WO2022222401A1 - 自主泊车的方法、装置、设备及自动驾驶车辆 - Google Patents

自主泊车的方法、装置、设备及自动驾驶车辆 Download PDF

Info

Publication number
WO2022222401A1
WO2022222401A1 PCT/CN2021/126210 CN2021126210W WO2022222401A1 WO 2022222401 A1 WO2022222401 A1 WO 2022222401A1 CN 2021126210 W CN2021126210 W CN 2021126210W WO 2022222401 A1 WO2022222401 A1 WO 2022222401A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
target vehicle
vehicle
roadside device
parking
Prior art date
Application number
PCT/CN2021/126210
Other languages
English (en)
French (fr)
Inventor
王鲲
Original Assignee
阿波罗智联(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿波罗智联(北京)科技有限公司 filed Critical 阿波罗智联(北京)科技有限公司
Publication of WO2022222401A1 publication Critical patent/WO2022222401A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking

Definitions

  • the present application relates to unmanned driving and vehicle-road coordination in artificial intelligence, and in particular, to a method, device, device, and autonomous vehicle for autonomous parking.
  • a communication connection between the vehicle and a cloud server is generally established, and the information of the vehicle is sent to the cloud server, so that the cloud server can plan the path according to the information of the vehicle. , so that the vehicle can perform autonomous parking operation according to the path planned by the cloud server.
  • the present application provides an autonomous parking method, apparatus, device and autonomous vehicle for realizing real-time autonomous parking.
  • a method for autonomous parking comprising:
  • the target roadside device According to the current location information, determine the target roadside device corresponding to the current location information
  • a device for autonomous parking comprising:
  • a determination module configured to determine the current location information corresponding to the target vehicle in response to the autonomous parking instruction triggered by the user
  • a roadside device determination module configured to determine a target roadside device corresponding to the current location information according to the current location information
  • a sending module configured to send an autonomous parking request to the target roadside device, where the autonomous parking request includes vehicle data for path planning;
  • a receiving module configured to receive an initial parking route planned by the target roadside device for the target vehicle based on the vehicle data, and control the target vehicle to travel according to the initial parking route.
  • an electronic device comprising:
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method of the first aspect.
  • a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to perform the method of the first aspect.
  • a computer program product comprising: a computer program, the computer program being stored in a readable storage medium, from which at least one processor of an electronic device can read The storage medium reads the computer program, and the at least one processor executes the computer program to cause the electronic device to perform the method of the first aspect.
  • an autonomous driving vehicle including the electronic device as described in the third aspect.
  • the technology according to the present application solves the technical problem of low real-time performance of the existing method for autonomous parking planning through a cloud server.
  • FIG. 1 is a schematic diagram of a network architecture on which this application is based;
  • FIG. 2 is a schematic flowchart of a method for autonomous parking according to Embodiment 1 of the present application;
  • FIG. 3 is a schematic structural diagram of a target roadside device provided by an embodiment of the present application.
  • FIG. 4 is a schematic update diagram of a target roadside device provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for autonomous parking according to Embodiment 2 of the present application.
  • FIG. 6 is a schematic flowchart of the method for autonomous parking provided in Embodiment 3 of the present application.
  • FIG. 7 is a schematic structural diagram of the device for autonomous parking provided in Embodiment 4 of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device according to Embodiment 5 of the present application.
  • the present application provides a method, device and equipment for autonomous parking. and autonomous vehicles.
  • the method, device, device and autonomous driving vehicle provided by the present application can be used in any scenario where a vehicle performs autonomous parking.
  • the existing autonomous parking methods in order to be applicable to all configured models, generally use the server to plan the path, and send the planned autonomous parking path to the vehicle, so that the vehicle can perform the path according to the autonomous parking path.
  • Autonomous parking operation because the information exchange and data calculation between the cloud server and the vehicle often have a certain delay, the above-mentioned method for autonomous parking path planning is often not real-time, and the vehicle cannot perform autonomous parking in real time and accurately. operate.
  • the target roadside equipment in order to enable vehicles with any configuration to realize real-time autonomous parking operation, the target roadside equipment can be determined according to the location information of the target vehicle, and the target roadside equipment can perform Path planning for autonomous parking. Since the target roadside device is determined according to the position of the target vehicle, the time delay when the target vehicle communicates with the target roadside device is extremely small, so real-time autonomous parking can be realized.
  • the present application provides an autonomous parking method, device, device, and autonomous vehicle, which are applied to unmanned driving and vehicle-road coordination in artificial intelligence to achieve real-time target vehicle planning of autonomous parking routes.
  • FIG. 1 is a schematic diagram of the network architecture on which the application is based.
  • the network architecture on which the application is based at least includes: a target vehicle 11 and a target roadside device 12 , wherein the target roadside device 12 integrates a data acquisition module, A computing module and a communication module.
  • the data collection module includes a variety of sensors and image collection devices for collecting road condition information.
  • the communication module is used to obtain vehicle data sent by the target vehicle 11. planning.
  • the target vehicle 11 may be a vehicle with any configuration.
  • the target vehicle 11 is connected in communication with the target roadside device 12, so that the parking path planned by the target roadside device 12 according to the road condition information and the vehicle data can be acquired.
  • FIG. 2 is a schematic flowchart of a method for autonomous parking provided in Embodiment 1 of the present application. As shown in FIG. 2 , the method includes:
  • Step 201 in response to the autonomous parking instruction triggered by the user, determine the current location information corresponding to the target vehicle.
  • the executive body of this embodiment is an autonomous parking device, and the autonomous parking device can be coupled to the target vehicle.
  • the target vehicle can establish a communication connection with the target roadside device, so that the two can exchange information.
  • an autonomous parking instruction can be issued through an application software communicatively connected to the target vehicle or a display interface set on the target vehicle.
  • the device for autonomous parking can acquire the autonomous parking instruction triggered by the user. In order to realize real-time autonomous parking, it is first necessary to determine the current location information of the target vehicle.
  • Step 202 Determine a target roadside device corresponding to the current location information according to the current location information.
  • the target roadside equipment for autonomous parking can be determined according to the position information.
  • FIG. 3 is a schematic structural diagram of a target roadside equipment provided by an embodiment of the present application.
  • the target roadside equipment 31 specifically includes a calculation control facility 32 , a roadside communication facility 33 , a signal light variable sign 34 , and a perception and positioning facility.
  • the computing control facility 32 is respectively connected to the roadside communication facility 33 , the signal light variable sign 34 , the sensing and positioning setting 35 and the near-field payment 36
  • the sensing and positioning device 35 specifically includes a camera 351 , a millimeter-wave radar 352 and a lidar 353.
  • the target roadside equipment can also be used for parking payment operation.
  • the calculation control facility 32 can determine the time when the target vehicle completes autonomous parking and the time when it leaves the parking area, and calculates the parking fee to be paid for this parking operation according to the above two times. The payment of parking fees is completed through the near field payment 36.
  • Step 203 Send an autonomous parking request to the target roadside device, where the autonomous parking request includes vehicle data for path planning.
  • a communication connection can be established with the target roadside device, and an autonomous parking request is sent to the target roadside device.
  • the autonomous parking request also includes vehicle data used for path planning.
  • Step 204 Receive an initial parking route planned by the target roadside device for the target vehicle based on the vehicle data, and control the target vehicle to travel according to the initial parking route.
  • the target roadside device can perform a path planning operation for the target vehicle according to the vehicle data carried in the autonomous parking request and the collected road data, and obtain the initial parking route, and send the initial parking route to the target vehicle.
  • the target vehicle can acquire the initial parking route and drive according to the initial parking route.
  • the target vehicle can establish a communication connection with the cloud server, and send the autonomous parking request to the cloud server, so that the cloud server can plan the initial parking route according to the autonomous parking request.
  • the target vehicle can obtain the initial parking route sent by the cloud server, and drive according to the initial parking route.
  • the target roadside device is determined according to the current position information of the target vehicle, and an autonomous parking request carrying the vehicle information is sent to the target roadside device to obtain the initial parking request sent by the target roadside device. Since the target roadside device is determined according to the position of the target vehicle, the delay when the target vehicle communicates with the target roadside device is extremely small, so real-time autonomous parking can be realized. . In addition, since the data collection and path planning are implemented by the target roadside equipment, the target vehicle does not need a higher configuration, so that the target vehicle with any configuration can realize the autonomous parking function.
