WO2022226822A1 - 触控显示基板、触控显示装置、触控信号线的分布方法 - Google Patents

触控显示基板、触控显示装置、触控信号线的分布方法 Download PDF

Info

Publication number
WO2022226822A1
WO2022226822A1 PCT/CN2021/090465 CN2021090465W WO2022226822A1 WO 2022226822 A1 WO2022226822 A1 WO 2022226822A1 CN 2021090465 W CN2021090465 W CN 2021090465W WO 2022226822 A1 WO2022226822 A1 WO 2022226822A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
line
touch
touch signal
sub
Prior art date
Application number
PCT/CN2021/090465
Other languages
English (en)
French (fr)
Inventor
徐佳伟
杜芸
董钊
范文金
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180000967.8A priority Critical patent/CN115668112A/zh
Priority to US17/639,238 priority patent/US20240045546A1/en
Priority to PCT/CN2021/090465 priority patent/WO2022226822A1/zh
Publication of WO2022226822A1 publication Critical patent/WO2022226822A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Definitions

  • the present disclosure relates to the technical field of display product fabrication, and in particular, to a touch display substrate, a touch display device, and a method for distributing touch signal lines.
  • the flexible touch screen has the bendable property, and is widely used in high-end display fields such as curved mobile phones, wearable devices, and bendable devices. Flexible touch products require bendability and narrow frame characteristics.
  • the current wiring material uses APC metal, mainly containing Ag, Pd, Cu, etc.; because silver cannot form a stable and passivating oxide film, the silver material is prone to electro-chemical migration. with corrosion.
  • the present disclosure provides a touch display substrate, a touch display device, and a method for distributing touch signal lines, so as to solve the problem that the touch signal lines are prone to electrochemical corrosion.
  • a touch display substrate comprising a central touch area and a wiring area located around the central touch area, and the wiring area is provided with isolation lines , and a plurality of touch signal lines drawn from the central touch area, the extension direction of the isolation lines is parallel to the extension direction of the touch signal lines,
  • the touch signal line includes a first touch signal line disposed close to the isolation line, and a second touch signal line disposed far from the isolation line, and the width of the first touch signal line is greater than that of the first touch signal line. 2. The width of the touch signal line.
  • the routing area includes a turn-and-take-up portion
  • the first touch signal line includes a first sub-touch signal line located in the turn-and-take-up portion, and a first sub-touch signal line located outside the turn-and-take-up portion.
  • the second sub-touch signal line in the region, the width of the first sub-touch signal line is the same as the width of the second sub-touch signal line;
  • the second touch signal line includes a third sub-touch signal line located in the turn-and-retract portion, and a fourth sub-touch signal line located in an area outside the turn-retract portion, the third sub-touch signal line
  • the width of the sub-touch signal line is smaller than the width of the fourth sub-touch signal line.
  • the first touch signal line includes a fifth sub-touch signal line located in the polarizer setting area and a fifth sub-touch signal line located in the polarizer setting area.
  • the sixth sub-touch signal line in the first region, the width of the fifth sub-touch signal line is smaller than the width of the sixth sub-touch signal line.
  • the touch signal line includes a plurality of driving signal lines and a plurality of sensing electrode signal lines arranged in parallel, and the plurality of the driving electrode signal lines and the plurality of the sensing electrode signal lines are respectively located in the interval.
  • the first touch signal line includes the driving electrode signal line and the sensing electrode signal line disposed close to the isolation line.
  • the touch signal line includes a plurality of driving signal lines and a plurality of sensing electrode signal lines arranged in parallel
  • the isolation line includes a first sub-isolation line and a second sub-isolation line
  • a plurality of the driving signal lines The electrode signal line and the plurality of sensing electrode signal lines are located on the same side of the first sub-isolation line, and the second sub-isolation line is arranged between the driving electrode signal line and the sensing electrode signal line, so
  • the first touch control signal line includes the sensing electrode signal line or the driving electrode signal line disposed close to the first sub-isolation line, and the driving electrode signal line and the driving electrode signal line disposed close to the second sub-isolation line. the sensing electrode signal line.
  • the wiring area is sequentially distributed with the driving electrode signal line, the second sub-isolation line, the sensing electrode signal line and the first A sub-isolation line
  • the sensing electrode signal line includes a first signal line disposed close to the first sub-isolation line, a second signal line disposed close to the second sub-isolation line, and a signal line other than the first signal line and a third signal line other than the second signal line
  • the drive electrode signal line includes a fourth signal line disposed close to the second sub-isolation line, and a fifth signal line other than the fourth signal line Wire;
  • the first touch signal line includes the first signal line, the second signal line and the fourth signal line
  • the second touch signal line includes the third signal line and the fifth signal line signal line.
  • the width of the first signal line is greater than the width of the second signal line
  • the width of the fourth signal line is greater than the width of the second signal line
  • the width of the second signal line is greater than
  • the width of the third signal line is equal to the width of the fifth signal line.
  • the first sub-isolation line is a ground line.
  • the touch display substrate is a flexible touch display substrate
  • the touch display substrate is a flexible touch display substrate
  • the traces of the touch area are distributed in different planes, and the traces include the touch signal line and the isolation line.
  • Embodiments of the present disclosure provide a touch display device including the above touch display substrate.
  • An embodiment of the present disclosure provides a method for distributing touch signal lines, which is used for arranging the above touch signal lines on a touch display substrate, including the following steps:
  • the line width of the touch signal line is set according to the factor and the relationship between the potential difference and the line width, so that the width of the first touch signal line is greater than the width of the second touch signal line.
  • the factors that cause electrochemical corrosion of touch signal lines include potential difference and water vapor.
  • the touch signal line is set as a first section and a second section with different widths, and is equivalent to a series structure, wherein the resistance of the first section is R 1 , and the resistance of the second section is R 2 ;
  • the beneficial effects of the present disclosure are: by setting the line width of the touch signal line, the time for electrochemical corrosion of the touch signal line can be optimized and prolonged, and the reliability of the product can be improved.
  • Fig. 1 shows schematic diagram 1 of electrochemical corrosion test results in the embodiment of the present disclosure
  • Fig. 2 shows schematic diagram 2 of electrochemical corrosion test results in the embodiment of the present disclosure
  • Fig. 3 shows schematic diagram 3 of electrochemical corrosion test results in the embodiment of the present disclosure
  • Fig. 4 is a schematic diagram showing the principle of redox reaction of metal in electrolyte solution
  • FIG. 5 is a schematic structural diagram of touch signal lines with unequal widths in an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of an equivalent series structure of touch signal lines of equal width
  • FIG. 7 is a schematic diagram 1 of a touch wiring structure according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing the narrowing of the line width of the touch signal line in the turn-and-take-up area in the related art
  • FIG. 9 shows a second schematic diagram of a touch wiring structure according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram 3 of a touch wiring structure according to an embodiment of the present disclosure.
  • FIG. 11 shows a fourth schematic diagram of a touch wiring structure according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram 1 of the structure of the touch display substrate according to the embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram 5 of a touch wiring structure according to an embodiment of the present disclosure.
  • FIG. 14 shows a second schematic structural diagram of a touch display substrate in an embodiment of the present disclosure
  • FIG. 15 is a schematic diagram 3 of the structure of the touch display substrate in the embodiment of the present disclosure.
  • the current wiring material uses APC (silver palladium copper) metal, mainly including Ag, Pd, Cu, etc.;
  • APC silver palladium copper
  • the passive oxide film makes the silver material prone to electro-chemical migration and corrosion. The following is a detailed introduction to the process of determining the factors that cause electrochemical corrosion.
  • the 8585 test is carried out on the product, specifically in a sealed environment with a temperature of 85 degrees and a humidity of 85%, and the power-on test is carried out after placing for 240 hours.
  • the test results for touch signal lines with different line widths are obtained.
  • Electrochemical The phenomenon of corrosion is that the trace (touch signal line) is blackened and corroded open, and the corrosion position is concentrated on the touch signal line near the ground line and/or isolation line, and shows a correlation with the line width. The thinner the line width, the easier it is corrosion.
  • the dotted box in Figure 1 shows the electrochemical corrosion state of the touch signal line with a line width of 7.2um
  • the dotted box in Figure 2 shows the electrochemical corrosion state of the touch signal line with a line width of 4.7um
  • the dotted box in FIG. 3 represents the electrochemical corrosion state of the touch signal line with a line width of 4.0um. Comparing Figure 1, Figure 2 and Figure 3, it can be seen that the thinner the line width, the easier it is to corrode.
  • the touch signal line Trace includes the driving electrode signal line Tx and/or the sensing electrode signal line Rx, and the function of the ground line or the isolation line is to prevent signal interference.
  • Tx and Rx have output voltage signals relative to the Guard or GND line.
  • the maximum Rx is 2.4V
  • the Tx is 3.2V
  • the signal band period is 120HZ. Therefore, there is a voltage U between the Guard and/or GND and the adjacent Trace; there is no voltage difference between the Trace and the Trace.
  • Electrochemical corrosion The redox reaction of metal in electrolyte solution, the main chemical mechanism is as follows:
  • the touch signal line 1 is the positive electrode, and an oxidation reaction occurs.
  • the isolation wire 2 is a cathode, and a reduction reaction occurs (the metal Ag is used as an example for description).
  • the touch signal line 1 is divided into a first segment with a line width of W 1 and a second segment with a line width of W 2 along its extending direction, and a series resistance model with non-uniform line width is established. Determine the relationship between potential difference and line width.
  • FIG. 5 is a schematic structural diagram of touch signal lines with unequal widths
  • FIG. 6 is a schematic structural diagram of an equivalent series circuit of touch signal lines with unequal widths.
  • R ⁇ *L/S
  • is the resistivity
  • L is the length
  • the resistance of the first section R 1 ⁇ *L/(W 1 *d);
  • the resistance of the second section R 2 ⁇ *L/(W 2 *d);
  • this embodiment has carried out theoretical verification.
  • high-level signals to some touch signal lines, for example, to Rx2 & Rx5 (that is, Rx numbered 2 and Rx numbered 5) high-level signals.
  • the rest of the touch signal lines are 0, put into the 8585 reliability test, and observe the results.
  • the poor electrochemical corrosion of the touch signal line can be effectively reproduced, and the correlation between the degree of electrochemical corrosion and the line width is consistent with the above theory, that is, the thinner the line width of the touch signal is more prone to corrosion.
  • the touch display substrate includes a center The touch area 100 and the wiring area 200 located around the central touch area 100, the wiring area 200 is provided with an isolation line 2, and a plurality of touch signal lines drawn from the central touch area 100, The extension direction of the isolation line 2 is parallel to the extension direction of the touch signal line,
  • the touch signal lines include a first touch signal line 11 disposed close to the isolation line 2 , and a second touch signal line 12 disposed away from the isolation line 2 .
  • the width is greater than the width of the second touch signal line 12 .
  • the potential difference ratio is inversely proportional to the line width, and according to the principle of electrochemical corrosion, the existence of the potential difference accelerates the movement of ions, thereby accelerating the rate of electrochemical corrosion.
  • the first contact In order to avoid alleviating electrochemical corrosion, the first contact The line width of the control signal line 11 increases, but the width of the second touch signal line 12 remains unchanged (ie, the width of the first touch signal line 11 is greater than the width of the second touch signal line 12 ), The potential difference between the first touch signal line 11 and the isolation line 2 is reduced, thereby slowing down the electrochemical corrosion rate, improving product reliability, and can be achieved without additional fabrication steps, see FIG. 7 .
  • extension direction of the isolation line 2 is parallel to the extension direction of the touch signal line, and the parallel referred to here may be absolutely parallel or not, because in actual operation A certain error is allowed.
  • the width of the isolation line is generally 200um, and the distance between the touch signal line and the isolation line is 20um.
  • the width of the touch signal line is generally less than 10um , in at least one implementation of this embodiment, the width of the touch signal line is 4-8um.
  • the width of the first touch signal line is 8um
  • the width of the second touch signal line is 8um.
  • the width is less than 8um.
  • the width of the second touch signal line is 4um, but not limited thereto.
  • the touch signal line of the touch screen will have a turning and take-up area around the screen.
  • the inventors found that in the related scheme, due to the limited space, the overall line width narrowing operation is adopted in the turning and take-up area, referring to FIG. 8 .
  • the line width of the touch signal line adjacent to the isolation line 2 in the turning and reeling area becomes smaller, then in the turning and reeling area, the isolation line 2 and The potential difference between the touch signal line and its adjacent touch signal line will increase, thereby accelerating the electrochemical corrosion rate, which will reduce the electrochemical corrosion resistance performance of the touch signal line 1, and the turning and take-up area becomes a weak point.
  • the wiring area 200 includes a turn-and-retract part (the part located on the left side of the dotted line in FIG. 9 ), and the first touch signal line 11 includes a part located on the left side of the dotted line in FIG. 9 .
  • the width of the second sub-touch signal line 102 is the same;
  • the second touch signal line 12 includes a third sub-touch signal line 121 located in the turn-and-retract portion, and a fourth sub-touch signal line 122 located in an area outside the turn-retract portion, so the The width of the third sub-touch signal line 121 is smaller than the width of the fourth sub-touch signal line 122 .
  • the first sub-touch signal lines 101 located in the turn-and-retract area and the first sub-touch signal lines 101 located in the turn-and-retract area are set to have the same width, that is, the width of the first touch signal lines 11 in the turn-and-retract area remains unchanged, and only the second touch
  • the signal line 12 is narrowed in the turning and reeling area, which not only solves the problem of space limitation, but also solves the problem that the first touch signal line 11 adjacent to the isolation line 2 in the turning and reeling area is narrowed due to the line width. Narrow and prone to electrochemical corrosion problems.
  • the distance between the center lines of two adjacent touch signal lines is the same whether in the turn-and-take-up portion or other areas outside the turn-and-take-up portion.
  • the line width of the second touch signal line is narrowed, but the center line of the first touch signal line 11 and the second touch signal line 12
  • the distance between the center lines of 12 is a, and the distance between the center lines of two adjacent second touch signal lines 12 is also a.
  • the distance between the center lines of two adjacent touch signal lines is also the same.
  • the center line of the first touch signal line 11 and the second touch signal line The distance between the center lines of the lines 12 is b, and the distance between the center lines of two adjacent second touch signal lines 12 is also b.
  • the touch display substrate includes a polarizer setting area 10 and a first area 20 located at the periphery of the polarizer setting area 10
  • the first touch signal line 11 includes a polarizer setting area.
  • the polarizer setting area 10 covers the central touch area and covers part of the wiring area.
  • the setting of the polarizer has a protective effect (the polarizer is attached to the On the touch display substrate, it can play the role of preventing water vapor invasion), and the first area 20 is not provided with a polarizer, so the water vapor protection is poor, and the H factor of the first area 20 is greater than that provided by the polarizer. H factor in the area 10, therefore, the touch signal lines located in the first area 20 are prone to electrochemical corrosion compared with the touch signal lines located in the polarizer setting area 10.
  • the width of the first touch signal line 11 in the first area 20 is increased, that is, the width of the fifth sub-touch signal line 103 is smaller than that of the sixth sub-touch signal line 104 , and the width of the second touch signal line 12 remains unchanged, which improves product reliability.
  • the touch signal line 1 includes a driving electrode signal line or a sensing electrode signal line.
  • the touch signal line 1 includes a plurality of driving signal lines and a plurality of sensing electrode signal lines arranged in parallel, a plurality of the driving electrode signal lines and a plurality of the sensing electrode signal lines Located on opposite sides of the isolation line 2 respectively, the first touch signal line 11 includes the driving electrode signal line and the sensing electrode signal line disposed close to the isolation line 2 .
  • the touch signal line 1 includes a plurality of driving signal lines and a plurality of sensing electrode signal lines arranged in parallel
  • the isolation line 2 includes a first sub-isolation line 21 and In the second sub-isolated line 22, a plurality of the driving electrode signal lines and the plurality of the sensing electrode signal lines are located on the same side of the first sub-isolated line 21, and the driving electrode signal lines and the sensing electrode signal lines
  • the second sub-isolation line 22 is arranged between the lines
  • the first touch signal line 11 includes the sensing electrode signal line or the driving electrode signal line disposed close to the first sub-isolation line 21 , and a signal line close to the first sub-isolation line 21.
  • the driving electrode signal lines and the sensing electrode signal lines are provided on the second sub-isolation lines 22 .
  • the wiring area 200 is sequentially distributed with the driving electrode signal line, the second sub-isolation line 22, and the sensing electrode signal line line and the first sub-isolated line 21
  • the sensing electrode signal line includes a first signal line 13 disposed close to the first sub-isolated line 21 and a second signal line disposed close to the second sub-isolated line 22 14, and a third signal line 15 other than the first signal line 13 and the second signal line 14
  • the drive electrode signal line includes a fourth signal line disposed close to the second sub-isolation line 22 16, and a fifth signal line 17 other than the fourth signal line 16;
  • the first touch signal line 11 includes the first signal line 13 , the second signal line 14 and the fourth signal line 16
  • the second touch signal line 12 includes the third signal line 15 and the fifth signal line 17, refer to FIG. 11 and FIG. 13 .
  • the distance between the first signal line 13 (signal line a) and the edge of the touch display substrate is d1
  • the second signal line (signal line c) 14 is away from the edge of the touch display substrate.
  • the distance is d2
  • the distance between the fourth signal line 16 (signal line d) and the edge of the touch display substrate is d3, and d1 ⁇ d2 ⁇ d3, during the reliability test, the water vapor at the first signal line 13
  • the factor is H1
  • the water vapor factor at the second signal line 14 is H2
  • the water vapor factor at the fourth signal line 16 is H3, and H1>H2>H3, the first signal line 13 and the corresponding isolation line
  • the voltage difference between the two is U1, the voltage difference between the second signal line 14 and the corresponding isolation line is U2, the voltage difference between the fourth signal line 16 and the corresponding isolation line is U3, the first
  • the first signal line 13 and the second signal line 14 are both sensing electrode signal lines
  • the fourth signal line 16 is the driving electrode signal
  • the distribution mode of the touch signal lines 1 and the isolation lines 2 is not limited to the above, for example, the distribution mode may also be the following distribution mode: along the direction away from the central touch area, the wiring area 200
  • the sensing electrode signal line, the second sub-isolation line 22 , the driving electrode signal line and the first sub-isolation line 21 are distributed in sequence, and the first signal line is close to the first sub-isolation line
  • the sensing electrode signal line set on the line 21 , the second signal line is the sensing electrode signal line set close to the second sub-isolation line 22
  • the fourth signal line is set close to the second sub-isolation line 22 Drive electrode signal lines.
  • the first sub-isolation line 21 is a ground line.
  • the touch display substrate is a flexible touch display substrate
  • the wirings in the wiring area are distributed on different planes, and the wirings include the touch signal lines and the spacers. offline.
  • the touch display substrate is a flexible touch display substrate.
  • the flexible touch display substrate includes a flat area and a bendable area 600 located on at least one side of the flat area 500 .
  • the central touch area is located in the plane area 500 .
  • the central touch area covers part of the bendable area 600
  • the wiring area is located in the bendable area 600 .
  • the traces 700 are located on different planes.
  • Embodiments of the present disclosure provide a touch display device including the above touch display substrate.
  • the touch display substrate includes a COP base material, a HC hardening layer, an IM erasing layer, an ITO1 pattern layer 300 and an ITO2 pattern layer 400 , and the touch display substrate includes a center The touch area 100 and the wiring area 200 located on the periphery of the central touch area 100, as shown in FIG.
  • the ITO1 pattern layer forms intersecting driving electrodes
  • the signal line and the sensing electrode signal line, and the touch signal line 1 drawn from the moving electrode signal line and the sensing electrode signal line in the central touch area 100 and located in the routing area 200, are in the center In the touch area 100, at the position where the driving electrode signal lines and the sensing electrode signal lines overlap, the electrode signal lines of the same type are bridged by the ITO2 pattern layer.
  • An embodiment of the present disclosure provides a method for distributing touch signal lines 1 for disposing the touch signal lines 1 on the above-mentioned touch display substrate, including the following steps:
  • the factors that cause electrochemical corrosion of the touch signal line 1 include potential difference and water vapor;
  • the line width of the touch signal line 1 is set according to the factors and the relationship between the potential difference and the line width, so that the width of the first touch signal line 11 is greater than the width of the second touch signal line 12 .
  • the factors that cause electrochemical corrosion of the touch signal line 1 are obtained, specifically including:
  • the electrical signal of the touch signal line 1 is tested, and it is obtained that there is a potential difference between the first touch signal line 11 and the isolation line 2, and there is no potential difference between two adjacent touch signal lines 1 the test results;
  • the factors that cause electrochemical corrosion of the touch signal line 1 include potential difference and water vapor.
  • a series resistance model with non-uniform line width is established to obtain the relationship between the potential difference and the line width, specifically including:
  • the touch signal line 1 is set as a first section and a second section with different widths, and is equivalent to a series structure, wherein the resistance of the first section is R 1 , and the resistance of the second section is R 2 ;

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

涉及一种触控显示基板,包括中心触控区和位于所述中心触控区周围的走线区,所述走线区设置有隔离线(2),和由所述中心触控区引出的多条触控信号线,所述隔离线(2)的延伸方向与所述触控信号线的延伸方向相平行,所述触控信号线包括靠近所述隔离线(2)设置的第一触控信号线(11),和远离所述隔离线(2)设置的第二触控信号线(12),所述第一触控信号线(11)的宽度大于所述第二触控信号线(12)的宽度。还提供一种触控显示装置和触控信号线的分布方法。

Description

触控显示基板、触控显示装置、触控信号线的分布方法 技术领域
本公开涉及显示产品制作技术领域,尤其涉及一种触控显示基板、触控显示装置、触控信号线的分布方法。
背景技术
柔性触控屏具有的可弯折特性,在曲面手机,可穿戴设备,可弯折设备等高端显示领域得到广泛应用。柔性触控产品需求可弯折以及窄边框特性,目前的走线材料采用APC金属,主要含Ag,Pd,Cu等;由于银不能形成稳定和钝化的氧化膜,导致银材料易发电化学迁移与腐蚀。
公开内容
为了解决上述技术问题,本公开提供一种触控显示基板、触控显示装置、触控信号线的分布方法,解决触控信号线容易发生电化学腐蚀的问题。
为了达到上述目的,本公开实施例采用的技术方案是:一种触控显示基板,包括中心触控区和位于所述中心触控区周围的走线区,所述走线区设置有隔离线,和由所述中心触控区引出的多条触控信号线,所述隔离线的延伸方向与所述触控信号线的延伸方向相平行,
所述触控信号线包括靠近所述隔离线设置的第一触控信号线,和远离所述隔离线设置的第二触控信号线,所述第一触控信号线的宽度大于所述第二触控信号线的宽度。
可选的,所述走线区包括转弯收线部分,所述第一触控信号线包括位于所述转弯收线部分的第一子触控信号线,和位于所述转弯收线部分之外的区域的第二子触控信号线,所述第一子触控信号线的宽度与所述第二子触控信号线的宽度相同;
所述第二触控信号线包括位于所述转弯收线部分的第三子触控信号线,和位于所述转弯收线部分之外的区域的第四子触控信号线,所述第三子触控信号线的宽度小于所述第四子触控信号线的宽度。
可选的,包括偏光片设置区域和位于所述偏光片设置区域外围的第一区域,所述第一触控信号线包括位于所述偏光片设置区域的第五子触控信号线和位于所述第一区域的第六子触控信号线,所述第五子触控信号线的宽度小于所述第六子触控信号线的宽度。
可选的,所述触控信号线包括相平行设置的多条驱动信号线和多条感应电极信号线,多条所述驱动电极信号线和多条所述感应电极信号线分别位于所述隔离线的相对的两侧,所述第一触控信号线包括靠近所述隔离线设置的所述驱动电极信号线和所述感应电极信号线。
可选的,所述触控信号线包括相平行设置的多条驱动信号线和多条感应电极信号线,所述隔离线包括第一子隔离线和第二子隔离线,多条所述驱动电极信号线和多条所述感应电极信号线位于所述第一子隔离线的同侧,且所述驱动电极信号线和所述感应电极信号线之间设置所述第二子隔离线,所述第一触控信号线包括靠近所述第一子隔离线设置的所述感应电极信号线或者所述驱动电极信号线,以及靠近所述第二子隔离线设置的所述驱动电极信号线和所述感应电极信号线。
可选的,沿着远离所述中心触控区的方向,所述走线区依次分布有所述驱动电极信号线、所述第二子隔离线、所述感应电极信号线和所述第一子隔离线,所述感应电极信号线包括靠近所述第一子隔离线设置的第一信号线、靠近所述第二子隔离线设置的第二信号线、以及除所述第一信号线和所述第二信号线之外的第三信号线,所述驱动电极信号线包括靠近所述第二子隔离线设置的第四信号线,以及除了所述第四信号线之外的第五信号线;
所述第一触控信号线包括所述第一信号线、所述第二信号线和所述第四信号线,所述第二触控信号线包括所述第三信号线和所述第五信号线。
可选的,所述第一信号线的宽度大于所述第二信号线的宽度,所述第四信号线的宽度大于所述第二信号线的宽度,且所述第二信号线的宽度大于所述第三信号线的宽度,所述第三信号线的宽度等于所述第五信号线的宽度。
可选的,所述第一子隔离线为地线。
可选的,所述触控显示基板为柔性触控显示基板,所述触控显示基板为柔性触控显示基板,所述触控区的走线分布在不同的平面内,所述走线包括所述 触控信号线和所述隔离线。
本公开实施例提供一种触控显示装置,包括上述的触控显示基板。
本公开实施例提供一种触控信号线的分布方法,用于设置上述的触控显示基板上的触控信号线,包括以下步骤:
获取造成触控信号线发生电化学腐蚀的因素,所述因素包括电势差和水汽;
建立线宽不均一的串联电阻模型,以获取电势差与线宽的关系;
根据所述因素,以及电势差与线宽的所述关系设置所述触控信号线的线宽,使得所述第一触控信号线的宽度大于所述第二触控信号线的宽度。
可选的,获取造成触控信号线发生电化学腐蚀的因素,具体包括:
对所述触控信号线的电信号进行测试,获得所述第一触控信号线与所述隔离线之间具有电势差,相邻两个所述触控信号线之间无电势差的测试结果;
根据金属在电解质溶液中的氧化还原反应获得,触控信号线发生电化学腐蚀的因素包括电势差和水汽,电势差越大,则越容易发生电化学腐蚀,和/或水汽越大,则越容易发生电化学腐蚀。
可选的,建立线宽不均一的串联电阻模型以获取电势差与线宽的关系,具体包括:
将触控信号线设置为宽度不同的第一段和第二段,并等效为串联结构,其中,所述第一段的电阻为R 1,所述第二段的电阻为R 2
对所述触控信号线提供一电流I,获得所述第一段的电压U 1=IR 1,所述第二段的电压U 2=IR 2
根据电阻公式获得电势差与线宽W的关系:U 1/U2=W 1/W 2,W 1为所述第一段的线宽,W 2为所述第二段的线宽,其中电阻公式为R=ρ*L/S,ρ为电阻率,L为长度,S为截面积=W*d,d为厚度,且所述第一段的厚度与所述第二段的厚度相同。
本公开的有益效果是:通过对触控信号线的线宽的设置,可以优化延长触控信号线发生电化学腐蚀的时间,提高产品的信赖性。
附图说明
图1表示本公开实施例中电化学腐蚀测试结果示意图一;
图2表示本公开实施例中电化学腐蚀测试结果示意图二;
图3表示本公开实施例中电化学腐蚀测试结果示意图三;
图4表示金属在电解质溶液中发生氧化还原反应的原理示意图;
图5表示本公开实施例中不等宽的触控信号线结构示意图;
图6表示等宽的触控信号线等效串联结构示意图;
图7表示本公开实施例中触控走线结构示意图一;
图8表示相关技术中在转弯收线区触控信号线的线宽收窄示意图;
图9表示本公开实施例中触控走线结构示意图二;
图10表示本公开实施例中触控走线结构示意图三;
图11表示本公开实施例中触控走线结构示意图四;
图12表示本公开实施例中触控显示基板结构示意图一;
图13表示本公开实施例中触控走线结构示意图五;
图14表示本公开实施例中触控显示基板结构示意图二;
图15表示本公开实施例中触控显示基板结构示意图三。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
柔性触摸屏在高端旗舰手机,车载曲面屏等领域应用,信赖性需求越加严格,目前的走线材料采用APC(银钯铜)金属,主要含Ag,Pd,Cu等;由 于银不能形成稳定和钝化的氧化膜,导致银材料易发电化学迁移与腐蚀。以下具体介绍,确定发生电化学腐蚀的因素的过程。
对产品进行8585测试,具体为在一温度为85度,湿度为85%的密封环境中,放置240h后进行通电测试,在针对不同线宽的触控信号线的测试结果中获得,发生电化学腐蚀的现象为Trace(触控信号线)发黑腐蚀open,腐蚀位置集中于地线和/或隔离线附近的触控信号线,且表现出与线宽相关性,线宽越细,越易腐蚀。
图1中虚线框内表示的是线宽为7.2um的触控信号线的电化学腐蚀状态,图2中的虚线框内表示的是线宽为4.7um的触控信号线的电化学腐蚀状态,图3中的虚线框内表示的是线宽为4.0um的触控信号线的电化学腐蚀状态。图1、图2和图3进行对比,可以看出,线宽越细,越易腐蚀。
触控信号线Trace包括驱动电极信号线Tx和/或感应电极信号线Rx,地线或者隔离线的作用在于防止信号干扰。为IC输出信号,通过示波器测试发现Tx和Rx相对于Guard或者GND线均有输出电压信号,在获得的测试结果中,Rx最大为2.4V,Tx为3.2V;信号波段周期为120HZ。从而Guard和/或GND与相邻的Trace间存在电压U;Trace与Trace间无电压差。
电化学腐蚀:金属在电解质溶液中产生的氧化还原反应,主要化学机理如下:
参考图4,触控信号线1与隔离线或地线(以下均以隔离线进行描述)之间存在电势差,构成电化学腐蚀的阳极与阴极,触控信号线1为正极,发生氧化反应,隔离线2为阴极,发生还原反应(以金属Ag为例进行说明)。
Figure PCTCN2021090465-appb-000001
Ag+和OH-在阳极上生成AgOH并析出,Ag ++OH -→AgOH;
AgOH不稳定分解,并在阳极形成黑色Ag 2O,
Figure PCTCN2021090465-appb-000002
由以上理论可知发生电化学腐蚀,电势差与水汽为必要条件,且成正比关系,电压越大越易腐蚀,水汽越大越容易腐蚀。
在获得上述结论的基础上,将触控信号线1沿其延伸方向划分为线宽为W 1的第一段和线宽为W 2的第二段,建立线宽不均一串联电阻模型,以确定电势差和线宽的关系。图5表示的是不等宽的触控信号线的结构示意图,图6 表示的是不等宽的触控信号线等效串联电路结构示意图。
电阻计算公式:R=ρ*L/S,ρ为电阻率,L为长度,S为截面积=W*d(d为厚度,所述触控信号线的厚度整体是不变的);
所述第一段的电阻R 1=ρ*L/(W 1*d);
所述第二段的电阻R 2=ρ*L/(W 2*d);
由上述公式可获得R 1/R 2=W 2/W 1
所述第一段和所述第二段可等效为串联结构,设定触控信号线供电测试电流信号为I,串联电流的信号一致,则所述第一段的电压U 1=I*R 1,所述第二段的电压U 2=I*R 2,则U 1/U 2=W 2/W 1,由此可获得电势差比与线宽成反比。
利用线宽不均串联等效模型,可得出电势差与对应区域线宽成反比,线宽越宽,则对应区域电势差越低;据电化学腐蚀原理,电势差的存在加速离子移动,从而加速电化学腐蚀速率。
且串联电路的电流相同,线宽越宽,则电流密度越小,则离子运动速度减慢,从而减慢了电化学腐蚀速率。
为了证实上述理论结构,本实施例进行了理论验证,通过将部分触控信号线给与高电平信号,例如给Rx2&Rx5(即编号为2的Rx和编号为5的Rx)高电平信号,其余触控信号线为0,投入8585信赖性测试,并观察结果。可有效复现触控信号线的电化学腐蚀不良,同时电化学腐蚀程度与线宽的相关性和上述理论一致,即触控信号的线宽变细处更易腐蚀。
在获得了发生电化学腐蚀的因素后,本实施例为了延长发生电化学腐蚀的时间,提高产品信赖性提供一种触控显示基板,参考图7-图13,所述触控显示基板包括中心触控区100和位于所述中心触控区100周围的走线区200,所述走线区200设置有隔离线2,和由所述中心触控区100引出的多条触控信号线,所述隔离线2的延伸方向与所述触控信号线的延伸方向相平行,
所述触控信号线包括靠近所述隔离线2设置的第一触控信号线11,和远离所述隔离线2设置的第二触控信号线12,所述第一触控信号线11的宽度大于所述第二触控信号线12的宽度。
由上述可知,由于所述隔离线2和与其相邻的触控信号线之间存在电势差,电化学腐蚀集中在于所述隔离线2相邻的所述第一触控信号线11,根据上述 获得的结论:电势差比与线宽成反比,而据电化学腐蚀原理,电势差的存在加速离子移动,从而加速电化学腐蚀速率,本实施例中,为了避免缓解电化学腐蚀,将所述第一触控信号线11的线宽增加,所述第二触控信号线12的宽度不变(即使得所述第一触控信号线11的宽度大于所述第二触控信号线12的宽度),降低了所述第一触控信号线11和所述隔离线2之间的电势差,从而减缓电化学腐蚀速率,提高产品信赖性,且无需额外增加制作工艺步骤即可实现,参考图7。
需要说明的是,所述隔离线2的延伸方向与所述触控信号线的延伸方向相平行,这里所指的平行,可以是绝对的平行,也可以不是绝对的平行,因为在实际操作中是允许一定的误差存在的。
需要说明的是,所述隔离线的宽度一般为200um,所述触控信号线和所述隔离线之间的间距为20um,在窄边框产品中,所述触控信号线的宽度一般小于10um,在本实施例的至少一个实施方式中,所述触控信号线的宽度为4-8um,例如,所述第一触控信号线的宽度为8um,而所述第二触控信号线的宽度小于8um,在一实施方式中,所述第二触控信号线的宽度为4um,但并不以此为限。
触摸屏的触控信号线绕屏四周会存在转弯收线区,发明人发现相关方案中,由于空间受限,在转弯收线区均采用线宽整体收窄操作,参考图8。结合上述线宽与发生电化学腐蚀之间的关系可知,在转弯收线区与隔离线2相邻的触控信号线的线宽变小,则在转弯收线区,所述隔离线2与和其相邻的触控信号线之间的电势差会增加,从而加快了电化学腐蚀速率,会降低触控信号线1抗电化学腐蚀性能,转弯收线区成为薄弱点。
针对上述问题,本实施例中示例性的,参考图9,所述走线区200包括转弯收线部分(图9中位于虚线左侧的部分),所述第一触控信号线11包括位于所述转弯收线部分的第一子触控信号线101,和位于所述转弯收线部分之外的区域的第二子触控信号线102,所述第一子触控信号线101的宽度与所述第二子触控信号线102的宽度相同;
所述第二触控信号线12包括位于所述转弯收线部分的第三子触控信号线121,和位于所述转弯收线部分之外的区域的第四子触控信号线122,所述第三子触控信号线121的宽度小于所述第四子触控信号线122的宽度。
本实施例中,与所述隔离线2相邻的所述第一触控信号线11中,位于所述转弯收线区的所述第一子触控信号线101和位于所述转弯收线区之外的区域的第二子触控信号线102等宽设置,即所述第一触控信号线11在所述转弯收线区的宽度保持不变,而仅使得所述第二触控信号线12在所述转弯收线区收窄,既解决了空间限制问题,且解决了在转弯收线区与所述隔离线2相邻的所述第一触控信号线11由于线宽收窄而容易产生电化学腐蚀的问题。
需要说明的是,本实施例中,无论是在转弯收线部分还是在所述转弯收线部分之外的其他区域,相邻两个所述触控信号线的中心线之间的间距是相同的,参考图9,在转弯收线部分,所述第二触控信号线的线宽收窄,但是,所述第一触控信号线11的中心线和所述第二触控信号线12的中心线之间的间距为a,相邻两个所述第二触控信号线12的中心线的间距同样为a。在转弯收线部分的其他区域,相邻两个所述触控信号线的中心线之间的间距也是相同的,所述第一触控信号线11的中心线和所述第二触控信号线12的中心线之间的间距为b,相邻两个所述第二触控信号线12的中心线的间距同样为b。
本实施例中,所述触控显示基板包括偏光片设置区域10和位于所述偏光片设置区域10外围的第一区域20,所述第一触控信号线11包括位于所述偏光片设置区域10的第五子触控信号线103和位于所述第一区域20的第六子触控信号线104,所述第五子触控信号线103的宽度小于所述第六子触控信号线104的宽度,参考图10。
所述偏光片设置区域10覆盖所述中心触控区且覆盖部分所述走线区,在所述偏光片设置区域10,由于偏光片的设置具有保护作用(偏光片通过光学胶贴合于所述触控显示基板上,可以起到防止水汽侵袭的作用),而所述第一区域20未设置偏光片,则水汽防护较差,所述第一区域20的H因子大于所述偏光片设置区域10内的H因子,因此位于所述第一区域20内的触控信号线相对于位于所述偏光片设置区域10内的触控信号线容易产生电化学腐蚀,针对此问题,本实施例中,将位于所述第一区域20内的所述第一触控信号线11的宽度增加,即使得所述第五子触控信号线103的宽度小于所述第六子触控信号线104的宽度,而所述第二触控信号线12的宽度始终保持不变,所述提高产品信赖性。
本实施例中示例性的,所述触控信号线1包括驱动电极信号线或感应电极信号线。
本实施例中示例性的,所述触控信号线1包括相平行设置的多条驱动信号线和多条感应电极信号线,多条所述驱动电极信号线和多条所述感应电极信号线分别位于所述隔离线2的相对的两侧,所述第一触控信号线11包括靠近所述隔离线2设置的所述驱动电极信号线和所述感应电极信号线。
参考图11,本实施例中示例性的,所述触控信号线1包括相平行设置的多条驱动信号线和多条感应电极信号线,所述隔离线2包括第一子隔离线21和第二子隔离线22,多条所述驱动电极信号线和多条所述感应电极信号线位于所述第一子隔离线21的同侧,且所述驱动电极信号线和所述感应电极信号线之间设置所述第二子隔离线22,所述第一触控信号线11包括靠近所述第一子隔离线21设置的所述感应电极信号线或者所述驱动电极信号线,以及靠近所述第二子隔离线22设置的所述驱动电极信号线和所述感应电极信号线。
本实施例中示例性的,沿着远离所述中心显示,100的方向,所述走线区200依次分布有所述驱动电极信号线、所述第二子隔离线22、所述感应电极信号线和所述第一子隔离线21,所述感应电极信号线包括靠近所述第一子隔离线21设置的第一信号线13、靠近所述第二子隔离线22设置的第二信号线14、以及除所述第一信号线13和所述第二信号线14之外的第三信号线15,所述驱动电极信号线包括靠近所述第二子隔离线22设置的第四信号线16,以及除了所述第四信号线16之外的第五信号线17;
所述第一触控信号线11包括所述第一信号线13、所述第二信号线14和所述第四信号线16,所述第二触控信号线12包括所述第三信号线15和所述第五信号线17,参考图11和图13。
参考图12,实际产品中所述第一信号线13(信号线a)距离触控显示基板的边缘的距离为d1,所述第二信号线(信号线c)14距离触控显示基板的边缘的距离为d2,所述第四信号线16(信号线d)距离触控显示基板的边缘的距离为d3,且d1<d2<d3,信赖性测试过程中,第一信号线13处的水汽因子为H1,所述第二信号线14处的水汽因子为H2,所述第四信号线16处的水汽因子为H3,且H1>H2>H3,第一信号线13与相应的隔离线之间的电压差 为U1,所述第二信号线14与相应的隔离线之间的电压差为U2,所述第四信号线16与相应的隔离线之间的电压差为U3,所述第一信号线13和所述第二信号线14同为感应电极信号线,所述第四信号线16为驱动电极信号线,因此,U1=U2,U3>U1,根据电化学腐蚀原理,a、c、d三处电化学腐蚀失效时间不一致。
为实现最优化线宽分配,提升信赖性能力。结合水汽因子H与电势差因子U,平衡几处失效时间T,实现有限空间,最优化线宽设计,本实施例中示例性的,所述触控信号线的宽度的关系为:Wa>Wc,Wd>Wc,Wc>Wb=We=Wf,即所述第一信号线13的宽度大于所述第二信号线14的宽度,所述第四信号线16的宽度大于所述第二信号线14的宽度,且所述第二信号线14的宽度大于所述第三信号线15的宽度,所述第三信号线15的宽度等于所述第五信号线17的宽度,参考图13。
所述触控信号线1和所述隔离线2的分布方式并不限于上述所述,例如,还可以为以下分布方式:沿着远离所述中心触控区的方向,所述走线区200依次分布有所述感应电极信号线、所述第二子隔离线22、所述驱动电极信号线和所述第一子隔离线21,则所述第一信号线为靠近所述第一子隔离线21设置的感应电极信号线,所述第二信号线为靠近所述第二子隔离线22设置的感应电极信号线,所述第四信号线为靠近所述第二子隔离线22设置的驱动电极信号线。
本实施例中示例性的,所述第一子隔离线21为地线。
本实施例中示例性的,所述触控显示基板为柔性触控显示基板,所述走线区的走线分布在不同平面上,所述走线包括所述触控信号线和所述隔离线。
本实施例中所述触控显示基板为柔性触控显示基板,例如所述柔性触控显示基板包括平面区和位于所述平面区500的至少一侧的可弯折区600,参考图15,所述中心触控区位于所述平面区500,在一些实施方式中,所述中心触控区覆盖部分所述可弯折区600,所述走线区位于所述可弯折区600,所述走线700位于不同的平面上。
本公开实施例提供一种触控显示装置,包括上述的触控显示基板。
参考图14,本实施例中示例性的,所述触控显示基板包括COP基材、HC 硬化层、IM消影层、ITO1图案层300和ITO2图案层400,所述触控显示基板包括中心触控区100和位于所述中心触控区100外围的走线区200,图14中表示出了,位于所述中心触控区100内,由所述ITO1图案层形成了相交设置的驱动电极信号线和感应电极信号线,以及由所述中心触控区100内的动电极信号线和感应电极信号线引出,并位于所述走线区200内的触控信号线1,在所述中心触控区100内,在所述驱动电极信号线和感应电极信号线相交叠的位置,同类型的电极信号线之间通过ITO2图案层桥接。
本公开实施例提供一种触控信号线1的分布方法,用于设置上述的触控显示基板上的触控信号线1,包括以下步骤:
获取造成触控信号线1发生电化学腐蚀的因素,所述因素包括电势差和水汽;
建立线宽不均一的串联电阻模型,以获取电势差与线宽的关系;
根据所述因素,以及电势差与线宽的所述关系设置所述触控信号线1的线宽,使得所述第一触控信号线11的宽度大于所述第二触控信号线12的宽度。
本实施例中示例性的,获取造成触控信号线1发生电化学腐蚀的因素,具体包括:
对所述触控信号线1的电信号进行测试,获得所述第一触控信号线11与所述隔离线2之间具有电势差,相邻两个所述触控信号线1之间无电势差的测试结果;
根据金属在电解质溶液中的氧化还原反应获得,触控信号线1发生电化学腐蚀的因素包括电势差和水汽,电势差越大,则越容易发生电化学腐蚀,和/或水汽越大,则越容易发生电化学腐蚀。
本实施例中示例性的,建立线宽不均一的串联电阻模型以获取电势差与线宽的关系,具体包括:
将触控信号线1设置为宽度不同的第一段和第二段,并等效为串联结构,其中,所述第一段的电阻为R 1,所述第二段的电阻为R 2
对所述触控信号线1提供一电流I,获得所述第一段的电压U 1=IR 1,所述第二段的电压U 2=IR 2
根据电阻公式获得电势差与线宽W的关系:U 1/U 2=W 1/W 2,W 1为所述第 一段的线宽,W 2为所述第二段的线宽,其中电阻公式为R=ρ*L/S,ρ为电阻率,L为长度,S为截面积=W*d,d为厚度,且所述第一段的厚度与所述第二段的厚度相同。
以上所述为本公开较佳实施例,需要说明的是,对于本领域普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开保护范围。

Claims (13)

  1. 一种触控显示基板,包括中心触控区和位于所述中心触控区周围的走线区,所述走线区设置有隔离线,和由所述中心触控区引出的多条触控信号线,所述隔离线的延伸方向与所述触控信号线的延伸方向相平行,其中,
    所述触控信号线包括靠近所述隔离线设置的第一触控信号线,和远离所述隔离线设置的第二触控信号线,所述第一触控信号线的宽度大于所述第二触控信号线的宽度。
  2. 根据权利要求1所述的触控显示基板,其中,所述走线区包括转弯收线部分,所述第一触控信号线包括位于所述转弯收线部分的第一子触控信号线,和位于所述转弯收线部分之外的区域的第二子触控信号线,所述第一子触控信号线的宽度与所述第二子触控信号线的宽度相同;
    所述第二触控信号线包括位于所述转弯收线部分的第三子触控信号线,和位于所述转弯收线部分之外的区域的第四子触控信号线,所述第三子触控信号线的宽度小于所述第四子触控信号线的宽度。
  3. 根据权利要求1所述的触控显示基板,其中,包括偏光片设置区域和位于所述偏光片设置区域外围的第一区域,所述第一触控信号线包括位于所述偏光片设置区域的第五子触控信号线和位于所述第一区域的第六子触控信号线,所述第五子触控信号线的宽度小于所述第六子触控信号线的宽度。
  4. 根据权利要求1所述的触控显示基板,其中,所述触控信号线包括相平行设置的多条驱动信号线和多条感应电极信号线,多条所述驱动电极信号线和多条所述感应电极信号线分别位于所述隔离线的相对的两侧,所述第一触控信号线包括靠近所述隔离线设置的所述驱动电极信号线和所述感应电极信号线。
  5. 根据权利要求1所述的触控显示基板,其中,所述触控信号线包括相平行设置的多条驱动信号线和多条感应电极信号线,所述隔离线包括第一子隔离线和第二子隔离线,多条所述驱动电极信号线和多条所述感应电极信号线位于所述第一子隔离线的同侧,且所述驱动电极信号线和所述感应电极信号线之间设置所述第二子隔离线,所述第一触控信号线包括靠近所述第一子隔离线设 置的所述感应电极信号线或者所述驱动电极信号线,以及靠近所述第二子隔离线设置的所述驱动电极信号线和所述感应电极信号线。
  6. 根据权利要求5所述的触控显示基板,其中,沿着远离所述中心触控区的方向,所述走线区依次分布有所述驱动电极信号线、所述第二子隔离线、所述感应电极信号线和所述第一子隔离线,所述感应电极信号线包括靠近所述第一子隔离线设置的第一信号线、靠近所述第二子隔离线设置的第二信号线、以及除所述第一信号线和所述第二信号线之外的第三信号线,所述驱动电极信号线包括靠近所述第二子隔离线设置的第四信号线,以及除了所述第四信号线之外的第五信号线;
    所述第一触控信号线包括所述第一信号线、所述第二信号线和所述第四信号线,所述第二触控信号线包括所述第三信号线和所述第五信号线。
  7. 根据权利要求6所述的触控显示基板,其中,所述第一信号线的宽度大于所述第二信号线的宽度,所述第四信号线的宽度大于所述第二信号线的宽度,且所述第二信号线的宽度大于所述第三信号线的宽度,所述第三信号线的宽度等于所述第五信号线的宽度。
  8. 根据权利要求4或5所述的触控显示基板,其中,所述第一子隔离线为地线。
  9. 根据权利要求4或5所述的触控显示基板,其中,所述触控显示基板为柔性触控显示基板,所述触控区的走线分布在不同的平面内,所述走线包括所述触控信号线和所述隔离线。
  10. 一种触控显示装置,其中,包括权利要求1-9任一项所述的触控显示基板。
  11. 一种触控信号线的分布方法,其中,用于设置权利要求1-9任一项所述的触控显示基板上的触控信号线,包括以下步骤:
    获取造成触控信号线发生电化学腐蚀的因素,所述因素包括电势差和水汽;
    建立线宽不均一的串联电阻模型,以获取电势差与线宽的关系;
    根据所述因素,以及电势差与线宽的所述关系设置所述触控信号线的线宽,使得所述第一触控信号线的宽度大于所述第二触控信号线的宽度。
  12. 根据权利要求11所述的触控信号线的分布方法,其中,获取造成触 控信号线发生电化学腐蚀的因素,具体包括:
    对所述触控信号线的电信号进行测试,获得所述第一触控信号线与所述隔离线之间具有电势差,相邻两个所述触控信号线之间无电势差的测试结果;
    根据金属在电解质溶液中的氧化还原反应,获得触控信号线发生电化学腐蚀的因素包括电势差和水汽,电势差越大,则越容易发生电化学腐蚀,和/或水汽越大,则越容易发生电化学腐蚀。
  13. 根据权利要求11所述的触控信号线的分布方法,其中,建立线宽不均一的串联电阻模型以获取电势差与线宽的关系,具体包括:
    将触控信号线设置为宽度不同的第一段和第二段,并等效为串联结构,其中,所述第一段的电阻为R 1,所述第二段的电阻为R 2
    对所述触控信号线提供一电流I,获得所述第一段的电压U 1=IR 1,所述第二段的电压U 2=IR 2
    根据电阻公式获得电势差与线宽W的关系:U 1/U2=W 1/W 2,W 1为所述第一段的线宽,W 2为所述第二段的线宽,其中电阻公式为R=ρ*L/S,ρ为电阻率,L为长度,S为截面积=W*d,d为厚度,且所述第一段的厚度与所述第二段的厚度相同。
PCT/CN2021/090465 2021-04-28 2021-04-28 触控显示基板、触控显示装置、触控信号线的分布方法 WO2022226822A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180000967.8A CN115668112A (zh) 2021-04-28 2021-04-28 触控显示基板、触控显示装置、触控信号线的分布方法
US17/639,238 US20240045546A1 (en) 2021-04-28 2021-04-28 Touch control display substrate, touch control display device, and touch control signal line distribution method
PCT/CN2021/090465 WO2022226822A1 (zh) 2021-04-28 2021-04-28 触控显示基板、触控显示装置、触控信号线的分布方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/090465 WO2022226822A1 (zh) 2021-04-28 2021-04-28 触控显示基板、触控显示装置、触控信号线的分布方法

Publications (1)

Publication Number Publication Date
WO2022226822A1 true WO2022226822A1 (zh) 2022-11-03

Family

ID=83847685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090465 WO2022226822A1 (zh) 2021-04-28 2021-04-28 触控显示基板、触控显示装置、触控信号线的分布方法

Country Status (3)

Country Link
US (1) US20240045546A1 (zh)
CN (1) CN115668112A (zh)
WO (1) WO2022226822A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017016166A1 (en) * 2015-07-27 2017-02-02 Boe Technology Group Co., Ltd. Array substrate, touch panel and display apparatus including the same
CN107065365A (zh) * 2017-06-16 2017-08-18 厦门天马微电子有限公司 显示面板以及显示装置
CN107357467A (zh) * 2017-08-01 2017-11-17 上海天马微电子有限公司 一种显示面板和显示装置
CN210488527U (zh) * 2019-12-05 2020-05-08 京东方科技集团股份有限公司 一种触控基板、触控面板、显示装置
CN111427476A (zh) * 2020-03-27 2020-07-17 京东方科技集团股份有限公司 柔性触控显示器件及触控控制方法
CN112612371A (zh) * 2020-12-15 2021-04-06 上海天马有机发光显示技术有限公司 触控显示面板及触控显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9535522B2 (en) * 2014-12-22 2017-01-03 Lg Display Co., Ltd. Flexible organic light emitting diode display device
US10101836B2 (en) * 2015-07-27 2018-10-16 Boe Technology Group Co., Ltd. Array substrate with dual gate structure touch panel and display apparatus containing the same
CN106066740B (zh) * 2016-08-02 2019-02-12 厦门天马微电子有限公司 触控显示面板和触控显示装置
CN108254987B (zh) * 2018-02-02 2021-03-16 厦门天马微电子有限公司 阵列基板以及显示装置
US11550414B2 (en) * 2020-12-30 2023-01-10 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch display screen and touch display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017016166A1 (en) * 2015-07-27 2017-02-02 Boe Technology Group Co., Ltd. Array substrate, touch panel and display apparatus including the same
CN107065365A (zh) * 2017-06-16 2017-08-18 厦门天马微电子有限公司 显示面板以及显示装置
CN107357467A (zh) * 2017-08-01 2017-11-17 上海天马微电子有限公司 一种显示面板和显示装置
CN210488527U (zh) * 2019-12-05 2020-05-08 京东方科技集团股份有限公司 一种触控基板、触控面板、显示装置
CN111427476A (zh) * 2020-03-27 2020-07-17 京东方科技集团股份有限公司 柔性触控显示器件及触控控制方法
CN112612371A (zh) * 2020-12-15 2021-04-06 上海天马有机发光显示技术有限公司 触控显示面板及触控显示装置

Also Published As

Publication number Publication date
US20240045546A1 (en) 2024-02-08
CN115668112A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US10222643B2 (en) Touch display panel
CN100451793C (zh) 显示装置及其制造方法
US20180267376A1 (en) Conductive pattern structure and its manufacturing method, array substrate and display device
CN111736395A (zh) 一种显示面板及显示装置
CN111651089A (zh) 触控面板、其制作方法及显示装置
TW201628855A (zh) 附有膜之玻璃板、觸控感測器、膜及附有膜之玻璃板之製造方法
US11216125B2 (en) Touch substrate and method for manufacturing the same, and display device
WO2021190055A1 (zh) 显示基板及其制备方法、显示面板和显示装置
US20230252930A1 (en) Display panel and manufacturing method thereof
WO2022226822A1 (zh) 触控显示基板、触控显示装置、触控信号线的分布方法
WO2024093120A1 (zh) 显示面板及显示装置
CN100421014C (zh) 反射型和半透过型液晶显示装置的制造方法
US10304855B2 (en) Display panel, touch display device and wire structure
US11237666B2 (en) Fabrication method of panel, panel and display device
US20210225895A1 (en) Display panel and manufacturing method therefor
US11609672B1 (en) Touch control substrate and preparation method thereof, touch control module and display device
CN114594876B (zh) 触控显示面板和移动终端
WO2022134817A1 (zh) 触控模组和触控显示装置
US20190280012A1 (en) Conductive pattern structure, manufacturing method thereof, array substrate and display device
CN105824162B (zh) 阵列基板及其制作方法、显示装置
CN105161502B (zh) 一种阵列基板及其制造方法、显示装置
CN109244084A (zh) 显示基板及其制作方法、显示装置
CN112888154B (zh) 柔性线路板及制备方法、显示装置
CN112382623B (zh) 电子装置的线路
CN113467122A (zh) 显示面板及其制作方法、移动终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17639238

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE