WO2022220507A1 - 하이브리드 전기자동차의 배터리팩 교체방법 - Google Patents

하이브리드 전기자동차의 배터리팩 교체방법 Download PDF

Info

Publication number
WO2022220507A1
WO2022220507A1 PCT/KR2022/005169 KR2022005169W WO2022220507A1 WO 2022220507 A1 WO2022220507 A1 WO 2022220507A1 KR 2022005169 W KR2022005169 W KR 2022005169W WO 2022220507 A1 WO2022220507 A1 WO 2022220507A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
terminals
lithium
module
ion battery
Prior art date
Application number
PCT/KR2022/005169
Other languages
English (en)
French (fr)
Inventor
이흥우
Original Assignee
이흥우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이흥우 filed Critical 이흥우
Priority to US18/281,327 priority Critical patent/US20240157840A1/en
Publication of WO2022220507A1 publication Critical patent/WO2022220507A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/0207Wire harnesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/302Temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • B60Y2400/3086Electric voltages sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a method for replacing a battery pack in a hybrid electric vehicle.
  • a lithium ion battery pack installed in a Prius, a hybrid electric vehicle of Toyota in Japan is manufactured and used in Korea. It relates to a method of replacing a battery pack, which is used by replacing it with a battery pack.
  • a hybrid electric vehicle a type of electric vehicle, uses an internal combustion engine, an engine, and a battery-powered motor together as power sources to dramatically reduce the emission of exhaust gas, which is pointed out as the main culprit of environmental pollution.
  • a battery for a hybrid electric vehicle is installed in a vehicle in the form of a battery pack in which about 50 to 300 battery cells are connected in series depending on the size of the output voltage required for the vehicle, and one battery pack is installed in the vehicle. It has a nominal voltage of approximately 150-600V depending on the output of In the battery pack, 2 to 20 battery cells are gathered to constitute one cell module, and these cell modules are connected to a battery electronic control unit (ECU) according to a unique battery management system (BMS).
  • ECU battery electronice control unit
  • BMS unique battery management system
  • Patent Registration No. 10-1260470 (April 26, 2013) and Patent Registration No. 10-1449753 (October 02, 2014) of an electric vehicle are mutually electrically connected to the ECU of the vehicle.
  • a connection device for connecting is introduced, and in addition, in Patent Registration No. 10-2110977 (May 08, 2020), when the battery of an electric vehicle needs to be replaced, the battery pack is immediately placed at the nearest charging station with replaceable batteries.
  • hybrid electric vehicles on the market mainly use a nickel hydride (Ni-MH) battery pack and a lithium ion (Li-ion) battery pack.
  • Ni-MH nickel hydride
  • Li-ion lithium ion
  • Toyota's Prious the world's first hybrid electric vehicle, uses a nickel-metal hydride battery pack, while most of the hybrid electric vehicles currently being developed and sold by domestic car companies use a lithium-ion battery pack.
  • an object of the present invention is to provide a battery pack replacement method for a hybrid electric vehicle, which can be used by replacing the nickel hydride battery pack installed in the Prius vehicle with a lithium ion battery pack used in a domestic hybrid electric vehicle.
  • 28 cell modules having a nominal voltage of 7.2V are arranged in series, and pack terminals N1 to N15 for voltage sensors are installed alternately in the cell module in order. It relates to a method of replacing a nickel-metal hydride battery pack with a lithium-ion battery pack in which a plurality of cell modules having a nominal voltage of 28.8V are arranged in series, and module terminals R1 to R12 for a voltage sensor are respectively installed in the cell module.
  • the battery pack replacement method comprises: A) separating and removing the nickel hydride battery pack from the ECU for a battery of the hybrid electric vehicle, and among the voltage sensor terminals E1 to E20 disposed in the ECU, the pack terminals N1 to checking 15 voltage sensor terminals to which N15 is connected; B) assembling a recombinant lithium-ion battery pack having the same nominal voltage (201.6V) as the nickel-hydrogen battery pack by connecting seven cell modules constituting the lithium-ion battery pack in series; C) Among the 84 module terminals [(R1 to R12) ⁇ (M1 to M7)] installed in the cell modules M1 to M7 of the recombinant lithium ion battery pack, the same accumulation as the pack terminals N1 to N15 of the nickel hydride battery pack building a BMS corresponding to the nickel-metal hydride battery pack by sequentially identifying 15 module terminals having voltage; D) connecting the 15 voltage sensor terminals of the ECU identified in step A) to the 15 module terminal
  • FIG. 1 is a photograph of a state in which a nickel-metal hydride battery pack 10 is mounted in a Prius car;
  • FIG. 2 is a photograph of a socket terminal connected to the ECU 20 of a Prius vehicle;
  • FIG. 4 is a view showing the arrangement state of the module terminals (R1 ⁇ R12) in the lithium-ion battery pack mounted on the domestic hybrid electric vehicle;
  • FIG. 5 is a view showing the BMS of the recombinant lithium-ion battery pack
  • FIG. 7 is a photograph illustrating a process of manufacturing the hybrid cable 30b using the voltage sensor cable 30 of FIG. 6 .
  • a 'cell module' is a unit constituting a battery pack of a hybrid electric vehicle, and refers to an aggregate in which a plurality of battery cells are connected in series.
  • the 'pack terminal' means a plurality of connection terminals installed in the battery pack to measure the voltage balance of the cell module
  • the 'module terminal' is connected to the cell module to measure the voltage balance of the battery cell. It means a plurality of connection terminals installed.
  • 'voltage sensor terminal' means a plurality of connection terminals installed in the ECU for batteries of hybrid electric vehicles.
  • 'voltage sensor cable' means a bundle of wires that connect the voltage sensor terminal and the pack terminal or the module terminal 1:1 with each other according to the unique BMS.
  • the 'individual terminal' means a terminal installed independently at one end of the electric wire constituting the voltage sensor cable, and the 'socket terminal' means an integrated terminal configured to collect and connect the electric wires.
  • 'hybrid cable' means a new type of assembly cable in which a voltage sensor cable installed in a nickel-metal hydride battery pack is connected to a socket terminal connected to a cell module of the lithium-ion battery pack
  • ' Recombinant lithium-ion battery pack' means a lithium-ion battery pack in which seven cell modules are connected in series for the purpose of the present invention.
  • the method for replacing a battery pack for a hybrid electric vehicle comprises the steps of: A) separating a nickel-metal hydride battery pack from the hybrid electric vehicle, and B) using a domestic lithium-ion battery pack so that the nickel-metal hydride battery pack and the nominal voltage are Assembling the same recombinant lithium ion battery pack, C) constructing a BMS corresponding to the nickel hydride battery pack for the recombinant lithium ion battery pack, D) adding a recombinant lithium ion battery to the hybrid electric vehicle according to the BMS It consists of a step of installing the pack, and E) a finishing step.
  • the steps A) to E) are not necessarily performed in time series, and the order of progress of some steps may be changed as necessary.
  • step A) in a hybrid electric vehicle equipped with a nickel-metal hydride battery pack, the nickel-metal hydride battery pack 10, the ECU 20, the voltage sensor cable 30, the output cables 40 and 50, and the temperature sensor 60 ) and air sense, and remove the nickel hydride battery pack 10 .
  • the hybrid electric vehicle is preferably a Prius automobile manufactured by Toyota in Japan.
  • the nickel hydride battery pack 10 mounted on the Prius vehicle has a structure in which 28 cell modules having a nominal voltage of 7.2V are connected in series as shown in FIG. 1 .
  • the cell module consists of six 1.2V battery cells, and these two cell modules are connected in series again to constitute one cell block. Accordingly, in the nickel-metal hydride battery pack, 14 cell blocks each having a nominal voltage of 14.4V are connected in series, and the total nominal voltage is 201.6V.
  • the nickel-metal hydride battery pack 10 is provided with a total of 15 voltage sensor pack terminals including one GND terminal.
  • the pack terminals are named N1 to N15 in order from the GND terminal.
  • the other pack terminals N2 to N15 except for the first pack terminal N1, which are the GND terminals, are respectively connected to one of the 14 cell blocks. Therefore, the voltage balance between the GND terminal N1 and each cell block is measured.
  • the ECU 20 is installed on one side of the nickel hydride battery pack 10, and a voltage sensor cable 30 is installed between the battery pack 10 and the ECU 20, have.
  • a negative output cable 40 and a positive output cable 50 are respectively connected to the first pack terminal N1 and the last pack terminal N15 of the battery pack 10 .
  • three temperature sensors 60 are attached to the upper surface of the battery pack 10, and an air sensor (not shown in FIG. 1) is installed on one side. The temperature sensor 50 and the air sensor are respectively connected to the ECU 20 to check the temperature of the battery pack 10 and the operating state of the cooling fan.
  • FIG. 2 is a photograph of a socket terminal connected to the ECU 20 in the voltage sensor cable 30 .
  • a total of 20 individual terminals are arranged horizontally in two rows of the socket terminals, and unique numbers are assigned in order from right to left.
  • 20 voltage sensor terminals respectively corresponding to the socket terminals are installed in the battery ECU 20 as well. Accordingly, when the voltage sensor cable 30 is disconnected from the ECU 20 , 20 voltage sensor terminals installed in the ECU 20 are secured.
  • the voltage sensor terminals are named as 'E1 to E20' according to the order of the individual terminals disposed on the socket terminals.
  • the usage details of the voltage sensor terminals E1 to E20 are different depending on the vehicle type.
  • 5 terminals (E4, E8, E12, E16, E20) among the voltage sensor terminals E1 to E20 are not used and only the remaining 15 terminals are used. Therefore, the 15 terminals are each independently connected to the pack terminals N1 to N15 of the battery pack by the voltage sensor cable 30 .
  • 3 is a view showing the connection state of the pack terminals N1 to N15 and the voltage sensor terminals E1 to E20, that is, the BMS in the Prius vehicle.
  • next step B seven cell modules constituting the lithium-ion battery pack are connected in series to assemble a lithium-ion battery pack whose total nominal voltage is the same as the nominal voltage (201.6V) of the nickel-metal hydride battery pack.
  • the cell module it is preferable to use a cell module constituting a lithium-ion battery pack recovered from a domestic hybrid electric vehicle.
  • a hybrid electric vehicle manufactured by Hyundai or Kia, a domestic automobile manufacturer, is equipped with a lithium-ion battery pack composed of a cell module with a nominal voltage of 28.8V, and the cell module has eight 3.6V battery cells connected in series. . Therefore, when the seven cell modules are connected in series, a recombinant lithium-ion battery pack having an overall nominal voltage of 201.6V (28.8V ⁇ 7) can be assembled.
  • the seven cell modules constituting the recombinant lithium-ion battery pack are named M1 to M7 in order.
  • a BMS corresponding to the nickel hydride battery pack is constructed for the recombinant lithium ion battery pack.
  • Each of the cell modules M1 to M7 constituting the recombinant lithium-ion battery pack has 12 voltage sensor module terminals connected to the ECU. 4 is a view showing the arrangement of the module terminals.
  • the 12 module terminals are named R1 to R12 in order.
  • R5 is a GND terminal
  • R6, R11 and R12 are unused terminals.
  • the remaining R10, R4, R9, R3, R8, R2, R7, and R1 are respectively connected to the eight battery cells constituting the cell module in order, respectively. So, the voltage balance between the GND terminal R5 and each battery cell is measured. At this time, since the battery cells are connected in series to each other, voltages are gradually accumulated in the module terminals connected to the battery cells in sequence.
  • [Table 1] shows the accumulated voltage applied to the module terminals R1 to R12.
  • the cumulative voltage (14.4V) of the module terminal R3 is the same as the nominal voltage (14.4V) of one cell block constituting the NiMH battery pack of the Prius vehicle, and the cumulative voltage (14.4V) of the module terminal R1 ( 28.8V) is equal to the nominal voltage (28.8V) of the two cell blocks.
  • the GND terminal of the recombinant lithium-ion battery pack is the module terminal R5 of the first cell module M1 (indicated by M1-R5), and the module terminals M1-R5 correspond to the pack terminal N1, which is the GND terminal of the nickel-metal hydride battery pack. . 2, the pack terminal N1 is connected to the voltage sensor terminal E11. Accordingly, the module terminals M1-R5 are also connected to the voltage sensor terminal E11.
  • M7-R1 which is the last module terminal of the recombinant lithium-ion battery pack, corresponds to the pack terminal N15, which is the last terminal of the nickel-metal hydride battery pack.
  • the pack terminal N15 is connected to the voltage sensor terminal E10. Therefore, the module terminal M7-R1 is also connected to the voltage sensor terminal E10.
  • voltage sensor terminals E4, E8, E12, E16, and E20 are all empty in the BMS of the recombinant lithium-ion battery pack. Accordingly, the BMS of Table 2 and the accompanying FIG. 5 is substantially the same as the BMS of the nickel-metal hydride battery pack ( FIG. 3 ).
  • a recombinant lithium-ion battery pack is installed in the hybrid electric vehicle, and the recombinant lithium-ion battery pack is installed in 15 voltage sensor terminals of the ECU 20 according to the BMS of Table 2 and FIG. Connect 15 module terminals.
  • the method of connecting the module terminal to the voltage sensor terminal may be performed according to the following steps D1) to D5).
  • step D1) the voltage sensor cable 30 installed between the battery ECU 20 and the nickel hydride battery pack 10 of the Prius vehicle is recovered.
  • 6 is a photograph of the voltage sensor cable 30, and 15 individual terminals 31 respectively connected to the pack terminals N1 to N15 of the nickel hydride battery pack are arranged on one side.
  • the voltage sensor cable 30a in which only the cable wires L1 to L15 remain is secured as shown in FIG.
  • the voltage sensor cable (not shown) used in the recombinant lithium-ion battery pack is disconnected, and the socket terminals S1 to S7 respectively connected to the cell modules M1 to M7 from the voltage sensor cable are cut and recover 7 shows the state of the socket terminals S1 to S7. 12 wires connected to the module terminals R1 to R12 are connected to the socket terminals S1 to S7, respectively.
  • the socket terminal S1 leaves only three wires connected to the module terminals R1 and R3 and R5, and all other wires are cut and removed.
  • the socket terminals S2 to S7 leave only two wires connected to the module terminals R1 and R3, respectively, and all the remaining wires are cut and removed.
  • 15 socket terminal wires are secured in the socket terminals S1 to S7, including one wire connected to module terminal R5, seven wires connected to module terminal R1, and seven wires connected to module terminal R3. do.
  • the hybrid cable 30b is manufactured by connecting the 15 socket terminal wires to the cable wires L1 to L15 of the voltage sensor cable 30a according to the BMS of [Table 2].
  • Attached FIG. 7 shows a process of manufacturing the hybrid cable 30b, and the cable wires L1 to L15 and the socket terminal wire may be connected to each other as shown in Table 3 below.
  • R1, R3, and R5 denote module terminals to which the socket terminal wires are connected, respectively.
  • the socket terminals S1 to S7 of the hybrid cable 30b are respectively connected to the cell modules M1 to M7 of the recombinant lithium ion battery pack.
  • the hybrid cable 30b opposite ends of the socket terminals S1 to S7 are connected to the ECU 20 .
  • 15 voltage sensor terminals of the ECU 20 and 15 module terminals of the recombinant lithium-ion battery pack are sequentially connected according to the BMS.
  • the temperature sensor 60 separated in step A) is attached to the recombinant lithium ion battery pack, and an air sensor is installed.
  • the negative output cable 40 and the positive output cable 50 are respectively connected to the cell modules M1 and M7 of the recombinant lithium ion battery pack.
  • a non-combustible insulating material is attached to both sides and the bottom of the recombinant lithium-ion battery pack.
  • the negative output cable 40 and the positive output cable 50 are used as they are mounted on the Prius vehicle. ) do not match each other. Therefore, when the recombinant lithium ion battery pack is installed upside down, the output cables 40 and 50 can be used as they are without changing the length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 하이브리드 전기자동차의 배터리팩 교체방법에 관한 것으로, 공칭전압이 7.2V인 셀모듈 28개가 직렬로 배치되어 있고 상기 셀모듈에는 전압센서용 팩단자 N1~N15가 순서에 따라 교대로 설치되어 있는 니켈수소 배터리팩을, 공칭전압이 28.8V인 셀모듈 다수개가 직렬로 배치되어 있고 상기 셀모듈에는 전압센서용 모듈단자 R1~R12가 각각 설치되어 있는 리튬이온 배터리팩으로 교체하는 것을 특징으로 한다.

Description

하이브리드 전기자동차의 배터리팩 교체방법
본 발명은 하이브리드 전기자동차의 배터리팩 교체방법에 관한 것으로, 좀더 상세하게 설명하자면, 일본 토요타의 하이브리드 전기자동차인 프리우스(Prious)에 장착되어 있는 니켈수소 배터리팩을, 국내에서 제조 및 사용되고 있는 리튬이온 배터리팩으로 교체하여 사용하는, 배터리팩 교체방법에 관한 것이다.
최근 환경오염으로 인한 급격한 기후변화가 인류공동의 과제로 등장하면서 친환경 전기자동차에 대한 수요가 크게 증가하고 있다. 이러한 전기자동차의 일종인 하이브리드 전기자동차(HEV; Hybrid Electric Vehicle)는 내연기관인 엔진과, 배터리를 이용한 모터를 함께 동력원으로 사용함으로써, 환경오염의 주범으로 지목되고 있는 배기가스의 배출을 획기적으로 감소시킬 수 있다.
일반적으로 하이브리드 전기자동차용 배터리는 차량에 요구되는 출력전압의 크기에 따라 50~300개 정도의 전지셀이 직렬로 연결된 배터리팩(battery pack)의 형태로 차량에 장착되며, 하나의 배터리팩은 차량의 출력에 따라 대체로 150~600V 정도의 공칭전압을 갖는다. 그리고, 상기 배터리팩은 2~20개의 전지셀이 모여서 하나의 셀모듈을 구성하며, 이러한 셀모듈들은 고유한 BMS(battery management system)에 따라 배터리 ECU(electronic control unit)에 연결되어 있다.
이와 관련하여 등록특허 제10-1260470호(2013년 04월 26일) 및 등록특허 제10-1449753호(2014년 10월 02일) 등에는 전기자동차의 배터리 셀모듈을 차량의 ECU와 상호 전기적으로 접속하는 접속장치가 소개되어 있고, 또한 등록특허 제10-2110977호(2020년 05월 08일)에는 전기자동차의 배터리 교체가 필요한 경우, 교체 가능한 배터리를 보유하고 있는 가장 가까운 충전 스테이션에서 즉시 배터리팩을 교체할 수 있도록 하는 방법이 개시되어 있다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허 제10-1260470호(2013년 04월 26일)
대한민국 등록특허 제10-1449753호(2014년 10월 02일)
대한민국 등록특허 제10-2110977호(2020년 05월 08일)
종래에 시판되고 있는 하이브리드 전기자동차들은 주로 니켈수소(Ni-MH) 배터리팩과 리튬이온(Li-ion) 배터리팩을 사용하고 있다. 예컨대, 세계 최초의 하이브리드 전기자동차인 일본 토요타의 프리우스(Prious)는 니켈수소 배터리팩을 사용하는데 비해, 현재 국내 자동차 회사들이 개발, 판매하고 있는 하이브리드 전기자동차들은 대부분 리튬이온 배터리팩을 사용하고 있다.
상기 프리우스 자동차는 1997년에 첫 출시된 이후 2020년 말까지 세계적으로 약 390만대 정도가 판매되었으며, 우리나라에는 2010년부터 수입되기 시작해서 지금까지 약 3만대 이상이 판매된 것으로 집계되고 있다. 따라서 우리나라에서 운행되고 있는 프리우스 자동차 중에서 차량 수명이 10년을 경과하였거나, 주행거리가 약 10만 킬로미터를 초과하여 배터리팩의 교체 시기가 도래한 차량의 숫자가 매년 기하급수적으로 증가하고 있다.
그런데 현재 국내에서는 프리우스 자동차에 장착되는 니켈수소 배터리팩이 생산되지 않고 있다. 게다가 국산 전기자동차에 사용되는 리튬이온 배터리팩과 프리우스 자동차에 장착되는 니켈수소 배터리팩은 셀모듈당 공칭전압과 전압센서용 단자들의 연결구조 등 BMS가 서로 다르기 때문에 이들을 서로 대체하여 사용하는 것은 지금까지 불가능하였다. 그래서 노후된 프리우스 자동차의 배터리팩을 교체하기 위해서는 상기 니켈수소 배터리팩을 전량 일본으로부터 수입해야 한다. 이러한 현상은 우리나라 뿐만 아니라 세계 다수의 국가에서 발생하고 있는 실정이다
이에 본 발명의 목적은 프리우스 자동차에 장착되어 있는 니켈수소 배터리팩을 국산 하이브리드 전기자동차에 사용되는 리튬이온 배터리팩으로 교체하여 사용할 수 있는, 하이브리드 전기자동차의 배터리팩 교체방법을 제공하는 것이다.
본 발명에 따른 하이브리드 전기자동차의 배터리팩 교체방법은, 공칭전압이 7.2V인 셀모듈 28개가 직렬로 배치되어 있고 상기 셀모듈에는 전압센서용 팩단자 N1~N15가 순서에 따라 교대로 설치되어 있는 니켈수소 배터리팩을, 공칭전압이 28.8V인 셀모듈 다수개가 직렬로 배치되어 있고 상기 셀모듈에는 전압센서용 모듈단자 R1~R12가 각각 설치되어 있는 리튬이온 배터리팩으로 교체 하는 방법에 관한 것이다.
본 발명에 따른 배터리팩 교체방법은, A) 상기 하이브리드 전기자동차의 배터리용 ECU에서 상기 니켈수소 배터리팩을 분리 및 제거하고, 상기 ECU에 배치되어 있는 전압센서단자 E1~E20 중에서 상기 팩단자 N1~N15가 접속되어 있던 전압센서단자 15개를 확인하는단계와; B) 상기 리튬이온 배터리팩을 구성하는 셀모듈 7개를 직렬로 연결하여 상기 니켈수소 배터리팩과 동일한 공칭전압(201.6V)을 갖는 재조합 리튬이온 배터리팩을 조립하는 단계와; C) 상기 재조합 리튬이온 배터리팩의 셀모듈 M1~M7에 설치되어 있는 모듈단자 84개[(R1~R12)×(M1~M7)] 중에서 상기 니켈수소 배터리팩의 팩단자 N1~N15와 동일한 누적전압을 갖는 모듈단자 15개를 순서대로 파악하여 상기 니켈수소 배터리팩에 대응하는 BMS를 구축하는 단계와; D) 상기 A) 단계에서 확인한 ECU의 전압센서단자 15개에다 상기 C) 단계에서 파악한 재조합 리튬이온 배터리팩의 모듈단자 15개를 상기 BMS에 따라 접속하는 단계와; E) 상기 재조합 리튬이온 배터리팩에다 상기 ECU의 온도센서와 에어센서를 설치하고, 음극 및 양극 출력케이블을 연결하는 단계; 를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 일본 토요타의 프리우스 자동차에 장착되어 있는 니켈수소 배터리팩을 국산 하이브리드 전기자동차에 사용되는 리튬이온 배터리팩으로 교체하여 사용함으로써 상당한 수입 대체효과를 얻을 수 있고, 나아가 국산 하이브리드 전기자동차를 폐차하는 과정에서 발생하는 다량의 폐배터리를 효율적으로 재활용 할 수 있는 효과가 있다.
도 1은 프리우스 자동차에 니켈수소 배터리팩(10)이 장착되어 있는 상태를 촬영한 사진,
도 2는 프리우스 자동차의 ECU(20)에 접속되는 소켓단자를 촬영한 사진,
도 3은 프리우스 자동차의 BMS를 나타낸 도면
도 4는 국산 하이브리드 전기자동차에 장착되는 리튬이온 배터리팩에서 모듈단자(R1~R12)의 배치 상태를 나타낸 도면,
도 5는 재조합 리튬이온 배터리팩의 BMS를 나타낸 도면,
도 6은 프리우스 자동차에서 분리한 전압센서 케이블(30)의 모습을 촬영한 사진,
도 7은 도 6의 전압센서 케이블(30)을 이용하여 하이브리드 케이블(30b)을 제조하는 과정을 나타낸 사진이다.
이하, 첨부한 도면을 참조하여 본 발명을 상세하게 설명한다. 다만, 본 발명을 실시하는데 꼭 필요한 구성이라 하더라도 통상의 기술자가 공지기술로부터 용이하게 실시할 수 있는 사항에 대해서는 구체적인 설명을 생략한다. 그리고 본 발명의 기술적 구성을 설명하는데 사용되는 용어들은 다음과 같이 특별히 정의된 의미로 사용된다.
먼저 ‘셀모듈(cell module)’이라 함은, 하이브리드 전기자동차의 배터리팩을 구성하는 단위로서, 다수개의 전지셀이 직렬로 연결되어 있는 집합체를 의미한다. 그리고, ‘팩단자’는, 상기 셀모듈의 전압 밸런스를 측정하기 위하여 배터리팩에 설치되어 있는 다수개의 접속단자를 의미하고, ‘모듈단자’는 상기 전지셀의 전압 밸런스를 측정하기 위하여 셀모듈에 설치되어 있는 다수개의 접속단자를 의미한다.
다음으로 ‘전압센서단자’라 함은, 하이브리드 전기자동차의 배터리용 ECU에 설치되어 있는 다수개의 접속단자를 의미한다. 그리고 ‘전압센서 케이블’은 고유의 BMS에 따라 상기 전압센서단자와 팩단자 또는 모듈단자를 서로 1:1로 연결해 주는 전선다발을 의미한다. ‘개별단자’는 상기 전압센서 케이블을 구성하는 전선의 일측 단부에 각각 독립적으로 설치되어 있는 단자를 의미하고, ‘소켓단자’는 상기 전선들을 한데 모아서 접속할 수 있도록 구성된 통합단자를 의미한다.
또한 ‘하이브리드 케이블(hybrid cable)’이라 함은, 니켈수소 배터리팩에 설치되는 전압센서 케이블에다 상기 리튬이온 배터리팩의 셀모듈에 접속되는 소켓단자를 연결한 새로운 형태의 조립 케이블을 의미하고, ‘재조합 리튬이온 배터리팩’ 은 본 발명의 목적에 따라 셀모듈 7개를 직렬로 연결한 리튬이온 배터리팩을 의미한다.
본 발명에 따른 하이브리드 전기자동차의 배터리팩 교체방법은, A) 상기 하이브리드 전기자동차에서 니켈수소 배터리팩을 분리하는 단계와, B) 국산 리튬이온 배터리팩을 이용하여 상기 니켈수소 배터리팩과 공칭전압이 동일한 재조합 리튬이온 배터리팩을 조립하는 단계, C) 상기 재조합 리튬이온 배터리팩에 대하여 상기 니켈수소 배터리팩에 대응하는 BMS를 구축하는 단계, D) 상기 BMS에 따라 상기 하이브리드 전기자동차에다 재조합 리튬이온 배터리팩을 설치하는 단계, 그리고 E) 마무리 단계를 포함하여 구성된다. 그러나, 상기 A) 단계 내지 E) 단계가 반드시 시계열적으로 진행되는 것은 아니며, 필요에 따라 일부 단계의 진행순서가 바뀔 수도 있다.
먼저 A) 단계에서는 니켈수소 배터리팩이 장착되어 있는 하이브리드 전기자동차에서 상기 니켈수소 배터리팩(10)과 ECU(20), 전압센서 케이블(30), 출력케이블(40,50), 온도센서(60) 및 에어센스 등을 분리하고, 상기 니켈수소 배터리팩(10)을 제거한다. 상기 하이브리드 전기자동차로는 일본 토요타의 프리우스 자동차인 것이 바람직하다.
프리우스 자동차에 장착되는 니켈수소 배터리팩(10)은 도 1과 같이 공칭전압이 7.2V인 셀모듈 28개로 직렬로 연결되어 있는 구조로 이루어진다. 상기 셀모듈은 1.2V 전지 셀 6개로 이루어지고, 이러한 셀모듈 2개가 다시 직렬로 연결되어 하나의 셀블록을 구성한다. 따라서, 상기 니켈수소 배터리팩은 개별 공칭전압이 14.4V인 셀블록 14개가 직렬로 연결되어 있으며, 전체 공칭전압은 201.6V이다.
상기 니켈수소 배터리팩(10)에는 GND 단자 1개를 포함하여 모두 15개의 전압센서용 팩단자가 설치되어 있다. 본 발명에서는 상기 팩단자를 GND 단자에서 부터 순서대로 N1~N15라 명명한다. 상기 GND 단자인 첫 번째 팩단자 N1를 제외한 나머지 팩단자 N2~N15는 각각 상기 셀블록 14개에 하나씩 접속되어 있다. 그래서 상기 GND 단자(N1)와 각 셀블록 사이의 전압 밸런스를 측정한다.
첨부 도 1에서 보는 바와 같이, 상기 니켈수소 배터리팩(10)의 일측에는 ECU(20)가 설치되어 있고, 상기 배터리팩(10)과 ECU(20) 사이에는 전압센서 케이블(30)이 설치되어 있다. 상기 배터리팩(10)의 첫 번째 팩단자 N1와 마지막 팩단자N15에는 각각 음극 출력케이블(40)과 양극 출력케이블(50)이 연결되어 있다. 그리고, 상기 배터리팩(10)의 상면에는 온도센서(60) 3개가 부착되어 있고, 일측에는 에어센서(도 1에서는 보이지 않음)가 설치되어 있다. 상기 온도센서(50)와 에어센서는 각각 상기 ECU(20)와 연결되어 배터리팩(10)의 온도와 냉각팬의 작동상태를 체크한다.
한편, 첨부 도 2는 상기 전압센서 케이블(30)에서 ECU(20)에 접속되는 소켓단자의 모습을 촬영한 것이다. 상기 소켓단자에는 모두 20개의 개별단자가 이열 횡대로 배치되어 있고, 우측에서 좌측으로 순서에 따라 고유번호가 부여되어 있다. 이는 배터리용 ECU(20)에도 상기 소켓단자에 각각 대응하는 20개의 전압센서단자가 설치되어 있다는 것을 의미한다. 따라서 ECU(20)에서 전압센서 케이블(30)을 분리하면, 상기 ECU(20)에 설치되어 있는 전압센서단자 20개가 확보된다. 본 발명에서는 상기 전압센서단자들을 상기 소켓단자에 배치되어 있는 개별단자들의 순서에 따라 ‘E1~E20’ 으로 명명한다.
상기 ECU(20)는 도요타가 생산하는 다른 차종에도 공용으로 사용되기 때문에 차종에 따라 상기 전압센서단자 E1~E20의 사용내역이 상이하다. 프리우스 자동차의 경우, 상기 전압센서단자 E1~E20 중에서 5개 단자(E4, E8, E12, E16, E20)는 사용되지 않고 나머지 15개 단자만 사용된다. 그래서 상기 15개의 단자는 상기 전압센서 케이블(30)에 의해서 상기 배터리팩의 팩단자 N1~N15와 각각 독립적으로 연결되어 있다. 첨부 도 3은 프리우스 자동차에서 팩단자 N1~N15와 전압센서단자 E1~E20의 연결 상태, 즉 BMS를 나타낸 도면이다.
다음 B) 단계에서는 리튬이온 배터리팩을 구성하는 셀모듈 7개를 직렬로 연결하여 전체 공칭전압이 상기 니켈수소 배터리팩의 공칭전압(201.6V)과 동일한 리튬이온 배터리팩을 조립한다. 상기 셀모듈로는 국산 하이브리드 전기자동차에서 회수한 리튬이온 배터리팩을 구성하는 셀모듈을 사용하는 것이 바람직하다.
국내 자동차 생산업체인 현대나 기아에서 제조하는 하이브리드 전기자동차에는 공칭전압이 28.8V인 셀모듈로 구성되는 리튬이온 배터리팩이 장착되어 있고, 상기 셀모듈은 3.6V 전지셀 8개가 직렬로 연결되어 있다. 따라서 상기 셀모듈 7개를 직렬로 연결하면, 전체 공칭전압이 201.6V(28.8V × 7)인 재조합 리튬이온 배터리팩을 조립할 수 있다. 상기 재조합 리튬이온 배터리팩을 구성하는 셀모듈 7개를 순서에 따라 M1~M7로 명명한다.
참고로 국산 하이브리드 전기자동차에는 차종에 따라 셀모듈 6개 또는 9개가 직렬로 연결된 리튬이온 배터리팩이 장착된다. 따라서 폐차에서 회수한 리튬이온 배터리팩이 셀모듈 6개로 구성된 경우에는 셀모듈 1개를 추가하고, 셀모듈 9개로 구성된 경우에는 셀모듈 2개를 제거하면, 공칭전압이 프리우스 자동차의 니켈수소 배터리팩과 동일한 재조합 리튬이온 배터리팩을 조립할 수 있다.
다음 C) 단계에서는 상기 재조합 리튬이온 배터리팩에 대하여 상기 니켈수소 배터리팩에 대응하는 BMS를 구축한다. 상기 재조합 리튬이온 배터리팩을 구성하는 셀모듈 M1~M7에는 각각 ECU로 연결되는 전압센서용 모듈단자가 12개씩 설치되어 있다. 도 4는 상기 모듈단자의 배치를 나타낸 도면으로, 본 발명에서는 상기 모듈단자 12개를 순서에 따라 R1~R12로 명명한다.
상기 리튬이온 배터리팩의 BMS에 따르면, 모듈단자 R1~R12 중 R5는 GND 단자이고, R6와 R11 및 R12는 사용하지 않는 단자이다. 그리고, 나머지 R10, R4, R9, R3, R8, R2, R7, R1는 각각 순서대로 상기 셀모듈을 구성하는 8개의 전지셀에 각각 접속되어 있다. 그래서 상기 GND 단자 R5와 각 전지셀 사이의 전압 밸런스를 측정한다. 이때 상기 전지셀은 서로 직렬로 연결되어 있으므로, 상기 전지셀에 접속되어 있는 모듈단자에는 순서에 따라 전압이 점차 누적된다. 다음 [ 표 1 ]은 상기 모듈단자 R1~R12에 걸리는 누적전압을 나타낸 것이다.
모듈단자 R1 R2 R3 R4 G5 R6
누적전압(V) 28.8 21.6 14.4 7.2 GND Blank
모듈단자 R7 R8 R9 R10 R11 R12
누적전압(V) 25.2 18.0 10.8 3.6 Blank Blank
상기 표 1에서 보는 바와 같이, 상기 모듈단자 R3의 누적전압(14.4V)은 프리우스 자동차의 니켈수소 배터리팩을 구성하는 셀블록 1개의 공칭전압(14.4V)과 같고, 모듈단자 R1의 누적전압(28.8V)은 상기 셀블록 2개의 공칭전압(28.8V)과 같다.
따라서 재조합 리튬이온 배터리팩을 구성하는 셀모듈 M1~M7에서 각각 모듈단자 R3과 R1을 선택하면, 프리우스 자동차의 니켈수소 배터리팩을 구성하는 팩단자 N2~N15에 걸리는 누적전압과 동일한 BMS를 구축할 수 있다. 이러한 방법으로 구축된 재조합 리튬이온 배터리팩의 BMS는 다음 [표 2] 및 첨부 도 5와 같다.
전압센서단자 E1 E2 E3 E5 E6
셀모듈-모듈단자 M1-R3 M1-R1 M2-R3 M4-R3 M4-R1
전압센서단자 E7 E9 E10 E11 E13
셀모듈-모듈단자 M5-R3 M7-R3 M7-R1 M1-R5 M2-R1
전압센서단자 E14 E15 E17 E18 E19
셀모듈-모듈단자 M3-R3 M3-R1 M5-R1 M6-R3 M6-R1
상기 재조합 리튬이온 배터리팩의 GND 단자는 첫 번째 셀모듈 M1의 모듈단자 R5이고(M1-R5로 표시함), 상기 모듈단자 M1-R5는 니켈수소 배터리팩의 GND 단자인 팩단자 N1에 대응한다. 첨부 도 2에서 보는 바와 같이, 상기 팩단자 N1는 전압센서단자 E11에 접속되어 있다. 따라서 상기 모듈단자 M1-R5도 전압센서단자 E11에 접속한다.
그리고 상기 재조합 리튬이온 배터리팩의 마지막 모듈단자인 M7-R1은 니켈수소 배터리팩의 마지막 단자인 팩단자 N15에 대응한다. 그리고 상기 팩단자 N15는 전압센서단자 E10에 접속되어 있다. 따라서 모듈단자인 M7-R1도 전압센서단자 E10에 접속한다. 또한 상기 재조합 리튬이온 배터리팩의 BMS에서도 전압센서단자 E4, E8, E12, E16, E20은 모두 비어있다. 따라서 상기 [ 표 2 ] 및 첨부 도 5의 BMS는 상기 니켈수소 배터리팩의 BMS(도 3)와 실질적으로 동일하다.
다음 D) 단계에서는, 상기 하이브리드 전기자동차에다 재조합 리튬이온 배터리팩을 설치하고, 상기 [ 표 2 ] 및 도 5의 BMS에 따라 ECU(20)의 전압센서단자 15개에 상기 재조합 리튬이온 배터리팩의 모듈단자 15개를 접속한다. 본 발명의 바람직한 실시예에 따르면, 상기 전압센서단자에다 상기 모듈단자를 접속하는 방법은, 다음 D1) 내지 D5) 단계에 따라 실시할 수 있다.
먼저 D1) 단계에서는, 프리우스 자동차의 배터리용 ECU(20)와 니켈수소 배터리팩(10) 사이에 설치되어 있는 전압센서 케이블(30)을 회수한다. 첨부 도 6은 상기 전압센서 케이블(30)을 촬영한 것으로, 일측에는 니켈수소 배터리팩의 팩단자 N1~N15에 각각 접속되는 개별단자(31) 15개가 배치되어 있다. 상기 전압센서 케이블(30)에서 개별단자(31) 15개를 모두 제거하면, 도 7과 같이 케이블 전선 L1~L15만 남아있는 전압센서 케이블(30a)이 확보된다.
다음 D2) 단계에서는 상기 재조합 리튬이온 배터리팩에 사용되는 전압센서 케이블(도면에는 나타내지 않았음)을 분리하고, 상기 전압센서 케이블에서 셀모듈 M1~M7에 각각 접속되는 소켓단자 S1~S7을 절단 및 회수한다. 도 7은 상기 소켓단자 S1~S7의 모습을 보여준다. 상기 소켓단자 S1~S7에는 각각 모듈단자 R1~R12로 연결되는 전선이 12줄씩 연결되어 있다.
다음 D3) 단계에서는, 상기 소켓단자 S1~S7 중에서 소켓단자 S1은 모듈단자 R1과 R3 및 R5로 연결되는 전선 3줄만 남기고 나머지 전선은 모두 절단 제거한다. 그리고, 소켓단자 S2~S7은 각각 모듈단자 R1 및 R3로 연결되는 전선 2줄만 남기고 나머지 전선들은 모두 절단 제거한다. 이렇게 하면, 상기 소켓단자 S1~S7에는 모듈단자 R5로 연결되는 전선 1줄과 모듈단자 R1로 연결되는 전선 7줄, 그리고 모듈단자 R3로 연결되는 전선 7줄 등 모두 15줄의 소켓단자 전선이 확보된다.
다음 D4) 단계에서는, 상기 전압센서 케이블(30a)의 케이블 전선 L1~L15에다 상기 소켓단자 전선 15줄을 상기 [ 표 2 ]의 BMS에 따라 서로 연결하여 하이브리드 케이블(30b)을 제조한다. 첨부 도 7은 상기 하이브리드 케이블(30b)을 제조하는 과정을 나타낸 것으로, 상기 케이블 전선 L1~L15와 소켓단자 전선은 다음 [표 3]과 같이 서로 연결될 수 있다. 하기 [표 3]에서 R1, R3, R5는 각각 상기 소켓단자 전선이 연결되는 모듈단자를 의미한다.
케이블 전선 L1 L2 L3 L4 L5
소켓단자 전선 S1-R3 S1-R1 S2-R3 S4-R3 S4-R1
케이블 전선 L6 L7 L8 L9 L10
소켓단자 전선 S5-R3 S7-R3 S7-R1 S1-R5 S2-R1
케이블 전선 L11 L12 L13 L14 L15
소켓단자 전선 S3-R3 S3-R1 S5-R1 S6-R3 S6-R1
다음 D5) 단계에서는 상기 하이브리드 케이블(30b)의 소켓단자 S1~S7을 각각 상기 재조합 리튬이온 배터리팩의 셀모듈 M1~M7에 각각 접속한다. 그리고 상기 하이브리드 케이블(30b)에서 소켓단자 S1~S7의 반대쪽 단부는 ECU(20)에 연결한다. 이렇게 하면, 상기 ECU(20)의 전압센서단자 15개와 재조합 리튬이온 배터리팩의 모듈단자 15개가 상기 BMS에 따라 순서대로 연결된다.
마무리 단계인 E) 단계에서는, 상기 재조합 리튬이온 배터리팩에다 A) 단계에서 분리해 둔 온도센서(60)를 부착하고, 에어센서를 설치한다. 그리고 상기 재조합 리튬이온 배터리팩의 셀모듈 M1과 M7에는 각각 음극 출력케이블(40)과 양극 출력케이블(50)을 연결한다. 필요에 따라 상기 재조합 리튬이온 배터리팩의 양쪽 측면과 저면 등에는 불연성 보온재를 부착한다.
참고로 상기 음극 출력케이블(40)과 양극 출력케이블(50)은 프리우스 자동차에 장착되어 있는 것을 그대로 사용하게 되는데, 이때 상기 재조합 리튬이온 배터리팩을 똑 바로 세워서 설치하면, 상기 출력케이블(40,50)의 길이가 서로 맞지 않는다. 따라서 상기 재조합 리튬이온 배터리팩을 뒤집어서 설치하면, 상기 출력케이블(40,50)을 길이 가감 없이 그대로 사용할 수 있다.
<부호의 설명>
(10) 배터리팩 (20) ECU
(30,30a) 전압센서 케이블 (30b) 하이브리드 케이블
(31) 개별단자 (40) 음극 출력케이블
(50) 양극 출력케이블 (60) 온도센서
(E1~E20) 전압센서단자 (N1~N15) 팩단자
(M1~M7) 셀모듈 (R1~R12) 모듈단자
(S1~S7) 소켓단자 (L1~L15) 케이블 전선

Claims (4)

  1. 공칭전압이 7.2V인 셀모듈 28개가 직렬로 배치되어 있고 상기 셀모듈에는 전압센서용 팩단자 N1~N15가 순서에 따라 교대로 설치되어 있는 니켈수소 배터리팩을, 공칭전압이 28.8V인 셀모듈 다수개가 직렬로 배치되어 있고 상기 셀모듈에는 전압센서용 모듈단자 R1~R12가 각각 설치되어 있는 리튬이온 배터리팩으로 교체 하는, 하이브리드 전기자동차의 배터리팩 교체방법에 있어서,
    상기 하이브리드 전기자동차의 배터리용 ECU(electronic control unit)에서 니켈수소 배터리팩을 분리 및 제거하고, 상기 ECU에 배치되어 있는 전압센서단자 E1~E20 중에서 상기 팩단자 N1~N15가 접속되어 있던 전압센서단자 15개를 확인하는 A) 단계와;
    상기 리튬이온 배터리팩을 구성하는 셀모듈 7개를 직렬로 연결하여 상기 니켈수소 배터리팩과 동일한 공칭전압(201.6V)을 갖는 재조합 리튬이온 배터리팩을 조립하는 B) 단계와;
    상기 재조합 리튬이온 배터리팩의 셀모듈 M1~M7에 설치되어 있는 모듈단자 84개[(R1~R12)×(M1~M7)] 중에서 상기 니켈수소 배터리팩의 팩단자 N1~ N15와 동일한 누적전압을 갖는 모듈단자 15개를 순서대로 파악하여 상기 니켈수소 배터리팩에 대응하는 BMS(battery management system)를 구축하는 C) 단계와;
    상기 A) 단계에서 확인한 ECU의 전압센서단자 15개에다 상기 C) 단계에서 파악한 재조합 리튬이온 배터리팩의 모듈단자 15개를 상기 BMS에 따라 접속하는 D) 단계와;
    상기 재조합 리튬이온 배터리팩에다 상기 ECU의 온도센서와 에어센서를 설치하고, 음극 및 양극 출력케이블을 연결하는 E) 단계; 를 포함하는 것을 특징으로 하는, 하이브리드 전기자동차의 배터리팩 교체방법.
  2. 제1항에 있어서, 상기 C 단계에서는 상기 재조합 리튬이온 배터리팩에 대하여 다음 도포와 같은 BMS를 구축하는 것을 특징으로 하는, 하이브리드 전기자동차의 배터리팩 교체방법.
    Figure PCTKR2022005169-appb-I000001
  3. 제1항에 있어서, 상기 D) 단계에서 상기 ECU의 전압센서단자 15개에다 상기 리튬이온 배터리팩의 모듈단자 15개를 접속하는 방법은,
    상기 니켈수소 배터리팩에 사용되는 전압센서 케이블에서 전압센서용 팩단자 N1~N15에 접속되는 개별단자 15개를 절단하여 케이블 전선 L1~L15를 확보하는 D1) 단계와;
    상기 재조합 리튬이온 배터리팩에 사용되는 전압센서 케이블에서 셀모듈 M1~M7에 각각 접속되는 소켓단자 S1~S7을 절단 및 회수하는 D2) 단계와;
    상기 소켓단자 S1~S7 중 S1은 모듈단자 R1과 R3 및 R5로 연결되는 전선 만 남기고 나머지 전선은 모두 제거하고, 소켓단자 S2~S7은 각각 모듈단자 R1 및 R3로 연결되는 전선만 남기고 나머지 전선들은 모두 제거하는 D3) 단계와;
    상기 케이블 전선 L1~L15에다 상기 소켓단자 S1~S7에 남아있는 소켓단자 전선 15줄을 상기 BMS에 대응하도록 서로 연결하여 하이브리드 케이블을 제조하는 D4) 단계와;
    상기 하이브리드 케이블의 소켓단자 S1~S7을 각각 상기 재조합 리튬이온 배터리팩의 셀모듈 M1~M7에 각각 접속하는 D5) 단계; 를 포함하는 것을 특징으로 하는, 하이브리드 전기자동차의 배터리팩 교체방법.
  4. 제3항에 있어서, 상기 하이브리드 케이블은 상기 케이블 전선 L1~L15와 상기 소켓단자 S1~S7에 남아있는 소켓단자 전선 15줄을 다음과 같이 연결하여 제조되는 것을 특징으로 하는, 하이브리드 전기자동차의 배터리팩 교체방법.
    Figure PCTKR2022005169-appb-I000002
    (상기 도표에서 R1, R3, R5는 각각 상기 소켓단자 전선이 연결되는 모듈단자를 의미한다.)
PCT/KR2022/005169 2021-04-12 2022-04-11 하이브리드 전기자동차의 배터리팩 교체방법 WO2022220507A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/281,327 US20240157840A1 (en) 2021-04-12 2022-04-11 Method for replacing battery pack of hybrid electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0046997 2021-04-12
KR1020210046997A KR102264429B1 (ko) 2021-04-12 2021-04-12 하이브리드 전기자동차의 배터리팩 교체방법

Publications (1)

Publication Number Publication Date
WO2022220507A1 true WO2022220507A1 (ko) 2022-10-20

Family

ID=76417392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005169 WO2022220507A1 (ko) 2021-04-12 2022-04-11 하이브리드 전기자동차의 배터리팩 교체방법

Country Status (3)

Country Link
US (1) US20240157840A1 (ko)
KR (1) KR102264429B1 (ko)
WO (1) WO2022220507A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264429B1 (ko) * 2021-04-12 2021-06-14 이흥우 하이브리드 전기자동차의 배터리팩 교체방법
KR102412601B1 (ko) 2021-09-14 2022-06-24 나노인텍 주식회사 유니버설 배터리 팩 및 유니버설 배터리 팩을 사용하는 시스템
CN114122595B (zh) * 2021-11-02 2023-06-02 国网湖北省电力有限公司宜昌供电公司 变电站直流系统蓄电池模组安装及更换维护方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040005066A (ko) * 2002-07-08 2004-01-16 현대자동차주식회사 하이브리드 전기 차량의 전지 셀간 커넥팅 장치
JP2009083566A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd ハイブリッドカーに走行用バッテリを搭載する方法
US20100121511A1 (en) * 2008-10-07 2010-05-13 Boston-Power, Inc. Li-ion battery array for vehicle and other large capacity applications
KR20130075378A (ko) * 2011-12-27 2013-07-05 넥스콘 테크놀러지 주식회사 배터리 관리 시스템용 배터리 전압 균등제어 분리형 보드
JP2013239280A (ja) * 2012-05-14 2013-11-28 Panasonic Corp 電池電源システム
KR102264429B1 (ko) * 2021-04-12 2021-06-14 이흥우 하이브리드 전기자동차의 배터리팩 교체방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101260470B1 (ko) 2006-04-07 2013-05-06 타이코에이엠피(유) 배터리 셀 모듈의 접속장치
KR101449753B1 (ko) 2008-05-08 2014-10-13 타이코에이엠피(유) 배터리 셀 모듈의 전기접속장치 및 이를 포함하는 배터리 셀 모듈
KR102110977B1 (ko) 2018-03-15 2020-05-19 주식회사 디에스피원 전기자동차의 배터리 교체방법 및 전기자동차

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040005066A (ko) * 2002-07-08 2004-01-16 현대자동차주식회사 하이브리드 전기 차량의 전지 셀간 커넥팅 장치
JP2009083566A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd ハイブリッドカーに走行用バッテリを搭載する方法
US20100121511A1 (en) * 2008-10-07 2010-05-13 Boston-Power, Inc. Li-ion battery array for vehicle and other large capacity applications
KR20130075378A (ko) * 2011-12-27 2013-07-05 넥스콘 테크놀러지 주식회사 배터리 관리 시스템용 배터리 전압 균등제어 분리형 보드
JP2013239280A (ja) * 2012-05-14 2013-11-28 Panasonic Corp 電池電源システム
KR102264429B1 (ko) * 2021-04-12 2021-06-14 이흥우 하이브리드 전기자동차의 배터리팩 교체방법

Also Published As

Publication number Publication date
US20240157840A1 (en) 2024-05-16
KR102264429B1 (ko) 2021-06-14

Similar Documents

Publication Publication Date Title
WO2022220507A1 (ko) 하이브리드 전기자동차의 배터리팩 교체방법
WO2018066797A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
US20210057695A1 (en) Modular approach for advanced battery modules having different electrical characteristics
DE19810746B4 (de) Platine mit einer Schaltung zur Überwachung einer mehrzelligen Akkumulatorenbatterie
WO2017014470A1 (ko) 배터리 모듈 어셈블리 및 이를 포함하는 배터리 팩
WO2013002507A2 (ko) 전지모듈 및 이를 포함하는 전지 어셈블리
WO2015030392A1 (ko) 랙을 포함하는 전지팩의 랙 전압 밸런싱 방법
WO2009110771A2 (ko) 전지모듈의 전극단자 접속부재
WO2011021843A2 (ko) 신규한 냉각구조를 가진 전지팩
WO2011078478A2 (en) A battery management apparatus of high voltage batteryforhybridvehicle
WO2012165858A2 (ko) 전력 저장 장치, 이를 이용한 전력 저장 시스템 및 전력 저장 시스템의 구성 방법
WO2017014472A1 (ko) 전극 리드 연결 구조물, 전극 리드 연결 구조물을 포함하는 전지 모듈과 이를 포함하는 전지 팩
WO2017014449A1 (ko) 단자 플레이트 및 bms가 직접 연결된 구조의 전지모듈
EP1211739A3 (en) Prismatic battery module and method for manufacturing the same
WO2019124796A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2020171627A1 (ko) 연성 인쇄 회로 기판을 덮는 보호 커버를 포함하는 전지 모듈
WO2019172545A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2018105874A1 (ko) 배터리 팩 충전 시스템
WO2017010776A1 (ko) 버스 바 구조물
WO2017217652A2 (ko) 클램핑 방식의 체결 부재로 결합된 외장 부재를 포함하는 전지모듈
WO2013191478A1 (ko) 배터리 모듈 용접 방법 및 용접구조
WO2010110565A2 (ko) 누전 방지용 외장 부재 및 이를 구비하는 차량용 배터리 팩
WO2019022407A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 전력 저장 장치
WO2022240140A1 (ko) 진공호퍼 프리챠져용 히팅트레이
WO2017111187A1 (ko) 배터리 랙 간 전압 밸런싱 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18281327

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788363

Country of ref document: EP

Kind code of ref document: A1