知的电子设备。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过例子对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (10)

  1. 一种骨声纹传感器,其特征在于,所述骨声纹传感器包括:
    传感器单元,所述传感器单元具有封装腔体(1);
    拾振单元,所述拾振单元具有容纳腔体(2),所述封装腔体(1)与所述容纳腔体(2)相连通;
    所述拾振单元包括振动组件,所述振动组件设置于所述容纳腔体(2)内;所述振动组件包括相连接的振膜(3)及质量块(4),所述质量块(4)上开设有预开孔凹槽(401),所述预开孔凹槽(401)被配置为:经由所述预开孔凹槽(401)开设有贯通所述振动组件的透气微孔(5);
    所述传感器单元和/或所述拾振单元开设有泄气孔(6);所述封装腔体(1)及所述容纳腔体(2)内的气体经由所述透气微孔(5)及所述泄气孔(6)排出。
  2. 根据权利要求1所述的骨声纹传感器,其特征在于,所述拾振单元包括拾振壳体(7),所述振膜(3)包括固定部和振动部,所述质量块(4)与所述振动部连接;所述固定部具有相背设置的第一面和第二面,所述固定部的第一面与所述传感器单元连接,所述拾振壳体(7)与所述固定部的第二面连接。
  3. 根据权利要求1或2所述的骨声纹传感器,其特征在于,所述透气微孔(5)的孔径为10um-30um。
  4. 根据权利要求1-3中任一项所述的骨声纹传感器,其特征在于,所述传感器单元包括电路基板(8)、封装盖体(9)、麦克风芯片(10)及ASIC芯片(11),所述电路基板(8)具有相背设置的第一表面及第二表面;所述封装盖体(9)与所述电路基板(8)的第一表面连接并围合形成所述封装腔体(1),所述麦克风芯片(10)及所述ASIC芯片(11)位于所述封装腔体(1)内,且所述麦克风芯片(10)及所述ASIC芯片(11)均与所述电路基板(8)电连接。
  5. 根据权利要求4所述的骨声纹传感器,其特征在于,所述电路基板(8)上与所述麦克风芯片(10)相对应的位置处开设有声孔(801)。
  6. 根据权利要求4或5所述的骨声纹传感器,其特征在于,所述振动组件与所述电路基板(8)的第二表面连接。
  7. 根据权利要求1-6中任一项所述的骨声纹传感器,其特征在于,所述质量块(4)为金属材质。
  8. 一种如权利要求1-7中任一项所述的骨声纹传感器的制作方法,其特征在于,所述制作方法包括:
    提供传感器单元、振膜(3)及质量块(4);
    在所述质量块(4)上开设预开孔凹槽(401),将具有所述预开孔凹槽(401)的质量块(4)与所述振膜(3)连接组成振动组件,在所述预开孔凹槽(401)处开设贯通所述振动组件的透气微孔(5);
    将所述振动组件与所述传感器单元连接。
  9. 根据权利要求8所述的制作方法,其特征在于,所述质量块(4)采用注塑成型制成,所述预开孔凹槽(401)在所述质量块(4)上为一体成型设置。
  10. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-7中任一项所述的骨声纹传感器。
PCT/CN2021/143027 2021-04-26 2021-12-30 骨声纹传感器及其制作方法以及电子设备 WO2022227672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110453277.X 2021-04-26
CN202110453277.XA CN113259795B (zh) 2021-04-26 2021-04-26 骨声纹传感器及其制作方法以及电子设备

Publications (1)

Publication Number Publication Date
WO2022227672A1 true WO2022227672A1 (zh) 2022-11-03

Family

ID=77221714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143027 WO2022227672A1 (zh) 2021-04-26 2021-12-30 骨声纹传感器及其制作方法以及电子设备

Country Status (2)

Country Link
CN (1) CN113259795B (zh)
WO (1) WO2022227672A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259795B (zh) * 2021-04-26 2022-11-29 歌尔微电子股份有限公司 骨声纹传感器及其制作方法以及电子设备
CN113709643B (zh) * 2021-08-27 2024-04-26 歌尔微电子股份有限公司 拾振单元、骨声纹传感器和电子设备
CN113923568B (zh) * 2021-09-24 2023-08-15 青岛歌尔智能传感器有限公司 一种骨声纹传感器和电子设备
CN113923581B (zh) * 2021-09-24 2023-07-25 青岛歌尔智能传感器有限公司 振动单元和骨声纹传感器的制作方法以及骨声纹传感器
CN114136426A (zh) * 2021-11-25 2022-03-04 歌尔微电子股份有限公司 传感器及可穿戴设备
CN114401478B (zh) * 2021-12-24 2024-03-08 歌尔微电子股份有限公司 一种骨声纹传感器
CN114501253B (zh) * 2022-01-25 2023-10-03 青岛歌尔智能传感器有限公司 振动传感器及电子设备
CN114501252B (zh) * 2022-01-25 2023-11-17 青岛歌尔智能传感器有限公司 振动组件及其制备方法、骨声纹传感器及电子设备
CN115278478A (zh) * 2022-05-30 2022-11-01 青岛歌尔智能传感器有限公司 一种骨声纹传感器和电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060285A (ja) * 2005-08-24 2007-03-08 Matsushita Electric Works Ltd シリコンマイクロホンパッケージ
CN106851509A (zh) * 2017-03-06 2017-06-13 瑞声声学科技(深圳)有限公司 Mems麦克风
CN210641073U (zh) * 2019-11-19 2020-05-29 歌尔科技有限公司 一种骨声纹传感器以及电子设备
US20200196065A1 (en) * 2018-12-12 2020-06-18 Knowles Electronics, Llc Microphone assemblies including integrated vibration transducer and wearable devices including the same
CN111556419A (zh) * 2020-05-27 2020-08-18 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211670211U (zh) * 2020-05-21 2020-10-13 深圳格来得电子科技有限公司 一种半导体发光组件
CN211930871U (zh) * 2020-05-27 2020-11-13 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211930817U (zh) * 2020-05-27 2020-11-13 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN212086490U (zh) * 2020-06-16 2020-12-04 荣成歌尔电子科技有限公司 振动传感器和电子设备
CN113259795A (zh) * 2021-04-26 2021-08-13 歌尔微电子股份有限公司 骨声纹传感器及其制作方法以及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518804B (zh) * 2012-02-14 2016-01-21 Asia Pacific Microsystems Inc Monolithic compound sensor and its package
CN209659621U (zh) * 2019-03-27 2019-11-19 歌尔科技有限公司 振动传感器和音频设备
CN209945545U (zh) * 2019-05-22 2020-01-14 歌尔科技有限公司 骨声纹识别传感器
WO2021000163A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 骨传导mems麦克风和移动终端
CN211930872U (zh) * 2020-05-27 2020-11-13 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN112565993A (zh) * 2020-11-16 2021-03-26 歌尔微电子有限公司 骨声纹传感器和电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060285A (ja) * 2005-08-24 2007-03-08 Matsushita Electric Works Ltd シリコンマイクロホンパッケージ
CN106851509A (zh) * 2017-03-06 2017-06-13 瑞声声学科技(深圳)有限公司 Mems麦克风
US20200196065A1 (en) * 2018-12-12 2020-06-18 Knowles Electronics, Llc Microphone assemblies including integrated vibration transducer and wearable devices including the same
CN210641073U (zh) * 2019-11-19 2020-05-29 歌尔科技有限公司 一种骨声纹传感器以及电子设备
CN211670211U (zh) * 2020-05-21 2020-10-13 深圳格来得电子科技有限公司 一种半导体发光组件
CN111556419A (zh) * 2020-05-27 2020-08-18 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211930871U (zh) * 2020-05-27 2020-11-13 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN211930817U (zh) * 2020-05-27 2020-11-13 潍坊歌尔微电子有限公司 骨声纹传感器和电子设备
CN212086490U (zh) * 2020-06-16 2020-12-04 荣成歌尔电子科技有限公司 振动传感器和电子设备
CN113259795A (zh) * 2021-04-26 2021-08-13 歌尔微电子股份有限公司 骨声纹传感器及其制作方法以及电子设备

Also Published As

Publication number Publication date
CN113259795A (zh) 2021-08-13
CN113259795B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2022227672A1 (zh) 骨声纹传感器及其制作方法以及电子设备
CN111556419A (zh) 骨声纹传感器和电子设备
CN209526861U (zh) 一种骨声纹传感器及电子设备
CN113709643B (zh) 拾振单元、骨声纹传感器和电子设备
CN209526837U (zh) 一种骨声纹传感器及电子设备
WO2020258172A1 (zh) 振动传感器、音频设备和振动传感器的组装方法
CN204652659U (zh) 一种差分电容式mems麦克风
CN206136292U (zh) 一种mems麦克风的封装结构
WO2022089299A1 (zh) 骨声纹传感器模组和电子设备
CN209526836U (zh) 一种骨声纹传感器及电子设备
CN209945545U (zh) 骨声纹识别传感器
CN113259818A (zh) 骨声纹传感器及其制作方法以及电子设备
CN207283807U (zh) 一种单指向硅麦克风
WO2022089300A1 (zh) 骨声纹传感器模组和电子设备
CN208971808U (zh) 一种mems麦克风
CN209526835U (zh) 一种麦克风及环境传感器的封装结构
WO2022100551A1 (zh) Mems压电微扬声器、微扬声器单元及电子设备
CN208940246U (zh) 一种mems麦克风
WO2023160719A1 (zh) 振动传感器、电子设备和振动检测方法
CN211930872U (zh) 骨声纹传感器和电子设备
WO2023232033A1 (zh) 一种骨声纹传感器和电子设备
WO2020258174A1 (zh) 振动传感器和音频设备
CN208675538U (zh) 一种mems芯片及包括该芯片的mems麦克风
US11665494B2 (en) Bone conduction microphone
CN207475875U (zh) 一种麦克风、环境传感器的封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939131

Country of ref document: EP

Kind code of ref document: A1