WO2022220273A1 - ウイルス粒子の製造方法 - Google Patents

ウイルス粒子の製造方法 Download PDF

Info

Publication number
WO2022220273A1
WO2022220273A1 PCT/JP2022/017762 JP2022017762W WO2022220273A1 WO 2022220273 A1 WO2022220273 A1 WO 2022220273A1 JP 2022017762 W JP2022017762 W JP 2022017762W WO 2022220273 A1 WO2022220273 A1 WO 2022220273A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
virus particles
particles
virus
rotor
Prior art date
Application number
PCT/JP2022/017762
Other languages
English (en)
French (fr)
Inventor
尚巳 岡田
美加子 和田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to EP22788196.8A priority Critical patent/EP4324907A1/en
Priority to JP2023514674A priority patent/JPWO2022220273A1/ja
Priority to CN202280028123.9A priority patent/CN117178054A/zh
Publication of WO2022220273A1 publication Critical patent/WO2022220273A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material

Definitions

  • the present invention relates to a method for purifying or producing virus particles. More specifically, it relates to a method for purifying or producing large amounts of virus particles.
  • Gene therapy in which genes or gene-introduced cells are administered into the human body for the purpose of treating diseases, is one of the important therapeutic methods for treating intractable diseases.
  • Biological techniques using viral vectors are currently the mainstream of methods for introducing genes into mammalian cells for the purpose of gene therapy.
  • a viral vector is a carrier that incorporates a gene to be introduced for treatment into a virus strain that has lost or partially lost the ability to replicate and propagate, and to efficiently introduce and express the gene into cells. That is.
  • Viruses from which viral vectors are derived include enveloped viruses such as retroviruses, lentiviruses, herpes viruses, and Sendai viruses, and non-enveloped viruses such as adenoviruses and adeno-associated viruses (AAV).
  • Viruses viruses (viruses without envelopes) are known.
  • AAV is useful for the treatment of various diseases because it can infect many types of cells, has no pathogenicity to humans, and the virus particles are physically stable. It
  • AAV vectors have been used as a means of gene delivery to target cells because they enable efficient gene transfer for stable expression of target genes in cells. Recently, Parkinson's disease, cystic fibrosis, rheumatoid arthritis, lipoprotein lipase deficiency, ⁇ 1-antitrypsin deficiency, Duchenne muscular dystrophy (DMD), Leber congenital amaurosis, chlorideemia, hemophilia Gene therapy with AAV vectors is undergoing clinical trials for various inherited diseases such as A and hemophilia B. In order to safely and effectively perform gene therapy using AAV vectors, it is extremely important to overcome immune reactions against AAV vectors (Non-Patent Document 1).
  • Non-Patent Document 2 Non-Patent Document 3
  • Non-Patent Document 3 gene therapy of hemophilia with low-dose AAV5 vectors resulted in no increase in liver enzyme activity, minimal T-cell activation, and maintenance of blood clotting factors in most patients. There is a report that it was done (Non-Patent Document 1, Non-Patent Document 4).
  • methods for purifying AAV vectors include chromatography using an ion exchange column or affinity purification column, a method including a filtration step by tangential flow filtration (TFF), and these chromatography methods. and a method of combining the steps of TFF with sucrose density gradient centrifugation (Patent Document 1) or cesium chloride equilibrium density gradient centrifugation (Patent Document 2). These methods have shown some success in removing impurities from the AAV vector fraction.
  • the ion-exchange chromatography method cannot completely remove hollow particles (AAV particles that do not contain the genome) and intermediate particles (AAV particles that contain fragments of the genome rather than the full-length genome).
  • a method combining ion-exchange chromatography and density gradient centrifugation is effective for removing impurities and separating whole particles (AAV particles containing the full-length genome) that do not contain hollow particles or intermediate particles.
  • the purification process of whole particles is complicated.
  • the density gradient centrifugation that has been reported so far requires a long centrifugation step. There was a problem that the transduction rate of .
  • the conventional ultracentrifugation purification method has a limit on the amount of sample that can be handled at one time, and there is a problem in large-scale purification.
  • the starting material for purified AAV vectors has shifted from cell pellets to culture supernatants due to the progress in commercialization and changes in the serotypes used. It has been demanded.
  • an object of the present invention is to provide a method for separating a large amount of high-purity virus particles in a shorter time than conventional methods.
  • the present inventors investigated conditions such as density gradient preparation conditions and centrifugation time in the cesium chloride equilibrium density gradient centrifugation method. Specifically, the present inventors loaded the culture supernatant containing AAV particles into a zonal rotor in which two different concentrations of cesium chloride solutions were placed and subjected to ultracentrifugation. (Starting sample containing AAV) was successfully separated/purified into whole particles with high purity and high transduction rate by a short centrifugation time (about 4-5 hours).
  • the present invention is the following (1) to (11).
  • a method for producing whole virus particles comprising the step of purifying whole virus particles from a virus particle mixture containing hollow virus particles, intermediate virus particles and whole virus particles, The zonal rotor is rotated at a low speed, and the mixture of virus particles, the liquid having a lower density than the whole virus particles (liquid L), and the liquid having a higher density than the liquid L are arranged outward from the rotating shaft side of the rotor.
  • the manufacturing method comprising: (2) In the step (a), the zonal rotor is rotated at a low speed, and a liquid (liquid B) having a density lower than that of the liquid L and the liquid H1 and the virus particles are spread outward from the rotating shaft side of the rotor.
  • the manufacturing method according to (1) above which is a step of disposing the mixed liquid, the liquid L, and the liquid H1 in this order.
  • the zonal rotor after the step (b) is rotated at a low speed, and a liquid (liquid H2) having a density higher than that of the liquid H1 is moved radially outward of the zonal rotor.
  • the liquid L, the liquid H1 and the liquid H2 are cesium chloride (CAS number; 7647-17-8), iodixanol (CAS number; 92339-11-2), iohexol (CAS number; 66108-95- 0), amidotrizoic acid (CAS number; 737-31-5) or metrizamide (CAS number; 31112-62-6).
  • the production method according to (1) above, wherein the virus particles are adeno-associated virus particles and the density of the liquid L is 1.21 to 1.38 g/mL.
  • virus particle mixture containing hollow virus particles, intermediate virus particles and whole virus particles; a liquid (liquid L) having a density lower than that of the whole virus particle; and A zonal rotor in which liquids (liquid H1) having a higher density than the liquid L are arranged in this order from the rotating shaft side toward the outside.
  • a liquid (liquid B) having a density lower than that of the liquid L and the liquid H is disposed closer to the rotation axis than the virus particle mixed liquid.
  • the liquid L, the liquid H1 and the liquid H2 are cesium chloride (CAS number; 7647-17-8), iodixanol (CAS number; 92339-11-2), iohexol (CAS number; 66108-95- 0), amidotrizoic acid (CAS number; 737-31-5) or metrizamide (CAS number; 31112-62-6).
  • the present invention provides a method for producing whole virus particles with a high transduction rate. As a result, it is possible to improve the safety and efficacy of gene therapy using viral vectors.
  • A shows a schematic of equilibrium density gradient ultracentrifugation with cesium chloride using a zonal rotor.
  • B shows the refractive index (RI) of each fraction obtained by fractionating the solution in the rotor after density gradient ultracentrifugation.
  • Z1 is a density gradient made with four concentrations of cesium chloride solutions (15%, 25%, 33%, 40%),
  • Z2 to Z7 are two concentrations of cesium chloride solutions (25 to 27%, 40%)
  • Density gradient ultracentrifugation was performed on the density gradient prepared in , and the refractive index of each fraction was measured.
  • Fractions containing isolated whole virus particles (particles containing the full-length genome), intermediate virus particles (particles containing fragments of the genome) and hollow virus particles (particles without genome) were calculated for genome copy number, transduction Results of rate evaluation and capsid protein detection.
  • A is the result of examining the AAV genome copy number by quantitative PCR (quantitative polymerase chain reaction; qPCR) using primers for ITR (inverted terminal repeat).
  • B is the result of evaluating the transduction efficiency of AAV based on the expression of ZsGreen1 introduced into 293EB cells.
  • C is the result of detecting AAV capsid by Western blotting using anti-VP1, VP2 and VP3 antibodies.
  • Results comparing the purity of AAV vector particles purified from culture supernatant and AAV vector particles purified from cell lysate.
  • Analytical ultracentrifugation detected the peaks of hollow virus particles (A) and whole virus particles (B) with complete separation.
  • A hollow virus particles
  • B whole virus particles
  • C another peak (peak surrounded by a line) other than AAV vector particles was observed (C).
  • A is the result of observing the hollow AAV particle fraction
  • B is the result of observing the whole AAV particle fraction.
  • the form for implementing this invention is demonstrated.
  • solutions with two different concentrations (densities) are used to form a density gradient in the zonal rotor with the solutes in the solution, and the density gradient forms whole virus particles, hollow particles and A method for producing whole virus particles, including separating and purifying intermediate virus particles.
  • the first embodiment is a method for producing whole virus particles, in which whole virus particles are purified from a mixture of virus particles containing hollow virus particles, intermediate virus particles and whole virus particles.
  • a method comprising the step of The zonal rotor is rotated at a low speed, and the mixture of virus particles, the liquid having a lower density than the whole virus particles (liquid L), and the liquid having a higher density than the liquid L are arranged outward from the rotating shaft side of the rotor.
  • step (a) rotates the zonal rotor at a low speed, and a liquid (liquid B) having a density lower than that of the liquid L and the liquid H1 outwardly from the rotation axis side of the rotor (liquid B);
  • the step of disposing the virus particle mixed solution, the liquid L, and the liquid H1 in this order, ie, the liquid B, the virus particle mixed solution, the liquid L, and the liquid H1 may be employed.
  • a complete viral particle is a virus particle in which a full-length genome (in the case of a viral vector, a full-length vector genome including foreign genes) is packaged and has the ability to infect target cells.
  • Intermediate virus particles are virus particles in which part of the full-length genome has been packaged, but the ability to infect target cells has been lost or significantly reduced.
  • a hollow virus particle is a virus particle that contains almost no genome and has almost lost the ability to infect target cells.
  • Viral particles used in gene therapy, such as AAV vectors are strongly required to prepare high-purity whole virus particles in order to ensure safety. The need to separate virus particles is extremely high.
  • step (a) uses a solution (liquid L) with a density lower than that of whole virus particles and a solution (liquid H1) with a higher density than liquid L in the zonal rotor to create a density gradient.
  • This is the step of injecting the virus particle mixed solution into the zonal rotor while it is being produced.
  • step (a) for example, the virus particle mixture and liquid L and liquid H1 in this order, or a liquid (liquid B) having a lower density than the liquid L and the liquid H, the virus particle mixture, the liquid L, and the liquid H1 in this order (i.e., liquid B, virus particles mixed liquid, then liquid L, then liquid H1), and loaded into the zonal rotor.
  • a linear density gradient is created between the density of the liquid L and the density of the liquid H1 outward from the rotating shaft side in the rotor.
  • Virus particles are stopped on the rotating shaft side in the rotor.
  • the densities of whole virus particles, intermediate virus particles, and hollow virus particles are approximately 1.39 g/cm 3 to 1.41 g/cm 3 and approximately 1.35 g/cm 3 , although there are some errors.
  • g/cm 3 to 1.38 g/cm 3 approximately 1.3 g/cm 3 to 1.35 g/cm 3 .
  • the density of the solution L is, for example, about 1.21 g/cm 3 to 1.38 g/cm 3 , or about 1.22 g/cm 3 to 1.29 g/cm 3 . It may be about g/cm 3 .
  • the density of solution H1 is preferably higher than the density of whole virus particles, and may be, for example, about 1.39 g/cm 3 or higher. As the density of solution H1 increases, the resulting density gradient becomes steeper. As a result, whole virus particles are concentrated and collected, but the possibility of contamination with intermediate virus particles also increases.
  • the density of H1 may be adjusted to, for example, about 1.39 g/cm 3 to 1.45 g/cm 3 .
  • the ratio of the volume of liquid L and liquid H1 (total volume of liquid L and liquid H1; liquid L + liquid H1) to the volume of virus particle mixed solution (liquid L + volume of liquid H1 : volume of virus particle mixed solution) is not particularly limited, but may be, for example, about 1:1-4, about 1:1-3, or about 1:1-2.
  • the ratio of the volume of the liquid H1 to the volume of the liquid L injected into the zonal rotor is not particularly limited, but is, for example, about 1:1 to 3, about 1:1. ⁇ 2, or about 1:1 to 1.5.
  • the total volume of the mixed virus particle solution, liquid L, and liquid H1 to be injected into the zonal rotor depends on the rotor capacity of the zonal rotor to be used, and a person skilled in the art can appropriately select the optimum injection amount. can be done.
  • the zonal rotor after the step (a) is operated in an ultracentrifugation mode (high-speed rotation) to separate the hollow virus particles, the intermediate virus particles, and the whole virus particles.
  • the ultracentrifugation mode in step (b) is not particularly limited, but may be operated at a rotational speed of, for example, approximately 30,000 rpm to approximately 40,000 rpm (approximately 90,000 ⁇ g to 160,000 ⁇ g).
  • the operating time in ultracentrifugation mode may be, for example, about 3 hours to about 10 hours, or about 4 hours to about 6 hours.
  • the step (c) in the present embodiment is a step of fractionating and taking out the contents of the zonal rotor after the step (b), and recovering the fraction containing the whole virus particles.
  • a person skilled in the art can easily select a method for extracting the contents of the zonal rotor from the rotor.
  • the contents of the zonal rotor may be taken out of the rotor by introducing the contents from the radially outer side of the rotor, thereby sequentially pushing out the contents of the zonal rotor.
  • the whole virus particles are separated from the intermediate virus particles and the hollow virus particles by fractionating the content extruded out of the rotor from the rotating shaft side of the rotor by a fraction collector or the like by a constant volume. can be done.
  • the contents of the zonal rotor can be pushed out of the rotor by injecting liquid H2 into the zonal rotor and rotating the rotor at low speed (for example, about 1,000 rpm to 4,000 rpm; about 100 x g to 1,600 x g). can.
  • the contents pushed out of the rotor may be collected from the rotating shaft side of the rotor while being fractionated by a fraction collector or the like.
  • the density of liquid H2 should be higher than that of H1.
  • the virus particle mixture, liquid L, liquid H1, and liquid H2 include cesium chloride (CAS number; 7647-17-8), iodixanol (CAS number; 92339-11-2), and iohexol (CAS number). 66108-95-0), amidotrizoic acid (CAS number; 737-31-5) or metrizamide (CAS number; 31112-62-6) or the like may be included.
  • the density gradient created in the zonal rotor may be a density gradient with cesium chloride, iodixanol, iohexol, amidotrizoic acid or metrizamide or the like, preferably with cesium chloride.
  • buffer solutions e.g., phosphate buffer, HEPES buffer, Tris buffer
  • the purity of whole virus particles obtained after step (c) of the present embodiment is, for example, 80% or more, preferably 90% or more, more preferably 95% or more. .
  • Viruses (particles) in the present embodiment include, but are not limited to, wild-type viruses, viruses carrying foreign genes used as vectors (viral vectors), and the like. Also, the type of virus is not particularly limited, and includes both enveloped viruses and non-enveloped viruses.
  • An enveloped virus is a virus in which the viral genome and a protein shell called a capsid are covered with a membranous structure (envelope), and a non-enveloped virus is a virus without an envelope.
  • Enveloped viruses include, for example, DNA viruses such as herpesviruses, poxviruses and hepadnaviruses, RNA viruses such as flaviviruses, togaviruses, coronaviruses, orthomyxoviruses, paramyxoviruses, rhabdoviruses, bunyaviruses and retroviruses. It has been known.
  • adenoviruses As non-enveloped viruses, adenoviruses, adeno-associated viruses (AAV), DNA viruses such as papillomaviruses, RNA viruses such as picornaviruses, caliciviruses, noroviruses and rotaviruses are known.
  • AAV adeno-associated viruses
  • DNA viruses such as papillomaviruses
  • RNA viruses such as picornaviruses
  • caliciviruses caliciviruses
  • noroviruses noroviruses
  • rotaviruses adeno-associated viruses
  • AAV vector adeno-associated virus vector
  • cesium chloride or the like can be used as the density gradient medium.
  • Liquid L is, for example, a cesium chloride solution of about 25 wt% to 28 wt% (about 1.22 g/cm 3 to 1.29 g/cm 3 ), and liquid H1 is, for example, about 40 wt% to 42 wt% (1.42 g/cm 3 ).
  • the virus particle mixture, liquid L, and liquid H1 may be injected into the rotor in this order while operating at low speed (for example, about 3,000 rpm when P32ZT or P35ZT is used).
  • a density gradient is formed by the virus particle mixture and the cesium chloride solution with a density from the density of liquid L to the density of liquid H1 from the side of the rotor rotation axis toward the outside (the above is the present implementation Morphology step (a)).
  • the density gradient of cesium chloride may be operated at high speed (for example, about 30,000 to 35,000 rpm when using P32ZT or P35ZT) for about 4 to 5 hours.
  • banding is performed in the order of hollow virus particles, intermediate virus particles, and whole virus particles from the rotating shaft side of the rotor toward the outside (edge side of the rotor).
  • the content inside the rotor is liquid H2, which has a higher density than liquid H1 (for example, a cesium chloride solution of about 42 wt% to 45 wt% (about 1.45 g/cm 3 to 1.49 g/cm 3 )) from the outside of the rotor.
  • a cesium chloride solution of about 42 wt% to 45 wt% (about 1.45 g/cm 3 to 1.49 g/cm 3 )
  • a low speed for example, about 3,000 rpm when using P32ZT or P35ZT
  • the solution extruded out of the rotor is fractionated and collected by a fraction collector or the like to obtain a fraction containing whole virus particles (the above is step (c) of the present embodiment).
  • the virus particle mixture (mixture containing at least whole virus particles) can be prepared by culturing virus-producing cells or from the virus-producing cells or cell culture medium. It can be easily prepared by suitable means. Also, virus particle mixture obtained by concentrating or crudely purifying the culture medium of virus-producing cells or the cell lysate by TFF (Tangential Flow Filtration) or column chromatography. may be used as a starting sample in this embodiment.
  • virus-producing cells refer to cells that produce the elements necessary to form virus particles and have the ability to produce viruses.
  • a virus-producing cell may be a cell that has been artificially produced to produce a virus, or a cell that has become capable of producing the virus after being infected with a virus in a natural environment.
  • the virus-producing cell in this embodiment is preferably an artificially produced virus-producing cell, and particularly preferably a non-enveloped virus.
  • plasmids containing target genes plasmids containing genes encoding Rep proteins (proteins required for viral replication) and Cap proteins (proteins that constitute the capsid), E1a proteins derived from adenovirus, E1b
  • AAV vector-producing cells can be prepared by introducing plasmids containing genes encoding proteins, E2 protein, E4 protein, and the like into HEK293 cells, HEK293T cells, and the like.
  • Culture conditions for virus-producing cells are already known and can be appropriately selected by those skilled in the art according to the type of virus. Although not particularly limited, for example, in a medium such as DMEM or IMDM containing necessary supplements (growth factors, amino acids, etc.) and serum, at about 30 to 38 ° C and a CO 2 concentration of about 5 to 10% , may be cultured for several days to 20 days.
  • a medium such as DMEM or IMDM containing necessary supplements (growth factors, amino acids, etc.) and serum
  • a virus-containing sample may be an extract obtained by extracting a virus from a virus-producing cell, or a crudely purified version of the extract.
  • the culture medium after culturing the virus-producing cells may be collected and used as a sample.
  • a sample obtained by crushing by sonication or the like and removing debris and the like may be used. Since many reagents, kits, and the like for preparing virus-containing samples from virus-producing cells are commercially available, samples may be prepared using these reagents, kits, and the like.
  • a virus particle mixture containing hollow virus particles, intermediate virus particles and whole virus particles, liquid L and liquid H1, or liquid B, the virus particle mixture, liquid L and liquid H1 are zonal rotors arranged in this order from the rotating shaft side toward the outside.
  • the zonal rotor according to the second embodiment is the rotor in step (a) of the first embodiment, for example, the rotor rotating at a low speed.
  • a liquid having a density equal to or higher than that of the liquid L and lower than or equal to the density of the liquid H1 may be stored in a state in which a density gradient is formed.
  • liquid B, liquid L, and liquid H1 see the description of the first embodiment.
  • Method 1-1 Preparation of AAV vectors AAV vectors were prepared in large scale from culture supernatants (conditioned media) and harvested as previously reported (Verdera et al., Mol Ther 28: 723-746 2020). 293EB cell lines (Tomono et al., Hum Gene Ther Methods 30:137-143 2019.) expressing adenovirus E1a, adenovirus E1b and Bcl- XL were grown in 2 x 500 mL flasks (HYPERFlask, MilliporeSigma) or in 1 L bioreactors.
  • DMEM Dulbecco's Modified Eagle Medium
  • helper plasmids encoding ZsGreen1 or ZsGreen1-DR
  • helper plasmids were then transfected in DMEM (serum-free) containing 2 mM L-glutamine, 12.1% (w/v) NaHCO3 , 12.9% D-glucose. , were transfected into 293EB cells using polyethyleneimine hydrochloride (PEI MAX, Polysciences).
  • AAV vectors were collected from the culture supernatant (810 mL) and treated with 18.5 U/mL endonuclease (Kaneka) at 37°C for 30 minutes in the presence of 5 mM MgCl 2 .
  • the zonal rotor was centrifuged at 30,000-35,000 rpm for 4-10 hours (himac CP 80NX, Eppendorf Himac Technologies) to separate the whole AAV vector from the intermediate and hollow vector. After ultracentrifugation, while the zonal rotor is being centrifuged at 3,000 rpm, 42-45% CsCl (HNE or HN buffer) is slowly injected from the outside of the rotor into the rotor, and the solution in the rotor (cesium chloride containing the AAV vector density gradient solution) was extruded out of the rotor, and the extruded solution was collected while being fractionated by a fraction collector (Fig. 1A).
  • CsCl HNE or HN buffer
  • the refractive index of each fraction was measured using an Abbe refractometer (NAR-1T LIQUID, Atago) or a digital refractometer (RX 5000i, Atago) (Fig. 1B, Tables 2 and 3). Each collected fraction was dialyzed against 0.5 mM MgCl 2 (aqueous solution) at 4°C for about 2 hours using a 20 kDa molecular weight cut-off dialysis cassette (#66003, Thermo Fisher). PBS solution), and dialyzed overnight at 4°C.
  • Abbe refractometer NAR-1T LIQUID, Atago
  • RX 5000i, Atago digital refractometer
  • the electrophoresed proteins were transferred to PVDF membranes (Trans-Blot Turbo Midi PVDF Transfer Packs, Bio-Rad) and assayed with anti-AAV VP1/VP2/VP3 mouse antibody (clone B1, Progen) and Amersham ECL Mouse IgG.
  • Protein detection was performed using HRP-linked whole Ab (Cytiva). Transduction efficiency was assessed by the percentage of ZsGreen1 positive cells (%ZsGreen1) in transduced 293EB cells. 293EB cells (1 ⁇ 10 5 cells) were cultured overnight in 24-well plates.
  • Cultured cells were transduced with each fraction sample (300 ⁇ L/well) in serum-free DMEM (300 ⁇ L/well) containing 2 mM L-glutamine, 12.1% NaHCO 3 and 12.9% D-glucose. rice field. The day after transduction, 600 ⁇ L of medium (same as above) was added to each well. %ZsGreen1 was assessed by flow cytometry (FACSMelody, Becton Dickinson) 3 days after transduction. Analysis of results was performed using FlowJo Version 7.1 (Becton Dickinson).
  • ddPCR Droplet Digital PCR
  • Results 2-1 Separation of whole AAV vectors (containing full-length genome), intermediates (containing genome fragments) and hollow particles (without genome) by cesium chloride density gradient ultracentrifugation using a zonal rotor. from intermediate particles and hollow particles in a large amount and in a short period of time. An attempt was made to separate the particles (Fig. 1A). The longer the contact time with cesium chloride, the less efficiently the AAV vector infects the cells, so it was necessary to shorten the centrifugation time as much as possible.
  • Cesium chloride density gradient ultracentrifugation using 4 concentrations of cesium chloride solution also enabled the separation between whole, intermediate and hollow particles.
  • exposure of the AAV vector to cesium chloride for as long as 10 hours appears to reduce the biological activity (transduction capacity) of the AAV vector. Therefore, if a density gradient is formed with two concentrations of cesium chloride solution, it becomes possible to form a steep density gradient that can concentrate whole AAV particles in a narrow range of the density gradient, and the centrifugation time is I thought it might be possible to shorten the
  • it is also possible to increase the amount of sample containing AAV vectors by reducing the amount of cesium chloride solution injected into the zonal rotor (Table 1).
  • the present invention provides a method for highly pure and efficient preparation of viruses (particles) such as viral vectors. Therefore, it is expected to be used in the medical field such as gene therapy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、従来の方法よりも効率的な方法であって、高純度のウイルス粒子を得るためのウイルスの製造方法を提供することを課題とする。具体的には、本発明は、中空ウイルス粒子、中間体ウイルス粒子及び完全体ウイルス粒子を含むウイルス粒子混合液から完全体ウイルス粒子を精製する工程を含む、完全体ウイルス粒子の製造方法であって、 ゾーナルロータを低速で回転させ、ロータの回転軸側から外側に向かって、前記ウイルス粒子混合液、前記完全体ウイルス粒子よりも密度が低い液体(液体L)、前記液体Lよりも密度が高い液体(液体H1)をこの順に配置する工程(a)と、 前記工程(a)の後の前記ゾーナルロータを超遠心モードで運転し、前記中空ウイルス粒子、前記中間体ウイルス粒子および前記完全体ウイルス粒子を分離する工程(b) と、 前記工程(b)の後の前記ゾーナルロータの内容物を分画しながら取り出し、前記完全体ウイルス粒子を含むフラクションを回収する工程(c)を含む方法である。

Description

ウイルス粒子の製造方法
 本発明は、ウイルス粒子の精製または製造方法に関する。より具体的にはウイルス粒子を大量に精製または製造するための方法に関する。
 疾患の治療を目的として、遺伝子または遺伝子を導入した細胞をヒトの体内に投与する遺伝子治療は、難治性の疾患の治療を目的とした重要な治療方法の1つである。遺伝子治療を目的とした哺乳類の細胞に遺伝子を導入する方法として、現在、ウイルスベクターを用いた生物学的な手法が主流となっている。ウイルスベクターとは、ウイルスの複製能力および増殖能力を喪失または一部喪失させたウイルス株に、治療のために導入する遺伝子を組み込み、効率的に遺伝子を細胞内へ導入し発現させるための担体のことである。ウイルスベクターの由来となるウイルスとしては、レトロウイルス、レンチウイルス、ヘルペスウイルスおよびセンダイウイルスなどのエンベロープウイルス(エンベロープを持つウイルス)、アデノウイルスやアデノ随伴ウイルス(adeno-associated virus;AAV)などの非エンベロープウイルス(エンベロープを持たないウイルス)が知られている。なかでも、AAVは、多くの種類の細胞に感染することが可能であること、ヒトに対する病原性が無いこと、ウイルス粒子が物理的に安定であることなどの理由から、種々の疾患の治療を目的とした遺伝子治療に用いられている。
 AAVベクターは、細胞内において安定に目的遺伝子を発現させるための効率的な遺伝子導入が可能であることから、標的細胞への遺伝子デリバリーの手段として、これまでも使用されてきた。最近、パーキンソン氏病、嚢胞性線維症、関節リウマチ、リポタンパク質リパーゼ欠損症、α1-アンチトリプシン欠乏症、デュシェンヌ型筋ジストロフィー(Duchenne muscular dystrophy;DMD)、レーバー先天性黒内障、塩化物血症、血友病Aおよび血友病Bなどの様々な遺伝性疾患に関して、AAVベクターによる遺伝子治療に対する臨床試験が行われている。AAVベクターを用いた遺伝子治療を安全かつ有効に行うためには、AAVベクターに対する免疫反応を克服することが極めて重要である(非特許文献1)。
 AAVベクターを使用した遺伝子治療について、これまでに様々な報告がある。例えば、AAV2ベクター、AAV8ベクターおよびAAV10ベクターを使用した血友病Aおよび血友病Bの遺伝子治療において、肝臓酵素活性の上昇とAAVカプシド特異的なT細胞活性化が検出され、さらに、ファクターVIIIとファクターIXの活性が低下したとの報告がある(非特許文献2、非特許文献3)。他方、低用量のAAV5ベクターで血友病の遺伝子治療を行うと、ほとんどの患者において、肝臓酵素活性の上昇は見られず、T細胞の活性化も最小限に抑えられ、血液凝固因子も維持されたとの報告がある(非特許文献1、非特許文献4)。
 以上の報告から、AAVカプシドに対する細胞性免疫応答が、AAVベクターが導入された肝細胞の破壊を誘導することが示唆された。従って、AAVベクターの全身投与においては、形質導入効率の高いベクターを使用し、投与量を減らすことが、安全な遺伝子治療にとって重要であると考えられる。
 これまでに、AAVベクターを精製する方法として、イオン交換カラムやアフィニティ精製用カラムを用いたクロマトグラフィーや、タンジェンシャルフローフィルトレーション(Tangential Flow Filtration;TFF)によるろ過工程を含む方法、これらクロマトグラフィーおよびTFFの工程にショ糖密度勾配遠心法(特許文献1)または塩化セシウム平衡密度勾配遠心法(特許文献2)を組み合わせた方法などが報告されている。これらの方法は、AAVベクターフラクションから不純物を除去する点において一定の効果を発揮している。しかしながら、イオン交換クロマトグラフィーによる方法では、中空粒子(ゲノムを含まないAAV粒子)や中間体粒子(ゲノム全長ではなくその断片を含むAAV粒子)を完全に除去することができない。また、イオン交換クロマトグラフィーや密度勾配遠心を組み合わせた方法は、不純物を除去し、中空粒子や中間体粒子を含まない完全体粒子(ゲノム全長を含むAAV粒子)を分離するためには有効ではあるが、完全体粒子の精製工程が煩雑である。さらに、これまでに報告のある密度勾配遠心は、遠心工程が長時間であり、特に塩化セシウムによる平衡密度勾配遠心法を用いる場合、長時間AAVベクターを塩化セシウムと接触させておくと、AAVベクターの形質導入率が低下するという問題が生じていた(非特許文献5、非特許文献6)。また、従来の超遠心精製法は一度に扱えるサンプル量に制限があり、大量精製には課題があった。昨今、市場化が進展していることや使用される血清型の変遷に伴い精製AAVベクターの開始材料が細胞ペレットから培養上清に移行してきたことから、大量の開始材料に対応できる精製方法が求められている。
 以上のようなAAVベクターに関する現状を踏まえると、安全性が高く、形質導入率の高いベクターを大量調製するための新たな方法の開発が必要である。
WO2018/128688 WO2019/094253
Muhuriら, J Clin Invest. 131:e143780 doi:10.1172/JCI143780. 2021. Highら, N Engl J Med. 381:455-464 2019. Battyら, Hemasphere 5:e540 2021. Rangarajanら, N Engl J Med. 377:2519-2530 2017. Hindererら, Hum Gene Ther. 29:285-298 2018. Auricchioら, Hum Gene Ther. 12:71-76 2001.
 上記事情に鑑み、本発明は、従来の方法よりも短時間で高純度かつ大量のウイルス粒子を分離する方法の提供を課題とする。
 本発明者らは、高純度かつ高い形質導入率を維持した完全体AAV粒子を精製するために、塩化セシウム平衡密度勾配遠心法における密度勾配の作製条件や遠心時間などの条件検討を行った。具体的には、本発明者らは、AAV粒子を含む培養上清を、2つの異なる濃度の塩化セシウム溶液を配置したゾーナルロータにロードし超遠心を行ったところ、従来よりも大容量の試料(AAVを含む出発試料)を、短い遠心時間(4~5時間程度)で、高純度かつ高い形質導入率を維持した完全体粒子を分離/精製することに成功した。
 すなわち、本発明は以下の(1)~(11)である。
(1)中空ウイルス粒子、中間体ウイルス粒子および完全体ウイルス粒子を含むウイルス粒子混合液から完全体ウイルス粒子を精製する工程を含む、完全体ウイルス粒子の製造方法であって、
ゾーナルロータを低速で回転させ、ロータの回転軸側から外側に向かって、前記ウイルス粒子混合液、前記完全体ウイルス粒子よりも密度が低い液体(液体L)、前記液体Lよりも密度が高い液体(液体H1)をこの順に配置する工程(a)と、
前記工程(a)の後の前記ゾーナルロータを超遠心モードで運転し、前記中空ウイルス粒子、前記中間体ウイルス粒子および前記完全体ウイルス粒子を分離する工程(b)と、
前記工程(b)の後の前記ゾーナルロータの内容物を分画しながら取り出し、前記完全体ウイルス粒子を含むフラクションを回収する工程(c)と、
を含む、前記製造方法。
(2)前記工程(a)が、ゾーナルロータを低速で回転させ、ロータの回転軸側から外側に向かって、前記液体Lおよび前記液体H1よりも密度が低い液体(液体B)、前記ウイルス粒子混合液、前記液体L、前記液体H1をこの順に配置する工程である、上記(1)に記載の製造方法。
(3)前記工程(c)において、前記工程(b)の後の前記ゾーナルロータを低速で回転させ、前記液体H1よりも、さらに密度が高い液体(液体H2)を前記ゾーナルロータの径方向外側から導入することにより、前記ゾーナルロータの内容物を順次押し出し、前記ゾーナルロータの回転軸側から分画しながら取り出す、上記(1)または(2)に記載の製造方法。
(4)前記液体L、前記液体H1および前記液体H2が、塩化セシウム(CAS番号;7647-17-8)、イオジキサノール(CAS番号;92339-11-2)、イオヘキソール(CAS番号;66108-95-0)、アミドトリゾ酸(CAS番号;737-31-5)またはメトリザミド(CAS番号;31112-62-6)を含む、上記(3)に記載の製造方法。
(5)前記ウイルス粒子がアデノ随伴ウイルス粒子であり、前記液体Lの密度が1.21~1.38g/mLである、上記(1)に記載の製造方法。
(6)前記ウイルス粒子がアデノ随伴ウイルス粒子であり、前記液体H1の密度が1.39 g/mL以上である、上記(1)に記載の製造方法。
(7)中空ウイルス粒子、中間体ウイルス粒子および完全体ウイルス粒子を含むウイルス粒子混合液、
前記完全体ウイルス粒子よりも密度が低い液体(液体L)、および、
前記液体Lよりも密度が高い液体(液体H1)が、回転軸側から外側に向かって、この順に配置された、ゾーナルロータ。
(8)前記ウイルス粒子混合液よりも回転軸側に、前記液体Lおよび前記液体Hよりも密度が低い液体(液体B)が配置されている、上記(7)に記載のゾーナルロータ。
(9)前記液体L、前記液体H1および前記液体H2が、塩化セシウム(CAS番号;7647-17-8)、イオジキサノール(CAS番号;92339-11-2)、イオヘキソール(CAS番号;66108-95-0)、アミドトリゾ酸(CAS番号;737-31-5)またはメトリザミド(CAS番号;31112-62-6)を含む、上記(7)または(8)に記載のゾーナルロータ。
(10)前記ウイルス粒子がアデノ随伴ウイルス粒子であり、前記液体Lの密度が1.21~1.38g/mLである、上記(7)に記載のゾーナルロータ。
(11)前記ウイルス粒子がアデノ随伴ウイルス粒子であり、前記液体H1の密度が1.39g/mL以上である、上記(7)に記載のゾーナルロータ。
 なお、本明細書において「~」の符号は、その左右の値を含む数値範囲を示す。
 本発明により、形質導入率の高い完全体ウイルス粒子の製造方法が提供される。その結果、ウイルスベクターを使用する遺伝子治療の安全性や有効性の改善が可能となる。
ゾーナルロータを使用した塩化セシウム平衡密度勾配超遠心による、アデノ随伴ウイルス(Adeno-associated virus;AAV)ベクターの分離。Aは、ゾーナルロータを用いた塩化セシウムによる平衡密度勾配超遠心の概要を示す。Bは、密度勾配超遠心後のロータ内の溶液を分画した各フラクションの屈折率(refractive index;RI)を示す。Z1は4段階の濃度の塩化セシウム溶液(15%、25%、33%、40%)で作製した密度勾配、Z2~Z7は2段階の濃度の塩化セシウム溶液(25~27%、40%)で作製した密度勾配で密度勾配超遠心を実施し、各フラクションの屈折率を測定した。 分離した完全体ウイルス粒子(全長ゲノムを含む粒子)、中間体ウイルス粒子(ゲノムの断片を含む粒子)および中空ウイルス粒子(ゲノムを含まない粒子)を含むフラクションについて、ゲノムコピー数の算出、形質導入率の評価およびカプシドタンパク質の検出を行った結果。Aは、ITR(inverted terminal repeat)に対するプライマーを用いて、AAVゲノムコピー数を定量PCR(quantitative polymerase chain reaction;qPCR)で調べた結果である。Bは、AAVの形質導入率を293EB細胞に導入したZsGreen1の発現で評価した結果である。Cは抗VP1、VP2およびVP3抗体を用いたウェスタンブロッティングで、AAVカプシドを検出した結果である。 培養上清から精製したAAVベクター粒子と細胞溶解物から精製したAAVベクター粒子の純度を比較した結果。分析超遠心により、中空ウイルス粒子のピーク(A)と完全体ウイルス粒子のピーク(B)は完全に分離されて検出された。また、細胞溶解物からゾーナルロータで精製したAAVベクターフラクションには、AAVベクター粒子以外の別のピーク(線で囲んだピーク)が観察された(C)。 完全体AAV粒子と中空AAVウイルス粒子を透過電子顕微鏡で観察した結果。Aは、中空AAV粒子フラクションを観察した結果で、Bは完全体AAV粒子フラクションを観察した結果である。 AAVウイルス粒子のドロップレットデジタルPCR(droplet digital PCR;ddPCR)による分析結果。AAVゲノムの全領域をカバーするように種々のプライマーセットをデザインした。完全体AAV粒子、中間体AAV粒子および中空AAV粒子にパッケージされているゲノムの領域をddPCRで評価した。実験ID;Z3の結果を示す。
 以下、本発明を実施するための形態について説明する。
 第1の実施形態は、2つの異なる濃度(密度)の溶液を用いて、ゾーナルロータ内に当該溶液内の溶質による密度勾配を形成させ、当該密度勾配によって、完全体ウイルス粒子を、中空粒子および中間体ウイルス粒子と分離、精製することを含む、完全体ウイルス粒子の製造方法である。
 より具体的には、第1の実施形態は、完全体ウイルス粒子の製造方法であって、中空ウイルス粒子、中間体ウイルス粒子および完全体ウイルス粒子を含むウイルス粒子混合液から完全体ウイルス粒子を精製する工程を含む方法であり;
ゾーナルロータを低速で回転させ、ロータの回転軸側から外側に向かって、前記ウイルス粒子混合液、前記完全体ウイルス粒子よりも密度が低い液体(液体L)、前記液体Lよりも密度が高い液体(液体H1)をこの順に配置する工程(a)と、
前記工程(a)の後の前記ゾーナルロータを超遠心モードで運転し、前記中空ウイルス粒子、前記中間体ウイルス粒子および前記完全体ウイルス粒子を分離する工程(b) と、
前記工程(b)の後の前記ゾーナルロータの内容物を分画しながら取り出し、前記完全体ウイルス粒子を含むフラクションを回収する工程(c)と、
を含む、前記完全体ウイルス粒子の製造方法である。
 また、任意選択により、前記工程(a)は、ゾーナルロータを低速で回転させ、ロータの回転軸側から外側に向かって、前記液体Lおよび前記液体H1よりも密度が低い液体(液体B)、前記ウイルス粒子混合液、前記液体L、前記液体H1をこの順、すなわち、液体B、ウイルス粒子混合液、液体L、液体H1の順に配置する工程であってもよい。
 ここで、完全体ウイルス粒子とは、ウイルス粒子内に全長ゲノム(ウイルスベクターの場合には、外来の遺伝子を含む全長ベクターゲノム)がパッケージングされており、標的細胞への感染能力を有しているウイルス粒子のことである、中間体ウイルス粒子とは、全長ゲノムの一部がパッケージングされているが、標的細胞への感染能力が失われているか、著しく低下しているウイルス粒子のことである。また、中空ウイルス粒子とは、ゲノムをほとんど含んでおらず、標的細胞への感染能力をほぼ喪失しているウイルス粒子のことである。AAVベクターなど遺伝子治療に用いるウイルス粒子は、安全性等を担保するために、高純度の完全体ウイルス粒子を調製することが強く求められており、完全体ウイルス粒子と、中間体ウイルス粒子および中空ウイルス粒子とを分離する必要性は極めて高い。
 本実施形態において、工程(a)はゾーナルロータ内に、完全体ウイルス粒子よりも密度の低い溶液(液体L)と液体Lよりも密度の高い溶液(液体H1)を使用して、密度勾配を作製しながら、ウイルス粒子混合液をゾーナルロータ内に注入する工程である。工程(a)は、例えば、ゾーナルロータを低速(例えば、1,000 rpm~4,000 rpm;100×g~1,600×g程度で、30分~1時間程度)で回転させながら、ウイルス粒子混合液、液体Lおよび液体H1の順に、または、前記液体Lおよび前記液体Hよりも密度が低い液体(液体B)、前記ウイルス粒子混合液、前記液体L、前記液体H1をこの順(すなわち、液体B、ウイルス粒子混合液、液体L、液体H1の順)に、ゾーナルロータ内にロードすることで実施することができる。低速回転運転の終了後、ロータ内の回転軸側から外側に向かって、液体Lの密度と液体H1の密度との間に直線的な密度勾配が作製される。ウイルス粒子はロータ内の回転軸側に止まっている。
 ウイルス粒子がAAVベクターの場合、完全体ウイルス粒子、中間体ウイルス粒子および中空ウイルス粒子の密度は、各々、多少の誤差は生じるが、およそ1.39 g/cm3~1.41 g/cm3程度、およそ1.35 g/cm3~1.38 g/cm3程度、およそ1.3 g/cm33~1.35 g/cm3程度である。完全体ウイルス粒子と、中間体ウイルス粒子および中空ウイルス粒子を分離するために、溶液Lの密度は、例えば、1.21 g/cm3~1.38 g/cm3程度、あるいは、1.22 g/cm3~1.29 g/cm3程度としてもよい。また、溶液H1の密度は、完全体ウイルス粒子の密度よりも高い密度であることが望ましく、例えば、1.39 g/cm3程度以上であってもよい。なお、溶液H1の密度が高くなるにつれて、作製される密度勾配が急になる結果、完全体ウイルス粒子は濃縮されて回収されるが、中間体ウイルス粒子等の混入する可能性も高まるため、溶液H1の密度は、例えば、1.39 g/cm3~1.45 g/cm3程度に調製してもよい。
 本実施形態において、ゾーナルロータに注入する、液体Lおよび液体H1の体積(液体Lと液体H1の合計の体積;液体L+液体H1)とウイルス粒子混合溶液の体積の比率(液体L+液体H1の体積:ウイルス粒子混合溶液の体積)は、特に限定はしないが、例えば、約1:1~4、約1:1~3、あるいは約1:1~2であってもよい。また、ゾーナルロータに注入する液体H1の体積と液体Lの体積の比率(液体H1の体積:液体Lの体積)は、特に限定はしないが、例えば、約1:1~3、約1:1~2、あるいは約1:1~1.5程度であってもよい。
 なお、ゾーナルロータに注入するウイルス粒子混合溶液、液体Lおよび液体H1の総体積は、使用するゾーナルロータのロータ容積に依存し、当業者であれば、適宜、至適な注入量を選択することができる。
 本実施形態における工程(b)は、前記工程(a)の後の前記ゾーナルロータを超遠心モード(高速回転)で運転し、前記中空ウイルス粒子、前記中間体ウイルス粒子および前記完全体ウイルス粒子を分離する工程である。工程(b)における超遠心モードは、特に限定はしないが、回転速度を、例えば、約30,000 rpm~約40,000 rpm(90,000×g~160,000×g程度)にして運転してもよい。超遠心モードでの運転時間は、例えば、約3時間~約10時間程度、あるいは約4時間~約6時間程度であってもよい。
 本実施形態における行程(c)は、前記工程(b)の後の前記ゾーナルロータの内容物を分画しながら取り出し、前記完全体ウイルス粒子を含むフラクションを回収する工程である。ここで、ゾーナルロータの内容物をロータ外へ取り出す方法は、当業者であれば、容易に選択することができるが、例えば、液体H1よりも、さらに密度が高い液体(液体H2)を前記ゾーナルロータの径方向外側から導入することにより、ゾーナルロータの内容物を順次押し出すことで、内容物をロータ外に取り出してもよい。ロータ外に押し出された内容物を、ロータの回転軸側から、一定容量毎に、フラクションコレクターなどで分画することで、完全体ウイルス粒子を、中間体ウイルス粒子および中空ウイルス粒子と分離することができる。ゾーナルロータの内容物は、液体H2をゾーナルロータ内に注入しながらロータを低速(例えば、1,000 rpm~4,000 rpm程度;100×g~1,600×g程度)で回転させることでロータ外へ押し出すことができる。ロータ外に押し出される内容物は、ロータの回転軸側からフラクションコレクターなどで分画しながら回収してもよい。ここで、液体H2の密度は、H1よりも高い密度であればよい。
 本実施形態において、ウイルス粒子混合液、液体L、液体H1、液体H2には、塩化セシウム(CAS番号;7647-17-8)、イオジキサノール(CAS番号;92339-11-2)、イオヘキソール(CAS番号;66108-95-0)、アミドトリゾ酸(CAS番号;737-31-5)またはメトリザミド(CAS番号;31112-62-6)などが含まれていてもよい。ゾーナルロータ内で作製する密度勾配は、塩化セシウム、イオジキサノール、イオヘキソール、アミドトリゾ酸またはメトリザミドなどによる、密度勾配であってもよく、好ましくは、塩化セシウムによる密度勾配である。また、液体B、ウイルス粒子混合液、液体L、液体H1、液体H2には、水の他、緩衝溶液(たとえば、リン酸緩衝液、HEPES緩衝液、Tris緩衝液)や、塩などが含まれていてもよい。
 本実施形態の工程(c)後に得られる完全体ウイルス粒子の純度(全ウイルス粒子中に占める割合)は、例えば、80%以上、好ましくは、90%以上、より好ましくは、95%以上である。
 本実施形態におけるウイルス(粒子)には、野生型のウイルスの他、ベクターとして使用される外来遺伝子を保持するウイルス(ウイルスベクター)などが含まれるが、これらに限られるものではない。また、ウイルスの種類としては、特に限定されるものではなく、エンベロープウイルス、非エンベロープウイルスのいずれも含まれる。
 エンベロープウイルスは、ウイルスゲノムとカプシドと称されるタンパク質の殻が膜状構造(エンベロープ)で覆われているウイルスのことで、非エンベロープウイルスは、エンベロープを持たないウイルスのことである。エンベロープウイルスとしては、例えば、ヘルペスウイルス、ポックスウイルス、ヘパドナウイルスなどのDNAウイルス、フラビウイルス、トガウイルス、コロナウイルス、オルトミクソウイルス、パラミクソウイルス、ラブドウイルス、ブニヤウイルス、レトロウイルスなどのRNAウイルスなどが知られている。また、非エンベロープウイルスとしては、アデノウイルスやアデノ随伴ウイルス(AAV)、パピローマウイルスなどのDNA ウイルス、ピコルナウイルス、カリシウイルス、ノロウイルス、ロタウイルスなどRNA ウイルスなどが知られている。本実施形態における好ましいウイルスは、アデノ随伴ウイルス(アデノ随伴ウイルスベクターを含む)である。
 本実施形態について、アデノ随伴ウイルスベクター(AAVベクター)の完全体ウイルス粒子を製造する場合を例にとって、さらに説明する。密度勾配媒体としては、例えば、塩化セシウムなどを使用することができる。液体Lとして、例えば、25 wt%~28 wt%程度(1.22 g/cm3~1.29 g/cm3程度)の塩化セシウム溶液、液体H1として、例えば、40 wt%~42 wt%程度(1.42 g/cm3~1.45 g/cm3程度)の塩化セシウム溶液を準備して、ゾーナルロータ(例えば、P32ZTまたはP35ZT;いずれのロータも、ロータ蓋の最大直径24 cm、内側の最大直径17.78 cm、最大回転半径(Rmax) 8.89 cm)、Eppendorf Himac Technologiesなど)に注入してもよい。ロータ内には、ウイルス粒子混合液、液体L、液体H1の順に、低速回転(例えば、P32ZTまたはP35ZTを用いる場合、3,000 rpm程度)で運転しながら注入してもよい。ロータを低速回転で運転することにより、ロータ回転軸側から外側に向かって、ウイルス粒子混合液、液体Lの密度から液体H1の密度の塩化セシウム溶液による密度勾配が形成される(以上、本実施形態の工程(a))。塩化セシウムの密度勾配が形成されたら、高速回転(例えば、P32ZTまたはP35ZTを用いる場合、30,000 rpm~35,000 rpm程度)で、4~5時間程度運転してもよい。高速回転の超遠心モードでの運転することで、ロータの回転軸側から外側(ロータの端(エッジ)側)に向かって中空ウイルス粒子、中間体ウイルス粒子、完全体ウイルス粒子の順にバンド化する(以上、本実施形態の工程(b))。ロータ内の内容物は、ロータの外側から液体H1より密度が高い液体H2(例えば、42 wt%~45 wt%程度(1.45 g/cm3~1.49 g/cm3程度)の塩化セシウム溶液)を注入しながら、低速回転運転(例えば、P32ZTまたはP35ZTを用いる場合、3,000 rpm程度)することで、ロータ軸側に近い溶液から順にロータ外へ押出すことができる。ロータ外に押し出された溶液は、フランクションコレクターなどで分画しながら回収することで、完全体ウイルス粒子を含むフラクションを得ることができる(以上、本実施形態の工程(c))。
 本実施形態において、ウイルス粒子混合液(少なくとも完全体ウイルス粒子を含む混合液)は、ウイルス産生細胞を培養し、当該ウイルス産生細胞または細胞培養液などから調製することができ、当業者であれば適切な手段により、容易に調製可能である。また、ウイルス産生細胞の培養液または当該細胞の溶解物を、TFF(Tangential Flow Filtration;タンジェンシャルフロー・フィルトレーション)またはカラムクロマトグラフィーなどにより、濃縮または粗精製して得られたウイルス粒子混合液は、本実施形態における出発試料としてもよい。
 本実施形態において、「ウイルス産生細胞」とは、ウイルス粒子を形成するために必要な要素を産生し、ウイルスを産生する能力を有する細胞のことである。ウイルス産生細胞は、ウイルスを産生し得るように人為的に作製した細胞であってもよく、自然環境においてウイルスが感染し当該ウイルスを産生し得るようになった細胞であってもよい。本実施形態におけるウイルス産生細胞として、好ましくは、人為的に作製したウイルス産生細胞であり、特に好ましくは、当該ウイルスは非エンベロープウイルスである。
 ウイルス産生細胞を人為的に作製する方法は、ウイルス毎に異なり、すでに多くの総説等に詳細が記載されているので、それら総説を参照されたい。ここでは、ウイルスベクターを産生する細胞の作製の概略を述べるに留める。
 ベクターとして機能するウイルス粒子を産生させる場合、ウイルスの非構造タンパク質(ウイルスの複製などに関与するタンパク質)をコードする領域とウイルスの構造タンパク質(カプシドなどのタンパク質)をコードする領域を欠損し、その代わりに目的の遺伝子を挿入したプラスミド、ウイルスの非構造タンパク質と構造タンパク質をコードするプラスミド、ウイルスベクターの種類によってはその他必要な遺伝子をコードするプラスミドなどを任意の細胞に導入することで、ウイルス産生細胞を作製することができる。
 例えば、AAVベクターの場合、目的遺伝子を含むプラスミド、Repタンパク質(ウイルスの複製に必要なタンパク質)やCapタンパク質(カプシドを構成するタンパク質)をコードする遺伝子を含むプラスミド、アデノウイルス由来のE1aタンパク質、E1bタンパク質、E2タンパク質およびE4タンパク質などをコードする遺伝子を含むプラスミドを、HEK293細胞やHEK293T細胞などに導入することで、AAVベクター産生細胞を作製することができる。
 ウイルス産生細胞の培養条件は、すでに公知であり、当業者であれば、ウイルスの種類に応じて適宜選択可能である。特に限定はしないが、例えば、必要なサプリメント(成長因子類、アミノ酸類など)や血清を含むDMEM、IMDMなどの培地中で、30~38℃程度、5~10%程度のCO2濃度にて、数日間から20日間程度培養を行ってもよい。
 ウイルスを含む試料は、ウイルス産生細胞からウイルスを抽出した抽出物であっても、当該抽出物を粗精製したものであってもよい。例えば、培地中に放出されるウイルスの場合はウイルス産生細胞培養後の培養液を回収して試料としてもよく、細胞内に蓄積されるウイルスの場合は回収したウイルス産生細胞を凍結融解法や超音波破砕法などで破砕し、デブリスなどを除去したものを試料として用いてもよい。なお、ウイルス産生細胞からウイルスを含む試料を調製するための試薬やキットなどが多く市販されているため、これらの試薬やキットなどを使用して試料を調製してもよい。
 第2の実施形態は、中空ウイルス粒子、中間体ウイルス粒子および完全体ウイルス粒子を含むウイルス粒子混合液、液体Lおよび液体H1が、または、液体B、前記ウイルス粒子混合液、液体Lおよび液体H1が、回転軸側から外側に向かって、この順に配置された、ゾーナルロータである。第2の実施形態にかかるゾーナルロータは、第1の実施形態の工程(a)のロータであって、例えば、低速で回転している状態のロータである。第2の実施形態にかかるゾーナルロータ内には、液体Lの密度以上液体H1の密度以下の密度の液体が、密度勾配を形成した状態で収納されていてもよい。液体B、液体Lおよび液体H1については、第1の実施形態に関する説明を参照のこと。
 本明細書が英語に翻訳されて、単数形の「a」、「an」および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものも含むものとする。
 以下に実施例を示してさらに本発明の説明を行うが、本実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
1.方法
1-1.AAVベクターの調製
 AAVベクターは、既報(Verderaら, Mol Ther 28: 723-746 2020)に従い、培養上清(条件培地)から大規模に調製し、回収した。
 アデノウイルスE1a、アデノウイルスE1bおよびBcl-XLを発現する293EB細胞株(Tomonoら, Hum Gene Ther Methods 30:137-143 2019.)を、2×500 mLフラスコ(HYPERFlask、MilliporeSigma)または1Lのバイオリアクター(iCELLis Nano Bioreactor)を用いて、10% ウシ胎児血清(Thermo Fisher)を添加したDulbecco's Modified Eagle Medium(DMEM、FUJIFILM Wako)中で4日間培養した。次に、2mM L-グルタミン、12.1%(w/v) NaHCO3、12.9% D-グルコースを含むDMEM(血清フリー)中で、AAVベクタープラスミド(ZsGreen1またはZsGreen1-DRをコードする)およびヘルパープラスミドを、ポリエチレンイミン塩酸塩(PEI MAX、Polysciences)を用いて293EB細胞にトランスフェクションした。トランスフェクションから5日後、培養上清(810 mL)からAAVベクターを回収し、5 mM MgCl2の存在下、AAVベクターを18.5 U/mL エンドヌクレアーゼ(Kaneka)で37℃、30分間処理した。
2.ゾーナルロータを用いた塩化セシウム平衡密度勾配超遠心による完全体AAVベクターの精製
 調製したAAVベクターにCsCl(FUJIFILM Wako)、HNEバッファー(50 mM 4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(HEPES)pH7. 4、0.15 M NaCl 、25 mM エチレンジアミンテトラ酢酸(EDTA)またはHNバッファー(50 mM HEPES pH7. 4、0.15 M NaCl)を添加した(5% CsCl)(表1)。実験ID、Z2~Z7の塩化セシウム密度勾配は、以下に示す溶液をゾーナルロータ(P32ZTまたはP35ZT、Eppendorf Himac Technologies)の外側(エッジ側)から(1)、(2)、(3)、(4)の順番で注入し、3,000 rpmで遠心して作成した;
(1)5%(w/v) CsCl(HNEまたはHNバッファー中)を200 mL、
(2)AAVベクターを含む5%(w/v) CsCl(HNEまたはHNバッファー中)を900 mL~1 L、
(3)25-27% CsCl(HNEまたはHNバッファー中)を300 mL、
(4)40% CsCl(HNEまたはHNバッファー中)を200~300 mL
Figure JPOXMLDOC01-appb-T000001
 密度勾配を作製した後、ゾーナルロータを30,000 rpm~35,000 rpmで4~10時間遠心(himac CP 80NX、Eppendorf Himac Technologies)して、完全体AAVベクターを中間体および中空ベクターから分離した。超遠心終了後、ゾーナルロータを3,000 rpmで遠心しながら、42~45% CsCl(HNEまたはHNバッファー)をロータの外側からロータ内にゆっくりと注入し、ロータ内の溶液(AAVベクターを含む塩化セシウムの密度勾配溶液)をロータ外に押し出し、押し出された溶液をフラクションコレクターで分画しながら回収した(図1A)。各フラクションの屈折率をAbbe refractometer(NAR-1T LIQUID、Atago)またはdigital refractometer(RX 5000i、Atago)を用いて測定した(図1B、表2および表3)。回収した各フラクションは、20kDa molecular weight cut-off dialysis cassette(#66003、Thermo Fisher)を用いて、0.5 mM MgCl2(水溶液)に対して4℃で2時間程度透析した後、0.5 mM MgCl2(PBS溶液)に対し、4℃で一晩透析した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1-3.定量PCR(qPCR)、ウェスタンブロッティングおよびフローサイトメトリーによる、AAVベクターのゲノムコピー数、カプシドタンパク質および形質導入効率の評価
 ゾーナルロータを用いた超遠心後、回収した各フラクションのAAVゲノムコピー数はAAVpro Titration Kit(for Real Time PCR)Ver.2(TaKaRa Bio)を用い、QuantStudio 3 Real-Time PCR System(Applied Biosystems)を使用して算定したた。
 各フラクション中のAAVカプシドタンパク質の有無は、ウェスタンブロッティングで確認した。サンプルをNuPAGE LDS sample buffer(Thermo Fisher)およびNuPAGE Reducing Agent(Thermo Fisher)で処理し、4-25%の濃度勾配ポリアクリルアミドゲル(Criterion TG Precast Gels、Bio-Rad)にロードした後、SDS running buffer(Nacalai Tesque)で電気泳動を行った。電気泳動後、泳動されたタンパク質をPVDF膜(Trans-Blot Turbo Midi PVDF Transfer Packs、Bio-Rad)にトランスファーし、anti-AAV VP1/VP2/VP3 mouse antibody(clone B1、Progen)およびAmersham ECL Mouse IgG、HRP-linked whole Ab(Cytiva)を用いてタンパク質の検出を行った。
 形質導入効率は、形質導入した293EB細胞中のZsGreen1陽性細胞の割合(%ZsGreen1)で評価した。293EB細胞(1×105細胞)を24ウェルプレート中で一晩培養した。培養後の細胞は、2 mM L-glutamine、12.1% NaHCO3、12.9% D-glucoseを含む血清フリーDMEM(300μL/ウェル)中にて、各フラクションサンプル(300μL/ウェル)で、形質導入を行った。形質導入の翌日、600μLの培地(上述と同じ)を各ウェルに添加した。%ZsGreen1は、形質導入後3日目に、フローサイトメトリー法により(FACSMelody、Becton Dickinson)評価した。結果の解析は、FlowJo Version 7.1(Becton Dickinson)を用いて行った。
1-4.分析超遠心(analytical ultracentrifugation;AUC)による完全体粒子(全長ゲノムを含む)および中空粒子の評価
 AAVベクターの純度は、Proteome Lab XL-I ultracentrifuge(Beckman Coulter)で分析した。400μLのAAVベクターサンプルをセルハウジングのセンターピースに添加した。サンプルを添加した3つセルハウジングと1つのカウンターバランスをAUCロータにセットした。ロータの温度を20℃にした後、20℃にて、12,000 rpmで超遠心を行い、光吸収(260 nm)と干渉を、4~5時間、92の時点で測定した。AAVの完全体粒子、中間体および中空粒子は、Sedfit(National Institutes of Health)で解析し、GUSSI(UT Southwestern Medical Center)で可視化した。
1-5.ドロップレットデジタルPCR(ddPCR)によるAAVにパッケージングされた全ゲノム領域の解析
 ゾーナルロータで超遠心の実施後得られた各フラクション中のAAVベクターの全ゲノム領域を、ddPCR法で解析した。100倍希釈したサンプル(1.1μL)を、0.25 mMプローブ、0.5 mM フォワードプライマーおよび0.5 mM リバースプライマー(ddPCR Copy Number Assy、BioRad)(表4参照)と混合し、ドロップレットをAutomated Droplet Generator(BioRad)で作製し、C1000 Touch Thermal Cycler(BioRad)中でPCR反応を行った。各ドロップレットからの蛍光シグナルを、QuantaSoft software package(BioRad)を使用し、QX200 droplet reader (BioRad)で検出した。
Figure JPOXMLDOC01-appb-T000004
1-6.透過電子顕微鏡(transmission electron microscopy;TEM)を用いたAAVベクターの形態学的分析
 AAVベクターは、イオンボンバーダ(Nisshin EM Co.、type PIB-10)で親水化し、3μLの親水化サンプルをコロジオン膜(Nisshin EM)に載せ、1分間静置した。3μLの水で3回洗浄した後、サンプルをPTA(Phosphotungstic acid)で10秒間染色した。コロジオン膜上の染色サンプルは、TEM(HT7800、Hitachi High-Tech)で観察した。
2.結果
2-1.ゾーナルロータを使用した塩化セシウム密度勾配超遠心による、AAVベクターの完全体(全長ゲノムを含む)、中間体(ゲノム断片を含む)および中空粒子(ゲノムを含まない)の分離
 AAVベクターの完全体粒子を中間体粒子および中空粒子から、大量かつ短時間で分離する方法を確立するために、ゾーナルロータを使用して、2つの濃度の塩化セシウム溶液で密度勾配を形成し、平衡密度勾配による完全体粒子の分離を試みた(図1A)。塩化セシウムとの接触時間が長くなるほど、AAVベクターの細胞への感染効率が低下するため、遠心時間を可能な限り短縮する必要があった。
 まず、300 mLのAAVベクターを含む培養上清を使用して、4濃度(15 wt%、25 wt%、33 wt%および40 wt%)の塩化セシウムで密度勾配を作成したのち、超遠心モード(35,000 rpm)で10時間遠心行ったところ(表1)、ほぼ直線的な塩化セシウムの密度勾配が形成された(図1B、表2)。AAVカプシドタンパク質は、フラクション17および25に検出された。これに対し、AAVゲノムとZsGreen1の形質導入活性はフラクション25からは検出されたが、フラクション17からは検出されなかった。この結果は、形質導入能力を有する完全体粒子(フラクション25)と形質導入能力を有さない中空粒子(フラクション17)が分離されたことを示している。中間体粒子はフラクション17(中空粒子)とフラクション25(完全体粒子)の間のフラクションに含まれていると考えられる。
 4濃度の塩化セシウム溶液を用いた塩化セシウム密度勾配超遠心でも、完全体粒子、中間体粒子および中空粒子間の分離が可能であった。しかし、10時間という長時間、AAVベクターを塩化セシウムに曝露したことによって、AAVベクターの生物学的活性(形質導入能力)は低下すると考えられる。そこで、2濃度の塩化セシウム溶液で密度勾配を形成すれば、完全体のAAV粒子を狭い密度勾配の範囲に集中させ得るような、急勾配の密度勾配の形成が可能になり、かつ、遠心時間を短縮できるのではないかと考えた。さらに、ゾーナルロータに注入する塩化セシウム溶液の量を少なくすることで、AAVベクターを含むサンプルの量を増やすことも可能である(表1)。
 そこで、2濃度(25-27 wt%および40 wt%、実験ID1;Z2~Z5)の塩化セシウムをロータ内に注入し、密度勾配を形成し、超遠心を行ったところ、4濃度の塩化セシウム溶液を用いた場合と比較して、より短時間(4-5時間)の遠心で、より大容量のAAVベクター(900-1,000 mL)を処理することができた。屈折率(密度勾配)は、ゾーナルロータ内で、狭い範囲でよりシャープに上昇した(図1および表3)。フラクション16~17(RI値;1.369および1.370)に、AAVゲノムコピー数(図2A)および形質導入効率(図2B)のピークが検出され、また、これらのフラクションには、カプシドタンパク質(図2C)のピークも検出された。この結果は、完全体粒子は、フラクション16~17に回収されたことを示す。他方、カプシドタンパク質と少数のゲノムコピーは検出されたものの、ZsGreen1形質転換活性が検出されなかったフラクション11~12には、中間体粒子または中空粒子がふくまれていると考えられた(図2A、BおよびC、RI値;1.365および1.366)。
 以上の結果は、2濃度の塩化セシウム溶液で形成した密度勾配により、完全体粒子と、中間体粒子および中空粒子を、短時間(4-5時間)で分離可能であり、かつ、多くの量のウイルス粒子混合サンプルの処理が可能であることを示している。
2-2.分析超遠心(AUC)による高純度の完全体粒子の検出
 ゾーナルロータを用いた2濃度の塩化セシウム溶液で形成した密度勾配によって分離された、完全体AAV粒子フラクションと中空粒子フラクションの純度を評価するために分析超遠心を行った。異なる沈降係数を持つ完全体粒子(80S)(図3B)と中空粒子(60S)(図3A)が、各々、単一ピークとして検出された、興味深いことに、AAVベクターを含む培地から精製した方が、AAVベクターを含む細胞溶解物から精製するよりも、より高純度の完全体粒子画分を分離することができた(図3BおよびCを比較のこと)。
 また、塩化セシウム密度勾配超遠心によって分離された、完全体AAV粒子と中空AAV粒子を、リンタングステン酸染色を行い、透過電子顕微鏡で形態的特徴を観察した。完全体AAV粒子は内部が白く抜けた六角形の粒子として観察され(図4B)、中空AAV粒子は中心に黒のドットが見られる六角形の粒子として観察された(図4A)。電子顕微鏡による観察結果から、中空AAV粒子は、部分的に圧縮され、リンタングステン酸によってより強く染色されたことが示唆される。
 以上の結果は、ゾーナルロータを用いた、2濃度の塩化セシウムによる密度勾配により、大量に完全体AAV粒子が高純度で分離されたことを示している。
2-3.AAV粒子にパッケージされているDNAのドロップレットデジタルPCR(droplet digital PCR;ddPCR)による分析
 完全体AAV粒子、中間体AAV粒子および中空AAV粒子にパッケージされているDNAを分析するために、AAVゲノムの全領域およびプラスミドのバックボーン領域を検出するための22箇所のプローブ/プライマーを設計し、ddPCRで評価を行った。全長ゲノム(完全体)AAV粒子は、AAVゲノムの全領域と、若干のITR領域を含んでいることが確認された(図5)。他方、中間体粒子と中空粒子中には、短いサイズのITRが検出された。これらの結果は、AAVベクターが産生される過程において、ITRのみを含む短いDNA断片が生じ、カプシド中にパッケージされたことが示唆される。
 本発明は、ウイルスベクターなどのウイルス(粒子)を高純度かつ効率的に調製する方法を提供する。従って、遺伝子治療などの医療分野における利用が期待される。

 

Claims (11)

  1.  中空ウイルス粒子、中間体ウイルス粒子および完全体ウイルス粒子を含むウイルス粒子混合液から完全体ウイルス粒子を精製する工程を含む、完全体ウイルス粒子の製造方法であって、
    ゾーナルロータを低速で回転させ、ロータの回転軸側から外側に向かって、前記ウイルス粒子混合液、前記完全体ウイルス粒子よりも密度が低い液体(液体L)、前記液体Lよりも密度が高い液体(液体H1)をこの順に配置する工程(a)と、
    前記工程(a)の後の前記ゾーナルロータを超遠心モードで運転し、前記中空ウイルス粒子、前記中間体ウイルス粒子および前記完全体ウイルス粒子を分離する工程(b) と、
    前記工程(b)の後の前記ゾーナルロータの内容物を分画しながら取り出し、前記完全体ウイルス粒子を含むフラクションを回収する工程(c)と、
    を含む、前記製造方法。
  2.  前記工程(a)が、ゾーナルロータを低速で回転させ、ロータの回転軸側から外側に向かって、前記液体Lおよび前記液体H1よりも密度が低い液体(液体B)、前記ウイルス粒子混合液、前記液体L、前記液体H1をこの順に配置する工程である、請求項1に記載の製造方法。
  3.  前記工程(c)において、前記工程(b)の後の前記ゾーナルロータを低速で回転させて、前記液体H1よりも、さらに密度が高い液体(液体H2)を前記ゾーナルロータの径方向外側から導入することにより、前記ゾーナルロータの内容物を順次押し出し、前記ゾーナルロータの回転軸側から分画しながら取り出す、請求項1または請求項2に記載の製造方法。
  4.  前記液体L、前記液体H1および前記液体H2が、塩化セシウム(CAS番号;7647-17-8)、イオジキサノール(CAS番号;92339-11-2)、イオヘキソール(CAS番号;66108-95-0)、アミドトリゾ酸(CAS番号;737-31-5)またはメトリザミド(CAS番号;31112-62-6)を含む、請求項3に記載の製造方法。
  5.  前記ウイルス粒子がアデノ随伴ウイルス粒子であり、前記液体Lの密度が1.21~1.38  g/mLである、請求項1に記載の製造方法。
  6.  前記ウイルス粒子がアデノ随伴ウイルス粒子であり、前記液体H 1の密度が1.39 g/m L以上である、請求項1に記載の製造方法。
  7.  中空ウイルス粒子、中間体ウイルス粒子および完全体ウイルス粒子を含むウイルス粒子混合液、
    前記完全体ウイルス粒子よりも密度が低い液体(液体L)、および、
    前記液体Lよりも密度が高い液体(液体H1)が、回転軸側から外側に向かって、この順に配置された、ゾーナルロータ。
  8.  前記ウイルス粒子混合液よりも回転軸側に、前記液体Lおよび前記液体H1よりも密度が低い液体(液体B)が配置されている、請求項7に記載のゾーナルロータ。
  9.  前記液体L、前記液体H1および前記液体H2が、塩化セシウム(CAS番号;7647-17-8)、イオジキサノール(CAS番号;92339-11-2)、イオヘキソール(CAS番号;66108-95-0)、アミドトリゾ酸(CAS番号;737-31-5)またはメトリザミド(CAS番号;31112-62-6)を含む、請求項7または請求項8に記載のゾーナルロータ。
  10.  前記ウイルス粒子がアデノ随伴ウイルス粒子であり、前記液体Lの密度が1.21~1.38  g/mLである、請求項7に記載のゾーナルロータ。
  11.  前記ウイルス粒子がアデノ随伴ウイルス粒子であり、前記液体H 1の密度が1.39 g/m L以上である、請求項7に記載のゾーナルロータ。

     
PCT/JP2022/017762 2021-04-15 2022-04-14 ウイルス粒子の製造方法 WO2022220273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22788196.8A EP4324907A1 (en) 2021-04-15 2022-04-14 Method for producing virus particles
JP2023514674A JPWO2022220273A1 (ja) 2021-04-15 2022-04-14
CN202280028123.9A CN117178054A (zh) 2021-04-15 2022-04-14 病毒颗粒的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163175296P 2021-04-15 2021-04-15
US63/175,296 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022220273A1 true WO2022220273A1 (ja) 2022-10-20

Family

ID=83640732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017762 WO2022220273A1 (ja) 2021-04-15 2022-04-14 ウイルス粒子の製造方法

Country Status (4)

Country Link
EP (1) EP4324907A1 (ja)
JP (1) JPWO2022220273A1 (ja)
CN (1) CN117178054A (ja)
WO (1) WO2022220273A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524155B1 (en) * 2009-03-26 2013-09-03 The United States Of America As Represented By The Secretary Of The Army Virus and particulate separation from solution
WO2018128688A1 (en) 2016-11-04 2018-07-12 Baxalta Incorporated Adeno-associated virus purification methods
WO2019094253A1 (en) 2017-11-08 2019-05-16 Avexis Inc. Means and method for preparing viral vectors and uses of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524155B1 (en) * 2009-03-26 2013-09-03 The United States Of America As Represented By The Secretary Of The Army Virus and particulate separation from solution
WO2018128688A1 (en) 2016-11-04 2018-07-12 Baxalta Incorporated Adeno-associated virus purification methods
JP2020502997A (ja) * 2016-11-04 2020-01-30 バクスアルタ インコーポレイテッド アデノ随伴ウイルスの精製法
WO2019094253A1 (en) 2017-11-08 2019-05-16 Avexis Inc. Means and method for preparing viral vectors and uses of same
JP2021502123A (ja) * 2017-11-08 2021-01-28 アヴェクシス インコーポレーテッド ウイルスベクターの調製手段及び方法並びにその使用

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AURICCHIO ET AL., HUM GENE THER, vol. 12, 2001, pages 71 - 76
BAMFORD, J.K.H. ; BAMFORD, D.H.: "Large-scale purification of membrane-containing bacteriophage PRD1 and its subviral particles and its subviral particles", VIROLOGY, ELSEVIER, AMSTERDAM, NL, vol. 181, no. 1, 1 March 1991 (1991-03-01), AMSTERDAM, NL , pages 348 - 352, XP023057056, ISSN: 0042-6822, DOI: 10.1016/0042-6822(91)90501-2 *
BATTY ET AL., HEMASPHERE, vol. 5, 2021, pages e540
HIGH ET AL., N ENGL J MED, vol. 381, 2019, pages 455 - 464
HINDERER ET AL., HUM GENE THER, vol. 29, 2018, pages 285 - 298
KONNO HISASHIGE, AKIO NAGATA: "Development of Zodal Rotors and Density Gradient Program Pump. Hitachihyoron.)", HITACHI REVIEW., HITACHI LTD. TOKYO., JP, vol. 54, no. 4, 1 January 1972 (1972-01-01), JP , pages 349 - 354, XP055977733, ISSN: 0018-277X *
MUHURI ET AL., J CLIN INVEST, vol. 131, 2021, pages e143780
RANGARAJAN ET AL., N ENGL J MED, vol. 377, 2017, pages 2519 - 2530
TOMONO ET AL., HUM GENE THER METHODS, vol. 30, 2019, pages 137 - 143
VERDERA ET AL., MOL THER, vol. 28, 2020, pages 723 - 746

Also Published As

Publication number Publication date
JPWO2022220273A1 (ja) 2022-10-20
EP4324907A1 (en) 2024-02-21
CN117178054A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
US11732245B2 (en) Scalable purification method for AAV9
Robert et al. Manufacturing of recombinant adeno‐associated viruses using mammalian expression platforms
EP3250239B1 (en) Capsid
JP4559429B2 (ja) 空キャプシドを実質的に含まない組換えaavビリオン調製物を生成するための方法
Buck et al. Production of papillomavirus‐based gene transfer vectors
US11639887B2 (en) Analytical ultracentrifugation for characterization of recombinant viral particles
WO2003093460A1 (en) Method for direct rescue and amplification of integrated viruses from cellular dna of tissues
Kwang et al. Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials
Halbert et al. Capsid-expressing DNA in AAV vectors and its elimination by use of an oversize capsid gene for vector production
CN108085301B (zh) 从宿主细胞提取和纯化腺相关病毒和腺病毒的方法及其组分和试剂盒
Duffy et al. Purification of adenovirus and adeno-associated virus: comparison of novel membrane-based technology to conventional techniques
Wada et al. Large-scale purification of functional AAV particles packaging the full genome using short-term ultracentrifugation with a zonal rotor
WO2022220273A1 (ja) ウイルス粒子の製造方法
JP2023525119A (ja) アデノ随伴ウイルス粒子またはアデノウイルスを精製するための方法および組成物
JP2009189370A (ja) 単一ユニット操作におけるアデノウイルス感染細胞の濃縮および溶解
WO2023074877A1 (ja) 細胞添加用組成物
Nagy et al. Engineered CHO cells as a novel AAV production platform for gene therapy delivery
Negrete et al. Strategies for manufacturing recombinant adeno-associated virus vectors for gene therapy applications exploiting baculovirus technology
JP7488281B2 (ja) 組換えアデノ随伴ウイルス組成物の特性評価のためのサイズ排除クロマトグラフィーの方法
CN116262934B (zh) 转录单元及制备空壳腺相关病毒的方法
WO2022045055A1 (ja) pHの違いによる非エンベロープウイルスベクター粒子の調製方法
RU2773406C2 (ru) Способы очистки аденоассоциированных вирусов
WO2023199067A1 (en) Mechanical lysis
Bai et al. Multi-step engineered adeno-associated virus enables whole-brain mRNA delivery
JP2003512834A (ja) アデノ随伴ウイルスの精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514674

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18286657

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022788196

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022788196

Country of ref document: EP

Effective date: 20231115