WO2022227395A1 - 一种便携式气传真菌实时采集检测装置与方法 - Google Patents

一种便携式气传真菌实时采集检测装置与方法 Download PDF

Info

Publication number
WO2022227395A1
WO2022227395A1 PCT/CN2021/120937 CN2021120937W WO2022227395A1 WO 2022227395 A1 WO2022227395 A1 WO 2022227395A1 CN 2021120937 W CN2021120937 W CN 2021120937W WO 2022227395 A1 WO2022227395 A1 WO 2022227395A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant
hand
detection device
light
air pump
Prior art date
Application number
PCT/CN2021/120937
Other languages
English (en)
French (fr)
Inventor
袁寿其
王盼
杨宁
沈家伟
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2203702.2A priority Critical patent/GB2605697B/en
Publication of WO2022227395A1 publication Critical patent/WO2022227395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • C12M1/261Airborne microorganism samplers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2208Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with impactors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L1/00Enclosures; Chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N2015/0681Purposely modifying particles, e.g. humidifying for growing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N2015/0687Investigating concentration of particle suspensions in solutions, e.g. non volatile residue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/37Assays involving biological materials from specific organisms or of a specific nature from fungi

Definitions

  • the invention relates to the technical field of microorganism detection, in particular to a portable real-time collection and detection device and method for airborne fungi.
  • Microbial detection is one of the key steps in clinical diagnostic analysis and food safety determination.
  • microfluidic technology microfluidic as a micro-nanofluidic processing technology has attracted much attention in recent years. Its advantages of low cost, high throughput, fast analysis speed, and low reagent consumption are of great significance for the cost reduction of fungal bacteria detection systems and the miniaturization and integration of equipment.
  • invention patent application number: CN201711321042.5 discloses an environmental microorganism detection method, including traditional microorganism sampling, indiscriminate biological detection, data analysis, and grade evaluation, which can achieve non-invasive, efficient, comprehensive and accurate evaluation of biological diseases.
  • this method requires professionals to operate, the testing site environment is strict, and the required testing equipment is expensive and inconvenient to carry, which is not conducive to popularization.
  • the invention proposes a portable real-time collection and detection device and method of airborne fungi.
  • the invention integrates immunofluorescence technology, gas microparticle separation technology and image processing technology, can accurately and real-time detect the concentration of airborne fungi, has novel method, simple structure, convenient operation and high integration.
  • the present invention provides a portable real-time collection and detection device for airborne fungi, including a light source device, a hand-operated constant-flow air pump, an impactor, and an airborne fungi enrichment and dyeing device connected in sequence. , fluorescence data acquisition and processing device;
  • the light source device includes a box body and a light-emitting component installed in the box body, the box body is provided with a light-passing hole, and a connection component is arranged between the hand-operated constant-flow air pump and the box body, so the The hand-operated constant-flow air pump is connected to the light-passing hole through the connecting assembly;
  • the hand-cranked constant-flow air pump includes a hand-cranked drive member and a constant-flow piston pump that is drivingly connected to the hand-cranked drive member.
  • the outlet end of the pump is communicated with the impactor; valves are installed between the inlet end and the outlet end of the constant-flow piston pump and between the light-passing hole and the connecting component; the light emitted by the light-emitting component can be sequentially
  • the airborne fungi enrichment and dyeing device is irradiated through the connection assembly, the constant-flow piston pump and the impactor.
  • the light-emitting component includes a circuit fixing bracket, a white light-emitting diode, a first power source, and an excitation filter device;
  • the white light-emitting diode is electrically connected to the first power source through a wire, and the outer side of the wire is covered with a a line protection layer, the white light-emitting diodes are fixedly matched with the line fixing brackets through the line protection layer, and the white light-emitting diodes are arranged horizontally corresponding to the light-through holes;
  • a power button is connected in series on the wires, and the The power button is fixed on the outside of the box body;
  • the side of the box body close to the hand-cranked constant-flow air pump is fixed with a shading plate, and the light-passing hole is opened on the shading plate;
  • the excitation filter The device is arranged between the shading plate and the white light-emitting diode, the excitation filter device includes an excitation filter fixing bracket detachably connected to the box
  • the connecting assembly includes a connecting pipe and a T-shaped tee interface, one end of the connecting pipe is communicated with the light-passing hole, the other end of the connecting pipe is installed with the valve, and the T-shaped tee interface is horizontal
  • the two ports in the direction are respectively communicated with the valve on the connecting pipe and the valve at the inlet end of the constant flow piston pump, and the port in the vertical direction of the T-type three-way interface is connected with an air suction hose .
  • the constant-flow piston pump includes a pump cavity, and a hand-cranked constant-flow air pump inlet channel and a hand-cranked constant-flow air pump outlet channel are symmetrically opened at the bottom of the pump cavity; a compression piston is slidably connected in the pump cavity, A pressure rod is fixedly connected to the middle of the top end of the air pressure piston, and the hand-operated driving member is drivingly connected to the pressure rod; the inner wall of the pump cavity is fixedly connected with a limit ring, and the bottom end face of the limit ring is connected to the hand-operated The top of the inlet channel of the constant-flow air pump is flush, and the compressed air piston is limitedly matched with the limit ring.
  • the hand-operated driving member includes a bracket symmetrically fixed on the outside of the pump cavity, a three-way cartridge is fixed at the top of the bracket, a transmission shaft is passed through the two three-way cartridges, and a transmission shaft is fixed on the transmission shaft.
  • a driving gear, a pressing rod gear is fixed on the pressing rod, and the driving gear is engaged with the pressing rod gear; a handle is installed on one end of the transmission shaft.
  • one end of the transmission shaft is fixed with a transmission shaft friction disc
  • a side of the transmission shaft friction disc away from the three-way cartridge is provided with a driving friction disc
  • the driving friction disc is sleeved on the transmission shaft
  • a torque adjustment bolt is arranged between the driving friction plate and the transmission shaft, the driving friction plate is rotatably connected with the transmission shaft through the torque adjustment bolt, and the handle is vertically fixed on the side of the driving friction plate On the wall, the driving friction disc is in driving cooperation with the transmission shaft friction disc.
  • the impactor includes an impactor inlet channel, and an end of the impactor inlet channel close to the hand-cranked constant flow air pump is connected with a port, and the end of the port is connected to the outlet end of the constant flow piston pump.
  • the valve is connected; the end of the impactor inlet channel away from the interface is connected with a main flow channel, an air pump is installed at both ends of the main flow channel, a secondary flow channel is installed in the middle of the main flow channel, and the secondary flow channel is connected to the impactor
  • the inlet channel of the device is coaxially arranged; the outer side of the secondary flow channel is provided with an interface threaded male head, and the airborne fungi enrichment and dyeing device is installed on the secondary flow channel through the interface threaded male head.
  • the airborne fungi enrichment and dyeing device comprises a PMMA chassis and a cylinder wall fixed on the PMMA chassis, the inner side of the cylinder wall is provided with an interface thread female head, and the interface thread female head is connected to the interface thread The male head is threaded; a reaction pool is fixed in the middle of the PMMA chassis.
  • the fluorescence data acquisition and processing device includes a detection device housing, an emission filter and a data display screen mounted on the detection device housing; an end of the detection device housing close to the emission filter is installed with a a connector, through which the detection device casing is connected to the airborne fungi enrichment and dyeing device;
  • the emission filter is located between the detection device housing and the airborne fungi enrichment and dyeing device, a CMOS image sensor is arranged between the emission filter and the detection device housing, and the detection device housing A microcontroller and a second power supply are installed inside, and the CMOS image sensor, the data display screen and the second power supply are all electrically connected to the microcontroller; the data display screen is fixed on the detection device
  • the housing is on the side wall away from the CMOS image sensor.
  • a portable real-time collection and detection method for airborne fungi comprises the following steps:
  • the present invention has the following technical effects:
  • the present invention relates to a portable real-time collection and detection device and method for airborne fungi, which utilizes human hands as a power source to realize the collection, separation and enrichment of airborne fungi, with simple operation and strong portability.
  • the present invention relates to a portable real-time collection and detection device and method for airborne fungi.
  • the device designs a hand-operated constant-flow air pump with the characteristics of adjustable flow and stable outflow. The flow adjustment is convenient and practical.
  • the present invention relates to a portable real-time collection and detection device and method for airborne fungi.
  • the device is designed to use the surface tension and infiltration properties of liquids in a small space to fix the fluorescent dyeing solution to achieve detection target dyeing, with small size and low cost.
  • the present invention relates to a portable real-time collection and detection device and method for airborne fungi, which innovatively combines an impactor with a microbial dyeing structure detection structure, reducing the difficulty of real-time detection of the physical and chemical properties of airborne fungi.
  • the present invention relates to a portable real-time collection and detection device and method for airborne fungi.
  • the device combines a white light-emitting diode and a detachable excitation filter as a detection light source to excite monochromatic light of a specific wavelength; It can select the corresponding light source configuration in real time, so that the detection results of target microorganisms are more accurate.
  • the present invention relates to a portable real-time collection and detection device and method for airborne fungi.
  • the overall equipment of the device and method is small in size, portable, convenient to operate, and easy to commercialize.
  • FIG. 1 is a schematic diagram of the overall structure of the present invention.
  • FIG. 2 is a schematic structural diagram of a light source device in the present invention.
  • (a) is a three-dimensional view of the internal structure of the light source device
  • (b) is a top view of the internal structure of the light source device
  • (c) is a schematic diagram of the excitation filter and light-transmitting protective layer of the internal structure of the light source device.
  • FIG. 3 is a schematic structural diagram of the hand-cranked constant-flow air pump in the present invention.
  • FIG. 4 is a schematic view of the structure of the impactor in the present invention.
  • FIG. 5 is a schematic structural diagram of an airborne fungi enrichment dyeing device in the present invention.
  • (a) is a three-dimensional schematic diagram of the airborne fungi enrichment and dyeing device
  • (b) is a top view of the airborne fungi enrichment and dyeing device
  • (c) is a cross-sectional view of the airborne fungi enrichment and dyeing device.
  • FIG. 6 is a schematic structural diagram of the fluorescence data acquisition and processing device in the present invention.
  • Fig. 7 is the structural representation of the valve in the present invention.
  • FIG. 8 is a working flow chart of a portable real-time collection and detection device and method for airborne fungi according to the present invention.
  • the portable real-time collection and detection device for airborne fungi consists of a light source device 1, a power button 2, an excitation filter fixing bracket 3, a shading plate 4, a light hole 5, a connecting pipe 6, a valve 7, a hand Inlet channel of rocking constant flow air pump 8, hand-cranked constant-flow air pump 9, outlet channel of hand-cranked constant-flow air pump 10, interface 11, impactor inlet channel 12, impactor 13, airborne fungus enrichment and dyeing device 14, connected
  • the device 15, the fluorescence data acquisition and processing device 16, the data display screen 17, the T-shaped three-way interface 56, and the suction hose 57 are composed of nineteen components.
  • the light source device 1 provides a light signal with a specific wavelength for the fluorescent reaction of the airborne fungus enrichment dyeing device 14, and promotes the generation of the fluorescent reaction;
  • the valve 7 is always in a closed state during the working process of the device to ensure that there is no external environment interference at the light source device 1;
  • the inlet channel 8 of the hand-cranked constant-flow air pump and the outlet channel 10 of the hand-cranked constant-flow air pump are both connected to the valve 7 , is used to control the inflow and outflow state of the hand-cranked constant-flow air pump 9;
  • the T-shaped three-way interface 56 is placed between the light source device 1 and the hand-cranked constant-flow air pump 9, and one end of the symmetrical port at both ends is connected to the connecting pipe 6 The other end is connected to the valve 7 on the inlet channel 8 of the hand-cranked constant flow air pump to ensure the straight line propagation of the light inside the channel;
  • the vertical port of the T-type three-way interface 56 is connected to the suction
  • the light source device 1 consists of a power button 2, a shading plate 4, a light hole 5, a box body 18, a first power supply 19, a circuit fixing bracket 20, a circuit protection layer 21, an excitation filter device 22,
  • the white light-emitting diode 23, the excitation filter 24, and the light-transmitting protective layer 25 are composed of eleven components.
  • the first power supply 19 is a 5V power supply, and the first power supply 19 supplies power to the white light-emitting diodes 23; the setting of the line protection layer 21 can protect the wires in a centralized manner to ensure the safety of the power supply device; the excitation filter device 22 is fixed by the excitation filter
  • the bracket 3, the excitation filter 24, and the light-transmitting protective layer 25 are composed of three components, which are placed between the white light-emitting diode 23 and the shading plate 4.
  • the placement height of the white light-emitting diode 23 is at the level of the light hole 5; the excitation filter The film 24 is used to select the spectral signal of the characteristic wavelength band that excites the fluorescence; the setting of the excitation filter fixing bracket 3 can realize the real-time replacement of the excitation filter 24 and the light-transmitting protective layer 25, and realize the supply of various characteristic wavelengths in the system; The addition of the photoprotective layer 25 can reduce contamination of the excitation filter 24 .
  • the hand-cranked constant-flow air pump 9 consists of a valve 7, an inlet channel of the hand-cranked constant-flow air pump 8, an outlet channel of the hand-cranked constant-flow air pump 10, a transmission shaft 38, a bracket 26, a three-way card shell 27, Pressure rod 28, pressure rod gear 29, drive gear 30, compressed air piston 31, pump chamber 32, drive shaft friction disc 33, drive friction disc 34, torque adjustment bolt 35, handle 36, limit ring 37, PDMS film 39, PDMS
  • the film support 40 is composed of eighteen parts in total.
  • the transmission shaft 38 and the bracket 26 are combined together by the three-way cartridge 27; 35 and the handle 36 form the main body of the driving device; the pressing rod 28 is connected to the center of the piston 31 and is located just above the piston 31; the pressing rod gear 29 is located on the surface of the pressing rod 28; The gears 29 are meshed with each other to drive the compressed air piston 31 to move up and down; the transmission shaft friction disc 33 and the transmission shaft 38 are integral structures; the handle 36 is vertically fixed on the side of the driving friction disc 34, and the driving friction disc 34 and the transmission shaft friction disc 33 is placed closely, and the hand-operated constant-flow air pump 9 uses the friction force between the driving friction disc 34 and the transmission shaft friction disc 33 to drive the friction disc 34 to rotate, thereby realizing the up and down movement of the piston 31; when the driving friction disc 34 and the transmission shaft friction When the friction between the discs 33 is static friction, the flow rate of the hand-cranked constant-flow air pump 9 (that is, the speed of the up and down movement of the piston 31) increases with the increase
  • the flow output of the hand-operated constant-flow air pump 8 will be in a constant state; the torque adjustment bolt 35 is used to adjust the torque between the driving friction plate 34 and the transmission shaft friction plate 33.
  • the torque determines the final working flow of the constant-flow air pump 9; the limit ring 37 is arranged directly above the inlet channel 8 of the hand-cranked constant-flow air pump and the outlet channel 10 of the hand-cranked constant-flow air pump, and demarcates the pump that the compressor piston 31 can reach.
  • the lowest position of the cavity 32; the top of the pump cavity 32 is the highest position that the compressor piston 31 can reach; Both sides are connected with a valve 7 for controlling the inflow and outflow state of the hand-operated constant flow air pump 8 .
  • valve 7 is composed of PDMS film 39 (transmittance 95%) and PDMS film support 40 , the top of PDMS film support 40 is hinged with the valve body of valve 7 , PDMS film 39 is fixed on PDMS film support 40 , valve 7
  • the internal passage changes in a step-like manner. When the air flow flows from the A end to the B end, the valve 7 will automatically open due to the action of the air flow.
  • the valve 7 When the air flow flows from the B end to the A end, the valve 7 is in a closed state; Outside the constant flow air pump inlet channel 8 and the hand-cranked constant-flow air pump outlet channel 10, the hand-cranked constant-flow air pump inlet channel 8 is connected with the B end of the valve 7, and the hand-cranked constant flow air pump outlet channel 10 is connected with the A end of the valve 7
  • the handle 36 When the handle 36 is swung clockwise, the piston 31 will move upward, the valve 7 connected to the inlet channel 8 of the hand-cranked constant-flow air pump is in an open state, and the valve 7 connected to the outlet channel 10 of the hand-cranked constant-flow air pump is in a closed state , at this time, the hand-cranked constant-flow air pump 9 is in an inflow state; when the handle 36 is shaken counterclockwise, the piston 31 will move downward, and the valve 7 connected to the hand-cranked constant-flow air pump inlet channel 8 is in a closed state, and the hand-cranked constant-flow
  • the impactor 13 is composed of five parts: the impactor inlet channel 12 , the acceleration zone 41 , the main flow channel 42 , the secondary flow channel 43 and the interface threaded male head 44 .
  • the inlet channel 12 of the impactor is connected to the outlet channel 10 of the hand-cranked constant-flow air pump through the interface 11; the airborne fungi enter the acceleration zone 41 through the inlet channel 12 of the impactor, and air pumps are installed at both ends of the main flow channel 42.
  • the air flow pump 9 does not reach a constant state, the fungi in the air are sucked away by the air pump.
  • the airborne fungi enrichment and dyeing device 14 is composed of five parts: a reaction tank 45 , a reaction tank wall 46 , a PMMA chassis 47 , a cylinder wall 48 , and an interface threaded female head 49 .
  • the PMMA chassis 47 is located at the bottom of the airborne fungi enrichment and dyeing device 14, and the light transmittance can reach more than 92%;
  • the wall height of the reaction tank wall 46 is 1 mm, which is located on the PMMA chassis 47;
  • the reaction tank 45 is the reaction tank wall 46 surrounding According to the characteristics of the surface tension and wettability of the liquid, the dyeing agent can be fixed in the reaction tank 45, and the liquid surface presents a parabolic state without external support.
  • the fluorescence data acquisition and processing device 16 consists of an emission filter 50 , a CMOS image sensor 51 , a microcontroller 52 , a second power supply 53 , a display screen 54 , and a detection device housing 55 .
  • the second power supply is a 12V power supply
  • the emission filter 50 is used to screen the fluorescence emitted during the fluorescence reaction of the airborne fungi in the airborne fungi enrichment dyeing device 13
  • the microcontroller 52 drives the CMOS image sensor 51 to collect the images of the fluorescence reaction data, and image processing is performed on the collected fluorescence image data to achieve quantitative detection of the target fungus, and the measured data can be directly read through the data display screen 17 .
  • Figure 1 is installed in sequence, and the light-transmitting hole 5, the hand-cranked constant-flow air pump inlet channel 8, the hand-cranked constant-flow air pump outlet channel 10, and the reaction tank 45 are maintained on the same horizontal line to ensure the unobstructed propagation of the light source; then, Shake the handle 36 clockwise, at this time, the valve 7 connected with the inlet channel 8 of the hand-cranked constant-flow air pump is opened, the valve 7 connected with the outlet channel 10 of the hand-cranked constant-flow air pump is closed, and the hand-cranked
  • the light source device 1 is activated to stimulate the dyed fungal particles with a light source, so that a fluorescent reaction occurs. Then start the fluorescence data acquisition and processing device 16 to perform image acquisition and image processing on the dyed fluorescent images, and quantify the relationship between the fluorescence intensity and the concentration of microorganisms according to the Lambert-Beer law, and directly display the content of fungi in the air on the liquid crystal screen. Calculation results.
  • the invention combines the fluorescence detection technology with the gas micro-particle separation technology, and develops a portable real-time collection and detection device for airborne fungi.
  • the device breaks through the complex and extensive collection methods in traditional airborne fungi detection and the requirement of independent detection equipment, and realizes real-time collection and quantification of airborne fungi concentration. promotion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明公开一种便携式气传真菌实时采集检测装置与方法,包括依次连接的光源装置、手摇式恒流气泵、冲击器、气传真菌富集染色装置、荧光数据采集及处理装置。本发明将荧光检测技术与微颗粒分离技术相结合,研制了便携式气传真菌实时采集检测装置。本装置突破了传统气传真菌检测中复杂、粗放的采集方式以及独立检测设备的需求限制,实现了气传真菌浓度的实时采集及量化,且装置体积小、造价低、无需专业人员操作、易于推广。

Description

一种便携式气传真菌实时采集检测装置与方法 技术领域
本发明涉及微生物检测技术领域,特别是涉及一种便携式气传真菌实时采集检测装置与方法。
背景技术
微生物检测是临床诊断分析、食品安全判定的关键步骤之一。随着微流控技术的发展,微流控作为一种微纳流体处理技术近年来备受关注。其成本低、通量高、分析速度快、试剂消耗少的优势,对于真菌细菌检测系统的降低成本、设备小型化集成化等具有重要意义。
目前,国内外学者对气传真菌即时采集检测技术的研究处于起步阶段。发明专利申请号:CN201711321042.5公开了一种环境微生物的检测方法,包括传统微生物采样、无差别生物学检测、数据分析、等级评估,可实现无创、高效、全面、准确的生物疾病的评估。但是该方法需专业人员操作,检测场所环境要求严格,所需检测设备造价高、携带不方便,不利于推广。
发明内容
本发明针对气传真菌实时检测难度大,提出了一种便携式气传真菌实时采集检测装置与方法。本发明集免疫荧光技术、气体微颗粒分离技术及图像处理技术于一体,能够准确实时的检测出气传真菌的浓度,方法新颖,结构简单,操作便捷,集成度高。
为实现上述目的,本发明提供了如下方案:本发明提供一种便携式气传真菌实时采集检测装置,包括依次连接的光源装置、手摇式恒 流气泵、冲击器、气传真菌富集染色装置、荧光数据采集及处理装置;
所述光源装置包括箱体和安装在所述箱体内的发光组件,所述箱体上开设有通光孔,所述手摇式恒流气泵与所述箱体之间设置有连接组件,所述手摇式恒流气泵通过所述连接组件与所述通光孔连接;
所述手摇式恒流气泵包括手摇驱动件以及与所述手摇驱动件传动连接的恒流活塞泵,所述恒流活塞泵的入口端与所述连接组件连通,所述恒流活塞泵的出口端与所述冲击器连通;所述恒流活塞泵的入口端和出口端以及所述通光孔与所述连接组件之间均安装有阀门;所述发光组件发出的光可依次经过所述连接组件、所述恒流活塞泵和所述冲击器照射在所述气传真菌富集染色装置上。
优选的,所述发光组件包括线路固定支架、白色发光二极管、第一电源、激发滤光片装置;所述白色发光二极管通过导线与所述第一电源电性连接,所述导线外侧包覆有线路保护层,所述白色发光二极管通过所述线路保护层与所述线路固定支架固定配合,所述白色发光二极管与所述通光孔水平对应设置;所述导线上串联有电源按钮,所述电源按钮固定在所述箱体外侧;所述箱体靠近所述手摇式恒流气泵的一侧固定有遮光板,所述通光孔开设在所述遮光板上;所述激发滤光片装置设置在所述遮光板与所述白色发光二极管之间,所述激发滤光片装置包括与所述箱体可拆卸连接的激发滤光片固定支架,所述激发滤光片固定支架上可拆卸连接有激发滤光片和透光保护层,所述透光保护层位于所述激发滤光片与所述遮光板之间。
优选的,所述连接组件包括连接管道和T型三通接口,所述连接 管道一端与所述通光孔连通,所述连接管道另一端安装有所述阀门,所述T型三通接口水平方向上的两个端口分别与所述连接管道上的所述阀门和所述恒流活塞泵入口端的所述阀门连通,所述T型三通接口垂直方向上的端口处连通有抽气软管。
优选的,所述恒流活塞泵包括泵腔,所述泵腔底部对称开设有手摇式恒流气泵入口通道和手摇式恒流气泵出口通道;所述泵腔内滑动连接有压气活塞,所述压气活塞顶端中部固定连接有压杆,所述手摇驱动件与所述压杆传动连接;所述泵腔内壁固定连接有限位环,所述限位环底部端面与所述手摇式恒流气泵入口通道顶部齐平,所述压气活塞与所述限位环限位配合。
优选的,所述手摇驱动件包括对称固定在所述泵腔外侧的支架,所述支架顶端固定有三通卡壳,两所述三通卡壳内穿设有传动轴,所述传动轴上固定有驱动齿轮,所述压杆上固定有压杆齿轮,所述驱动齿轮与所述压杆齿轮啮合;所述传动轴一端安装有手柄。
优选的,所述传动轴一端固定有传动轴摩擦盘,所述传动轴摩擦盘远离所述三通卡壳的一侧设置有驱动摩擦盘,所述驱动摩擦盘套设在所述传动轴上;所述驱动摩擦盘与所述传动轴之间设置有扭矩调节螺栓,所述驱动摩擦盘通过所述扭矩调节螺栓与所述传动轴转动连接,所述手柄垂直固定在所述驱动摩擦盘的侧壁上,所述驱动摩擦盘与所述传动轴摩擦盘传动配合。
优选的,所述冲击器包括冲击器入口通道,所述冲击器入口通道靠近所述手摇式恒流气泵的一端连通有接口,所述接口的末端与所述 恒流活塞泵出口端的所述阀门连通;所述冲击器入口通道远离所述接口的一端连通有主流通道,所述主流通道两端安装有气泵,所述主流通道中部安装有次流通道,所述次流通道与所述冲击器入口通道同轴设置;所述次流通道外侧设有接口螺纹公头,所述气传真菌富集染色装置通过所述接口螺纹公头安装在所述次流通道上。
优选的,所述气传真菌富集染色装置包括PMMA底盘和固定在所述PMMA底盘上的筒壁,所述筒壁内侧设有接口螺纹母头,所述接口螺纹母头与所述接口螺纹公头螺纹连接;所述PMMA底盘中部固定有反应池。
优选的,所述荧光数据采集及处理装置包括检测装置外壳和安装在所述检测装置外壳上的发射滤光片和数据显示屏;所述检测装置外壳靠近所述发射滤光片的一端安装有连接器,所述检测装置外壳通过所述连接器与所述气传真菌富集染色装置连接;
所述发射滤光片位于所述检测装置外壳与所述气传真菌富集染色装置之间,所述发射滤光片与所述检测装置外壳之间设置有CMOS图像传感器,所述检测装置外壳内安装有微控制器和第二电源,所述CMOS图像传感器、所述数据显示屏和所述第二电源均与所述微控制器电性连接;所述数据显示屏固定在所述检测装置外壳远离所述CMOS图像传感器的侧壁上。
一种便携式气传真菌实时采集检测方法,该方法包括以下步骤:
S1、准备工作;根据检测目标分离所需的流量大小调节扭矩调节螺栓的位置,并将压气活塞调至限位环处,利用移液枪向反应池内加入荧光染色剂;
S2、检测装置的组装;将通光孔、手摇式恒流气泵入口通道、手摇式恒流气泵出口通道、反应池维持在同一水平线上,以保障光源的无障碍传播;
S3、空气中真菌颗粒的收集与染色;利用手摇式恒流气泵将收集到的带有真菌颗粒的空气匀速送至冲击器进行分离,分离出的目标气传真菌颗粒在反应池中富集并进行染色;
S4、空气中真菌颗粒的检测;分离出的真菌颗粒染色完毕后,启动光源装置对染色好的真菌颗粒进行光源刺激,并启动荧光数据采集及处理装置对染色完成的荧光图像进行图像采集及图像处理,得到空气中微生物含量的计算结果。
与现有技术相比,本发明具有以下技术效果:
1.本发明涉及一种便携式气传真菌实时采集检测装置与方法,该装置利用人手作为动力源实现气传真菌的收集、分离及富集,操作简单、便携性强。
2.本发明涉及一种便携式气传真菌实时采集检测装置与方法,该装置根据扭矩恒定的原理设计了具有流量可调、出流稳定等特点的手摇式恒流气泵,出流范围广、流量调节方便、实用性强。
3.本发明涉及一种便携式气传真菌实时采集检测装置与方法,该装置设计利用小空间内液体的表面张力和浸润性固定荧光染色液,实现检测目标染色,体积小、成本低。
4.本发明涉及一种便携式气传真菌实时采集检测装置与方法,该装置将冲击器与微生物染色结构检测结构创新性结合,降低了气传真 菌理化性质实时检测的难度。
5.本发明涉及一种便携式气传真菌实时采集检测装置与方法,该装置将白色发光二极管与可拆卸的激发滤光片相结合作为检测光源,激发特定波长的单色光;装置根据检测目标的指标特性,即时选择相应的光源配置,使目标微生物的检测结果准确度更高。
6.本发明涉及一种便携式气传真菌实时采集检测装置与方法,该装置与方法的整体设备体积小、便携化、操作便捷,易于商品化推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的总体结构示意图。
图2为本发明中光源装置的结构示意图;
其中(a)为光源装置内部结构的三维图,(b)为光源装置内部结构的俯视图,(c)为光源装置内部结构的激发滤光片及透光保护层示意图。
图3为本发明中手摇式恒流气泵的结构示意图。
图4为本发明中冲击器的结构示意图。
图5为本发明中气传真菌富集染色装置的结构示意图;
其中(a)为气传真菌富集染色装置的三维示意图,(b)为气传 真菌富集染色装置的俯视图,(c)为气传真菌富集染色装置的截面图。
图6为本发明中荧光数据采集及处理装置的结构示意图。
图7为本发明中阀门的结构示意图;
其中(a)为阀门闭合状态的示意图,(b)为阀门打开状态的示意图。
图8为本发明一种便携式气传真菌实时采集检测装置与方法的工作流程图。
其中,光源装置-1,电源按钮-2,激发滤光片固定支架-3,遮光板-4,通光孔-5,连接管道-6,阀门-7,手摇式恒流气泵入口通道-8,手摇式恒流气泵-9,手摇式恒流气泵出口通道-10,接口-11,冲击器入口通道-12,冲击器-13,气传真菌富集染色装置-14,连接器-15,荧光数据采集及处理装置-16,数据显示屏-17,箱体-18,第一电源-19,线路固定支架-20,线路保护层-21,激发滤光片装置-22,白色发光二极管-23,激发滤光片-24,透光保护层-25,支架-26,三通卡壳-27,压杆-28,压杆齿轮-29,驱动齿轮-30,压气活塞-31,泵腔-32,传动轴摩擦盘-33,驱动摩擦盘-34,扭矩调节螺栓-35,手柄-36,限位环-37,传动轴-38,PDMS薄膜-39,PDMS薄膜支架-40,加速区-41,主流通道-42,次流通道-43,接口螺纹公头-44,反应池-45,反应池壁-46,PMMA底盘-47,筒壁-48,接口螺纹母头-49,发射滤光片-50,CMOS图像传感器-51,微控制器-52,第二电源-53,检测装置外壳-55,T型三通接口-56,抽气软管-57。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参见图1,本发明提供的便携式气传真菌实时采集检测装置由光源装置1,电源按钮2,激发滤光片固定支架3,遮光板4,通光孔5,连接管道6,阀门7,手摇式恒流气泵入口通道8,手摇式恒流气泵9,手摇式恒流气泵出口通道10,接口11,冲击器入口通道12,冲击器13,气传真菌富集染色装置14,连接器15,荧光数据采集及处理装置16,数据显示屏17,T型三通接口56,抽气软管57共十九个组件构成。光源装置1为气传真菌富集染色装置14的荧光反应提供具有特定波长的光信号,促进荧光反应的生成;连接管道6一端与遮光板4上的通光孔5相连,另一端与阀门7相连,此处阀门7在装置工作过程中始终处于关闭状态,确保光源装置1处无外界环境干扰;手摇式恒流气泵入口通道8和手摇式恒流气泵出口通道10均与阀门7相连,用于控制手摇式恒流气泵9的进流与出流状态;T型三通接口56安放于光源装置1与手摇式恒流气泵9中间,两端对称的端口一端与连接管道6上的阀门7相连,另一端与手摇式恒流气泵入口通道8上的阀门7相连,保证光在通道内部的直线传播;T型三通接口56垂 直方向上的端口与抽气软管57相连,用于空气中微生物颗粒的采集;手摇式恒流气泵9通过接口11与冲击器入口通道12相连,气传真菌富集染色装置14安装于冲击器13的末端;气传真菌富集染色装置14通过连接器15与荧光数据采集及处理装置16相连,荧光数据采集及处理装置16主要用于采集及处理荧光图像、定量分析检测结果及存储检测数据;同时,数据显示屏17还可以直接读取检测结果,便于用户的使用。
参见图1和图2,光源装置1由电源按钮2,遮光板4,通光孔5,箱体18,第一电源19,线路固定支架20,线路保护层21,激发滤光片装置22,白色发光二极管23,激发滤光片24,透光保护层25共十一个组件构成。第一电源19为5V电源,第一电源19为白色发光二极管23供电;线路保护层21的设置可以将导线集中保护起来,保证电源装置的安全;激发滤光片装置22由激发滤光片固定支架3、激发滤光片24、透光保护层25三个组件构成,放置于白色发光二极管23与遮光板4中间,另外,白色发光二极管23的放置高度与通光孔5水平;激发滤光片24用于选择激发荧光的特征波段光谱信号;激发滤光片固定支架3的设置可以实现激发滤光片24和透光保护层25的实时更换,实现系统中多种特征波长的供给;透光保护层25的添加可以减少激发滤光片24的污染。
参见图1和图3,手摇式恒流气泵9由阀门7,手摇式恒流气泵入口通道8,手摇式恒流气泵出口通道10,传动轴38,支架26,三通卡壳27,压杆28,压杆齿轮29,驱动齿轮30,压气活塞31,泵 腔32,传动轴摩擦盘33,驱动摩擦盘34,扭矩调节螺栓35,手柄36,限位环37,PDMS薄膜39,PDMS薄膜支架40共十八个部件组成。传动轴38与支架26通过三通卡壳27组合在一起;传动轴38、压杆28、压杆齿轮29、驱动齿轮30、压气活塞31、传动轴摩擦盘33、驱动摩擦盘34、扭矩调节螺栓35及手柄36组成驱动装置的主体;压杆28与活塞31中心相连,位于活塞31正上方;压杆齿轮29位于压杆28的表面;驱动齿轮30位于传动轴38的表面,并与压杆齿轮29相互啮合,用于带动压气活塞31上下移动;传动轴摩擦盘33与传动轴38是一体的结构;手柄36垂直固定在驱动摩擦盘34的侧方,驱动摩擦盘34与传动轴摩擦盘33紧密安放,手摇式恒流气泵9利用驱动摩擦盘34与传动轴摩擦盘33之间的摩擦力驱动摩擦盘34转动,从而实现活塞31的上下移动;当驱动摩擦盘34与传动轴摩擦盘33之间的摩擦力处于静摩擦时,手摇式恒流气泵9流量大小(即活塞31的上下移动的速度)随手柄36所受外力的增大而增大;当驱动摩擦盘34与传动轴摩擦盘33之间的摩擦力超过了最大静摩擦时,驱动摩擦盘34与传动轴摩擦盘33之间的摩擦力即为滑动摩擦,手摇式恒流气泵8的流量大小则不会随手柄36所受外力的变化而发生改变,此时,手摇式恒流气泵8流量输出将处于恒定状态;扭矩调节螺栓35用于调整驱动摩擦盘34与传动轴摩擦盘33之间的扭矩,该扭矩决定了恒流气泵9最终的工作流量;限位环37设置在手摇式恒流气泵入口通道8和手摇式恒流气泵出口通道10的正上方,标定了压气活塞31能到达的泵腔32的最低位置;泵腔32的顶部即为压气活塞 31能到达的最高位置;手摇式恒流气泵入口通道8和手摇式恒流气泵出口通道10对称设置在泵腔32底部的两侧,且均连接有用于控制手摇式恒流气泵8的进出流状态的阀门7。
参见图7,阀门7由PDMS薄膜39(透光率95%)和PDMS薄膜支架40组成,PDMS薄膜支架40顶端与阀门7的阀体铰接,PDMS薄膜39固定在PDMS薄膜支架40上,阀门7内部通道呈阶梯状变化,当气流由A端流入B端时,由于气流作用,阀门7将自动开启,当气流由B端流入A端时,阀门7呈现关闭状态;阀门7安装在手摇式恒流气泵入口通道8和手摇式恒流气泵出口通道10外侧,手摇式恒流气泵入口通道8与阀门7的B端相连,手摇式恒流气泵出口通道10与阀门7的A端相连;手柄36顺时针摇动时,活塞31将向上移动,与手摇式恒流气泵入口通道8相连的阀门7呈开启状态,与手摇式恒流气泵出口通道10相连的阀门7呈关闭状态,此时,手摇式恒流气泵9呈入流状态;手柄36逆时针摇动时,活塞31将向下移动,与手摇式恒流气泵入口通道8相连的阀门7呈关闭状态,与手摇式恒流气泵出口通道10相连的阀门7呈开启状态,此时,手摇式恒流气泵8呈出流状态;
参见图1和图4,冲击器13由冲击器入口通道12、加速区41、主流通道42、次流通道43以及接口螺纹公头44共五个部分组成。冲击器入口通道12通过接口11与手摇式恒流气泵出口通道10相连;气传真菌由冲击器入口通道12进入加速区41,在主流通道42两端均安装有气泵,在手摇式恒流气泵9未达到恒定状态时,空气中的真 菌等均被气泵吸走,只有在手摇式恒流气泵9达到恒定状态时,根据惯性冲击原理,惯性大的微颗粒将进入次流通道43,惯性小的微颗粒将在气泵的吸力作用下进入主流通道42,从而实现目标真菌的分离;此外,在次流通道43外侧设置接口螺纹公头44。
参见图1、图4和图5,气传真菌富集染色装置14由反应池45、反应池壁46、PMMA底盘47、筒壁48、接口螺纹母头49共五个部分组成。PMMA底盘47位于气传真菌富集染色装置14的底部,透光率可达92%以上;反应池壁46的壁高为1mm,位于PMMA底盘47上;反应池45即为反应池壁46围绕的区域,根据液体表面张力及浸润性的特点,可将染色剂固定在反应池45内,液体表面呈现抛物面状态,无需外力支撑。
参见图1和图6,荧光数据采集及处理装置16由发射滤光片50、CMOS图像传感器51、微控制器52、第二电源53、显示屏54、检测装置外壳55共六个部分组成。第二电源为12V电源,发射滤光片50用于筛选气传真菌富集染色装置13中气传真菌荧光反应时所发射出的荧光;微控制器52驱动CMOS图像传感器51采集荧光反应的图像数据,并对采集到的荧光图像数据进行图像处理,实现目标真菌的定量检测,所测的数据可以通过数据显示屏17直接读取。
参见图1、图2、图3、图4、图5、图6、图7和图8,本装置的具体工作流程为:首先,做好准备工作,压气活塞31调至限位环37处;根据检测目标分离所需的流量大小调节扭矩调节螺栓35的位置,即调整手摇式恒流气泵9的流量大小;利用移液枪向将反应池 45加入20μL的荧光染色剂;检测装置按图1顺序安装完成,将通光孔5、手摇式恒流气泵入口通道8、手摇式恒流气泵出口通道10、反应池45维持在同一水平线上,保障光源的无障碍传播;而后,顺时针摇动手柄36,此时,与手摇式恒流气泵入口通道8连接的阀门7打开,与手摇式恒流气泵出口通道10连接的阀门7关闭,手摇式恒流气泵9将空气中的微颗粒收集到泵腔32中;当压气活塞31到达手摇式恒流气泵9的顶端时,逆时针摇动手柄36,此时,与手摇式恒流气泵入口通道8连接的阀门7关闭,与手摇式恒流气泵出口通道10连接的阀门7打开,手摇式恒流气泵9将收集到的微颗粒匀速送至冲击器13进行分离,目标气传真菌颗粒最终被富集至反应池45中进行染色。八分钟后,启动光源装置1对染色好的真菌颗粒进行光源刺激,使其发生荧光反应。而后启动荧光数据采集及处理装置16对染色完成的荧光图像进行图像采集及图像处理,并根据Lambert-Beer定律量化荧光强度与微生物浓度之间的关系,在液晶屏上直接显示空气中真菌含量的计算结果。
本发明将荧光检测技术与气体微颗粒分离技术相结合,研制了便携式气传真菌实时采集检测装置。本装置突破了传统气传真菌检测中复杂、粗放的采集方式以及独立检测设备的需求限制,实现了气传真菌浓度的实时采集及量化,且装置体积小、造价低、无需专业人员操作、易于推广。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、 “内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

  1. 一种便携式气传真菌实时采集检测装置,其特征在于:包括依次连接的光源装置(1)、手摇式恒流气泵(9)、冲击器(13)、气传真菌富集染色装置(14)、荧光数据采集及处理装置(16);
    所述光源装置(1)包括箱体(18)和安装在所述箱体(18)内的发光组件,所述箱体(18)上开设有通光孔(5),所述手摇式恒流气泵(9)与所述箱体(18)之间设置有连接组件,所述手摇式恒流气泵(9)通过所述连接组件与所述通光孔(5)连接;
    所述手摇式恒流气泵(9)包括手摇驱动件以及与所述手摇驱动件传动连接的恒流活塞泵,所述恒流活塞泵的入口端与所述连接组件连通,所述恒流活塞泵的出口端与所述冲击器(13)连通;所述恒流活塞泵的入口端和出口端以及所述通光孔(5)与所述连接组件之间均安装有阀门(7);所述发光组件发出的光可依次经过所述连接组件、所述恒流活塞泵和所述冲击器(13)照射在所述气传真菌富集染色装置(14)上。
  2. 根据权利要求1所述的便携式气传真菌实时采集检测装置,其特征在于:所述发光组件包括线路固定支架(20)、白色发光二极管(23)、第一电源(19)、激发滤光片装置(22);所述白色发光二极管(23)通过导线与所述第一电源(19)电性连接,所述导线外侧包覆有线路保护层(21),所述白色发光二极管(23)通过所述线路保护层(21)与所述线路固定支架(20)固定配合,所述白色发光二极管(23)与所述通光孔(5)水平对应设置;所述导线上串联有电源按钮(2),所述电源按钮(2)固定在所述箱体(18)外侧;所述 箱体(18)靠近所述手摇式恒流气泵(9)的一侧固定有遮光板(4),所述通光孔(5)开设在所述遮光板(4)上;所述激发滤光片装置(22)设置在所述遮光板(4)与所述白色发光二极管(23)之间,所述激发滤光片装置(22)包括与所述箱体(18)可拆卸连接的激发滤光片固定支架(3),所述激发滤光片固定支架(3)上可拆卸连接有激发滤光片(24)和透光保护层(25),所述透光保护层(25)位于所述激发滤光片(24)与所述遮光板(4)之间。
  3. 根据权利要求1所述的便携式气传真菌实时采集检测装置,其特征在于:所述连接组件包括连接管道(6)和T型三通接口(56),所述连接管道(6)一端与所述通光孔(5)连通,所述连接管道(6)另一端安装有所述阀门(7),所述T型三通接口(56)水平方向上的两个端口分别与所述连接管道(6)上的所述阀门(7)和所述恒流活塞泵入口端的所述阀门(7)连通,所述T型三通接口(56)垂直方向上的端口处连通有抽气软管(57)。
  4. 根据权利要求1所述的便携式气传真菌实时采集检测装置,其特征在于:所述恒流活塞泵包括泵腔(32),所述泵腔(32)底部对称开设有手摇式恒流气泵入口通道(8)和手摇式恒流气泵出口通道(10);所述泵腔(32)内滑动连接有压气活塞(31),所述压气活塞(31)顶端中部固定连接有压杆(28),所述手摇驱动件与所述压杆(28)传动连接;所述泵腔(32)内壁固定连接有限位环(37),所述限位环(37)底部端面与所述手摇式恒流气泵入口通道(8)顶部齐平,所述压气活塞(31)与所述限位环(37)限位配合。
  5. 根据权利要求4所述的便携式气传真菌实时采集检测装置,其特征在于:所述手摇驱动件包括对称固定在所述泵腔(32)外侧的支架(26),所述支架(26)顶端固定有三通卡壳(27),两所述三通卡壳(27)内穿设有传动轴(38),所述传动轴(38)上固定有驱动齿轮(30),所述压杆(28)上固定有压杆齿轮(29),所述驱动齿轮(30)与所述压杆齿轮(29)啮合;所述传动轴(38)一端安装有手柄(36)。
  6. 根据权利要求5所述的便携式气传真菌实时采集检测装置,其特征在于:所述传动轴(38)一端固定有传动轴摩擦盘(33),所述传动轴摩擦盘(33)远离所述三通卡壳(27)的一侧设置有驱动摩擦盘(34),所述驱动摩擦盘(34)套设在所述传动轴(38)上;所述驱动摩擦盘(34)与所述传动轴(38)之间设置有扭矩调节螺栓(35),所述驱动摩擦盘(34)通过所述扭矩调节螺栓(35)与所述传动轴(38)转动连接,所述手柄(36)垂直固定在所述驱动摩擦盘(34)的侧壁上,所述驱动摩擦盘(34)与所述传动轴摩擦盘(33)传动配合。
  7. 根据权利要求1所述的便携式气传真菌实时采集检测装置,其特征在于:所述冲击器(13)包括冲击器入口通道(12),所述冲击器入口通道(12)靠近所述手摇式恒流气泵(9)的一端连通有接口(11),所述接口(11)的末端与所述恒流活塞泵出口端的所述阀门(7)连通;所述冲击器入口通道(12)远离所述接口(11)的一端连通有主流通道(42),所述主流通道(42)两端安装有气泵,所述主流通道(42)中部安装有次流通道(43),所述次流通道(43) 与所述冲击器入口通道(12)同轴设置;所述次流通道(43)外侧设有接口螺纹公头(44),所述气传真菌富集染色装置(14)通过所述接口螺纹公头(44)安装在所述次流通道(43)上。
  8. 根据权利要求7所述的便携式气传真菌实时采集检测装置,其特征在于:所述气传真菌富集染色装置(14)包括PMMA底盘(47)和固定在所述PMMA底盘(47)上的筒壁(48),所述筒壁(48)内侧设有接口螺纹母头(49),所述接口螺纹母头(49)与所述接口螺纹公头(44)螺纹连接;所述PMMA底盘(47)中部固定有反应池(45)。
  9. 根据权利要求1所述的便携式气传真菌实时采集检测装置,其特征在于:所述荧光数据采集及处理装置(16)包括检测装置外壳(55)和安装在所述检测装置外壳(55)上的发射滤光片(50)和数据显示屏(17);所述检测装置外壳(55)靠近所述发射滤光片(50)的一端安装有连接器(15),所述检测装置外壳(55)通过所述连接器(15)与所述气传真菌富集染色装置(14)连接;所述发射滤光片(50)位于所述检测装置外壳(55)与所述气传真菌富集染色装置(14)之间,所述发射滤光片(50)与所述检测装置外壳(55)之间设置有CMOS图像传感器(51),所述检测装置外壳(55)内安装有微控制器(52)和第二电源(53),所述CMOS图像传感器(51)、所述数据显示屏(17)和所述第二电源(53)均与所述微控制器(52)电性连接;所述数据显示屏(17)固定在所述检测装置外壳(55)远离所述CMOS图像传感器(51)的侧壁上。
  10. 一种便携式气传真菌实时采集检测方法,其特征在于:该方 法包括以下步骤:
    S1、准备工作;根据检测目标分离所需的流量大小调节扭矩调节螺栓的位置,并将压气活塞调至限位环处,利用移液枪向反应池内加入荧光染色剂;
    S2、检测装置的组装;将通光孔、手摇式恒流气泵入口通道、手摇式恒流气泵出口通道、反应池维持在同一水平线上,以保障光源的无障碍传播;
    S3、空气中真菌颗粒的收集与染色;利用手摇式恒流气泵将收集到的带有真菌颗粒的空气匀速送至冲击器进行分离,分离出的目标气传真菌颗粒在反应池中富集并进行染色;
    S4、空气中真菌颗粒的检测;分离出的真菌颗粒染色完毕后,启动光源装置对染色好的真菌颗粒进行光源刺激,并启动荧光数据采集及处理装置对染色完成的荧光图像进行图像采集及图像处理,得到空气中微生物含量的计算结果。
PCT/CN2021/120937 2021-04-29 2021-09-27 一种便携式气传真菌实时采集检测装置与方法 WO2022227395A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2203702.2A GB2605697B (en) 2021-04-29 2021-09-27 Portable real-time airborne fungi acquiring and detecting equipment and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110472687.9 2021-04-29
CN202110472687.9A CN113176118B (zh) 2021-04-29 2021-04-29 一种便携式气传真菌实时采集检测装置与方法

Publications (1)

Publication Number Publication Date
WO2022227395A1 true WO2022227395A1 (zh) 2022-11-03

Family

ID=76925616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120937 WO2022227395A1 (zh) 2021-04-29 2021-09-27 一种便携式气传真菌实时采集检测装置与方法

Country Status (3)

Country Link
US (1) US11566980B2 (zh)
CN (1) CN113176118B (zh)
WO (1) WO2022227395A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2605697B (en) * 2021-04-29 2023-04-19 Univ Jiangsu Portable real-time airborne fungi acquiring and detecting equipment and method
CN113176118B (zh) * 2021-04-29 2021-12-10 江苏大学 一种便携式气传真菌实时采集检测装置与方法
WO2023133714A1 (zh) * 2022-01-12 2023-07-20 广州工商学院 一种酸奶质量检测用真菌数量检测装置及检测方法
CN116256010B (zh) * 2023-02-14 2023-09-15 滁州学院 一种基于环境监测的遥感系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894211A (zh) * 2015-06-26 2015-09-09 湖南农业大学 一种真菌荧光染色的方法及应用
CN106568696A (zh) * 2016-11-14 2017-04-19 江苏大学 基于微流控芯片的作物真菌病害预防检测装置与方法
CN107421934A (zh) * 2017-08-02 2017-12-01 重庆大学 一种新型便携式细菌实时检测芯片系统及检测方法
US20190009274A1 (en) * 2015-08-13 2019-01-10 President And Fellows Of Harvard College Microfluidic Devices And Systems For Cell Culture And/Or Assay
CN113176118A (zh) * 2021-04-29 2021-07-27 江苏大学 一种便携式气传真菌实时采集检测装置与方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247609A (ja) * 2010-05-24 2011-12-08 Nissan Motor Co Ltd 気中粒子検出装置
JP6329164B2 (ja) * 2013-10-03 2018-05-23 株式会社日立製作所 気中物質検知装置用のカートリッジ及び気中物質検知装置
KR102288766B1 (ko) * 2014-08-18 2021-08-12 엘지전자 주식회사 포집판 제조 방법 및 부유 미생물 측정장치
CN107217087B (zh) * 2016-03-22 2019-12-10 中国石油化工股份有限公司 迅速测量油田污水和成品油中细菌含量的方法
CN107216998B (zh) * 2016-03-22 2020-05-19 中国石油化工股份有限公司 迅速测量油田污水和成品油中细菌含量的自动化装置
CN111033216A (zh) * 2017-08-24 2020-04-17 霍尼韦尔国际公司 用于颗粒传感器的气流控制
CN108009404A (zh) 2017-09-29 2018-05-08 申海科技(天津)有限公司 一种基于环境微生物数据的环境安全检测评估方法及系统
CN111610175B (zh) * 2020-07-10 2023-05-12 中国科学院烟台海岸带研究所 一种流通式浮游植物种类及细胞密度检测装置和检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894211A (zh) * 2015-06-26 2015-09-09 湖南农业大学 一种真菌荧光染色的方法及应用
US20190009274A1 (en) * 2015-08-13 2019-01-10 President And Fellows Of Harvard College Microfluidic Devices And Systems For Cell Culture And/Or Assay
CN106568696A (zh) * 2016-11-14 2017-04-19 江苏大学 基于微流控芯片的作物真菌病害预防检测装置与方法
CN107421934A (zh) * 2017-08-02 2017-12-01 重庆大学 一种新型便携式细菌实时检测芯片系统及检测方法
CN113176118A (zh) * 2021-04-29 2021-07-27 江苏大学 一种便携式气传真菌实时采集检测装置与方法

Also Published As

Publication number Publication date
US20220349786A1 (en) 2022-11-03
US11566980B2 (en) 2023-01-31
CN113176118A (zh) 2021-07-27
CN113176118B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2022227395A1 (zh) 一种便携式气传真菌实时采集检测装置与方法
CN105717107B (zh) 一种基于微流控芯片的多通道有害气体检测装置与方法
CN205133611U (zh) 一种细胞均布连续剪应力发生装置
CN110343604A (zh) 一种微流控农残检测芯片及应用
CN108627448A (zh) 微粒计数的方法
CN103674902A (zh) 基于手机平台的lspr便携式生化检测仪
CN113820242A (zh) 一种空气采样检测系统
CN100489498C (zh) 多参数空气质量快速测定仪
CN112903662A (zh) 一种用于液相实时检测的便携式激光拉曼光谱检测装置
GB2605697A (en) Not published
CN209690332U (zh) 一种便携式荧光免疫分析仪
CN113702234A (zh) 一种空气综合检测仪
CN117030653A (zh) 基于物联网的便携式气体检测仪
CN215375367U (zh) 一种总磷在线监测仪
CN215415288U (zh) 一种便携式烟气分析测试仪
RU80240U1 (ru) Проточная спектрофотометрическая кювета
CN110823821B (zh) 基于微流控芯片的水中重金属离子浓度检测装置与方法
CN114705878A (zh) 一种多参数全自动尿液和唾液前处理及检测一体化仪器
CN207964558U (zh) 一种智能空气检测装置
CN2854581Y (zh) 多参数空气质量快速测定仪
CN208026631U (zh) 一种便携式铀定量分析仪
CN220709039U (zh) 一种用于肺癌早筛的EVs自动检测仪
CN110346343A (zh) 基于SERS技术现场探测PAHs的传感器
CN113834905A (zh) 一种空气搜集检测器
CN219369290U (zh) 空气采样装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202203702

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210927

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938859

Country of ref document: EP

Kind code of ref document: A1