WO2022227157A1 - 一种体视角可调的连续变焦体视显微镜 - Google Patents

一种体视角可调的连续变焦体视显微镜 Download PDF

Info

Publication number
WO2022227157A1
WO2022227157A1 PCT/CN2021/095850 CN2021095850W WO2022227157A1 WO 2022227157 A1 WO2022227157 A1 WO 2022227157A1 CN 2021095850 W CN2021095850 W CN 2021095850W WO 2022227157 A1 WO2022227157 A1 WO 2022227157A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
objective lens
stereo
prism
liquid
Prior art date
Application number
PCT/CN2021/095850
Other languages
English (en)
French (fr)
Inventor
刘超
王琼华
江钊
郑奕
王迪
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2022227157A1 publication Critical patent/WO2022227157A1/zh
Priority to US18/179,088 priority Critical patent/US20230221540A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0012Surgical microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting

Definitions

  • the present disclosure relates to the field of microscopy, and in particular to stereo microscopes. More specifically, the present disclosure relates to a continuous zoom stereo microscope with adjustable stereo viewing angle.
  • the microscope is an optical instrument composed of multiple lenses.
  • the object to be measured is formed into a magnified real image on the focal plane of the eyepiece through the microscope objective lens, and then imaged at infinity through the eyepiece for the human eye to observe.
  • Stereo microscope also known as solid microscope or dissecting microscope, refers to a visual instrument with a three-dimensional sense of erection.
  • the stereo microscope enables both eyes to observe the object to be measured from different angles.
  • the included angle is called the stereo viewing angle, and the stereo viewing angle is generally between 10 degrees and 16 degrees.
  • the stereo microscope can be used with an image sensor to present an enlarged image on the computer screen for the observer to watch.
  • Stereo microscopes have been widely used in the fields of electronics industry, biological anatomy, clinical surgery and industrial testing.
  • stereo microscope system There are two structural forms of stereo microscope system, parallel optical path system and inclined optical path system.
  • the object to be measured is imaged at infinity by sharing the large front objective lens, and the telephoto system is in the middle, and then the object to be measured is imaged on the focal plane of the eyepiece through the lens in the lens barrel, and observed at infinity through the eyepiece imaging;
  • the latter uses the Greenough system whose optical axis is not perpendicular to the object plane to image the object to be measured on the focal plane of the eyepiece, and then observes at infinity through the eyepiece image.
  • the light of the parallel light path system is prone to aberrations through the edge of the common front large objective lens, so the design is difficult and the cost is high; the optical axis of the two light lines of the inclined light path system forms a certain angle, which leads to a certain stereo vision aberration.
  • the stereo microscope In order to realize the continuous change of the image size of the object to be measured during observation, the stereo microscope gradually adopts the zoom stereo microscope system.
  • the traditional zoom stereo microscope is mainly a combination of solid lenses, which makes the traditional zoom stereo microscope not only limited in accuracy but also high in cost; its adaptability is generally driven by external mechanical devices, and the response speed is slow and the overall cost is increased.
  • traditional zoom stereo microscopes can only achieve the choice of separation magnification. Therefore, there is an urgent need to invent a stereo microscope with continuously changing stereo viewing angle, fast response, adjustable stereo perception and continuous zooming.
  • the present disclosure proposes a continuous zoom stereo microscope with adjustable stereo viewing angle.
  • the structure of the stereo microscope is shown in FIG. 1
  • the sectional view is shown in FIG. 2 .
  • the stereo microscope includes: a microscope stand, a first eyepiece module, a second eyepiece module, a first objective lens module, a second objective lens module, a first Risley prism, a second Risley prism, a first relay prism, a first Two-rotation prism, drive module, control module and lighting module.
  • the microscope frame is composed of a base, a bracket and an objective lens sleeve; the first eyepiece module and the second eyepiece module have the same structure and are composed of several solid lenses and liquid lenses; the first objective lens module and the second objective lens module Installed in the objective lens sleeve, the first objective lens module is composed of a first liquid lens group and a first solid lens group, and the second objective lens module is composed of a second liquid lens group and a second solid lens group; the first liquid lens group is composed of It has the same structure as the second liquid lens group and is composed of several liquid lenses.
  • the first solid lens group and the second solid lens group have the same structure and are composed of several solid lenses.
  • the driving module can dynamically change the focal length of each liquid lens in the liquid lens group in real time to realize the continuous zoom of the stereo microscope ;
  • the control module can dynamically adjust the rotation angle of the two wedge-angle prisms in the Risley prism, thereby realizing the adjustment of the stereoscopic viewing angle of the stereo microscope.
  • the light path on the left side is composed of the first eyepiece module, the first relay prism, the first objective lens module and the first Risley prism
  • the light path on the right side is composed of the second eyepiece module and the second relay prism.
  • a second objective lens module and a second Risley prism is composed of the first eyepiece module and the first relay prism.
  • the driving module needs to preset several groups of driving values according to the different magnifications required by the stereo microscope.
  • the driving module provides preset driving values for each liquid lens in the liquid lens group according to different magnifications to change the focal length of the liquid lens, thereby changing the effective focal length of the objective lens module and the eyepiece module.
  • the continuous and fast zoom of the stereo microscope is realized, which is suitable for different working scenarios.
  • the workflow of the continuous zoom stereo microscope with adjustable stereo viewing angle is as follows: the two beams of light emitted by the object to be tested with a specific stereo viewing angle pass through the first Risley prism and the second Risley prism respectively, and after the beams are deflected by the two Risley prisms, they form The left and right beams with their optical axes parallel to the two objective lens modules; the left beam passes through the first objective lens module, and after passing through the first relay prism, the light is refracted, the optical path is extended, and a left parallax diagram is formed; the right beam passes through After the second objective lens module passes through the second relay prism, the light is refracted, the light path is extended, and a right parallax diagram is formed.
  • the two parallax images are fused by the observer's brain to form a stereoscopic image.
  • the process of continuously changing the magnification of the continuous zoom stereo microscope with adjustable stereo viewing angle is as follows: when the stereo microscope starts to work, the driving module provides the driving value required for low magnification for each liquid lens in the objective lens module and the eyepiece module. , so that the focal length of the liquid lens changes correspondingly. At this time, the stereo microscope is in a state of low magnification, and its equivalent optical path diagram is shown in FIG. 3 .
  • the drive module dynamically provides preset drive values corresponding to different magnifications for each liquid lens in the objective lens module and the eyepiece module, so as to change the focal length of each liquid lens in real time, thereby improving the objective lens
  • the effective focal length of the module and the eyepiece module provides the observer with a stereoscopic image with high magnification, and realizes the continuous change of the magnification of the stereo microscope.
  • the equivalent optical path diagram is shown in Figure 4. In this process, both the objective lens module and the eyepiece module can perform aberration correction on the light beam and adjust the magnification of the stereo microscope by adjusting the focal length of the liquid lens.
  • the stereo microscope of the present disclosure can acquire images of the object to be tested with different stereoscopic perceptions, that is, to obtain images of the object to be tested with different stereoscopic viewing angles.
  • the driving module provides the corresponding driving value for the liquid lens according to the required magnification, so that the stereo microscope obtains a stereo image of the object to be tested with a stereo viewing angle of ⁇ 1.
  • the first Risley prism The included angles between the two wedge prisms and the x-direction are ⁇ 1 and ⁇ 2 respectively, and the equivalent optical path diagram is shown in FIG. 7 .
  • the control module controls the two wedge prisms in the first Risley prism to rotate independently around the axis by a certain angle according to different depths.
  • the two wedge prisms in the first Risley prism are in the x direction
  • the included angles are respectively ⁇ 3 and ⁇ 4 , and then the turning angle of the first Risley prism to the light beam is changed, so that after the light beam passes through the first Risley prism, the two outgoing light beams are always kept parallel to the two objective lens modules; the driving module is based on the first Risley prism.
  • the relative angle of the two wedge-angle prisms in the prism provides the corresponding driving value for the liquid lens, so that the stereo microscope can always provide the observer with a clear stereo image.
  • the stereo microscope obtains a stereo image with a viewing angle of ⁇ 2 , where ⁇ 2 > ⁇ 1 , and its equivalent optical path diagram is shown in FIG. 8 .
  • the stereo microscope can perform continuous adjustment of the magnification at the same time.
  • the adjustment process of the right optical path is the same as that of the left optical path.
  • the continuous zoom stereo microscope with adjustable stereo viewing angle of the present disclosure can acquire continuous parallax images, connect an image sensor at the rear end of the eyepiece module, and after image acquisition, the continuous parallax images are synthesized by a computer to form a composite image, which is displayed on the display. Provide the observer with a stereoscopic image of the object to be measured.
  • the liquid lens types used in the liquid lens group include electrowetting driven liquid lens, dielectrophoretic force driven liquid lens, elastic film liquid lens driven by mechanical motor, magnetron liquid lens and electronic muscle driven liquid lens.
  • the Risley prism uses mechanical driving, electronically controlled driving, and the like.
  • right angle prisms triangular prisms, penta prisms, etc. are used as the relay prisms.
  • the first objective lens module and the second objective lens module have the same structure, wherein the number of liquid lenses P ⁇ 1 and the number of solid lenses Q ⁇ 0; the first eyepiece module and the second eyepiece module have the same structure, The number of liquid lenses M ⁇ 1 and the number of solid lenses N ⁇ 0.
  • FIG. 1 is a structural diagram of a continuous zoom stereo microscope with adjustable stereo viewing angle.
  • FIG. 2 is a schematic front view of the arrangement of optical elements and optical path positions of a continuous zoom stereo microscope with adjustable stereo viewing angle.
  • FIG. 3 is an equivalent light path diagram of a continuous zoom stereo microscope with adjustable stereo viewing angle at low magnification.
  • FIG. 4 is an equivalent optical path diagram of a continuous zoom stereo microscope with adjustable stereo viewing angle at high magnification.
  • FIG. 5 is an equivalent optical path diagram when the stereoscopic angle of view of the continuous zoom stereo microscope with adjustable stereoscopic angle of view is ⁇ 1.
  • FIG. 6 is an equivalent optical path diagram when the stereoscopic angle of view of the continuous zoom stereo microscope with adjustable stereoscopic angle of view is ⁇ 2 .
  • FIG. 7 is a simulation diagram of the optical design of a continuous zoom stereo microscope with an adjustable stereo viewing angle when the stereo viewing angle is 16°.
  • FIG. 8 is a simulation diagram of the optical design of a continuous zoom stereo microscope with an adjustable stereo viewing angle when the stereo viewing angle is 10°.
  • a specific embodiment of the present disclosure is: a continuous zoom stereo microscope with adjustable stereo viewing angle is composed of a microscope stand, a first eyepiece module, a second eyepiece module, a first objective lens module, a second objective lens module, a first Risley The prism, the second Risley prism, the first relay prism, the second relay prism, the driving module, the control module and the lighting module are composed.
  • the microscope frame is composed of a base, a bracket and an objective lens sleeve; the first eyepiece module and the second eyepiece module have the same structure and are composed of several solid lenses and liquid lenses; the first objective lens module and the second objective lens module Installed in the objective lens sleeve, the first objective lens module is composed of a first liquid lens group and a first solid lens group, and the second objective lens module is composed of a second liquid lens group and a second solid lens group; the first liquid lens group is composed of It has the same structure as the second liquid lens group and is composed of several liquid lenses.
  • the first solid lens group and the second solid lens group have the same structure and are composed of several solid lenses; It consists of two wedge prisms that rotate independently.
  • the optical design principle of a continuous zoom stereo microscope with an adjustable body angle of view when the body angle of view is 16° is shown in Figure 7.
  • the focal length of the objective lens module is 51.7mm, and the first eyepiece module and the second eyepiece module have the same structure. Both consist of 2 solid lenses; the first objective lens module and the second objective lens module have the same structure, and both consist of 2 solid lenses and 3 electrowetting driven liquid lenses; two wedge prisms in the Risley prism are connected to the x-direction
  • the included angles are 0° and 30°, respectively;
  • the curvature radii of the three liquid lenses are 5.968mm, 12.828mm, and -41.179mm, respectively, and the driving voltages are 62V, 51V, and 39V, respectively.
  • the stereo microscope obtains two parallax images with a viewing angle of 16° of the object to be measured, and the observer forms a stereo image after brain fusion.
  • the optical design principle of the continuous zoom stereo microscope with adjustable viewing angle when the stereo viewing angle is 10° is shown in Figure 8.
  • the focal length of the objective lens module is 87.1mm, and the first eyepiece module and the second eyepiece module have the same structure, both of which are identical. It consists of 2 solid lenses; the first objective lens module and the second objective lens module have the same structure, and both consist of 2 solid lenses and 3 electrowetting driven liquid lenses; two wedge prisms in the Risley prism are clamped with the x-direction
  • the angles are 0° and 48°, respectively; the curvatures of the three liquid lenses are 5.811mm, 10.691mm, and 21.399mm, respectively, and the driving voltages are 61V, 53V, and 47.5V, respectively.
  • the stereo microscope obtains two parallax images with a viewing angle of 10° of the object to be measured, and the observer forms a stereo image after brain fusion.
  • the continuous change of the volume angle within the range of 10° to 16° can be achieved.
  • the stereoscopic viewing angle is different, the stereoscopic perception of the stereoscopic image of the object to be measured obtained by the observer is different.
  • the focal length of each liquid lens can be changed by the driving module, and the continuous adjustment of the magnification of the stereo microscope can be realized at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本公开提出一种体视角可调的连续变焦体视显微镜,它由显微镜架、第一目镜模组、第二目镜模组、第一物镜模组、第二物镜模组、第一Risley棱镜、第二Risley棱镜、第一转像棱镜、第二转像棱镜、驱动模组、控制模组和照明模组组成。驱动模组根据不同放大倍率为液体透镜组中各液体透镜提供预置的驱动值来改变液体透镜的焦距,进而改变物镜模组和目镜模组的有效焦距,最终实现体视显微镜的连续、快速变焦,适应于不同的工作场景。控制模组控制Risley棱镜中两楔角棱镜相对角度,实现体视显微镜体视角的连续调节,进而获取立体感不同的立体图像。

Description

一种体视角可调的连续变焦体视显微镜
相关申请的交叉引用
本公开要求于2021年04月27日提交中国专利局的申请号为CN202110456676.1、名称为“一种体视角可调的连续变焦体视显微镜”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显微镜领域,尤其是涉及体视显微镜。更具体地说,本公开涉及一种体视角可调的连续变焦体视显微镜。
背景技术
显微镜是由多透镜组合而成的一种光学仪器,待测物经显微物镜在目镜的物方焦平面上成一个放大的实像,然后通过目镜成像在无限远处供人眼观察。体视显微镜,亦称实体显微镜或解剖镜,是指一种具有正像立体感的目视仪器。体视显微镜可使双眼分别实现从不同角度观察待测物,其中的夹角称为体视角,体视角一般在10度~16度之间。同时,体视显微镜可以搭配图像传感器在计算机的屏幕上呈现放大的图像供观察者观看。体视显微镜已被广泛应用于电子工业、生物解剖、临床手术和工业检测等领域。
体视显微系统的结构形式有两种,平行光路系统和倾斜光路系统。前者通过共用前置大物镜将待测物成像在无穷远,中间是望远系统,然后通过镜筒内透镜将待测物成像在目镜物方焦平面,通过目镜成像在无穷远处进行观察;后者通过光轴与物面互不垂直的格里诺系统将待测物成像在目镜物方焦平面,然后通过目镜成像在无穷远进行观察。平行光路系统光线通过共同前置大物镜边缘易产生像差,所以设计困难且成本高;倾斜光路系统两路光线光轴成一定的夹角导致一定的立体视觉像差。
为了实现观察时待测物成像大小的连续变化,体视显微镜也逐渐釆用变焦体视显微系统。传统变焦体视显微镜主要是固体透镜的组合,使得传统变焦体视显微镜不仅精度有限且成本较高;其适应性一般依靠外部的机械装置进行驱动,响应速度慢且增大了整体成本。此外,传统变焦体视显微镜只能实现分离倍率的选择。因此,亟待发明一种体视角连续变化、响应快速、立体感可调且能连续变焦的体视显微镜。
发明内容
本公开提出了一种体视角可调的连续变焦体视显微镜。该体视显微镜的结构如附图1所示,剖面图如附图2所示。该体视显微镜包括:显微镜架、第一目镜模组、第二目镜模组、第一物镜模组、第二物镜模组、第一Risley棱镜、第二Risley棱镜、第一转像棱镜、第二转像棱镜、驱动模组、控制模组和照明模组。其中,显微镜架由基座、支架和物镜套筒组成;第一目镜模 组和第二目镜模组结构相同,由若干片固体透镜和液体透镜组成;第一物镜模组和第二物镜模组安装在物镜套筒中,第一物镜模组由第一液体透镜组和第一固体透镜组组成,第二物镜模组由第二液体透镜组和第二固体透镜组组成;第一液体透镜组和第二液体透镜组结构相同,均由若干液体透镜组成,第一固体透镜组和第二固体透镜组结构相同,均由若干片固体透镜组成;Risley棱镜由共轴相邻排列并能绕轴独立旋转的两片楔角棱镜组成;转像棱镜的功能是实现光线的折转和光路的延长;驱动模组可动态实时改变液体透镜组中各液体透镜的焦距来实现体视显微镜的连续变焦;控制模组可动态调整Risley棱镜中两片楔角棱镜的旋转角,进而实现体视显微镜体视角的调节。以观察者视角为基准,左侧光路由第一目镜模组、第一转像棱镜、第一物镜模组和第一Risley棱镜构成,右侧光路由第二目镜模组、第二转像棱镜、第二物镜模组和第二Risley棱镜构成。
体视角可调的连续变焦体视显微镜使用前,驱动模组需要根据体视显微镜所需的不同放大倍率预置若干组驱动值。在体视显微镜进行连续变焦时,驱动模组根据不同放大倍率为液体透镜组中各液体透镜提供预置的驱动值来改变液体透镜的焦距,进而改变物镜模组和目镜模组的有效焦距,最终实现体视显微镜的连续且快速变焦,适应于不同的工作场景。
体视角可调的连续变焦体视显微镜的工作流程为:待测物发出的两束呈特定体视角的光束分别通过第一Risley棱镜和第二Risley棱镜,经两Risley棱镜进行光束偏转后,形成左右两束光轴与两物镜模组平行的光束;左侧光束通过第一物镜模组,再经第一转像棱镜后,光线折转,光路延长,并形成左视差图;右侧光束通过第二物镜模组,再经第二转像棱镜后,光线折转,光路延长,并形成右视差图。两幅视差图像由观察者经过大脑融合后形成立体图像。
体视角可调的连续变焦体视显微镜的放大倍率连续变化的过程具体为:体视显微镜开始工作时,驱动模组为物镜模组和目镜模组中各液体透镜提供低倍率所需的驱动值,使液体透镜焦距对应改变,此时体视显微镜处于低放大倍率状态,其等效光路图如附图3所示。当观察者需要提高放大倍率时,驱动模组动态地为物镜模组和目镜模组中各液体透镜提供不同放大倍率所对应的预置的驱动值,从而实时改变各液体透镜焦距,进而提高物镜模组和目镜模组的有效焦距,为观察者提供高放大倍率的立体图像,实现体视显微镜倍率的连续变化,其等效光路图如附图4所示。在此过程中,物镜模组和目镜模组均可通过调节液体透镜焦距对光束进行像差校正及体视显微镜放大倍率的调整。
为观测待测物整体形貌信息,本公开的体视显微镜可获取待测物不同立体感的图像,即获取待测物呈不同体视角的图像。以左侧光路为例,初始状态时,驱动模组根据所需放大倍率为液体透镜提供对应驱动值,使体视显微镜获得体视角为α 1的待测物立体图像,此时第一Risley棱镜中两片楔角棱镜与x方向夹角分别为θ 1和θ 2,其等效光路图如附图7所示。当需要观察 待测物不同视角的信息时,控制模组根据不同深度控制第一Risley棱镜中两楔角棱镜绕轴独立旋转一定角度,此时第一Risley棱镜中两片楔角棱镜与x方向夹角分别为θ 3和θ 4,进而改变第一Risley棱镜对光束的折转角,使光束通过第一Risley棱镜后始终保持出射的两光束与两物镜模组平行;驱动模组根据第一Risley棱镜中两楔角棱镜的相对角度,为液体透镜提供对应驱动值,使体视显微镜始终为观察者提供清晰的立体图像,此时,体视显微镜获得到待测物体视角为α 2的立体图像,其中α 21,其等效光路图如附图8所示。随着体视角的改变,所获得的待测物立体图像的立体感发生相应改变。在此过程中,体视显微镜可同时进行放大倍率的连续调节。右侧光路的调整过程与左侧光路一致。
本公开的体视角可调的连续变焦体视显微镜可进行连续视差图像获取,在目镜模组后端连接图像传感器,进行图像采集后,经计算机对连续视差图像合成,形成合成图,在显示器上为观察者提供待测物图像立体图像。
优选地,液体透镜组采用的液体透镜类型有电润湿驱动液体透镜、介电泳力驱动液体透镜、机械马达驱动的弹性薄膜液体透镜、磁控液体透镜和电子肌肉驱动的液体透镜等。
优选地,Risley棱镜使用机械驱动和电控驱动等。
优选地,转像棱镜采用直角棱镜、三棱镜和五棱镜等。
优选地,第一物镜模组和第二物镜模组结构相同,其中液体透镜的个数P≥1且固体透镜的个数Q≥0;第一目镜模组和第二目镜模组结构相同,其中液体透镜的个数M≥1且固体透镜的个数N≥0。
附图说明
附图1为体视角可调的连续变焦体视显微镜的结构图。
附图2为体视角可调的连续变焦体视显微镜的光学元件和光路位置的布置示意性正视图。
附图3为低放大倍率时体视角可调的连续变焦体视显微镜的等效光路图。
附图4为高放大倍率时体视角可调的连续变焦体视显微镜的等效光路图。
附图5为体视角可调的连续变焦体视显微镜的体视角为α 1时等效光路图。
附图6为体视角可调的连续变焦体视显微镜的体视角为α 2时等效光路图。
附图7为体视角为16°时体视角可调的连续变焦体视显微镜的光学设计仿真图。
附图8为体视角为10°时体视角可调的连续变焦体视显微镜的光学设计仿真图。
上述各附图中的图示标号为:
(1)基座、(2)支架、(3)物镜套筒、(4)照明模组、(5)第一目镜模组、(6)第二目镜模组、(7)第一物镜模组、(8)第二物镜模组、(9)第一液体透镜组、(10)第二液体透镜组、(11)第一固体透镜组、(12)第二固体透镜组、(13)第一Risley棱镜、(14)第二Risley 棱镜、(15)第一转像棱镜、(16)第二转像棱镜。
应该理解上述附图只是示意性的,并没有按比例绘制。
具体实施方式
下面详细说明本公开提出的一种体视角可调的连续变焦体视显微镜的实施例,对本公开进行进一步的描述。有必要在此指出的是,以下实施例只用于本公开做进一步的说明,不能理解为对本公开保护范围的限制,该领域技术熟练人员根据上述发明内容对本公开做出一些非本质的改进和调整,仍属于本公开的保护范围。
本公开的一个具体实施例为:体视角可调的连续变焦体视显微镜由显微镜架、第一目镜模组、第二目镜模组、第一物镜模组、第二物镜模组、第一Risley棱镜、第二Risley棱镜、第一转像棱镜、第二转像棱镜、驱动模组、控制模组和照明模组组成。其中,显微镜架由基座、支架和物镜套筒组成;第一目镜模组和第二目镜模组结构相同,由若干片固体透镜和液体透镜组成;第一物镜模组和第二物镜模组安装在物镜套筒中,第一物镜模组由第一液体透镜组和第一固体透镜组组成,第二物镜模组由第二液体透镜组和第二固体透镜组组成;第一液体透镜组和第二液体透镜组结构相同,均由若干液体透镜组成,第一固体透镜组和第二固体透镜组结构相同,均由若干片固体透镜组成;Risley棱镜由共轴相邻排列并能绕轴独立旋转的两片楔角棱镜组成。
体视角为16°时体视角可调的连续变焦体视显微镜的光学设计原理如附图7所示,物镜模组的焦距为51.7mm,第一目镜模组和第二目镜模组结构相同,均由2片固体透镜组成;第一物镜模组和第二物镜模组结构相同,均由2片固体透镜和3片电润湿驱动液体透镜组成;Risley棱镜中两片楔角棱镜与x方向夹角分别为0°和30°;三片液体透镜的曲率半径分别为5.968mm、12.828mm和-41.179mm,驱动电压分别为62V、51V和39V。此时,体视显微镜获得待测物体视角为16°的两幅视差图,由观察者经过大脑融合后形成立体图像。
体视角为10°时视角可调的连续变焦体视显微镜的光学设计原理如附图8所示,物镜模组的焦距为87.1mm,第一目镜模组和第二目镜模组结构相同,均由2片固体透镜组成;第一物镜模组和第二物镜模组结构相同,均由2片固体透镜和3片电润湿驱动液体透镜组成;Risley棱镜中两片楔角棱镜与x方向夹角分别为0°和48°;三片液体透镜的曲率分别为5.811mm、10.691mm和21.399mm,驱动电压分别为61V、53V和47.5V。此时,体视显微镜获得待测物体视角为10°的两幅视差图,由观察者经过大脑融合后形成立体图像。
通过调节Risley棱镜中两片楔角棱镜的相对角度,可以实现体视角在10°~16°范围内的连续变化。体视角不同时,观察者所获得待测物的立体图像的立体感不同。在此过程中,通过驱动模组改变各液体透镜的焦距,可同时实现进行体视显微镜放大倍率的连续调节。

Claims (6)

  1. 一种体视角可调的连续变焦体视显微镜,该体视显微镜包括:显微镜架、第一目镜模组、第二目镜模组、第一物镜模组、第二物镜模组、第一Risley棱镜、第二Risley棱镜、第一转像棱镜、第二转像棱镜、驱动模组、控制模组和照明模组;其中,显微镜架由基座、支架和物镜套筒组成;第一目镜模组和第二目镜模组结构相同,由若干片固体透镜和液体透镜组成;第一物镜模组和第二物镜模组安装在物镜套筒中,第一物镜模组由第一液体透镜组和第一固体透镜组组成,第二物镜模组由第二液体透镜组和第二固体透镜组组成;第一液体透镜组和第二液体透镜组结构相同,均由若干液体透镜组成,第一固体透镜组和第二固体透镜组结构相同,均由若干片固体透镜组成;Risley棱镜由共轴相邻排列并能绕轴独立旋转的两片楔角棱镜组成;转像棱镜的功能是实现光线的折转和光路的延长;驱动模组可动态实时改变液体透镜组中各液体透镜的焦距来实现体视显微镜的连续变焦;控制模组可动态调整Risley棱镜中两片楔角棱镜的旋转角,进而实现体视显微镜体视角的调节;以观察者视角为基准,左侧光路由第一目镜模组、第一转像棱镜、第一物镜模组和第一Risley棱镜构成,右侧光路由第二目镜模组、第二转像棱镜,第二物镜模组和第二Risley棱镜构成;
    该体视显微镜使用前,驱动模组需要根据体视显微镜所需的不同放大倍率预置若干组驱动值;在体视显微镜进行连续变焦时,驱动模组根据不同放大倍率为液体透镜组中各液体透镜提供预置的驱动值来改变液体透镜的焦距,进而改变物镜模组和目镜模组的有效焦距,最终实现体视显微镜的连续且快速变焦,适应于不同的工作场景;
    该体视显微镜的工作流程为:待测物发出的两束呈特定体视角的光束分别通过第一Risley棱镜和第二Risley棱镜,经两Risley棱镜进行光束偏转后,形成左右两束光轴与两物镜模组平行的光束;左侧光束通过第一物镜模组,再经第一转像棱镜后,光线折转,光路延长,并形成左视差图;右侧光束通过第二物镜模组,再经第二转像棱镜后,光线折转,光路延长,并形成右视差图;两幅视差图像由观察者经过大脑融合后形成立体图像;
    该体视显微镜的变倍过程具体为:体视显微镜开始工作时,驱动模组为物镜模组和目镜模组中各液体透镜提供低倍率所需的驱动值,使液体透镜焦距对应改变,此时体视显微镜处于低放大倍率状态;当观察者需要提高放大倍率时,驱动模组动态地为物镜模组和目镜模组中各液体透镜提供不同放大倍率所对应的预置的驱动值,从而实时改变各液体透镜焦距,进而提高物镜模组和目镜模组的有效焦距,为观察者提供高放大倍率的立体图像,实现体视显微镜倍率的连续变化;在此过程中,物镜模组和目镜模组均可通过调节液体透镜焦距对光束进行像差校正及体视显微镜放大倍率的调整;
    为观测待测物整体形貌信息,该体视显微镜可获取待测物不同立体感的图像,即获取待测物呈不同体视角的图像;以左侧光路为例,初始状态时,驱动模组根据所需放大倍率为液体透 镜提供对应驱动值,使体视显微镜获得体视角为α 1的待测物立体图像,此时第一Risley棱镜中两片楔角棱镜与x方向夹角分别为θ 1和θ 2;当需要观察待测物不同视角的信息时,控制模组根据不同深度控制第一Risley棱镜中两楔角棱镜绕轴独立旋转一定角度,此时第一Risley棱镜中两片楔角棱镜与x方向夹角分别为θ 3和θ 4,进而改变第一Risley棱镜对光束的折转角,使光束通过第一Risley棱镜后始终保持出射的两光束与两物镜模组平行;驱动模组根据第一Risley棱镜中两楔角棱镜的相对角度,为液体透镜提供对应驱动值,使体视显微镜始终为观察者提供清晰的立体图像,此时,体视显微镜获得到待测物体视角为α 2的待测物立体图像,其中α 21;随着体视角的改变,所获得的待测物立体图像的立体感发生相应改变;在此过程中,体视显微镜可同时进行放大倍率的连续调节;右侧光路的调整过程与左侧光路一致。
  2. 根据权利要求1所述的一种体视角可调的连续变焦体视显微镜,其特征在于,在目镜模组后端连接图像传感器,进行图像采集后,经计算机对连续视差图像合成,形成合成图,在显示器上为观察者提供待测物图像立体图像。
  3. 根据权利要求1所述的一种体视角可调的连续变焦体视显微镜,其特征在于,液体透镜组采用的液体透镜类型有电润湿驱动液体透镜、介电泳力驱动液体透镜、机械马达驱动的弹性薄膜液体透镜、磁控液体透镜和电子肌肉驱动的液体透镜等。
  4. 根据权利要求1所述的一种体视角可调的连续变焦体视显微镜,其特征在于,Risley棱镜使用机械驱动和电控驱动等。
  5. 根据权利要求1所述的一种体视角可调的连续变焦体视显微镜,其特征在于,转像棱镜采用直角棱镜、三棱镜和五棱镜等。
  6. 根据权利要求1所述的一种体视角可调的连续变焦体视显微镜,其特征在于,第一物镜模组和第二物镜模组结构相同,其中液体透镜的个数P≥1且固体透镜的个数Q≥0;第一目镜模组和第二目镜模组结构相同,其中液体透镜的个数M≥1且固体透镜的个数N≥0。
PCT/CN2021/095850 2021-04-27 2021-05-25 一种体视角可调的连续变焦体视显微镜 WO2022227157A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/179,088 US20230221540A1 (en) 2021-04-27 2023-03-06 Continuous Zoom Stereoscopic Microscope with Adjustable Stereoscopic Angle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110456676.1 2021-04-27
CN202110456676.1A CN113219641B (zh) 2021-04-27 2021-04-27 一种体视角可调的连续变焦体视显微镜

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/179,088 Continuation-In-Part US20230221540A1 (en) 2021-04-27 2023-03-06 Continuous Zoom Stereoscopic Microscope with Adjustable Stereoscopic Angle

Publications (1)

Publication Number Publication Date
WO2022227157A1 true WO2022227157A1 (zh) 2022-11-03

Family

ID=77089559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095850 WO2022227157A1 (zh) 2021-04-27 2021-05-25 一种体视角可调的连续变焦体视显微镜

Country Status (3)

Country Link
US (1) US20230221540A1 (zh)
CN (1) CN113219641B (zh)
WO (1) WO2022227157A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118442918B (zh) * 2024-07-08 2024-08-30 聊城大学 一种非对称双目镜成像测量显微镜及测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041558A (ja) * 2005-07-06 2007-02-15 Kenyo Tei レーザー溶接用顕微鏡
CN1975504A (zh) * 2005-08-26 2007-06-06 莱卡显微系统瑞士股份有限公司 立体显微镜
CN101266333A (zh) * 2007-03-12 2008-09-17 张吉鹏 一种采用显微摄像的带有显示器的无目镜的体视显微镜
CN103487927A (zh) * 2013-10-16 2014-01-01 北京航空航天大学 一种显微镜自动调焦方法
CN204989612U (zh) * 2015-07-23 2016-01-20 重庆奥特光学仪器有限责任公司 基于led冷光源同轴照明器的连续变倍体视显微镜
CN107797263A (zh) * 2017-11-29 2018-03-13 上海轶德医疗科技股份有限公司 3d手术显微镜光学主镜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157236B2 (ja) * 1991-11-30 2001-04-16 株式会社ニデック 立体眼底カメラ
CN107966800B (zh) * 2017-11-20 2020-12-15 天津津航技术物理研究所 一种手术显微镜用助手镜光学系统
CN210605176U (zh) * 2019-11-19 2020-05-22 成都科奥达光电技术有限公司 自动对焦显微镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041558A (ja) * 2005-07-06 2007-02-15 Kenyo Tei レーザー溶接用顕微鏡
CN1975504A (zh) * 2005-08-26 2007-06-06 莱卡显微系统瑞士股份有限公司 立体显微镜
CN101266333A (zh) * 2007-03-12 2008-09-17 张吉鹏 一种采用显微摄像的带有显示器的无目镜的体视显微镜
CN103487927A (zh) * 2013-10-16 2014-01-01 北京航空航天大学 一种显微镜自动调焦方法
CN204989612U (zh) * 2015-07-23 2016-01-20 重庆奥特光学仪器有限责任公司 基于led冷光源同轴照明器的连续变倍体视显微镜
CN107797263A (zh) * 2017-11-29 2018-03-13 上海轶德医疗科技股份有限公司 3d手术显微镜光学主镜

Also Published As

Publication number Publication date
CN113219641B (zh) 2022-03-08
US20230221540A1 (en) 2023-07-13
CN113219641A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN1975504B (zh) 高功率立体显微镜
US7777941B2 (en) Greenough-type stereomicroscope
JPS61269108A (ja) 手術を実施するための立体顕微鏡
JP5105882B2 (ja) 実体顕微鏡
US20230355346A1 (en) Surgical microscope having assistant's device
WO2022227157A1 (zh) 一种体视角可调的连续变焦体视显微镜
CN103558676B (zh) 6倍超长工作距离物镜
JP5593401B2 (ja) 可変3次元立体顕微鏡アセンブリ
US6268957B1 (en) Computer controlled stereo microscopy
US4673260A (en) Stereoscopic optical device
US7253948B2 (en) Optical magnification device for distance variation
JP2000284184A (ja) 平行系実体顕微鏡及び対物レンズ
US8529064B2 (en) Attachment module for a microscope for observing the fundus of the eye
JP2006221177A (ja) 観察装置用鏡胴ならびに観察装置
JPH06167658A (ja) 立体内視鏡
JP4660873B2 (ja) 平行系実体顕微鏡対物レンズ
JPH04355712A (ja) 双眼立体視装置
JPS63167318A (ja) 実体顕微鏡
CN116699820B (zh) 手术显微镜的成像镜组
JP5184752B2 (ja) 実体顕微鏡
JP2012141470A (ja) 結像光学系、及び、顕微鏡装置
JP2002040364A (ja) 立体視観察用光学系
JP3093017B2 (ja) 実体顕微鏡
JPH04156412A (ja) 実体顕微鏡
WO2020095444A1 (ja) 顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938628

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/05/2024)