  • step 202 specifically includes:
  • the distance between each roadside device and the target vehicle within a preset range is determined.
  • the roadside device with the smallest distance from the target vehicle is determined as the target roadside device.
  • the roadside device closest to the target vehicle may be selected as the target roadside device.
  • the distance between the target vehicle and each roadside device within a preset range can be determined according to the current position information of the target vehicle.
  • the roadside device with the smallest distance from the target vehicle is determined as the target roadside device.
  • the time delay caused by data transmission can be effectively reduced, and the real-time planning of the autonomous parking path can be improved. sex.
  • the method further includes:
  • step 204 the target vehicle is controlled to travel according to the initial parking route, which specifically includes:
  • the target vehicle In response to the confirmation instruction for the initial parking route for triggering, the target vehicle is controlled to travel along the initial parking route.
  • the initial parking route sent by the target roadside device can be sent to the user for review, and whether to drive according to the initial parking route is determined according to the user's review result.
  • a preset display interface on the target vehicle can be controlled to display the initial parking route.
  • the initial parking route may be sent to the user's terminal device for display.
  • the target vehicle is controlled to travel according to the initial parking route.
  • the user can also manually adjust the initial parking route according to actual needs, which is not limited in this application.
  • the autonomous parking method provided by this embodiment obtains the user's confirmation instruction before performing the autonomous parking operation according to the initial parking route, thereby making the autonomous parking operation more suitable for the user's needs and improving the user experience.
  • the vehicle data specifically includes the identifier of the target vehicle
  • the initial parking route planned by the target roadside device for the target vehicle based on the vehicle data is received, including:
  • the parking area information sent by the target roadside device, and the initial parking route to the parking area, where the parking area information is the vehicle corresponding to the target roadside device according to the identification of the target vehicle sized;
  • the method further includes:
  • a travel path planned by the target roadside equipment is acquired, and an autonomous parking operation is completed according to the travel path.
  • the target roadside device can determine the parking area information according to the vehicle size corresponding to the vehicle identifier in the autonomous parking request, and according to the parking area information and the target vehicle current location information, and plan an initial parking route from the current location to the parking area. Further, after it is detected that the target vehicle travels to the parking area, a travel path can be further planned for the target vehicle, so that the target vehicle can complete the autonomous parking operation according to the further planned travel path.
  • the autonomous parking method provided in this embodiment can realize the autonomous parking operation in real time by acquiring the parking area information and the initial parking route sent by the target roadside device, and can enable any vehicle with any configuration to realize the autonomous parking operation.
  • Autonomous parking function can realize the autonomous parking operation in real time by acquiring the parking area information and the initial parking route sent by the target roadside device, and can enable any vehicle with any configuration to realize the autonomous parking operation.
  • Autonomous parking function can realize the autonomous parking operation in real time by acquiring the parking area information and the initial parking route sent by the target roadside device, and can enable any vehicle with any configuration to realize the autonomous parking operation.
  • Autonomous parking function Autonomous parking function.
  • step 204 it also includes:
  • the target vehicle travels to the parking area, it is determined whether there is any roadside device in a preset area around the target vehicle and the distance between the current location information of the target vehicle and the target vehicle is smaller than that of the target vehicle. The distance between the current location information and the target roadside device.
  • the position of the target vehicle changes in real time while the target vehicle is traveling along the initial parking route. Therefore, in order to ensure the real-time performance of autonomous parking, the current target roadside equipment can be updated.
  • the target vehicle travels to the parking area, it can be determined whether there is any roadside device in the preset area around the target vehicle and the distance between the current position information of the target vehicle and the current position information of the target vehicle is smaller than the current position information of the target vehicle and the target road. distance between side devices. If it exists, any roadside device whose distance from the current position information of the target vehicle is smaller than the distance between the current position information of the target vehicle and the target roadside device can be replaced by the target roadside device to form an updated target roadside equipment. On the contrary, if it does not exist, the current target roadside device can still be used for the path planning operation, and the target roadside device is not updated.
  • FIG. 4 is a schematic update diagram of a target roadside device provided by an embodiment of the application.
  • the target vehicle 41 can travel according to the first travel path sent by the target roadside device 42 , where the first travel path is used for
  • the target vehicle 42 is guided from the parking area 44 to the parking space 45 .
  • the distance 46 between the target vehicle 41 and the current target roadside equipment 42 gradually increases.
  • the distance 47 between the target vehicle 41 and the roadside equipment 43 is smaller than the distance 46 between the target roadside equipment 42. Therefore,
  • the roadside device 43 may be used to replace the current target roadside device 42 to form an updated target roadside device.
  • the updated target roadside device 43 may transmit the second travel route to the target vehicle 41 , and the second travel route is used to guide the target vehicle 41 to park into the parking space 45 .
  • the method for autonomous parking provided in this embodiment can effectively reduce the delay of data transmission by updating the target roadside equipment, and ensure the real-time performance of autonomous parking.
  • FIG. 5 is a schematic flowchart of the method for autonomous parking provided in the second embodiment of the application.
  • the method further includes:
  • Step 501 Send an autonomous parking request to the updated target roadside device, wherein the autonomous parking request includes feature information of the target vehicle, wherein the feature information includes the identifier of the target vehicle, the vehicle type and vehicle size.
  • Step 502 Acquire the parking space determined according to the characteristic information of the target vehicle and sent by the target roadside device, and the planned first travel path from the parking area to the parking space.
  • Step 503 Control the target vehicle to travel according to the first travel path.
  • an autonomous parking request may be sent to the updated target roadside device, so that the updated target roadside device is the target vehicle to plan a further first travel path, which
  • the first travel path is specifically used to control the target vehicle to travel from the parking area to the parking space. Since the path of the target vehicle from the parking area to the parking space is relatively narrow, the requirements for accuracy are higher, and the corresponding path planning requires more vehicle data.
  • the autonomous parking request includes characteristic information of the target vehicle, wherein the characteristic information includes the identification of the target vehicle, the type of the vehicle, and the size of the vehicle.
  • the target roadside equipment After acquiring the autonomous parking request, the target roadside equipment can determine the specific parking space according to the characteristic information of the target vehicle, and plan the first driving path from the parking area to the parking space according to the characteristic information, The driving route is sent to the target vehicle.
  • the target vehicle can acquire the parking space information and the first driving path sent by the target roadside device, and drive from the parking area to a specific parking space according to the first driving path.
  • a first driving path with higher accuracy is planned for the target vehicle, so that the autonomous parking can be guaranteed on the basis of realizing real-time autonomous parking. car safety.
  • step 503 it also includes:
  • the target vehicle travels to the parking space, it is determined whether there is any roadside device in the parking area and the distance between the current position information of the target vehicle and the current position information of the target vehicle is smaller than the current position information of the target vehicle and the The updated distance between the target roadside devices.
  • the position of the target vehicle changes in real time when the target vehicle travels along the first travel path. Therefore, in order to ensure the real-time performance of autonomous parking, the updated target roadside equipment can be re-updated.
  • the method for autonomous parking provided in this embodiment can effectively reduce the time delay of data transmission by re-updating the updated target roadside equipment and ensure the real-time performance of autonomous parking.
  • FIG. 6 is a schematic flowchart of the method for autonomous parking provided in Embodiment 3 of the present application.
  • the combination of the current position information of the target vehicle and the Any roadside device whose distance is smaller than the distance between the current position information of the target vehicle and the target roadside device replaces the updated target roadside device to form the updated target roadside device.
  • Also includes:
  • Step 601 Send an autonomous parking request to the re-updated target roadside device, wherein the autonomous parking request includes the driving data of the target vehicle, wherein the driving data includes the vehicle position, speed, Four-axis acceleration, steering wheel angle.
  • Step 602 Obtain the re-updated target roadside equipment and plan a second driving path for the target vehicle according to the driving data.
  • Step 603 Control the target vehicle to travel according to the second travel path, wherein the second travel path is used to control the target vehicle to park in the parking space.
  • an autonomous parking request may be sent to the re-updated target roadside equipment, so that the re-updated target roadside equipment is the target vehicle planning further
  • the second travel path where the second travel path is specifically used to control the target vehicle to park in a space. Since the path of the target vehicle is narrower in the process of being shortlisted for parking, the requirements for accuracy are higher, and the corresponding path planning requires more vehicle data.
  • the autonomous parking request includes travel data of the target vehicle of the target vehicle, wherein the travel data includes vehicle position, speed, four-axis acceleration, and steering wheel angle.
  • the updated target roadside device can plan a second travel path for the target vehicle according to the travel data of the target vehicle, and send the second travel path to the target vehicle.
  • the target vehicle may acquire the second travel path sent by the re-updated target roadside device, and perform parking according to the second travel path.
  • a second driving path with higher accuracy is planned for the target vehicle after the target vehicle travels to the parking space, so that the autonomous parking can be guaranteed on the basis of realizing real-time autonomous parking. car safety.
  • FIG. 7 is a schematic structural diagram of the device for autonomous parking provided in Embodiment 4 of the present application.
  • the device includes: a determination module 71 , a roadside equipment determination module 72 , a transmission module 73 and a reception module 74 , wherein,
  • the determining module 71 is configured to determine the current location information corresponding to the target vehicle in response to the autonomous parking instruction triggered by the user.
  • the roadside device determining module 72 is configured to determine, according to the current location information, a target roadside device corresponding to the current location information.
  • the sending module 73 is configured to send an autonomous parking request to the target roadside device, where the autonomous parking request includes vehicle data for path planning.
  • the receiving module 74 is configured to receive an initial parking route planned by the target roadside device for the target vehicle based on the vehicle data, and control the target vehicle to travel according to the initial parking route.
  • the roadside equipment determination module includes: a distance determination unit and a determination unit, wherein the distance determination unit is configured to determine each roadside within a preset range according to the current location information The distance between the device and the target vehicle. and a determining unit, configured to determine the roadside device with the smallest distance from the target vehicle as the target roadside device.
  • the apparatus further includes: a display module.
  • the display module is configured to control the display interface corresponding to the target vehicle to display the initial parking route.
  • the receiving module includes: a response unit.
  • a response unit configured to control the target vehicle to travel along the initial parking route in response to a triggering confirmation instruction for the initial parking route.
  • the vehicle data includes the identifier of the target vehicle
  • the receiving module includes: a response unit.
  • a data acquisition unit configured to acquire the parking area information sent by the target roadside equipment, and the initial parking route to the parking area, wherein the parking area information is the target roadside equipment according to the target roadside equipment
  • the size of the vehicle corresponding to the identification of the vehicle is determined.
  • the device further includes: a travel path acquisition module.
  • a travel path acquisition module configured to acquire a travel path planned by the target roadside equipment when it is detected that the target vehicle travels to the parking area, and complete an autonomous parking operation according to the travel path.
  • the apparatus further includes: a first distance determination module and a first processing module.
  • the first distance determination module is configured to determine whether there is any roadside equipment and the current position information of the target vehicle in a preset area around the target vehicle when it is detected that the target vehicle has traveled to the parking area The distance therebetween is smaller than the distance between the current position information of the target vehicle and the target roadside device.
  • the first processing module is configured to, if it exists, determine any road whose distance from the current position information of the target vehicle is less than the distance between the current position information of the target vehicle and the target roadside device.
  • the side device replaces the target roadside device to form an updated target roadside device; if it does not exist, the update operation is not performed on the target roadside device.
  • the apparatus further includes: a first request sending module, a first data acquisition module, and a first control module.
  • the first request sending module is configured to send an autonomous parking request to the updated target roadside device, wherein the autonomous parking request includes feature information of the target vehicle, wherein the feature information Include the target vehicle's identification, vehicle type, and vehicle size.
  • the first data acquisition module is configured to acquire the parking space determined according to the characteristic information of the target vehicle and sent by the target roadside device, and the planned first driving path from the parking area to the parking space.
  • a first control module configured to control the target vehicle to travel according to the first travel path.
  • the apparatus further includes: a second distance determination module and a second processing module.
  • the second distance determination module is configured to determine whether there is a distance between any roadside equipment and the current position information of the target vehicle in the parking area if the target vehicle is detected to drive to the parking space is less than the distance between the current location information of the target vehicle and the updated target roadside device.
  • the second processing module is configured to, if there exists any road whose distance from the current position information of the target vehicle is smaller than the distance between the current position information of the target vehicle and the target roadside device
  • the side device replaces the updated target roadside device to form a re-updated target roadside device; if it does not exist, the update operation is not performed on the target roadside device.
  • the apparatus further includes: a second request sending module, a second data acquiring module, and a second control module.
  • the second request sending module is configured to send an autonomous parking request to the re-updated target roadside device, wherein the autonomous parking request includes the driving data of the target vehicle, wherein the driving The data includes vehicle position, speed, four-axis acceleration, steering wheel angle.
  • a second data acquisition module configured to acquire the re-updated target roadside equipment to plan a second driving path for the target vehicle according to the driving data.
  • the second control module is configured to control the target vehicle to travel according to the second travel path, wherein the second travel path is used to control the target vehicle to park in the parking space.
  • the present application further provides an electronic device and a readable storage medium.
  • the present application further provides a computer program product, the program product includes: a computer program, where the computer program is stored in a readable storage medium, and at least one processor of the electronic device can be read from the readable storage medium A computer program, where at least one processor executes the computer program to cause the electronic device to execute the solution provided by any of the foregoing embodiments.
  • the present application further provides a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to execute the method according to any of the foregoing embodiments. .
  • the present application further provides an autonomous driving vehicle, including the electronic device described in this embodiment.
  • FIG. 8 is a schematic structural diagram of an electronic device according to Embodiment 5 of the present application.
  • Electronic devices are intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.
  • the electronic device 800 includes a computing unit 801 that can be programmed according to a computer program stored in a read only memory (ROM) 802 or loaded into a random access memory (RAM) 803 from a storage unit 808 . Various appropriate actions and processes are performed. In the RAM 803, various programs and data required for the operation of the device 800 can also be stored.
  • the computing unit 801, the ROM 802, and the RAM 803 are connected to each other through a bus 804.
  • An input/output (I/O) interface 805 is also connected to bus 804 .
  • Various components in the device 800 are connected to the I/O interface 805, including: an input unit 806, such as a keyboard, mouse, etc.; an output unit 807, such as various types of displays, speakers, etc.; a storage unit 808, such as a magnetic disk, an optical disk, etc. ; and a communication unit 809, such as a network card, a modem, a wireless communication transceiver, and the like.
  • the communication unit 809 allows the device 800 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.
  • Computing unit 801 may be various general-purpose and/or special-purpose processing components with processing and computing capabilities. Some examples of computing units 801 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), various specialized artificial intelligence (AI) computing chips, various computing units that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc.
  • the computing unit 801 performs the various methods and processes described above, such as the method of autonomous parking.
  • the method of autonomous parking may be implemented as a computer software program tangibly embodied on a machine-readable medium, such as storage unit 808.
  • part or all of the computer program may be loaded and/or installed on device 800 via ROM 802 and/or communication unit 809 .
  • ROM 802 and/or communication unit 809 When a computer program is loaded into RAM 803 and executed by computing unit 801, one or more steps of the method of autonomous parking described above may be performed.
  • the computing unit 801 may be configured to perform the method of autonomous parking by any other suitable means (eg, by means of firmware).
  • Various implementations of the systems and techniques described herein above may be implemented in digital electronic circuitry, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips system (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • ASSPs application specific standard products
  • SOC systems on chips system
  • CPLD load programmable logic device
  • computer hardware firmware, software, and/or combinations thereof.
  • These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • Program code for implementing the methods of the present application may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer or other programmable data processing apparatus, such that the program code, when executed by the processor or controller, performs the functions/functions specified in the flowcharts and/or block diagrams. Action is implemented.
  • the program code may execute entirely on the machine, partly on the machine, partly on the machine and partly on a remote machine as a stand-alone software package or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store the program for use by or in connection with the instruction execution system, apparatus or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), fiber optics, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种自主泊车的方法:响应于用户触发的自主泊车指令,确定目标车辆对应的当前位置信息;根据当前位置信息,确定与当前位置信息对应的目标路侧设备;向目标路侧设备发送自主泊车请求,自主泊车请求中包括用于路径规划的车辆数据;接收目标路侧设备基于车辆数据为目标车辆规划的初始泊车路线,控制目标车辆按照初始泊车路线行驶。由于目标路侧设备是根据目标车辆的位置来确定,从而目标车辆与目标路侧设备通信时的时延极小,因此能够实现实时的自主泊车。还公开了相应的装置、设备及自动驾驶车辆。

Description

自主泊车的方法、装置、设备及自动驾驶车辆
本申请要求于2021年04月21日提交中国专利局、申请号为202110432560.4、申请名称为“自主泊车的方法、装置、设备及自动驾驶车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及人工智能中的无人驾驶、车路协同,尤其涉及一种自主泊车的方法、装置、设备及自动驾驶车辆。
背景技术
由于将汽车驶入较为狭小的空间操作难度较大,因此,自主泊车(Valet Parking)逐渐走进了用户的生活。自主泊车是指汽车自动泊车入位不需要人工控制。
为了使得任意配置的车辆均能够实现自主泊车功能,现有技术中一般都是将车辆与云端服务器建立通信连接,将车辆的信息发送至云端服务器,从而云端服务器能够根据车辆的信息进行路径规划,从而车辆可以按照云端服务器规划的路径进行自主泊车操作。
但是,采用上述方法进行自主泊车的路径规划时,由于云端服务器接收到车辆的信息并进行数据处理反馈路径给车辆往往存在一定的时延,因此,无法实时地为车辆规划自主泊车路线,进而无法进行实时的自主泊车,无法满足用户自主泊车的需求。
发明内容
本申请提供了一种用于实现实时自主泊车的自主泊车的方法、装置、设备及自动驾驶车辆。
根据本申请的第一方面,提供了一种自主泊车的方法,包括:
响应于用户触发的自主泊车指令,确定目标车辆对应的当前位置信息;
根据所述当前位置信息,确定与所述当前位置信息对应的目标路侧设备;
向所述目标路侧设备发送自主泊车请求,所述自主泊车请求中包括用于路径规划的车辆数据;
接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线,控制所述目标车辆按照所述初始泊车路线行驶。
根据本申请的第二方面,提供了一种自主泊车的装置,包括:
确定模块,用于响应于用户触发的自主泊车指令,确定目标车辆对应的当前位置信息;
路侧设备确定模块,用于根据所述当前位置信息,确定与所述当前位置信息对应的目标路侧设备;
发送模块,用于向所述目标路侧设备发送自主泊车请求,所述自主泊车请求中包括用于路径规划的车辆数据;
接收模块,用于接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线,控制所述目标车辆按照所述初始泊车路线行驶。
根据本申请的第三方面,提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如第一方面所述的方法。
根据本申请的第四方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行如第一方面所述的方法。
根据本申请的第五方面,提供了一种计算机程序产品,所述程序产品包括:计算机程序,所述计算机程序存储在可读存储介质中,电子设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得电子设备执行第一方面所述的方法。
根据本申请的第六方面,提供了一种自动驾驶车辆,包括如第三方面所述的电子设备。
根据本申请的技术解决了现有的通过云端服务器进行自主泊车规划的方法实时性不高的技术问题。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用于更好地理解本方案,不构成对本申请的限定。其中:
图1为本申请基于的网络架构示意图;
图2为本申请实施例一提供的自主泊车的方法的流程示意图;
图3为本申请实施例提供的目标路侧设备的结构示意图;
图4为本申请实施例提供的目标路侧设备的更新示意图;
图5为本申请实施例二提供的自主泊车的方法的流程示意图;
图6为本申请实施例三提供的自主泊车的方法的流程示意图;
图7为本申请实施例四提供的自主泊车的装置的结构示意图;
图8为本申请实施例五提供的电子设备的结构示意图。
具体实施方式
以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
针对上述提及的在现有的自主泊车方法中,由于由服务器进行路径规划具有时延、无法实时进行自主泊车的技术问题,本申请提供了一种自主泊车的方法、装置、设备及自动驾驶车辆。
需要说明的是,本申请提供自主泊车的方法、装置、设备及自动驾驶车辆可运用在任 意一种车辆进行自主泊车的场景中。
现有的自主泊车方法,为了能够适用于全部配置的车型,一般都是由服务器进行路径规划,并将规划好的自主泊车的路径发送至车辆,使得车辆根据该自主泊车的路径进行自主泊车操作。但是,由于云端服务器与车辆之间的信息交互以及数据计算往往具有一定的时延,因此,采用上述方法进行自主泊车路径规划往往不具有实时性,进而车辆无法实时、准确地进行自主泊车操作。
在解决上述技术问题的过程中,发明人通过研究发现,为了使得任意配置的车辆实现实时的自主泊车操作,可以根据目标车辆的位置信息来确定目标路侧设备,由该目标路侧设备进行自主泊车的路径规划。由于目标路侧设备是根据目标车辆的位置来确定,从而目标车辆与目标路侧设备通信时的时延极小,因此能够实现实时的自主泊车。
本申请提供一种自主泊车的方法、装置、设备及自动驾驶车辆,应用于人工智能中的无人驾驶、车路协同,以达到实时为目标车辆规划自主泊车路线的。
图1为本申请基于的网络架构示意图,如图1所示,本申请基于的网络架构至少包括:目标车辆11以及目标路侧设备12,其中,目标路侧设备12中集成了数据采集模块、计算模块以及通信模块,数据采集模块包括多种传感器、图像采集设备,用于采集路况信息,通信模块用于获取目标车辆11发送的车辆数据,计算模块用于根据路况信息以及车辆数据进行路径的规划。目标车辆11则可以为任意配置的车辆。
目标车辆11与目标路侧设备12通信连接,从而能够获取目标路侧设备12根据路况信息以及车辆数据规划的泊车路径。
图2为本申请实施例一提供的自主泊车的方法的流程示意图,如图2所示,该方法包括:
步骤201、响应于用户触发的自主泊车指令,确定目标车辆对应的当前位置信息。
本实施例的执行主体为自主泊车的装置,该自主泊车的装置可耦合于目标车辆中。该目标车辆能够与目标路侧装置建立通信连接,从而二者能够进行信息交互。
在本实施方式中,当用户需要进行自主泊车时,可以通过与目标车辆通信连接的应用软件或者目标车辆上设置的显示界面发出自主泊车指令。相应地,自主泊车的装置可以获取用户触发的自主泊车指令。为了能够实现实时地自主泊车,首先需要确定目标车辆当前所处的位置信息。
步骤202、根据所述当前位置信息,确定与所述当前位置信息对应的目标路侧设备。
在本实施方式中,在确定目标车辆当前的位置信息之后,即可以根据该位置信息,确定用于自主泊车的目标路侧设备。
具体地,由于不同的车辆其配置有所不同,而自主泊车所需要的传感器、计算模块对车辆配置的要求较高,因此,不是全部的车辆均能够实现自主泊车功能。为了使得任意配置的车辆均能够实现自主泊车功能,可以选择采用目标路侧设备进行自主泊车路径的规划。
图3为本申请实施例提供的目标路侧设备的结构示意图,如图3所示,该目标路侧设备31具体包括计算控制设施32、路侧通信设施33、信号灯可变标识34、感知定位设置35以及近场支付36。其中,计算控制设施32分别与路侧通信设施33、信号灯可变标识34、感知定位设置35以及近场支付36通信连接,该感知定位装置35内具体包括相机351、毫米波雷达352以及激光雷达353。
基于上述结构,该目标路侧设备还可以用于停车缴费操作。具体地,该计算控制设施32可以确定目标车辆完成自主泊车的时间以及离开停车区域的时间,根据上述两个时间计算本次停车操作所需缴纳的停车费用。通过近场支付36完成停车费用的缴纳。
步骤203、向所述目标路侧设备发送自主泊车请求,所述自主泊车请求中包括用于路径规划的车辆数据。
在本实施方式中,在确定目标路侧设备之后,可以与该目标路侧设备建立通信连接,并向该目标路侧设备发送自主泊车请求。为了使得目标路侧设备能够准确地进行自主泊车路径的规划,该自主泊车请求中还包括用于路径规划的车辆数据。
步骤204、接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线,控制所述目标车辆按照所述初始泊车路线行驶。
在本实施方式中,目标路侧设备在获取到自主泊车请求之后,可以根据该自主泊车请求中携带的车辆数据以及采集到的道路数据为该目标车辆进行路径规划操作,获得初始泊车路线,并将该初始泊车路线发送给目标车辆。
相应地,目标车辆可以获取该初始泊车路线,并按照该初始泊车路线行驶。
作为一种可以实施的方式,由于初始泊车路线的精度不高,相应地,其对路径规划的实时性要求也相对不高。因此,目标车辆可以与云端服务器建立通信连接,并将自主泊车请求发送至云端服务器,以使云端服务器根据该自主泊车请求进行初始泊车路线的规划。目标车辆可以获取云端服务器发送的初始泊车路线,并按照该初始泊车路线行驶。
本实施例提供的自主泊车的方法,通过根据目标车辆当前的位置信息确定目标路侧设备,并向目标路侧设备发送携带车辆信息的自主泊车请求,获取目标路侧设备发送的初始泊车路线并按照该初始泊车路线进行行驶,由于目标路侧设备是根据目标车辆的位置来确定,从而目标车辆与目标路侧设备通信时的时延极小,因此能够实现实时的自主泊车。此外,由于数据的采集以及路径的规划均由目标路侧设备来实现,目标车辆无需较高的配置,从而能够使得任意配置的目标车辆均能够实现自主泊车功能。
进一步地,在实施例一的基础上,步骤202具体包括:
根据所述当前位置信息,确定预设范围内各路侧设备与所述目标车辆之间的距离。
将与所述目标车辆之间距离最小的路侧设备确定为所述目标路侧设备。
在本实施例中,为了减小数据传输所带来的时延,提高自主泊车路径规划的实时性,可以选择与目标车辆最近的路侧设备作为目标路侧设备。具体地,可以根据目标车辆当前的位置信息,确定目标车辆与预设范围内各路侧设备之间的距离。将与目标车辆距离最小的路侧设备确定为目标路侧设备。
本实施例提供的自主泊车的方法,通过选择与目标车辆最近的路侧设备作为目标路侧设备,从而能够有效地减小数据传输所带来的时延,提高自主泊车路径规划的实时性。
进一步地,在实施例一的基础上,步骤204中接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线之后,还包括:
控制所述目标车辆对应的显示界面显示所述初始泊车路线;
步骤204中控制所述目标车辆按照所述初始泊车路线行驶,具体包括:
响应于用于触发的对所述初始泊车路线的确认指令,控制所述目标车辆按照所述初始泊车路线行驶。
在本实施例中,当获取到目标路侧设备发送的初始泊车路线之后,可以先将该初始泊车路线发送给用户进行审核,根据用户的审核结果确定是否按照该初始泊车路线行驶。
具体地,可以控制目标车辆上预设的显示界面显示该初始泊车路线。或者可以将该初始泊车路线发送至用户的终端设备进行显示。当检测到用户触发的对初始泊车路线的确认指令之后,在控制目标车辆按照初始泊车路线行驶。
可选地,用户在显示界面上看到该初始泊车路线之后,还可以根据实际需求对该初始泊车路线进行手动调整,本申请对此不做限制。
本实施例提供的自主泊车的方法,通过在按照初始泊车路线进行自主泊车操作之前,获取用户的确认指令,从而能够使得自主泊车操作更加贴合用户的需求,提高用户体验。
进一步地,在实施例一的基础上,车辆数据具体包括目标车辆的标识,步骤204中接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线,包括:
获取所述目标路侧设备发送的停车区域信息,以及行驶至所述停车区域的初始泊车路线,其中,所述停车区域信息为所述目标路侧设备根据所述目标车辆的标识对应的车辆尺寸确定的;
步骤204中控制所述目标车辆按照所述初始泊车路线行驶之后,还包括:
当检测到所述目标车辆行驶至所述停车区域时,获取所述目标路侧设备规划的行驶路径,根据所述行驶路径完成自主泊车操作。
在本实施例中,目标路侧设备在获取到该自主泊车请求之后,可以根据该自主泊车请求中的车辆标识对应的车辆尺寸来确定停车区域信息,并根据该停车区域信息以及目标车辆当前的位置信息,规划由当前的位置行驶至所述停车区域的初始泊车路线。进一步地,当检测到目标车辆行驶至该停车区域之后,可以进一步地为目标车辆规划行驶路径,以使目标车辆根据进一步地规划的行驶路径完成自主泊车操作。
本实施例提供的自主泊车的方法,通过获取目标路侧设备发送的停车区域信息以及初始泊车路线,从而能够实时地实现自主泊车操作,且能够使得任意一种配置的车辆均能够实现自主泊车功能。
进一步地,在实施例一的基础上,步骤204之后,还包括:
当检测到所述目标车辆行驶至所述停车区域时,确定所述目标车辆周围预设区域内是否存在任一路侧设备与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离。
若存在,则将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替代所述目标路侧设备,以形成更新后的目标路侧设备。
若不存在,则不对所述目标路侧设备进行更新操作。
在本实施例中,在目标车辆按照该初始泊车路线行驶的过程中,位置实时发生变化,因此,为了保证自主泊车的实时性,可以对当前的目标路侧设备进行更新操作。
具体地,当检测到目标车辆行驶至停车区域时,可以确定目标车辆周围预设区域内是否存在任一路侧设备与目标车辆的当前位置信息之间的距离小于目标车辆的当前位置信息与目标路侧设备之间的距离。若存在,则可以将与目标车辆的当前位置信息之间的距离小于目标车辆的当前位置信息与目标路侧设备之间的距离的任一路侧设备替代目标路侧 设备,以形成更新后的目标路侧设备。反之,若不存在,则可以仍旧使用当前的目标路侧设备进行路径规划操作,不对目标路侧设备进行更新操作。
图4为本申请实施例提供的目标路侧设备的更新示意图,如图4所示,目标车辆41可以按照目标路侧设备42发送的第一行驶路径进行行驶,其中,第一行驶路径用于引导目标车辆42由停车区域44行驶至停车位45。目标车辆41与当前的目标路侧设备42之间的距离46逐渐增加,此时,目标车辆41与一路侧设备43之间的距离47小于与目标路侧设备42之间的距离46,因此,可以采用路侧设备43替代当前的目标路侧设备42,形成更新后的目标路侧设备。更新后的目标路侧设备43可以向目标车辆41发送第二行驶路径,第二行驶路径用于引导目标车辆41泊车入停车位45。
本实施例提供的自主泊车的方法,通过对目标路侧设备进行更新,从而能够有效地降低数据传输的时延,保证自主泊车的实时性。
图5为本申请实施例二提供的自主泊车的方法的流程示意图,在实施例一的基础上,如图5所示,所述将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备确定为所述目标路侧设备之后,还包括:
步骤501、向所述更新后的目标路侧设备发送自主泊车请求,其中,所述自主泊车请求中包括所述目标车辆的特征信息,其中,所述特征信息包括目标车辆的标识、车辆类型以及车辆尺寸。
步骤502、获取所述目标路侧设备发送的根据所述目标车辆的特征信息确定的停车位,以及规划的由所述停车区域行驶至所述停车位的第一行驶路径。
步骤503、控制所述目标车辆按照所述第一行驶路径行驶。
在本实施例中,在目标路侧设备更新之后,可以向更新后的目标路侧设备发送自主泊车请求,以使更新后的目标路侧设备为目标车辆规划进一步地第一行驶路径,该第一行驶路径具体用于控制目标车辆由停车区域行驶至停车位。由于目标车辆由停车区域行驶至停车位的过程中,路径相对狭窄,因此,对精度的要求更高,相应路径规划所需的车辆数据也更多。具体地,该自主泊车请求中包括目标车辆的特征信息,其中,特征信息包括目标车辆的标识、车辆类型以及车辆尺寸。
目标路侧设备在获取到自主泊车请求之后,可以根据目标车辆的特征信息确定具体的停车位,并根据该特征信息规划的由停车区域行驶至停车位的第一行驶路径,将该第一行驶路径发送至目标车辆。
相应地,目标车辆可以获取该目标路侧设备发送的停车位信息以及第一行驶路径,并按照该第一行驶路径由停车区域行驶至具体的停车位。
本实施例提供的自主泊车的方法,通过当目标车辆行驶至停车区域之后,为目标车辆规划精度更高的第一行驶路径,从而能够在实现实时的自主泊车的基础上,保证自主泊车的安全性。
进一步地,在上述任一实施例的基础上,步骤503之后,还包括:
若监测到所述目标车辆行驶至所述停车位,则确定所述停车区域内是否存在任一路侧设备与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述更新后的目标路侧设备之间的距离。
若存在,则将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替换所述更新后的目标路侧设备,以形成再更新后的目标路侧设备。
若不存在,则不对所述目标路侧设备进行更新操作。
在本实施例中,在目标车辆按照该第一行驶路径行驶的过程中,位置实时发生变化,因此,为了保证自主泊车的实时性,可以对更新后的目标路侧设备进行再更新操作。
具体地,可以确定停车区域内是否存在任一路侧设备与目标车辆的当前位置信息之间的距离小于目标车辆的当前位置信息与更新后的目标路侧设备之间的距离。若存在,则将与目标车辆的当前位置信息之间的距离小于目标车辆的当前位置信息与目标路侧设备之间的距离的任一路侧设备替换更新后的目标路侧设备,以形成再更新后的目标路侧设备。若不存在,则可以仍旧使用更新后的目标路侧设备进行路径规划操作,则不对目标路侧设备进行再更新操作。
本实施例提供的自主泊车的方法,通过对更新后的目标路侧设备进行再更新,从而能够有效地降低数据传输的时延,保证自主泊车的实时性。
图6为本申请实施例三提供的自主泊车的方法的流程示意图,在上述任一实施例的基础上,如图6所示,所述将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替换所述更新后的目标路侧设备,以形成再更新后的目标路侧设备之后,还包括:
步骤601、向所述再更新后的目标路侧设备发送自主泊车请求,其中,所述自主泊车请求中包括所述目标车辆的行驶数据,其中,所述行驶数据包括车辆位置、速度、四轴加速度、方向盘转角。
步骤602、获取所述再更新后的目标路侧设备根据所述行驶数据为所述目标车辆规划第二行驶路径。
步骤603、控制所述目标车辆按照所述第二行驶路径行驶,其中,所述第二行驶路径用于控制所述目标车辆泊车至所述停车位内。
在本实施例中,在更新后的目标路侧设备再更新之后,可以向再更新后的目标路侧设备发送自主泊车请求,以使再更新后的目标路侧设备为目标车辆规划进一步地第二行驶路径,该第二行驶路径具体用于控制目标车辆泊车入位。由于目标车辆泊车入围的过程中,路径更加狭窄,因此,对精度的要求更高,相应路径规划所需的车辆数据也更多。具体地,该自主泊车请求中包括目标车辆的目标车辆的行驶数据,其中,所述行驶数据包括车辆位置、速度、四轴加速度、方向盘转角。
再更新后的目标路侧设备在获取到自主泊车请求之后,可以根据目标车辆的行驶数据为目标车辆规划第二行驶路径,将该第二行驶路径发送至目标车辆。
相应地,目标车辆可以获取该再更新后的目标路侧设备发送的第二行驶路径,并按照该第二行驶路径进行泊车入位。
本实施例提供的自主泊车的方法,通过当目标车辆行驶至停车位之后,为目标车辆规划精度更高的第二行驶路径,从而能够在实现实时的自主泊车的基础上,保证自主泊车的安全性。
图7为本申请实施例四提供的自主泊车的装置的结构示意图,如图7所示,该装置包 括:确定模块71、路侧设备确定模块72、发送模块73以及接收模块74,其中,确定模块71,用于响应于用户触发的自主泊车指令,确定目标车辆对应的当前位置信息。路侧设备确定模块72,用于根据所述当前位置信息,确定与所述当前位置信息对应的目标路侧设备。发送模块73,用于向所述目标路侧设备发送自主泊车请求,所述自主泊车请求中包括用于路径规划的车辆数据。接收模块74,用于接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线,控制所述目标车辆按照所述初始泊车路线行驶。
进一步地,在实施例四的基础上,所述路侧设备确定模块包括:距离确定单元以及确定单元,其中,距离确定单元,用于根据所述当前位置信息,确定预设范围内各路侧设备与所述目标车辆之间的距离。确定单元,用于将与所述目标车辆之间距离最小的路侧设备确定为所述目标路侧设备。
进一步地,在实施例四的基础上,所述装置还包括:显示模块。显示模块,用于控制所述目标车辆对应的显示界面显示所述初始泊车路线。所述接收模块包括:响应单元。响应单元,用于响应于用于触发的对所述初始泊车路线的确认指令,控制所述目标车辆按照所述初始泊车路线行驶。
进一步地,在实施例四的基础上,所述车辆数据包括目标车辆的标识,所述接收模块包括:响应单元。数据获取单元,用于获取所述目标路侧设备发送的停车区域信息,以及行驶至所述停车区域的初始泊车路线,其中,所述停车区域信息为所述目标路侧设备根据所述目标车辆的标识对应的车辆尺寸确定的。所述装置还包括:行驶路径获取模块。行驶路径获取模块,用于当检测到所述目标车辆行驶至所述停车区域时,获取所述目标路侧设备规划的行驶路径,根据所述行驶路径完成自主泊车操作。
进一步地,在实施例四的基础上,所述装置还包括:第一距离确定模块以及第一处理模块。其中,第一距离确定模块,用于当检测到所述目标车辆行驶至所述停车区域时,确定所述目标车辆周围预设区域内是否存在任一路侧设备与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离。第一处理模块,用于若存在,则将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替代所述目标路侧设备,以形成更新后的目标路侧设备;若不存在,则不对所述目标路侧设备进行更新操作。
进一步地,在实施例四的基础上,所述装置还包括:第一请求发送模块、第一数据获取模块以及第一控制模块。其中,第一请求发送模块,用于向所述更新后的目标路侧设备发送自主泊车请求,其中,所述自主泊车请求中包括所述目标车辆的特征信息,其中,所述特征信息包括目标车辆的标识、车辆类型以及车辆尺寸。第一数据获取模块,用于获取所述目标路侧设备发送的根据所述目标车辆的特征信息确定的停车位,以及规划的由所述停车区域行驶至所述停车位的第一行驶路径。第一控制模块,用于控制所述目标车辆按照所述第一行驶路径行驶。
进一步地,在上述任一实施例的基础上,所述装置还包括:第二距离确定模块以及第二处理模块。其中,第二距离确定模块,用于若监测到所述目标车辆行驶至所述停车位,则确定所述停车区域内是否存在任一路侧设备与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述更新后的目标路侧设备之间的距离。第二处理模块,用于若存在,则将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车 辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替换所述更新后的目标路侧设备,以形成再更新后的目标路侧设备;若不存在,则不对所述目标路侧设备进行更新操作。
进一步地,在上述任一实施例的基础上,所述装置还包括:第二请求发送模块、第二数据获取模块以及第二控制模块。其中,第二请求发送模块,用于向所述再更新后的目标路侧设备发送自主泊车请求,其中,所述自主泊车请求中包括所述目标车辆的行驶数据,其中,所述行驶数据包括车辆位置、速度、四轴加速度、方向盘转角。第二数据获取模块,用于获取所述再更新后的目标路侧设备根据所述行驶数据为所述目标车辆规划第二行驶路径。第二控制模块,用于控制所述目标车辆按照所述第二行驶路径行驶,其中,所述第二行驶路径用于控制所述目标车辆泊车至所述停车位内。
根据本申请的实施例,本申请还提供了一种电子设备和一种可读存储介质。
根据本申请的实施例,本申请还提供了一种计算机程序产品,程序产品包括:计算机程序,计算机程序存储在可读存储介质中,电子设备的至少一个处理器可以从可读存储介质读取计算机程序,至少一个处理器执行计算机程序使得电子设备执行上述任一实施例提供的方案。
根据本申请的实施例,本申请还提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行如上述任一实施例所述的方法。
根据本申请的实施例,本申请还提供了一种自动驾驶车辆,包括如本实施例所述的电子设备。
图8为本申请实施例五提供的电子设备的结构示意图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图8所示,电子设备800包括计算单元801,其可以根据存储在只读存储器(ROM)802中的计算机程序或者从存储单元808加载到随机访问存储器(RAM)803中的计算机程序,来执行各种适当的动作和处理。在RAM 803中,还可存储设备800操作所需的各种程序和数据。计算单元801、ROM 802以及RAM 803通过总线804彼此相连。输入/输出(I/O)接口805也连接至总线804。
设备800中的多个部件连接至I/O接口805,包括:输入单元806,例如键盘、鼠标等;输出单元807,例如各种类型的显示器、扬声器等;存储单元808,例如磁盘、光盘等;以及通信单元809,例如网卡、调制解调器、无线通信收发机等。通信单元809允许设备800通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
计算单元801可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元801的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元801执行上文所描述的各个方法和处理,例如自主泊车的方法。例如,在一些实施例中,自主泊车的方法可被实现为计算 机软件程序,其被有形地包含于机器可读介质,例如存储单元808。在一些实施例中,计算机程序的部分或者全部可以经由ROM 802和/或通信单元809而被载入和/或安装到设备800上。当计算机程序加载到RAM 803并由计算单元801执行时,可以执行上文描述的自主泊车的方法的一个或多个步骤。备选地,在其他实施例中,计算单元801可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行自主泊车的方法。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。

Claims (20)

  1. 一种自主泊车的方法,包括:
    响应于用户触发的自主泊车指令,确定目标车辆对应的当前位置信息;
    根据所述当前位置信息,确定与所述当前位置信息对应的目标路侧设备;
    向所述目标路侧设备发送自主泊车请求,所述自主泊车请求中包括用于路径规划的车辆数据;
    接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线,控制所述目标车辆按照所述初始泊车路线行驶。
  2. 根据权利要求1所述的方法,所述根据所述当前位置信息,确定与所述当前位置信息对应的目标路侧设备,包括:
    根据所述当前位置信息,确定预设范围内各路侧设备与所述目标车辆之间的距离;
    将与所述目标车辆之间距离最小的路侧设备确定为所述目标路侧设备。
  3. 根据权利要求1或2所述的方法,所述车辆数据包括目标车辆的标识,所述接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线,包括:
    获取所述目标路侧设备发送的停车区域信息,以及行驶至所述停车区域的初始泊车路线,其中,所述停车区域信息为所述目标路侧设备根据所述目标车辆的标识对应的车辆尺寸确定的;
    所述控制所述目标车辆按照所述初始泊车路线行驶之后,还包括:
    当检测到所述目标车辆行驶至所述停车区域时,获取所述目标路侧设备规划的行驶路径,根据所述行驶路径完成自主泊车操作。
  4. 根据权利要求3所述的方法,所述控制所述目标车辆按照所述初始泊车路线行驶之后,还包括:
    当检测到所述目标车辆行驶至所述停车区域时,确定所述目标车辆周围预设区域内是否存在任一路侧设备与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离;
    若存在,则将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替代所述目标路侧设备,以形成更新后的目标路侧设备;
    若不存在,则不对所述目标路侧设备进行更新操作。
  5. 根据权利要求4所述的方法,所述将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备确定为所述目标路侧设备之后,还包括:
    向所述更新后的目标路侧设备发送自主泊车请求,其中,所述自主泊车请求中包括所述目标车辆的特征信息,其中,所述特征信息包括目标车辆的标识、车辆类型以及车辆尺寸;
    获取所述目标路侧设备发送的根据所述目标车辆的特征信息确定的停车位,以及规划的由所述停车区域行驶至所述停车位的第一行驶路径;
    控制所述目标车辆按照所述第一行驶路径行驶。
  6. 根据权利要求5所述的方法,所述控制所述目标车辆按照所述第一行驶路径行驶之后,还包括:
    若监测到所述目标车辆行驶至所述停车位,则确定所述停车区域内是否存在任一路侧设备与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述更新后的目标路侧设备之间的距离;
    若存在,则将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替换所述更新后的目标路侧设备,以形成再更新后的目标路侧设备;
    若不存在,则不对所述目标路侧设备进行更新操作。
  7. 根据权利要求6所述的方法,所述将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替换所述更新后的目标路侧设备,以形成再更新后的目标路侧设备之后,还包括:
    向所述再更新后的目标路侧设备发送自主泊车请求,其中,所述自主泊车请求中包括所述目标车辆的行驶数据,其中,所述行驶数据包括车辆位置、速度、四轴加速度、方向盘转角;
    获取所述再更新后的目标路侧设备根据所述行驶数据为所述目标车辆规划第二行驶路径;
    控制所述目标车辆按照所述第二行驶路径行驶,其中,所述第二行驶路径用于控制所述目标车辆泊车至所述停车位内。
  8. 根据权利要求1-7任一项所述的方法,所述接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线之后,还包括:
    控制所述目标车辆对应的显示界面显示所述初始泊车路线;
    所述控制所述目标车辆按照所述初始泊车路线行驶,包括:
    响应于用于触发的对所述初始泊车路线的确认指令,控制所述目标车辆按照所述初始泊车路线行驶。
  9. 一种自主泊车的装置,包括:
    确定模块,用于响应于用户触发的自主泊车指令,确定目标车辆对应的当前位置信息;
    路侧设备确定模块,用于根据所述当前位置信息,确定与所述当前位置信息对应的目标路侧设备;
    发送模块,用于向所述目标路侧设备发送自主泊车请求,所述自主泊车请求中包括用于路径规划的车辆数据;
    接收模块,用于接收所述目标路侧设备基于所述车辆数据为所述目标车辆规划的初始泊车路线,控制所述目标车辆按照所述初始泊车路线行驶。
  10. 根据权利要求9所述的装置,所述路侧设备确定模块包括:
    距离确定单元,用于根据所述当前位置信息,确定预设范围内各路侧设备与所述目标车辆之间的距离;
    确定单元,用于将与所述目标车辆之间距离最小的路侧设备确定为所述目标路侧设备。
  11. 根据权利要求9或10所述的装置,所述车辆数据包括目标车辆的标识,所述接收模块包括:
    数据获取单元,用于获取所述目标路侧设备发送的停车区域信息,以及行驶至所述停车区域的初始泊车路线,其中,所述停车区域信息为所述目标路侧设备根据所述目标车辆的标识对应的车辆尺寸确定的;
    所述装置还包括:
    行驶路径获取模块,用于当检测到所述目标车辆行驶至所述停车区域时,获取所述目标路侧设备规划的行驶路径,根据所述行驶路径完成自主泊车操作。
  12. 根据权利要求11所述的装置,所述装置还包括:
    第一距离确定模块,用于当检测到所述目标车辆行驶至所述停车区域时,确定所述目标车辆周围预设区域内是否存在任一路侧设备与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离;
    第一处理模块,用于若存在,则将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替代所述目标路侧设备,以形成更新后的目标路侧设备;若不存在,则不对所述目标路侧设备进行更新操作。
  13. 根据权利要求12所述的装置,所述装置还包括:
    第一请求发送模块,用于向所述更新后的目标路侧设备发送自主泊车请求,其中,所述自主泊车请求中包括所述目标车辆的特征信息,其中,所述特征信息包括目标车辆的标识、车辆类型以及车辆尺寸;
    第一数据获取模块,用于获取所述目标路侧设备发送的根据所述目标车辆的特征信息确定的停车位,以及规划的由所述停车区域行驶至所述停车位的第一行驶路径;
    第一控制模块,用于控制所述目标车辆按照所述第一行驶路径行驶。
  14. 根据权利要求13所述的装置,所述装置还包括:
    第二距离确定模块,用于若监测到所述目标车辆行驶至所述停车位,则确定所述停车区域内是否存在任一路侧设备与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述更新后的目标路侧设备之间的距离;
    第二处理模块,用于若存在,则将所述与所述目标车辆的当前位置信息之间的距离小于所述目标车辆的当前位置信息与所述目标路侧设备之间的距离的任一路侧设备替换所述更新后的目标路侧设备,以形成再更新后的目标路侧设备;若不存在,则不对所述目标路侧设备进行更新操作。
  15. 根据权利要求14所述的装置,所述装置还包括:
    第二请求发送模块,用于向所述再更新后的目标路侧设备发送自主泊车请求,其中,所述自主泊车请求中包括所述目标车辆的行驶数据,其中,所述行驶数据包括车辆位置、速度、四轴加速度、方向盘转角;
    第二数据获取模块,用于获取所述再更新后的目标路侧设备根据所述行驶数据为所述目标车辆规划第二行驶路径;
    第二控制模块,用于控制所述目标车辆按照所述第二行驶路径行驶,其中,所述第二行驶路径用于控制所述目标车辆泊车至所述停车位内。
  16. 根据权利要求9-15任一项所述的装置,所述装置还包括:
    显示模块,用于控制所述目标车辆对应的显示界面显示所述初始泊车路线;
    所述接收模块包括:
    响应单元,用于响应于用于触发的对所述初始泊车路线的确认指令,控制所述目标车辆按照所述初始泊车路线行驶。
  17. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-8中任一项所述的方法。
  18. 一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行权利要求1-8中任一项所述的方法。
  19. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-8中任一项所述的方法。
  20. 一种自动驾驶车辆,包括如权利要求17所述的电子设备。
PCT/CN2021/126210 2021-04-21 2021-10-25 自主泊车的方法、装置、设备及自动驾驶车辆 WO2022222401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110432560.4A CN113071476A (zh) 2021-04-21 2021-04-21 自主泊车的方法、装置、设备及自动驾驶车辆
CN202110432560.4 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022222401A1 true WO2022222401A1 (zh) 2022-10-27

Family

ID=76618291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126210 WO2022222401A1 (zh) 2021-04-21 2021-10-25 自主泊车的方法、装置、设备及自动驾驶车辆

Country Status (2)

Country Link
CN (1) CN113071476A (zh)
WO (1) WO2022222401A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115909794A (zh) * 2023-02-24 2023-04-04 华砺智行(武汉)科技有限公司 月台车辆智能引导方法、装置、电子设备和存储介质
CN116494956A (zh) * 2023-03-21 2023-07-28 广州汽车集团股份有限公司 泊车控制方法、装置、车辆及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071476A (zh) * 2021-04-21 2021-07-06 阿波罗智联(北京)科技有限公司 自主泊车的方法、装置、设备及自动驾驶车辆
CN114596707B (zh) * 2022-03-16 2023-09-01 阿波罗智联(北京)科技有限公司 交通控制方法及装置、设备、系统、介质
CN115503694B (zh) * 2022-10-20 2023-06-23 北京易航远智科技有限公司 基于自主学习的记忆泊车路径生成方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107776570A (zh) * 2017-09-19 2018-03-09 广州汽车集团股份有限公司 全自动泊车方法及全自动泊车系统
CN109584608A (zh) * 2018-12-07 2019-04-05 东软睿驰汽车技术(沈阳)有限公司 一种停车场自动泊车方法及系统
CN110782696A (zh) * 2019-01-25 2020-02-11 长城汽车股份有限公司 用于代客泊车的控制系统
CN111307152A (zh) * 2020-02-18 2020-06-19 中国科学院合肥物质科学研究院 一种自主泊车路径反向生成规划方法
CN112562388A (zh) * 2020-11-13 2021-03-26 浙江吉利控股集团有限公司 一种车辆连接管理方法、装置及存储介质
CN113071476A (zh) * 2021-04-21 2021-07-06 阿波罗智联(北京)科技有限公司 自主泊车的方法、装置、设备及自动驾驶车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722999B (zh) * 2012-06-14 2014-08-27 北京万集科技股份有限公司 车辆停车引导方法、装置及系统
CN109754639B (zh) * 2019-02-28 2020-12-25 北京智行者科技有限公司 泊车入库方法及装置
SE544208C2 (en) * 2019-08-23 2022-03-01 Scania Cv Ab Method and control arrangement for vehicle motion planning and control algorithms
CN110706506B (zh) * 2019-09-16 2021-09-14 宁波吉利汽车研究开发有限公司 一种泊车的方法、系统、电子设备及存储介质
CN111196271A (zh) * 2020-01-21 2020-05-26 北京百度网讯科技有限公司 自动泊车方法、装置、设备及存储介质
CN111739302A (zh) * 2020-08-07 2020-10-02 宁波均联智行科技有限公司 自动代客泊车的方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107776570A (zh) * 2017-09-19 2018-03-09 广州汽车集团股份有限公司 全自动泊车方法及全自动泊车系统
CN109584608A (zh) * 2018-12-07 2019-04-05 东软睿驰汽车技术(沈阳)有限公司 一种停车场自动泊车方法及系统
CN110782696A (zh) * 2019-01-25 2020-02-11 长城汽车股份有限公司 用于代客泊车的控制系统
CN111307152A (zh) * 2020-02-18 2020-06-19 中国科学院合肥物质科学研究院 一种自主泊车路径反向生成规划方法
CN112562388A (zh) * 2020-11-13 2021-03-26 浙江吉利控股集团有限公司 一种车辆连接管理方法、装置及存储介质
CN113071476A (zh) * 2021-04-21 2021-07-06 阿波罗智联(北京)科技有限公司 自主泊车的方法、装置、设备及自动驾驶车辆

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115909794A (zh) * 2023-02-24 2023-04-04 华砺智行(武汉)科技有限公司 月台车辆智能引导方法、装置、电子设备和存储介质
CN116494956A (zh) * 2023-03-21 2023-07-28 广州汽车集团股份有限公司 泊车控制方法、装置、车辆及存储介质
CN116494956B (zh) * 2023-03-21 2024-05-14 广州汽车集团股份有限公司 泊车控制方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
CN113071476A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022222401A1 (zh) 自主泊车的方法、装置、设备及自动驾驶车辆
CN110667576B (zh) 自动驾驶车辆的弯道通行控制方法、装置、设备和介质
CN108284833B (zh) 对车辆进行驾驶控制的方法和装置
US20220234605A1 (en) Method for outputting early warning information, device, storage medium and program product
CN111665845B (zh) 用于规划路径的方法、装置、设备以及存储介质
KR20210151724A (ko) 차량 포지셔닝 방법, 장치, 전자 기기, 저장 매체 및 컴퓨터 프로그램
KR20210151723A (ko) 차량 스케줄링 방법, 장치, 전자 기기, 저장 매체 및 컴퓨터 프로그램
CN114506343A (zh) 轨迹规划方法、装置、设备、存储介质及自动驾驶车辆
EP4074569A1 (en) Method for determining automatic driving feature, apparatus, device, medium and program product
CN115273477A (zh) 路口驾驶建议推送方法、装置、系统和电子设备
CN114802250A (zh) 数据处理方法、装置、设备、自动驾驶车辆及介质
CN113722342A (zh) 高精地图要素变更检测方法、装置、设备及自动驾驶车辆
WO2024065951A1 (zh) 一种窄路会车方法、装置、设备及存储介质
US20230126172A1 (en) Method of outputting prompt information, device, medium, and vehicle
CN114689061A (zh) 自动驾驶设备的导航路线处理方法、装置及电子设备
CN115062240A (zh) 一种停车场排序方法、装置、电子设备和存储介质
CN115535003A (zh) 自动驾驶车辆的路口控制方法、装置、电子设备和介质
CN115771526A (zh) 自动驾驶中控制车辆左转的方法、装置与自动驾驶车辆
CN112785072B (zh) 路线规划和模型训练方法、装置、设备及存储介质
CN115675528A (zh) 基于相似场景挖掘的自动驾驶方法和车辆
CN114771533A (zh) 自动驾驶车辆的控制方法、装置、设备、车辆及介质
CN114394111A (zh) 用于自动驾驶车辆的变道方法
CN114545424A (zh) 障碍物识别、模型训练方法、装置、设备及存储介质
CN114689069A (zh) 自动驾驶设备的导航路线处理方法、装置及电子设备
CN114379547A (zh) 制动控制方法、装置、车辆、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE