WO2022227438A1 - 一种电致发光器件及显示装置 - Google Patents

一种电致发光器件及显示装置 Download PDF

Info

Publication number
WO2022227438A1
WO2022227438A1 PCT/CN2021/125655 CN2021125655W WO2022227438A1 WO 2022227438 A1 WO2022227438 A1 WO 2022227438A1 CN 2021125655 W CN2021125655 W CN 2021125655W WO 2022227438 A1 WO2022227438 A1 WO 2022227438A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
cathode
electroluminescent device
emitting
Prior art date
Application number
PCT/CN2021/125655
Other languages
English (en)
French (fr)
Inventor
王琳琳
吴长晏
尤娟娟
申永奇
卜斌
宋文峰
闫光
孙力
张大成
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022227438A1 publication Critical patent/WO2022227438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an electroluminescent device and a display device.
  • OLEDs Organic Light Emitting Diodes
  • OLEDs are active light emitting display devices and therefore have unparalleled ultra-high contrast ratios and ultra-fast response speeds.
  • the mass-produced large-size OLED products all adopt the method of white light OLED plus color filter, which makes the power consumption and color gamut very insufficient.
  • the use of blue OLED plus green and red quantum dot color conversion layers can greatly improve the above problems, and can achieve high resolution, high color gamut, high color purity, and no viewing angle dependence.
  • the method of adding green and red quantum dot color conversion layers to the blue light OLED usually adopts a stacked blue light device.
  • the efficiency and lifespan of the stacked blue light device are relatively low.
  • Embodiments of the present disclosure provide an electroluminescent device and a display device for improving the efficiency and life of the electroluminescent device.
  • an electroluminescent device provided by an embodiment of the present disclosure, the electroluminescent device includes:
  • Anodes including reflective materials
  • the cathode which is arranged opposite to the anode, includes semi-transparent and semi-reflective materials
  • each light-emitting functional layer includes: a light-emitting layer, an electron transport layer located on the side of the light-emitting layer close to the cathode; wherein, the most The thickness of the electron transport layer in the light-emitting functional layer close to the cathode is greater than the thickness of the electron transport layer in the remaining light-emitting functional layers;
  • the n-1 charge generation layer is located between two adjacent light-emitting functional layers.
  • the ratio of the thickness of the electron transport layer in the light-emitting functional layer closest to the cathode to the thickness of the electron transport layer in any of the remaining light-emitting functional layers ranges from 1.5 to 2.
  • n is greater than 2, and the thickness of each charge generation layer is the same.
  • the electron transport layers in the remaining light-emitting functional layers have the same thickness.
  • the electron transport layer includes:
  • the hole blocking layer is located between the electron transport sublayer and the light emitting layer; wherein, the thickness of the hole blocking layer in the light emitting functional layer closest to the cathode is greater than the thickness of the hole blocking layers in the remaining light emitting functional layers.
  • the thickness of the electron transport layer is greater than the thickness of the light-emitting layer; except for the light-emitting functional layer closest to the cathode, in the remaining light-emitting functional layers, the thickness of the electron transport layer is smaller than that of the light-emitting layer layer thickness.
  • the light-emitting functional layer closest to the cathode further comprises:
  • the electron injection layer is located between the electron transport layer and the cathode; the electron injection layer includes at least two materials, and the cathode includes at least one material in the electron injection layer.
  • the cavity length L of the resonant cavity of the electroluminescent device has a value in the range of 0.78 ⁇ -10 to 0.78 ⁇ -30;
  • is the emission wavelength of the light-emitting layer in the light-emitting functional layer.
  • the material of the cathode includes magnesium and silver; the content ratio of magnesium and silver ranges from 1:9 to 2:8.
  • the thickness of the cathode ranges from 100 angstroms to 150 angstroms.
  • the anode includes:
  • the light-transmitting conductive layer has a thickness ranging from 100 angstroms to 200 angstroms;
  • the reflective layer is located on the side of the light-transmitting conductive layer facing away from the cathode.
  • the electroluminescent device further comprises:
  • the capping layer is located on the side of the cathode away from the anode; the optical path of the capping layer is in the range of 1100 angstroms to 1300 angstroms.
  • the light-emitting layers in different light-emitting functional layers have the same light-emitting color.
  • the emission color of the light-emitting layer is blue.
  • a display device provided by an embodiment of the present disclosure includes the electroluminescent device provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an electroluminescent device according to an embodiment of the present disclosure
  • FIG. 2 is a comprehensive spectrum comparison diagram of an electroluminescent device provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another electroluminescent device according to an embodiment of the present disclosure.
  • an electroluminescence device As shown in FIG. 1 , the electroluminescence device includes:
  • Cathode 2 disposed opposite to anode 1, including semi-transparent and semi-reflective material;
  • each light-emitting functional layer 3 includes: Electron transport layer 5; wherein, the thickness of the electron transport layer 5 in the light-emitting functional layer 3 closest to the cathode 2 is greater than the thickness of the electron transport layer 5 in the remaining light-emitting functional layers 3;
  • the n-1 layer of charge generation layer 6 is located between two adjacent light-emitting functional layers 3 .
  • the anode includes a reflective material
  • the cathode includes a semi-transparent and semi-reflective material, so that an optical resonant cavity is formed between the anode and the cathode, and a multilayer light-emitting functional layer is disposed between the anode and the cathode. , which can improve the light output intensity of the electroluminescent device.
  • the electron injection efficiency of the cathode is higher than that of the charge generation layer, so that the thickness of the electron transport layer in the light-emitting functional layer closest to the cathode is larger than the thickness of the electron transport layer in the remaining light-emitting functional layers, which can balance different
  • the electron injection efficiency of the light-emitting functional layer can optimize the light-emitting efficiency of the electroluminescent device, and can also improve the lifespan of the electroluminescent device.
  • the ratio of the thickness of the electron transport layer in the light-emitting functional layer closest to the cathode to the thickness of the electron transport layer in any of the remaining light-emitting functional layers ranges from 1.5 to 2.
  • n is greater than 2, and the thickness of each charge generation layer 6 is the same.
  • each charge generating layer is the same, which can further balance the electron injection efficiency of different light-emitting functional layers, improve the light-emitting efficiency of the electroluminescent device, and improve the life of the electroluminescent device.
  • n is equal to 3 as an example for description, that is, three layers of light-emitting function stacking layers are provided.
  • the three-layer light-emitting functional layer 3 specifically includes: a first light-emitting functional layer 9 , a second light-emitting functional layer 10 located on the side of the first light-emitting functional layer 9 away from the anode 1 , and a second light-emitting functional layer 10 The third light-emitting functional layer 11 on the side facing away from the first light-emitting functional layer 9 .
  • the first light-emitting functional layer 9 includes a first light-emitting layer 15 and a first electron transport layer 18 .
  • the second light-emitting functional layer 10 includes a second light-emitting layer 16 and a second electron transport layer 19 .
  • the third light-emitting functional layer 11 includes a third light-emitting layer 17 and a third electron transport layer 20 .
  • the third light-emitting functional layer 11 is the light-emitting functional layer closest to the cathode, that is, the thickness of the third electron transport layer 20 is greater than that of the second electron transport layer 19, and the thickness of the third electron transport layer 20 is greater than that of the first electron transport layer 18 thickness.
  • a first charge generating layer 27 is included between the first light emitting functional layer 9 and the second light emitting functional layer 10
  • a second charge generating layer 28 is included between the second light emitting functional layer 10 and the third light emitting functional layer 11 .
  • the thickness of the first charge generation layer 27 is equal to the thickness of the second charge generation layer 28 .
  • the spectra of the electroluminescent device with the thickness of the third electron transport layer greater than the thickness of the second electron transport layer and the spectrum of the electroluminescent device with the thickness of the third electron transport layer smaller than the thickness of the second electron transport layer are compared.
  • the comprehensive spectral comparison diagram of the electroluminescent device is shown in Figure 2, wherein the curve a represents the spectrum of the electroluminescent device with the thickness of the third electron transport layer greater than the thickness of the second electron transport layer, and the curve b represents the third electron transport layer.
  • the electron transport layers 5 in the remaining light-emitting functional layers 3 have the same thickness.
  • the electron generation capacity of each charge generation layer is the same, so that the thickness of the remaining electron transport layers except the electron transport layer closest to the cathode is the same.
  • the electron injection efficiency of different light-emitting functional layers can be further balanced, the light-emitting efficiency of the electroluminescent device can be improved, and the lifespan of the electroluminescent device can be improved.
  • the thickness of the first electron transport layer 18 is equal to the thickness of the second electron transport layer 19 .
  • the electron transport layer 5 includes:
  • the hole blocking layer 30 is located between the electron transport sublayer 31 and the light emitting layer 4; wherein, the thickness of the hole blocking layer 30 in the light emitting functional layer 3 closest to the cathode 2 is greater than that in the remaining light emitting functional layers 3. thickness of.
  • the electron mobility of the hole blocking layer is smaller than that of the electron transport sublayer.
  • the hole blocking layer is thick, the electron injection is likely to deteriorate.
  • the electroluminescent device provided by the embodiments of the present disclosure , the thickness of the hole blocking layer in the light-emitting functional layer closest to the cathode is greater than the thickness of the hole-blocking layer in the remaining light-emitting functional layers, so that the electron injection of the light-emitting functional layer closer to the charge generating layer can be avoided, and the electron injection can be balanced.
  • the electron injection efficiency of the electroluminescent device is improved, the luminous efficiency of the electroluminescent device is improved, and the lifespan of the electroluminescent device is improved.
  • the first electron transport layer 18 includes a first electron transport sublayer 35 and a first hole blocking layer 32 .
  • the second electron transport layer 19 includes: a second electron transport sublayer 36 , and a second hole blocking layer 33 .
  • the third electron transport layer 20 includes: a third electron transport sublayer 37 , and a third hole blocking layer 34 .
  • the thickness of the first hole blocking layer 32 is greater than that of the second hole blocking layer 33 , and the thickness of the first hole blocking layer 32 is greater than that of the third hole blocking layer 34 .
  • the thickness of the second hole blocking layer 33 is smaller than the thickness of the third hole blocking layer 34 .
  • the thickness of the electron transport layer 5 is greater than the thickness of the light-emitting layer 4 ; except for the light-emitting functional layer 3 closest to the cathode 2 In addition, in the remaining light-emitting functional layers 3 , the thickness of the electron transport layer 5 is smaller than the thickness of the light-emitting layer 4 .
  • the thickness of the electron transport layer in the light-emitting functional layer closest to the cathode is greater than the thickness of the light-emitting layer, so that the distance between the cathode and the light-emitting layer can be increased, and the contact between the cathode and other media can be avoided.
  • Serious surface plasmon polaritons (SPP) effect occurs at the interface, so that the reduction of light extraction efficiency caused by SPP effect can be avoided. That is, the light extraction efficiency of the electroluminescent device can be improved.
  • the thickness of the third electron transport layer 20 is greater than the thickness of the third light emitting layer 17 .
  • the light-emitting functional layer 3 closest to the cathode 2 further includes:
  • the electron injection layer 14 is located between the electron transport layer 5 and the cathode 2; the electron injection layer 14 includes at least two materials, and the cathode includes at least one material in the electron injection layer.
  • the cathode and the electron injection layer in contact with each other include at least one of the same material, so that the energy level difference at the interface between the cathode and the electron injection layer can be reduced, which is beneficial to improve the electron injection efficiency.
  • the luminous efficiency of the electroluminescent device is improved, and the lifespan of the electroluminescent device is improved.
  • the electron injection layer may be prepared by co-evaporating two materials, for example, one of the materials may be the same as one of the materials included in the cathode.
  • the thickness of the electron injection layer is less than 15 angstroms.
  • the material of the cathode includes magnesium (Mg) and silver (Ag); the content ratio of magnesium and silver ranges from 1:9 to 2:8.
  • the cathode material includes Mg and Ag
  • the hole injection effect is good when Mg is more and Ag is less
  • the reflectivity of the resonator is higher when Mg is less and Ag is more, and the higher the reflectivity, the stronger the resonance of the resonator.
  • the content ratio of magnesium and silver ranges from 1:9 to 2:8, so that the oscillation effect of the resonant cavity and the hole injection efficiency of the cathode can be balanced, and the electroluminescence can be improved. Luminous efficiency of light-emitting devices.
  • the magnesium to silver content ratio is 2:8.
  • the electron injection layer includes, for example, magnesium.
  • the thickness of the cathode ranges from 100 angstroms to 150 angstroms.
  • the cavity length L of the resonant cavity of the electroluminescent device ranges from (0.78 ⁇ -10) nanometers to (0.78 ⁇ -30) nanometers;
  • is the emission wavelength of the light-emitting layer in the light-emitting functional layer.
  • the cavity length of the resonant cavity of the electroluminescent device affects the luminous efficiency of the electroluminescent device.
  • the cavity length L of the resonant cavity of the electroluminescent device is (0.78 ⁇ - 10)
  • the value in the range of nanometer to (0.78 ⁇ -30) nanometer can further improve the luminous efficiency of the electroluminescent device under the condition that the emission wavelength of the light-emitting layer is constant.
  • the anode 1 includes:
  • the reflective layer 7 is located on the side of the light-transmitting conductive layer 8 away from the cathode 2 .
  • the thickness of the light-transmitting conductive layer ranges from 100 angstroms to 200 angstroms, and the material includes indium tin oxide; the material of the reflective layer includes silver.
  • the indium tin oxide is adjacent to the light-emitting functional layer, since the work function of the indium tin oxide is higher than that of the single metal electrode, the hole injection capability of the electroluminescent device can be improved.
  • the anode may also include a single layer, and the material of the anode may also include: silver or aluminum alloy.
  • the electroluminescent device further includes:
  • the capping layer 29 is located on the side of the cathode 2 away from the anode 1 .
  • the optical path length of the capping layer 29 ranges from 1100 angstroms to 1300 angstroms.
  • a capping layer is provided on the side of the cathode away from the anode, so that the reduction of light extraction efficiency caused by the SPP effect can be further avoided.
  • the light-emitting layers in different light-emitting functional layers have the same light-emitting color.
  • the emission color of the light-emitting layer is blue.
  • the light-emitting color of the light-emitting layer may also be red or green.
  • the embodiments of the present disclosure provide a display device, and the display device includes the electroluminescent device provided by the embodiments of the present disclosure.
  • the display device includes a plurality of sub-pixels arranged in an array, and each sub-pixel includes at least one of the electroluminescent devices provided in the embodiments of the present disclosure.
  • the display device provided by the embodiment of the present disclosure is an electroluminescence display device.
  • the electroluminescent device can be, for example, an organic light emitting diode device.
  • the display device further comprises: a substrate, and a quantum dot layer; wherein the electroluminescent device is located on one side of the substrate, and the quantum dot layer is located on a side of the electroluminescent device away from the substrate.
  • the display device provided by the embodiment of the present disclosure realizes the display through the organic light emitting diode device and the quantum dot color resistance.
  • the quantum dot layer includes quantum dot color resists that correspond one-to-one with the emission colors of the sub-pixels.
  • each sub-pixel includes the electroluminescent device provided in the embodiment of the present disclosure.
  • the thickness of the electron transport layer in the light-emitting functional layer closest to the cathode is larger than that of the rest of the light-emitting devices.
  • the thickness of the electron transport layer in the functional layer can balance the electron injection efficiency of different light-emitting functional layers and optimize the luminous efficiency of the electroluminescent device, thereby improving the light-emitting brightness of the electroluminescent device, so that the light-emitting intensity of the electroluminescent device is concentrated in
  • the specific quantum dot excitation wavelength range can improve the output intensity of the sub-pixels, thereby reducing the power consumption of the display device.
  • the sub-pixels include: red sub-pixels, blue sub-pixels, and green sub-pixels.
  • blue electroluminescent devices are included in each of the red, blue, and green subpixels. That is, the emission color of the light-emitting layer of the electroluminescent device in the red sub-pixel, the blue sub-pixel and the green sub-pixel is blue.
  • the red sub-pixel includes red quantum dot color resistance
  • the green sub-pixel includes green quantum dot color resistance
  • red quantum dot color resist is excited by blue light to emit red light
  • green quantum dot color resist is excited by blue light to emit green light
  • each sub-pixel includes the above-mentioned blue light electroluminescent device provided by the embodiment of the present disclosure. Since the blue light electroluminescent device has an emission spectrum with a narrow half-wave width, it is convenient to improve the emission intensity of blue light and color purity.
  • the thickness of the electron transport layer in the light-emitting functional layer closest to the cathode is greater than the thickness of the electron transport layers in the remaining light-emitting functional layers, so that the light-emitting brightness of the blue-light electroluminescent device can be improved, and the light-emitting intensity of the electroluminescent device can be concentrated. In a specific excitation wavelength range of the red quantum dots or the green quantum dots, the output intensity of the red sub-pixel and the green sub-pixel can be improved, thereby reducing the power consumption of the display device.
  • the display device is any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • Other essential components of the display device should be understood by those of ordinary skill in the art, and will not be described in detail here, nor should it be regarded as a limitation of the present disclosure.
  • the anode includes a reflective material
  • the cathode includes a transflective material, so that an optical resonant cavity is formed between the anode and the cathode, and a stack arrangement is included between the anode and the cathode
  • the multi-layer light-emitting functional layer can improve the light-emitting intensity of the electroluminescent device.
  • the electron injection efficiency of the cathode is higher than that of the charge generation layer, so that the thickness of the electron transport layer in the light-emitting functional layer closest to the cathode is larger than the thickness of the electron transport layer in the remaining light-emitting functional layers, which can balance different
  • the electron injection efficiency of the light-emitting functional layer can optimize the light-emitting efficiency of the electroluminescent device, and can also improve the lifespan of the electroluminescent device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电致发光器件及显示装置,用以提高电致发光器件的效率与寿命。电致发光器件包括:阳极,包括反射材料;阴极,与阳极相对设置,包括半透半反材料;n层发光功能层,叠层设置于阳极和阴极之间,其中,n为大于1的整数;每一发光功能层包括:发光层,位于发光层靠近阴极一侧的电子传输层;其中,最靠近阴极的发光功能层中的电子传输层的厚度,大于其余发光功能层中的电子传输层的厚度;n-1层电荷产生层,位于相邻两个发光功能层之间。

Description

一种电致发光器件及显示装置
相关申请的交叉引用
本申请要求在2021年04月26日提交中国专利局、申请号为202110454429.8、申请名称为“一种电致发光器件及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种电致发光器件及显示装置。
背景技术
有机发光二极管(OLED)为主动发光显示器件,因此具有无可比拟的超高对比度及超快相应速度。目前量产的大尺寸OLED产品均采用白光OLED加彩色滤光片的方式,该方式使得功耗和色域都有很大的不足。而利用蓝光OLED加绿色及红色量子点色转换层的方式可以极大改善上述问题,可以实现高分辨率和高色域、高色纯度,且不具有视角依赖性。为了提高显示器的显示品质,对于蓝光OLED加绿色及红色量子点色转换层的方式通常采用叠层蓝光器件,然而相关技术中,叠层蓝光器件的效率与寿命较低。
发明内容
本公开实施例提供了一种电致发光器件及显示装置,用以提供电致发光器件的效率与寿命。
本公开实施例提供的一种电致发光器件,电致发光器件包括:
阳极,包括反射材料;
阴极,与阳极相对设置,包括半透半反材料;
n层发光功能层,叠层设置于阳极和阴极之间,其中,n为大于1的整数;每一发光功能层包括:发光层,位于发光层靠近阴极一侧的电子传输层;其 中,最靠近阴极的发光功能层中的电子传输层的厚度,大于其余发光功能层中的电子传输层的厚度;
n-1层电荷产生层,位于相邻两个发光功能层之间。
在一些实施例中,最靠近阴极的发光功能层中的电子传输层的厚度,与其余任一发光功能层中的电子传输层的厚度之比的范围在1.5至2之间取值。
在一些实施例中,n大于2,各电荷产生层的厚度均相同。
在一些实施例中,除最靠近阴极的发光功能层中的电子传输层之外,其余发光功能层中的电子传输层的厚度均相同。
在一些实施例中,电子传输层包括:
电子传输子层;
空穴阻挡层,位于电子传输子层和发光层之间;其中,最靠近阴极的发光功能层中空穴阻挡层的厚度大于其余发光功能层中的空穴阻挡层的厚度。
在一些实施例中,最靠近阴极的发光功能层中,电子传输层的厚度大于发光层的厚度;除最靠近阴极的发光功能层之外,其余发光功能层中,电子传输层的厚度小于发光层的厚度。
在一些实施例中,最靠近阴极的发光功能层还包括:
电子注入层,位于电子传输层和阴极之间;电子注入层至少包括:两种材料,且阴极包括电子注入层中的至少一种材料。
在一些实施例中,电致发光器件的谐振腔的腔长L在0.78λ-10至0.78λ-30的范围内取值;
其中,λ为发光功能层中发光层的发射波长。
在一些实施例中,阴极的材料包括镁和银;镁和银的含量比例范围在1:9至2:8之间。
在一些实施例中,阴极的厚度在100埃至150埃范围内取值。
在一些实施例中,阳极包括:
透光导电层,厚度在100埃至200埃范围内取值;
反射层,位于透光导电层背离阴极一侧。
在一些实施例中,电致发光器件还包括:
封盖层,位于阴极背离阳极的一侧;封盖层的光程在1100埃至1300埃范围内取值。
在一些实施例中,不同发光功能层中发光层的发光颜色相同。
在一些实施例中,发光层的发光颜色为蓝色。
本公开实施例提供的一种显示装置,显示装置包括本公开实施例提供的电致发光器件。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种电致发光器件的结构示意图;
图2为本公开实施例提供的电致发光器件综合光谱对比图;
图3为本公开实施例提供的另一种电致发光器件的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分 不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
本公开实施例提供了一种电致发光器件,如图1所示,电致发光器件包括:
阳极1,包括反射材料;
阴极2,与阳极1相对设置,包括半透半反材料;
n层发光功能层3,叠层设置于阳极1和阴极2之间,其中,n为大于1的整数;每一发光功能层3包括:发光层4,位于发光层4靠近阴极2一侧的电子传输层5;其中,最靠近阴极2的发光功能层3中的电子传输层5的厚度,大于其余发光功能层3中的电子传输层5的厚度;
n-1层电荷产生层6,位于相邻两个发光功能层3之间。
本公开实施例提供的电致发光器件,阳极包括反射材料,阴极包括半透半反材料,从而阳极与阴极之间形成光学谐振腔,阳极和阴极之间包括叠层设置的多层发光功能层,可以提高电致发光器件的出光强度。并且,通常情况阴极的电子注入效率高于电荷产生层的电子注入效率,使得最靠近阴极的发光功能层中的电子传输层的厚度大于其余发光功能层中的电子传输层的厚度,可以平衡不同发光功能层电子注入效率,优化电致发光器件的发光效率,还可以提高电致发光器件的寿命。
在一些实施例中,最靠近阴极的发光功能层中的电子传输层的厚度,与其余任一发光功能层中的电子传输层的厚度之比的范围在1.5至2之间取值。
在一些实施例中,如图1所示,n大于2,各电荷产生层6的厚度均相同。
这样,各电荷产生层的电子产生能力相同,可以进一步可以平衡不同发 光功能层电子注入效率,提高电致发光器件的发光效率,以及提高电致发光器件的寿命。
需要说明的是,图1中以n等于3为例进行说明,即三层发光功能层叠层设置。如图1所示,三层发光功能层3具体包括:第一发光功能层9,位于第一发光功能层9背离阳极1一侧的第二发光功能层10,以及位于第二发光功能层10背离第一发光功能层9一侧的第三发光功能层11。第一发光功能层9包括:第一发光层15,以及第一电子传输层18。第二发光功能层10包括:第二发光层16,以及第二电子传输层19。第三发光功能层11包括:第三发光层17,以及第三电子传输层20。其中,第三发光功能层11为最靠近阴极的发光功能层,即第三电子传输层20的厚度大于第二电子传输层19厚度,且第三电子传输层20的厚度大于第一电子传输层18的厚度。第一发光功能层9和第二发光功能层10之间包括第一电荷产生层27,第二发光功能层10和第三发光功能层11之间包括第二电荷产生层28。第一电荷产生层27的厚度与第二电荷产生层28的厚度相等。
接下来对第三电子传输层的厚度大于第二电子传输层厚度的电致发光器件的光谱以及第三电子传输层的厚度小于第二电子传输层厚度的电致发光器件的光谱进行对比,电致发光器件的综合的光谱对比图如2图所示,其中,曲线a代表第三电子传输层的厚度大于第二电子传输层厚度的电致发光器件的光谱,曲线b代表第三电子传输层的厚度小于第二电子传输层厚度的电致发光器件的光谱。从图2中可以看出,曲线a对应的发光器件的发光强度高于曲线b对应的发光器件的发光强度。
在一些实施例中,如图1所示,除最靠近阴极2的发光功能层3中的电子传输层5之外,其余发光功能层3中的电子传输层5的厚度均相同。
本公开实施例提供的电致发光器件,由于各电荷产生层的厚度均相同,各电荷产生层的电子产生能力相同,使得除最靠近阴极的电子传输层之外的其余电子传输层的厚度均相同,可以进一步平衡不同发光功能层电子注入效率,提高电致发光器件的发光效率,提高电致发光器件的寿命。
在具体实施时,当电致发光器件包括三层发光功能层时,如图1所示,第一电子传输层18的厚度等于第二电子传输层19厚度。
在一些实施例中,如图2所示,电子传输层5包括:
电子传输子层31;
空穴阻挡层30,位于电子传输子层31和发光层4之间;其中,最靠近阴极2的发光功能层3中空穴阻挡层30的厚度大于其余发光功能层3中的空穴阻挡层30的厚度。
需要说明的是,空穴阻挡层的电子迁移率小于电子传输子层的电子迁移率,当空穴阻挡层较厚时,容易出现电子注入变差的情况,本公开实施例提供的电致发光器件,最靠近阴极的发光功能层中空穴阻挡层的厚度大于其余发光功能层中的空穴阻挡层的厚度,从而可以避免更靠近电荷产生层的发光功能层电子注入变差的情况,可以平衡电致发光器件的电子注入效率,提高电致发光器件的发光效率,提高电致发光器件的寿命。
如图3所示,第一电子传输层18包括:第一电子传输子层35,以及第一空穴阻挡层32。第二电子传输层19包括:第二电子传输子层36,以及第二空穴阻挡层33。第三电子传输层20包括:第三电子传输子层37,以及第三空穴阻挡层34。第一空穴阻挡层32的厚度大于第二空穴阻挡层33的厚度,且第一空穴阻挡层32的厚度大于第三空穴阻挡层34的厚度。
在一些实施例中,如图3所示,第二空穴阻挡层33的厚度小于第三空穴阻挡层34的厚度。
在一些实施例中,如图1、图3所示,最靠近阴极2的发光功能层3中,电子传输层5的厚度大于发光层4的厚度;除最靠近阴极2的发光功能层3之外,其余发光功能层3中,电子传输层5的厚度小于发光层4的厚度。
本公开实施例提供的电致发光器件,最靠近阴极的发光功能层中电子传输层的厚度大于发光层的厚度,从而可以增大阴极与发光层之间的距离,可以避免阴极与其他介质的界面出现严重的表面等离极化激元(Surface Plasmon Polaritons,SPP)效应,从而可以避免SPP效应导致的出光效率降低。 即可以提高电致发光器件的出光效率。
如图1、图3所示,第三电子传输层20的厚度大于第三发光层17的厚度。
在一些实施例中,如图1、图3所示,最靠近阴极2的发光功能层3还包括:
电子注入层14,位于电子传输层5和阴极2之间;电子注入层14至少包括:两种材料,且阴极包括电子注入层中的至少一种材料。
即本公开实施例提供的电致发光器件中,相互接触的阴极与电子注入层包括至少一种相同材料,从而可以减少阴极与电子注入层之间界面的能级差,有利于提高电子注入效率,提高电致发光器件的发光效率,提高电致发光器件的寿命。
在具体实施时,电子注入层例如可以由两种材料共同蒸镀制得,其中一种材料与阴极包括的一种材料相同即可。
在一些实施例中,电子注入层的厚度小于15埃。
在一些实施例中,阴极的材料包括镁(Mg)和银(Ag);镁和银的含量的比例范围在1:9至2:8之间。
需要说明的是,谐振腔震荡越强,电致发光器件的发光效率越高,电致发光器件的出射光光谱越窄。当阴极的材料包括Mg和Ag时,当Mg多Ag少时空穴注入效果好,当Mg少Ag多是谐振腔的反射率较高,而反射率越高谐振腔震荡越强。
本公开实施例提供的电致发光器件,镁和银的含量的比例范围在1:9至2:8之间,从而可以平衡谐振腔的震荡效果以及阴极空穴注入效率,进而可以提高电致发光器件的发光效率。
在一些实施例中,镁和银的含量比为2:8。
在具体实施时,当阴极包括镁和银,且阴极与电子注入层包括一种相同材料时,电子注入层例如包括镁。
在一些实施例中,阴极的厚度在100埃至150埃范围内取值。
在一些实施例中,电致发光器件的谐振腔的腔长L在(0.78λ-10)纳米 至(0.78λ-30)纳米的范围内取值;
其中,λ为发光功能层中发光层的发射波长。
需要说明的是,电致发光器件的谐振腔的腔长影响电致发光器件的发光效率本公开实施例提供的电致发光器件,电致发光器件的谐振腔的腔长L在(0.78λ-10)纳米至(0.78λ-30)纳米的范围内取值,可以在发光层的发射波长一定的情况下进一步提高电致发光器件的发光效率。
在一些实施例中,如图1、图3所示,阳极1包括:
透光导电层8;
反射层7,位于透光导电层8背离阴极2一侧。
在一些实施例中,透光导电层的厚度在100埃至200埃范围内取值,材料包括氧化铟锡;反射层的材料包括银。
这样,即氧化铟锡与发光功能层相邻,由于氧化铟锡功函数比单一金属电极的功函数高,从而可以提高电致发光器件空穴注入能力。
当然,在一些实施例中,阳极也可以包括单层,阳极的材料也可以包括:银或铝合金。
在一些实施例中,如图1、图3所示,电致发光器件还包括:
封盖层29,位于阴极2背离阳极1的一侧。
在一些实施例中,封盖层29的光程在1100埃至1300埃范围内取值。
本公开实施例提供的电致发光器件,在阴极背离阳极一侧设置封盖层,从而可以进一步避免SPP效应导致的出光效率降低。
在一些实施例中,不同发光功能层中发光层的发光颜色相同。
在一些实施例中,发光层的发光颜色为蓝色。
当然,在一些实施例中,发光层的发光颜色也可以为红色或绿色。
本公开实施例提供了一种显示装置,显示装置包括本公开实施例提供的电致发光器件。
在具体实施时,显示装置包括阵列排布的多个子像素,每一子像素包括至少一个本公开实施例提供的上述电致发光器件。
即本公开实施例提供的显示装置为电致发光显示装置。
具体实施时,电致发光器件例如可以是有机发光二极管器件。
在一些实施例中,显示装置还包括:基底,以及量子点层;其中,电致发光器件位于基底的一侧,量子点层位于电致发光器件背离基底的一侧。
即本公开实施例提供的显示装置通过有机发光二极管器件以及量子点彩色色阻实现显示。
在一些实施例中,量子点层包括与子像素发光颜色一一对应的量子点色阻。
本公开实施例提供的显示装置,各子像素均包括本公开实施例提供的上述电致发光器件,由于电致发光器件中,最靠近阴极的发光功能层中的电子传输层的厚度大于其余发光功能层中的电子传输层的厚度,可以平衡不同发光功能层电子注入效率,优化电致发光器件的发光效率,从而可以提高电致发光器件的出光亮度,使得电致发光器件的出光强度集中于特定的量子点激发波长范围,可以提升子像素出射强度,进而可降低显示装置的功耗。
在一些实施例中,子像素包括:红色子像素、蓝色子像素以及绿色子像素。
在一些实施例中,红色子像素、蓝色子像素以及绿色子像素中均包括蓝光电致发光器件。即红色子像素、蓝色子像素以及绿色子像素中的电致发光器件发光层的发光颜色为蓝色。
相应的,在一些实施例中,红色子像素包括红色量子点色阻,绿色子像素包括绿色量子点色阻。
需要说明的是,红色量子点色阻被蓝光激发出射红光,绿色量子点色阻被蓝光激发出射绿光。
本公开实施例提供的显示装置,各子像素均包括本公开实施例提供的上述蓝光电致发光器件,由于蓝光电致发光器件具有较窄半波宽的发射光谱,便于提升蓝光的出射强度和色纯度。并且,最靠近阴极的发光功能层中的电子传输层的厚度大于其余发光功能层中的电子传输层的厚度,从而可以提高 蓝光电致发光器件的出光亮度,使得电致发光器件的出光强度集中于特定的红色量子点或绿色量子点激发波长范围,可以提升红色子像素、绿色子像素出射强度,进而可降低显示装置的功耗。
本公开实施例提供的显示装置为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。该显示装置的实施可以参见上述电致发光器件的实施例,重复之处不再赘述。
综上,本公开实施例提供的电致发光器件以及显示装置,阳极包括反射材料,阴极包括半透半反材料,从而阳极与阴极之间形成光学谐振腔,阳极和阴极之间包括叠层设置的多层发光功能层,可以提高电致发光器件的出光强度。并且,通常情况阴极的电子注入效率高于电荷产生层的电子注入效率,使得最靠近阴极的发光功能层中的电子传输层的厚度大于其余发光功能层中的电子传输层的厚度,可以平衡不同发光功能层电子注入效率,优化电致发光器件的发光效率,还可以提高电致发光器件的寿命。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种电致发光器件,其中,所述电致发光器件包括:
    阳极,包括反射材料;
    阴极,与所述阳极相对设置,包括半透半反材料;
    n层发光功能层,叠层设置于所述阳极和所述阴极之间,其中,n为大于1的整数;每一所述发光功能层包括:发光层,位于所述发光层靠近所述阴极一侧的电子传输层;其中,最靠近所述阴极的所述发光功能层中的所述电子传输层的厚度,大于其余所述发光功能层中的所述电子传输层的厚度;
    n-1层电荷产生层,位于相邻两个所述发光功能层之间。
  2. 根据权利要求1所述的电致发光器件,其中,最靠近所述阴极的所述发光功能层中的所述电子传输层的厚度,与其余任一所述发光功能层中的所述电子传输层的厚度之比的范围在1.5至2之间取值。
  3. 根据权利要求1或2所述的电致发光器件,其中,n大于2,各所述电荷产生层的厚度均相同。
  4. 根据权利要求3所述的电致发光器件,其中,除最靠近所述阴极的所述发光功能层中的所述电子传输层之外,其余所述发光功能层中的所述电子传输层的厚度均相同。
  5. 根据权利要求1所述的电致发光器件,其中,所述电子传输层包括:
    电子传输子层;
    空穴阻挡层,位于所述电子传输子层和所述发光层之间;其中,最靠近所述阴极的所述发光功能层中所述空穴阻挡层的厚度大于其余所述发光功能层中的所述空穴阻挡层的厚度。
  6. 根据权利要求1所述的电致发光器件,其中,最靠近所述阴极的所述发光功能层中,所述电子传输层的厚度大于所述发光层的厚度;除最靠近所述阴极的所述发光功能层之外,其余所述发光功能层中,所述电子传输层的厚度小于所述发光层的厚度。
  7. 根据权利要求1所述的电致发光器件,其中,最靠近所述阴极的所述发光功能层还包括:
    电子注入层,位于所述电子传输层和所述阴极之间;所述电子注入层至少包括:两种材料,且所述阴极包括所述电子注入层中的至少一种材料。
  8. 根据权利要求1、2、4~7任一项所述的电致发光器件,其中,所述电致发光器件的谐振腔的腔长L在0.78λ-10至0.78λ-30的范围内取值;
    其中,λ为所述发光功能层中所述发光层的发射波长。
  9. 根据权利要求1、2、4~7任一项所述的电致发光器件,其中,所述阴极的材料包括镁和银;所述镁和所述银的含量比例范围在1:9至2:8之间。
  10. 根据权利要求9所述的电致发光器件,其中,所述阴极的厚度在100埃至150埃范围内取值。
  11. 根据权利要求1、2、4~7任一项所述的电致发光器件,其中,所述阳极包括:
    透光导电层,厚度在100埃至200埃范围内取值;
    反射层,位于所述透光导电层背离所述阴极一侧。
  12. 根据权利要求1、2、4~7任一项所述的电致发光器件,其中,所述电致发光器件还包括:
    封盖层,位于所述阴极背离所述阳极的一侧;所述封盖层的光程在1100埃至1300埃范围内取值。
  13. 根据权利要求1、2、4~7任一项所述的电致发光器件,其中,不同所述发光功能层中所述发光层的发光颜色相同。
  14. 根据权利要求13所述的电致发光器件,其中,所述发光层的发光颜色为蓝色。
  15. 一种显示装置,其中,所述显示装置包括根据权利要求1~14任一项所述的电致发光器件。
PCT/CN2021/125655 2021-04-26 2021-10-22 一种电致发光器件及显示装置 WO2022227438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110454429.8A CN113178526B (zh) 2021-04-26 2021-04-26 一种电致发光器件及显示装置
CN202110454429.8 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022227438A1 true WO2022227438A1 (zh) 2022-11-03

Family

ID=76926292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125655 WO2022227438A1 (zh) 2021-04-26 2021-10-22 一种电致发光器件及显示装置

Country Status (2)

Country Link
CN (1) CN113178526B (zh)
WO (1) WO2022227438A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178526B (zh) * 2021-04-26 2022-07-26 京东方科技集团股份有限公司 一种电致发光器件及显示装置
CN113707823A (zh) * 2021-08-30 2021-11-26 京东方科技集团股份有限公司 显示装置及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051642A (zh) * 2013-03-12 2014-09-17 海洋王照明科技股份有限公司 一种叠层有机电致发光器件及其制备方法
CN105309047A (zh) * 2011-03-23 2016-02-03 株式会社半导体能源研究所 发光装置以及照明装置
US20170092870A1 (en) * 2015-09-24 2017-03-30 Lg Display Co., Ltd. Organic light emitting display device
CN107409456A (zh) * 2015-03-02 2017-11-28 路米奥科技株式会社 有机电致发光元件以及照明装置
CN113178526A (zh) * 2021-04-26 2021-07-27 京东方科技集团股份有限公司 一种电致发光器件及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183712A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 有机电致发光装置、显示屏及其终端
US9209422B2 (en) * 2013-12-31 2015-12-08 Lg Display Co., Ltd. Organic light emitting display device with micro-cavity structure
KR102295795B1 (ko) * 2014-12-04 2021-08-30 엘지디스플레이 주식회사 유기전계발광소자 및 이를 구비한 표시소자
CN108649130A (zh) * 2018-05-10 2018-10-12 重庆邮电大学 一种叠层蓝光有机电致发光器件及其制造工艺
CN109065740A (zh) * 2018-08-10 2018-12-21 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN110838550B (zh) * 2018-08-15 2021-03-26 Tcl科技集团股份有限公司 混合型发光二极管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105309047A (zh) * 2011-03-23 2016-02-03 株式会社半导体能源研究所 发光装置以及照明装置
CN104051642A (zh) * 2013-03-12 2014-09-17 海洋王照明科技股份有限公司 一种叠层有机电致发光器件及其制备方法
CN107409456A (zh) * 2015-03-02 2017-11-28 路米奥科技株式会社 有机电致发光元件以及照明装置
US20170092870A1 (en) * 2015-09-24 2017-03-30 Lg Display Co., Ltd. Organic light emitting display device
CN113178526A (zh) * 2021-04-26 2021-07-27 京东方科技集团股份有限公司 一种电致发光器件及显示装置

Also Published As

Publication number Publication date
CN113178526B (zh) 2022-07-26
CN113178526A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
US9786720B2 (en) Organic light emitting display device
US9166204B2 (en) Organic light-emitting diode and method of fabricating the same
CN100420064C (zh) 采用光谐振效应的有机电致发光器件
WO2022227438A1 (zh) 一种电致发光器件及显示装置
US7615921B2 (en) Organic EL device and organic EL panel
US20060181204A1 (en) Flexible organic light emitting devices
US8304977B2 (en) Light emitting device and electronic device
US20060049419A1 (en) Light emitting diode device
US10600980B1 (en) Quantum dot light-emitting diode (LED) with roughened electrode
US20190165317A1 (en) Display unit, method for manufacturing the same and array substrate
JP2006012579A (ja) カラー有機elディスプレイ及びその製造方法
CN101924191A (zh) 显示器件、显示装置以及调节它们中的白光色移的方法
JP2012038555A (ja) 有機el表示装置
CN108389978B (zh) 一种有机发光显示面板及其有机发光显示装置
CN110199402B (zh) 发光二极管及其制造方法、显示基板、显示设备
JP4644938B2 (ja) 有機電界発光素子
WO2020194411A1 (ja) 発光素子、発光デバイス
US10749127B2 (en) White organic light-emitting diode device
KR101980771B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2019109258A1 (zh) 一种高色域oled器件
CN110071159B (zh) 像素电极结构及像素电极结构制作方法
KR102023943B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
CN117812927A (zh) 有机发光二极管、显示面板及显示装置
US20240016018A1 (en) Display device and preparation method therefor
WO2023042244A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18556850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE