WO2022220238A1 - 熱処理鋼材および鋼材の熱処理方法 - Google Patents

熱処理鋼材および鋼材の熱処理方法 Download PDF

Info

Publication number
WO2022220238A1
WO2022220238A1 PCT/JP2022/017584 JP2022017584W WO2022220238A1 WO 2022220238 A1 WO2022220238 A1 WO 2022220238A1 JP 2022017584 W JP2022017584 W JP 2022017584W WO 2022220238 A1 WO2022220238 A1 WO 2022220238A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
treated steel
steel
product
grain boundary
Prior art date
Application number
PCT/JP2022/017584
Other languages
English (en)
French (fr)
Inventor
和弘 石本
Original Assignee
東京製綱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京製綱株式会社 filed Critical 東京製綱株式会社
Priority to EP22788163.8A priority Critical patent/EP4324944A1/en
Priority to CN202280028481.XA priority patent/CN117120654A/zh
Priority to KR1020237039208A priority patent/KR20230170753A/ko
Priority to JP2023514654A priority patent/JPWO2022220238A1/ja
Publication of WO2022220238A1 publication Critical patent/WO2022220238A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/48Metal baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/62Continuous furnaces for strip or wire with direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/64Patenting furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • This invention relates to heat-treated steel and a heat treatment method for steel.
  • Wires and wire ropes made by twisting multiple wires are steel materials called wire rods made by hot rolling at steel manufacturers, specifically hard steel wire rods (JIS G 3506) and piano wire rods (JIS G 3502). made from etc.
  • Wire rods such as hard steel wire rods and piano wire rods made by this steel manufacturer usually have large variations in tensile strength in the longitudinal direction. heat treatment is performed on the wire rod. The minimum diameter of wire rods made by steel manufacturers is usually about 5.5 mm. Heat treated wire rods are drawn to produce finer wires. If the diameter of the wire rod is to be rapidly reduced by a single wire drawing, the toughness may deteriorate. To avoid this, heat treatment and wire drawing are alternately performed multiple times.
  • the heat treatment performed on wire rods and drawn materials for quality stability is generally called "patenting".
  • a wire rod and wire drawing material steel material before heat treatment
  • a medium for example, molten lead
  • the heat-treated steel may be braided after being plated and used as a wire mesh or gabion, or the heat-treated steel may be wire-drawn.
  • Wire-drawn heat-treated steel may be shipped as it is, or it may be shipped after plating or coating.
  • Wire ropes are manufactured by twisting a plurality of drawn heat-treated steel materials, and steel cords are also manufactured by plating them with brass. In any case, patenting is a very important step in the manufacturing process of high-quality wires, wire ropes, steel cords, and the like.
  • heat-treated steel (the state before wire drawing, which is generally the object of wire drawing) has alternating layers of ferrite and cementite (an intermetallic compound of Fe (iron) and C (carbon)). It is said that a structure called pearlite that is arranged in parallel is preferable. Pearlite appears by heating the steel material as described above to obtain a steel material in which the crystal structure is transformed from body-centered cubic to face-centered cubic (austenitized), and then quenching this (see, for example, Patent Document 1). ).
  • the cementite will not be solutionized during heating. do.
  • the thickness (diameter) of the steel material to be heat-treated is large, the surface (surface layer) of the steel material may be sufficiently heated, but the center (center layer) may be insufficiently heated.
  • the steel material is heated for a long period of time to avoid underheating (to ensure complete austenitization). If the crystal grain size is large, the metal structure becomes coarse and the toughness decreases.
  • the purpose of this invention is to provide a heat-treated steel material that is excellent in both tensile strength and toughness.
  • Another object of the present invention is to suppress radiant heat during heat retention of the cooling medium tank and reduce fuel costs.
  • Another object of the present invention is to make it possible to obtain heat-treated steel materials having a wide range of tensile strength on the higher strength side than conventional steel materials from steel materials of the same composition (same steel grade).
  • a further object of the present invention is to make it possible to obtain a tensile strength equivalent to that of heat-treated steels to which alloying elements have been added without adding expensive alloying elements to the heat-treated steels in order to increase the strength. .
  • pearlite in which ferrite and cementite are alternately arranged in layers, has been preferred as a heat-treated steel material that achieves both tensile strength and toughness. It is possible to obtain a heat-treated steel material that achieves both tensile strength and toughness even if it does not have pearlite in which cementite and cementite are arranged alternately in layers (even if it has a metal structure with little pearlite). rice field.
  • the heat-treated steel material provided by this invention has several different properties from conventional heat-treated steel materials. As explained below, (1) grain size, (2) number of grains, (3) GOS (Grain Orientation Spread) value, (4) cross section, (5) aperture, (6) SS curve , the heat-treated steel according to the invention can be specified.
  • the heat-treated steel material provided by the invention of the first aspect has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, and Si: Contains 0.0 to 1.5%, the balance being Fe and unavoidable impurities, and the average crystal grain size at a grain boundary setting angle of 15° is 10 ⁇ C + 7 ( ⁇ m) or less (C is the carbon content (%)) It is characterized by
  • the heat-treated steel material provided by the invention of the first aspect further has the following ratio: °) is 0.70 or more and 1.10 or less.
  • the heat-treated steel material provided by the second aspect of the invention has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, and Si: containing 0.0 to 1.5%, the balance being Fe and unavoidable impurities, and the value of (the number of crystal grains at a grain boundary setting angle of 5°)/(the number of crystal grains at a grain boundary setting angle of 15°) is 5.4 xC-0.95 or less, or (the number of crystal grains at a grain boundary setting angle of 2°)/(the number of crystal grains at a grain boundary setting angle of 15°) is 9.8 x C-1.9 or less (C is Carbon content (%)).
  • the heat-treated steel material provided by the invention of the third aspect has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, and Si: 0.0% in mass%. ⁇ 1.5%, the balance being Fe and unavoidable impurities, and the average GOS value at a grain boundary setting angle of 15° is 11 x (C - 0.42) + 5.3 or less (C is the carbon content (% )).
  • the heat-treated steel material provided by the invention of the fourth aspect has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50% and Si : Contains 0.0 to 1.5%, the balance being Fe and unavoidable impurities, and the cumulative frequency in the range of GOS values 0° to 10° at a grain boundary setting angle of 15° is -0.1C 3 -1.3C 2 +1.1C+0.7 or more (where C is the carbon content (%)).
  • the heat-treated steel material provided by the present invention contains iron carbides (Fe 2-2.5 C, Fe 2-3 C, etc.) different from cementite (Fe 3 C) contained in the conventionally known pearlite structure and bainite structure. may contain.
  • the iron carbide contained in the heat-treated steel provided by the present invention (referred to as “special cementite” in the examples) has a different shape from the cementite contained in the conventionally known pearlite structure and bainite structure. It is characterized by many curved parts.
  • the heat-treated steel material provided by the invention of the fifth aspect has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, and Si: 0.0 to The content is 1.5%, and the balance is Fe and unavoidable impurities.
  • BSE backscattered electron image
  • the layered structure of ferrite and iron carbide shows branching, bending, or bending.
  • the area ratio of iron carbide is 9% or more in the field of view. Iron carbides that are branched, bent or curved in the BSE image also appear mottled.
  • the heat-treated steel material provided by the sixth aspect of the invention has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, and Si: 0.0 to 1.5%, the balance being Fe and unavoidable impurities, and when observing the structure with an electron scanning microscope (SEM), in the layered structure containing ferrite and iron carbide, the above iron carbide It is characterized in that spherical protrusions are observed on the surface.
  • SEM electron scanning microscope
  • the heat-treated steel material provided by the invention of the seventh aspect has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, and Si: 0.0% in mass%. containing ⁇ 1.5%, the balance being Fe and unavoidable impurities. It is characterized by the formation of rod-like or plate-like relatively isotropic iron carbides that are three-dimensionally shaped like combs or meshes.
  • the heat-treated steel material provided by the invention of the eighth aspect has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, and Si: 0.0 to 0.0% in mass%. It contains 1.5%, the balance is Fe and unavoidable impurities, and the reduction of area is -0.000064 TS 2 + 0.09 TS + 46 (%) or more when the tensile strength is TS (MPa) and
  • the heat-treated steel material provided by the invention of the ninth aspect has C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, and Cr: 0.0 to 0.50% in mass%. And Si: containing 0.0 to 1.5%, the balance being Fe and unavoidable impurities, subtracting the 0.2% proof stress obtained in the SS curve from the 0.4% proof stress obtained in the SS curve The proof stress difference is 45 ⁇ C ⁇ 3 (MPa) or less (where C is the carbon content (%)).
  • the heat treatment method for steel materials according to the present invention contains C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, and Si: 0.0 to 1.5% in mass%, and the balance is Fe and unavoidable impurities.
  • a step of directly heating the steel material by heating the steel material itself, and passing the heated steel material through a bath in which a cooling medium capable of isothermal transformation is stored.
  • the temperature gradient is the largest in the final stage of heating, and the heating is performed immediately after the steel material reaches the predetermined maximum heating temperature in the final stage of heating in the heating process.
  • the cooling is started without maintaining the predetermined maximum heating temperature by allowing the heated steel material to enter the cooling medium. Heating using electric current or high frequency is conceivable in the heating step.
  • Molten metal such as molten lead, or other cooling media can be used to cool the steel.
  • the heat treatment method for steel materials according to this invention can also be defined as follows. That is, the heat treatment method for steel materials according to another aspect of the present invention contains C: 0.38 to 1.05%, Mn: 0.0 to 1.0%, Cr: 0.0 to 0.50%, Si: 0.0 to 1.5%, and the balance is A steel material containing Fe and unavoidable impurities is heated from room temperature to 800°C or higher within several seconds, and the heated steel material is cooled to 620°C or less within several seconds without maintaining the maximum heating temperature.
  • FIG. 1 is a schematic block diagram of a patenting device;
  • FIG. 4 is a graph showing temperature changes of steel material patented using a gas furnace.
  • FIG. 2 is a graph showing temperature change of a steel material patented using the patenting apparatus of FIG. 1;
  • the steel type name and composition are shown in the table.
  • An optical microscope image of a conventional product is shown.
  • An optical microscope image of a conventional product is shown.
  • An optical microscope image of the developed product is shown.
  • An optical microscope image of the developed product is shown.
  • SEM images of conventional products are shown.
  • SEM images of conventional products are shown.
  • SEM images of the developed product are shown.
  • SEM images of conventional products are shown.
  • SEM images of conventional products are shown.
  • SEM images of conventional products are shown.
  • SEM images of conventional products are shown.
  • SEM images of conventional products are shown.
  • SEM images of conventional products are shown.
  • SEM images of conventional products are shown.
  • SEM images of the developed product are shown.
  • a BSE image of a conventional product is shown.
  • a BSE image of the developed product is shown.
  • a BSE image of the developed product is shown.
  • SEM images of the developed product are shown.
  • SEM images of the developed product are shown.
  • a BSE image of the developed product is shown.
  • SEM images of the developed product are shown.
  • SEM images of the developed product are shown.
  • a BSE image of the developed product is shown.
  • SEM images of conventional products are shown.
  • SEM images of the developed product are shown.
  • a BSE image of a conventional product is shown.
  • a BSE image of the developed product is shown.
  • SEM images of the developed product are shown.
  • a BSE image of the developed product is shown.
  • SEM images of the developed product are shown.
  • SEM images of the developed product are shown.
  • the relationship between the carbon content and the ratio of the peculiar shaped parts is shown for each of the developed product and the conventional product.
  • the relationship between the grain boundary setting angle and the average grain size is shown for the developed product and the conventional product.
  • the relationship between the carbon content and the average grain size at a grain boundary setting angle of 15° is shown for each of the developed product and the conventional product.
  • the relationship between the average grain size in the center and the ratio of the average grain size in the vicinity of the surface and in the center is shown for each of the developed product and the conventional product.
  • the grain boundary setting angles and the ratio of the number of grains at grain boundary setting angles of 5° and 2° to the number of grains at a grain boundary setting angle of 15° are shown for the developed product and the conventional product, respectively.
  • the relationship between the carbon content and the number of crystal grains at a grain boundary setting angle of 5°/the number of crystal grains at a grain boundary setting angle of 15° is shown for each of the developed product and the conventional product.
  • the relationship between the carbon content and the number of crystal grains at a grain boundary setting angle of 2°/the number of crystal grains at a grain boundary setting angle of 15° is shown for each of the developed product and the conventional product.
  • the relationship between the grain boundary setting angle and the average GOS value is shown for each of the developed product and the conventional product.
  • the relationship between the carbon content and the average GOS value is shown for each of the developed product and the conventional product.
  • the relationship between the GOS value up to the cumulative frequency and the cumulative frequency at a grain boundary setting angle of 15° is shown for each of the developed product and the conventional product.
  • the relationship between the carbon content and the cumulative frequency up to a GOS value of 10° at a grain boundary setting angle of 15° is shown for each of the developed product and the conventional product.
  • the relationship between true strain and tensile strength is shown for each of the developed product and the conventional product.
  • SEM images of the developed product are shown.
  • SEM images of the developed product are shown.
  • SEM images of the developed product are shown.
  • SEM images of the developed product are shown.
  • SEM images of the developed product are shown.
  • the relationship between true strain and tensile strength is shown for each of the developed product and the conventional product.
  • the relationship between true strain and tensile strength is shown for each of the developed product and the conventional product.
  • the relationship between tensile strength and reduction of area is shown for each of the developed product and the conventional product.
  • the SS curves for the developed product and the conventional product are shown.
  • the SS curves for the developed product and the conventional product are shown.
  • 45 is a partially enlarged view of FIG. 44; FIG. The relationship between carbon content and 0.4% proof stress - 0.2% proof stress is shown for each of the developed product and the conventional product.
  • Fig. 1 schematically shows a patenting device.
  • steel material 11 the steel material before patenting
  • steel material 12 the steel material after patenting
  • the patenting device includes a power source 13, a power supply roll 14, a bath 15 and molten lead 16 stored in the bath 15.
  • the steel material 11 is supplied in the form of filaments (wire rods).
  • a steel material 11 drawn out from a payoff (not shown) runs at a constant speed from left to right in FIG.
  • heat treatment is performed on the steel material 11.
  • a power supply 13 provided in the patenting apparatus is connected to a power supply roll 14 and a bath 15, forming a closed circuit including the power supply 13, power supply roll 14, molten lead 16 and bath 15.
  • An insulating device (not shown) is provided on the left side (upstream side) of the power supply roll 14 so that the steel material 11 does not receive an electric current.
  • a current supplied from a power source 13 is applied to the steel material 11 in the section from the power supply roll 14 to the liquid surface of the molten lead 16 stored in the bath 15, and the steel material 11 is heated.
  • the steel material 11 is heated most at the point just before it enters the liquid surface of the molten lead 16 stored in the bath 15.
  • the heating temperature of the steel material 11 (the maximum temperature reached by the steel material 11) is set to 975° C. or less in order to exhibit the characteristics described later. This is because if the heating temperature is too high, crystal grains (austenite grains) will grow and the metal structure will become coarse, resulting in a reduction in toughness, especially reduction in area. However, insufficient heating causes iron carbide (cementite as an example), which is an intermetallic compound of Fe and C, to go out of solution.
  • the heating temperature of steel material 11 can be controlled.
  • the heating time is adjusted by the path length from power supply roll 14 to the liquid surface of molten lead 16 and the running speed of steel material 11 .
  • the molten lead 16 stored in the bath 15 is heated to a constant temperature by a gas furnace (an electric heater may be used).
  • the temperature of the molten lead 16 is lower than the heating temperature of the steel material 11 described above, and the steel material 11 heated to the maximum temperature immediately before entering the liquid surface of the molten lead 16 starts cooling as soon as it enters the molten lead 16. be done.
  • the temperature of molten lead 16 (lead furnace temperature), that is, the isothermal transformation temperature, is set at 620°C or less. This is because the steel material 11 is rapidly cooled to obtain pearlite and carbide precipitates from austenite. However, if it is cooled too quickly, martensite, etc., which makes the product brittle, will appear, so the lower limit temperature of molten lead 16 is set at about 350°C.
  • the patented steel material that is, the heat-treated steel material 12, which is immersed in the molten lead 16 and then pulled out of the bath 15, is then washed with water, coated, and wire drawing if necessary.
  • Fig. 2 shows the temperature change (temperature rise curve) of steel 11 (heat-treated steel 12) patented using a gas furnace
  • Fig. 3 shows the temperature change (heat-treated steel 12) of steel 11 patented using the patenting apparatus shown in Fig. ), respectively.
  • the temperature drops sharply at the timing when the steel material 11 enters the molten lead 16. Note that the scale of the time axis (horizontal axis) is different between FIG. 2 and FIG.
  • the steel material 11 is gradually heated by using a gas furnace.
  • atmosphere heating furnaces represented by gas furnaces
  • the time required for heating is proportional to the wire diameter of the steel material 11.
  • Figures 2 and 3 are graphs of steel material 11 with a wire diameter of ⁇ 2.11, and when a gas furnace is used, it takes about 40 seconds to reach the maximum temperature (target heating temperature).
  • target heating temperature target heating temperature
  • FIG. 3 if the patenting apparatus shown in FIG. 1 is used, the steel material 11 reaches the maximum temperature (target heating temperature) in several seconds.
  • the patenting apparatus shown in FIG. 1 can keep the heating rate constant regardless of the wire diameter.
  • the steel material 11, which is the starting wire material, and the heat-treated steel material 12 obtained by patenting this are carbon steel containing iron (Fe) and carbon (C).
  • a carbon content (carbon concentration) of 0.38% (meaning mass%; the same shall apply hereinafter) makes it easier to obtain sufficient strength. is suppressed.
  • manganese (Mn), chromium (Cr), and silicon (Si) may be included in the heat-treated steel material 12.
  • Manganese (Mn) is contained as a deoxidizer. The content is kept to 1.0% or less in order to suppress deterioration of workability.
  • Chromium (Cr) generally refines pearlite and is effective in improving toughness. Addition of a large amount of Cr conversely causes a decrease in toughness, so the content is limited to 0.50% or less.
  • Silicon (Si) is used as a deoxidizing agent. In order to avoid ductility deterioration, the content is limited to about 1.5%.
  • vanadium (V) 0.50% or less
  • molybdenum (Mo) 0.25% or less
  • boron (B) 0.005% or less
  • titanium (Ti) 0.050%
  • nickel (Ni) 0.50%
  • aluminum 0.10% or less
  • zirconium (Zr) 0.050% or less
  • etc. may be added to the steel material 11 (heat-treated steel material 12) depending on the application.
  • FIG. 4 summarizes the names of steel grades and their components of a plurality of steel materials 11 (heat-treated steel materials 12) described below.
  • FIGS. 5 to 8 show the same steel material 11 before heat treatment (both SWRH62A with a diameter of 2.11 mm).
  • 5 and 6 are optical microscope images of conventional products
  • FIGS. 7 and 8 are optical microscope images of developed products.
  • the optical microscope images shown in FIGS. 5 to 8 were obtained by photographing the central part of the heat-treated steel material 12 and its vicinity after the heat-treated steel material 12 was polished in the longitudinal direction and etched with nital.
  • Figure 5 is an optical microscope image of the conventional product obtained with the molten lead 16 at a temperature of 565°C
  • Figure 6 is an optical microscope image of the conventional product obtained with the molten lead 16 at a temperature of 450°C.
  • the temperature of the molten lead 16 is set to 565°C
  • the metallographic structure becomes a pearlite structure (Fig. 5)
  • the temperature of the molten lead 16 is set to 450°C
  • the temperature of molten lead 16 is set to 565°C and 450°C, the difference in the metal structure of the conventional product appears clearly.
  • Figure 7 is an optical microscope image of the developed product obtained with the molten lead 16 temperature of 565°C
  • Figure 8 is an optical microscope image of the developed product obtained with the molten lead 16 temperature of 450°C. 5 and 6, it can be seen that the developed product has finer crystals than the conventional product. Further, whether the temperature of the molten lead 16 is 565°C or 450°C, the metallographic structure resembles the characteristics of the pearlite structure, and the characteristics of the bainite structure do not appear. Whether the temperature of the molten lead 16 is set to 565°C or 450°C, it can be seen that there is no clear difference in the metallographic structure compared to the conventional product in the optical microscope images.
  • FIGS. 9A to 12B show the same steel material 11 before heat treatment (all SWRH62A with a diameter of 2.11 mm), but the patenting method is different as shown in FIGS. 2 and 3, respectively.
  • 9A, 9B, 11A and 11B are scanning electron microscope images of conventional products
  • FIGS. 10A and 10B are scanning electron microscope images of developed products. . Similar to the optical microscope image described above, the scanning electron microscope image was obtained by photographing the vicinity of the wire center of the heat-treated steel material 12 after polishing the heat-treated steel material 12 in the longitudinal direction and etching it using nital.
  • SEM images are both scanning electron microscope images (hereinafter referred to as SEM images) of the conventional product obtained by setting the temperature of the molten lead 16 to 565°C. are SEM images at a magnification of 50,000, respectively.
  • a large number of plate-like (layered) cementite (Fe 3 C) (white linear portions in FIGS. 9A and 9B) are confirmed in the layered structure (pearlite structure) of ferrite and cementite.
  • the surface of cementite is smooth, and the thickness of multiple cementite plates (layer thickness) is almost uniform (approximately 30 nm).
  • FIGS. 10A and 10B are both SEM images of the developed product obtained by setting the temperature of the molten lead 16 to 565°C. showing. A large number of plate-like (layered) structures are confirmed.
  • White portions in FIGS. 10A and 10B contain cementite (Fe 3 C), but may contain iron carbides different from cementite (eg, Fe 2-2.5 C, Fe 2-3 C). Spherical protrusions are found here and there on the surface.
  • the plate thickness (layer thickness) of multiple iron carbides is non-uniform and thicker than conventional products (approximately 60 nm).
  • iron carbide Fe 3 C, Fe 2-2.5 C, Fe 2-3 C, etc.
  • special cementites iron carbide
  • Figures 11A and 11B are SEM images of the conventional product obtained by setting the temperature of the molten lead 16 to 450°C. ing.
  • the white cementite in FIGS. 11A and 11B does not have a plate-like (layered) structure and has a bainite structure rather than a pearlite structure.
  • Figures 12A and 12B are SEM images of the developed product obtained by setting the temperature of the molten lead 16 to 450°C. ing.
  • spherical protrusions (unevennesses) are scattered on the surface of the special cementite that looks white, and relatively isotropic rod-shaped or plate-shaped portions with a unique shape are confirmed.
  • Comb-like and mesh-like parts, as well as three-dimensional mesh-like parts like tree roots, are also confirmed. This structure is not found in conventional pearlite structure or bainite structure.
  • FIG. 13 is a BSE image of a conventional product
  • FIGS. 14 and 15 are BSE images of a developed product (both at a magnification of 10,000).
  • 14 and 15 differ in lead furnace temperature.
  • the backscattered electron image was obtained by polishing the heat-treated steel 12, performing milling using argon gas, and photographing the longitudinal direction of the heat-treated steel 12.
  • 16 shows a partially enlarged schematic diagram of the BSE image of the conventional product shown in FIG. 13
  • FIG. 17 shows a partially enlarged schematic diagram of the BSE image of the developed product shown in FIG.
  • Fig. 13 is a BSE image of a conventional product obtained by setting the temperature of molten lead 16 to 565°C.
  • FIG. 14 shows the BSE image of the developed product in which the temperature of the molten lead 16 is 450° C.
  • FIG. 15 shows the BSE image of the developed product in which the temperature of the molten lead 16 is 565° C.
  • the special cementite extends straighter than in the developed product (Fig. 14) in which the temperature of molten lead 16 is 450°C. ) does not grow, and there are many branches, bends, and curves.
  • FIG. 18A to 21 use SWRS92A as the steel type
  • Figures 18A and 18B are SEM images of the developed product obtained by setting the temperature of the molten lead 16 to 565°C (the magnification in Figure 18A is 10,000 times; Magnification of FIG. 18B is 50,000 times).
  • FIG. 19 is a BSE image of the developed product obtained by setting the temperature of the molten lead 16 to 565°C.
  • 20A and 20B are SEM images of the developed product obtained by setting the temperature of the molten lead 16 to 450° C., and the magnifications are 10,000 times and 50,000 times, respectively.
  • FIG. 19 is a BSE image of the developed product obtained by setting the temperature of the molten lead 16 to 565°C
  • 20A and 20B are SEM images of the developed product obtained by setting the temperature of the molten lead 16 to 450° C., and the magnifications are 10,000 times and 50,000 times, respectively.
  • FIGS. 18A, 18B, 20A and 20B were taken in the longitudinal direction of the heat-treated steel 12 after the heat-treated steel 12 was polished and etched with Nital.
  • the BSE images of FIGS. 19 and 21 are taken in the longitudinal direction of the heat-treated steel 12 after the heat-treated steel 12 has been ground and milled with argon gas.
  • the SEM images of the developed product show sporadic spherical protrusions on the surface of the special cementite.
  • 20A and 20B when the temperature of the molten lead 16 is lowered (450° C.), the peculiar shape of the special cementite becomes conspicuous.
  • 19 and 21 in the BSE images of the developed product, even if the temperature of the molten lead 16 is 565°C (Fig. 19) or 450°C (Fig. 21), the layered special cementite It looks small and mottled.
  • Figures 22A and 22B show the results of using SWRH42A as the steel type.
  • Figure 22A is the SEM image of the conventional product obtained by setting the temperature of the molten lead 16 to 565°C
  • Figure 22B is the SEM image of the developed product. Comparing FIGS. 22A and 22B, the developed product (FIG. 22B) contains more pro-eutectoid ferrite than the conventional product (FIG. 22A).
  • FIG. 22A the conventional product
  • Figures 23A and 23B are for SWRH42A as the steel type.
  • Figure 23A is the BSE image of the conventional product obtained with the temperature of the molten lead 16 at 565°C
  • Figure 23B is the image obtained with the temperature of the molten lead 16 at 565°C.
  • This is a BSE image of the developed product.
  • the BSE images of FIGS. 23A and 23B clearly show the difference in shape between the conventional cementite and the developed special cementite.
  • the cementite is almost straight
  • the developed product Fig. 23B
  • the special cementite has many branched, bent or curved portions.
  • Figures 24A and 24B show the results obtained using SWRH42A as the steel type.
  • Figure 24A is the SEM image of the developed product obtained with the temperature of the molten lead 16 at 450°C
  • Figure 24B is the image obtained with the temperature of the molten lead 16 at 450°C.
  • This is a BSE image of the developed product. Comparing the SEM image of the conventional product with the molten lead 16 temperature of 565°C (Fig. 22A) and the SEM image of the developed product with the molten lead 16 temperature of 450°C (Fig. 24A), the developed product shown in Fig. 24A It can be seen that the special cementite is fine.
  • FIGS. 25A and 25B are both SEM images of the developed product using steel type SWRH62A and using molten lead 16 at 400°C. SEM image at 10,000x magnification. In the SEM images of the developed product shown in FIGS. 25A and 25B, there are many branched, bent or curved portions in the special cementite.
  • the following are considered to be the factors behind the appearance of a different metallographic structure in the developed product from that of the conventional product. That is, in the conventional product, the carbon atoms are sufficiently diffused due to the long heating time of the heat treatment. Then, quenching is started from a state in which the carbon concentration in the austenite is uniform. When the temperature of molten lead 16 is 565°C, nucleation occurs from the austenite grain boundaries, and a pearlite structure grows from the generated nuclei. When the temperature of the molten lead 16 is 450°C, ferrite is formed, carbon atoms extruded from the ferrite are concentrated, and as the ferrite grows, granular cementite is formed, resulting in an upper bainite structure.
  • peculiar shaped portions The degree of inclusion of branched, bent or curved portions (hereinafter referred to as peculiar shaped portions) was observed as follows. That is, a cross section is formed in the longitudinal direction by polishing the heat-treated steel material 12 in the longitudinal direction, and the range within 1/2 of the diameter of the heat-treated steel material 12 from the center is taken as an imaging range, and five or more images are taken at a magnification of 10,000 times or more. Take a BSE image with a total imaging area of 500 ⁇ m 2 . In the photographed image, lines are drawn so as to form a grid in both the vertical and horizontal directions so that they are spaced at intervals of 0.5 ⁇ m at the magnification at the time of photographing.
  • a plurality of rectangular frames of 0.5 ⁇ m square at the magnification at the time of photographing are divided into rectangular frames with peculiar shape portions and rectangular frames without peculiar shape portions. That is, in a plurality of rectangular frames, rectangular frames including branched peculiar shaped parts as shown in FIGS. 26(a) and (b), 80° Rectangular frames including curved peculiar shaped portions and rectangular frames having peculiar shaped portions curved within a radius of curvature of 0.5 ⁇ m as shown in FIG. 26(f) are counted.
  • one peculiar-shaped part exists across multiple rectangular frames, count only the rectangular frames that include parts that branch, bend, or curve.
  • one cementite or special cementite branches, bends, or curves within different rectangular frames each rectangular frame is counted.
  • the shape of the peculiar shape portion may become unclear in the BSE image, and the shape cannot be determined. In such cases, the rectangular frame is excluded from counting. When the ratio of rectangular frames with unknown shapes of peculiar shaped portions is 5% or more of all rectangular frames, the image is not used and the image is taken again.
  • Figure 27 shows the percentage of the unique shaped parts in the BSE image based on the count of the rectangular frames containing the unique shaped parts described above for each of the conventional products and the developed products with different carbon contents. . From FIG. 27, it can be seen that the developed product (white circles) has a higher ratio of peculiarly shaped parts than the conventional product (black circles), and that the developed product contains 9% or more of the peculiarly shaped parts.
  • Fig. 28 is a graph in which the horizontal axis is the grain boundary setting angle (°) and the vertical axis is the average crystal grain size ( ⁇ m), with the broken line showing the developed product and the solid line showing the conventional product.
  • FIG. 22 shows graphs (broken lines) for five developed products of SWRH62A and graphs (solid lines) for two conventional products. The details of the five developed products (steel grade, diameter, isothermal transformation temperature (cooling temperature, lead furnace temperature)) and the details of the two conventional products are as follows.
  • the grain boundary setting angle shown on the horizontal axis in the graph of FIG. 28 is the angle set in EBSD (Electron Back Scattered Diffraction) analysis.
  • EBSD Electro Back Scattered Diffraction
  • the measurement area of the cross section of the polished sample is divided into measurement points (generally called "pixels"), the electron beam is incident on each of the divided pixels, and the incident electron beam is reflected by the pixels. Based on the backscattered electrons obtained, the crystal orientation in each pixel is measured. The obtained crystal orientation data is analyzed using the EBSD analysis software, and various parameters are calculated.
  • the EBSD detector used this time is manufactured by TSL Solutions Co., Ltd. and employs regular hexagonal pixels.
  • the boundary where the crystal orientation difference between adjacent pixels is greater than or equal to the grain boundary setting angle described above is treated as a “grain boundary” and surrounded by grain boundaries.
  • the area covered by the grain is treated as a "grain”.
  • the grain boundary setting angle (grain boundary setting value) is decreased, the grain size becomes smaller and the number of crystals in the observation area increases. Conversely, when the grain boundary setting angle is increased, the grain size increases and the number of crystals in the observation area decreases.
  • the EBSD analysis evaluates the crystallographic orientation of ferrite.
  • Fig. 29 shows the average grain size measured with the grain boundary setting angle set to 15° for each of multiple conventional products and developed products with different carbon contents.
  • the horizontal axis in FIG. 29 is the carbon content (% by mass), and the vertical axis is the center range of the heat-treated steel material 12 (within 1/4 of the diameter on one side from the center, and within 1/2 of the diameter on both sides). ) shows the average grain size ( ⁇ m) when the grain boundary setting angle is set to 15°.
  • the carbon content and average grain size of 19 types of developed products are indicated by white circles, and the carbon content and average grain size of 10 types of conventional products are indicated by black circles.
  • the details of the 19 developed products (steel type, diameter, isothermal transformation temperature (cooling temperature, lead furnace temperature)) and the details of the 10 conventional products are as follows.
  • the dashed line shown in the graph is a straight line representing "10 x carbon content (%) + 7" ( ⁇ m).
  • the grain boundary setting angle is set to 15° for the conventional product (black circle)
  • the average crystal grain size exceeds "10 x carbon content (%) + 7" ⁇ m
  • the developed product white circle
  • the grain boundary setting angle was set to 15°
  • the average grain size was less than “10 ⁇ carbon content (%) + 7” ⁇ m.
  • the conventional product and the developed product can be clearly distinguished in terms of the average grain size at a grain boundary setting angle of 15°.
  • the horizontal axis is the average crystal grain size ( ⁇ m) at the center of the heat-treated steel 12
  • the vertical axis is the ratio of the average crystal grain size near the surface of the heat-treated steel 12 to the average crystal grain size at the center (near the surface). It is a graph of (average crystal grain size/average crystal grain size at the center). If the value on the vertical axis exceeds 1.00, it means that the surface is rougher than the center.
  • the graph in FIG. 30 was created using the average grain size at a grain boundary setting angle of 15° obtained by EBSD analysis, as in the graph in FIG. showing.
  • Fig. 30 also shows the measurement results of multiple heat-treated steel materials 12 with different isothermal transformation temperatures of molten lead 16, wire types, wire diameters, etc., for the conventional product (black circles) and the developed product (white circles). (This also applies below).
  • the developed product (white circle) has almost no rough surface, that is, the ratio of the average crystal grain size near the surface to the center (value on the vertical axis) does not greatly exceed 1.00.
  • the above ratio fell within the range of 0.70 to 1.10.
  • most of the conventional products black circles also have the above ratio within the range of 0.70 to 1.10.
  • conventional products with a ratio close to 1.10 were also found, and some conventional products had a slightly rough surface.
  • Surface roughness is closely related to product toughness. It can be seen that the developed product has toughness equal to or higher than that of the conventional product.
  • FIG. 31 shows the measurement results using the same developed product and conventional product as the five developed products and two conventional products used to create the graph in FIG. ), and the vertical axis represents the ratio of the number of grains at the grain boundary setting angles of 5° and 2° to the number of grains at the grain boundary setting angle of 15°.
  • the EBSD analysis software can calculate (count) the number of grains at various grain boundary setting angles.
  • Figure 32 shows the measurement results using the same developed products as the 19 developed products and 10 conventional products used to create the graph in Figure 29 and the conventional products. It is a graph whose axis is the ratio of the number of crystal grains when the grain boundary setting angle is 5° to the number of crystal grains when the grain boundary setting angle is 15°.
  • a straight line indicating "5.4 ⁇ carbon content (%) ⁇ 0.95" is indicated by a dashed line. All of the developed products (white circles) are plotted in the graph area below the straight line, and all conventional products (black circles) are plotted in the graph area above the straight line.
  • the ratio of the number of crystal grains when the grain boundary setting angle is 5° to the number of crystal grains when the grain boundary setting angle is 15° also makes it possible to clearly distinguish between the developed product and the conventional product.
  • Fig. 33 shows the measurement results using 19 types of developed products and 10 types of conventional products, similar to the above. It is a graph showing the ratio of the number of crystal grains with a grain boundary setting angle of 2° to the number of grains.
  • a straight line representing "9.8 ⁇ carbon content (%) ⁇ 1.9" is indicated by a dashed line. All of the developed products (white circles) are plotted in the graph area below the straight line, and all conventional products (black circles) are plotted in the graph area above the straight line.
  • the ratio of the number of crystal grains when the grain boundary setting angle is 2° to the number of crystal grains when the grain boundary setting angle is 15° also makes it possible to clearly distinguish between the developed product and the conventional product.
  • FIG. 34 shows the measurement results using the same developed product and conventional product as the five developed products and two conventional products used to create the graph in FIG. ), and the vertical axis is the average GOS value (°).
  • the GOS (Grain Orientation Spread) value (also called the average GOS value) is obtained by calculating and averaging the intra-grain orientation differences for all combinations of two pixels within the same grain. used as an indicator of As described above, since the grain boundaries fluctuate according to the grain boundary setting angle, the GOS value fluctuates when the grain boundary setting angle is changed.
  • the GOS value is also a value calculated by EBSD analysis software. Below, the average GOS value uses the value obtained from the Area Fraction.
  • the GOS value of the developed product is smaller than the GOS value of the conventional product (solid line), and the larger the grain boundary setting angle, the greater the divergence between the GOS values of the developed product and the GOS values of the conventional product.
  • the GOS value at a grain boundary setting angle of 15° many of the developed products (broken line) have a GOS value of 6° or less, while the conventional product (solid line) has a GOS value of 6°. Over.
  • FIG. 35 is a graph in which the horizontal axis is the carbon content (%) in the heat-treated steel material 12 and the vertical axis is the GOS value (°). be.
  • the conventional product is plotted with black circles, and the developed product is plotted with white circles.
  • a straight line representing "11 ⁇ (carbon content (%) ⁇ 0.42)+5.3" is indicated by a dashed line.
  • Fig. 36 shows the measurement results of multiple developed products and multiple conventional products, in which the horizontal axis is the GOS value (°) and the vertical axis is the cumulative frequency using the area ratio at the grain boundary setting angle of 15°. is.
  • the cumulative frequency using the area ratio for GOS values up to 10° exceeds 80%.
  • the cumulative frequency when the GOS value is 10° represents how much the GOS value range of 0° to 10° is included in the whole.
  • the GOS value varied greatly, and the cumulative frequency up to a GOS value of 10° (range of 0° to 10°) never exceeded 80%.
  • the conventional product and the developed product also have a clear difference in the cumulative frequency up to a GOS value of 10° (range of 0° to 10°) at a grain boundary setting angle of 15°.
  • FIG. 37 is a graph in which the horizontal axis is the carbon content (%) and the vertical axis is the cumulative frequency using the area ratio up to the GOS value of 10° at the grain boundary setting angle of 15°.
  • the conventional product is plotted with black circles, and the developed product is plotted with white circles.
  • a curve of ⁇ 0.1C 3 ⁇ 1.3C 2 +1.1C+0.7 is indicated by a dashed line.
  • the developed product (white circles) has a relatively large cumulative frequency up to a GOS value of 10° at a grain boundary setting angle of 15°, whereas the conventional product (black circles) As for , the cumulative frequency up to a GOS value of 10° at a grain boundary setting angle of 15° tends to decrease as the carbon content increases.
  • the cumulative frequency up to a GOS value of 10° at a grain boundary setting angle of 15° exceeds 0.1C 3 -1.3C 2 +1.1C + 0.7, whereas the conventional product (black circles) , the cumulative frequency up to a GOS value of 10° at a grain boundary setting angle of 15° is less than 0.1C 3 -1.3C 2 +1.1C + 0.7.
  • Fig. 38 shows the work hardening curve of the heat-treated steel material 12 of steel grade SWRH62A, with true strain on the horizontal axis and tensile strength (MPa) on the vertical axis.
  • Fig. 38 shows graphs of four developed products (all dashed lines) and two conventional products (all solid lines).
  • the graphs for the developed products show the temperature (isothermal transformation temperature) of molten lead 16 at 425°C (2), 450°C and 565°C.
  • the graphs for the conventional product show the temperature of molten lead 16 at 450°C and 565°C.
  • the graphs of the two developed products where the temperature of the molten lead 16 is 425°C (425°C part 1 and 425°C part 2) are obtained by varying the immersion time of the steel material 11 (heat-treated steel material 12) in the molten lead 16.
  • the developed product with an isothermal transformation temperature of 425°C or 450°C is superior in tensile strength to the developed product with an isothermal transformation temperature of 565°C. .
  • the tensile strength of the developed product can be controlled by controlling the isothermal transformation temperature, that is, the temperature of molten lead16.
  • the heat-treated steel material 12 with excellent tensile strength can be obtained. It can reduce the heat loss from the heat source and reduce the fuel cost by about 20%.
  • 39A and 39B are SEM images of the heat-treated steel material 12 with an isothermal transformation temperature (lead furnace temperature) of 425°C and a long immersion time (corresponding to the graph of "425°C 1" in FIG. 38).
  • 40A and 40B are SEM images of heat-treated steel 12 with an isothermal transformation temperature of 425°C and a short immersion time (approximately half of 1) (corresponding to the graph of "425°C 2" in Fig. 38).
  • 39A and 40A are SEM images at 3,500 times magnification
  • FIGS. 39B and 40B are SEM images at 10,000 times magnification.
  • Micromartensite is not seen in the SEM images shown in FIGS. 39A and 39B, and micromartensite is seen in the SEM images shown in FIGS. 40A and 40B.
  • FIGS. 40A and 40B there is almost no difference between the 425°C No. 1 graph and the 425°C No. 2 graph. It is designed to be The developed product can obtain properties without problems even if a small amount of micromartensite exists.
  • Fig. 41 shows the work hardening curves of other steel grades, specifically the developed steel grades SWRH42A, SWRH82A and SWRH82B and the conventional steel grades.
  • the temperature (isothermal transformation temperature) of molten lead 16 is set to 565°C and 450°C.
  • the tensile strength of the developed steel is superior to that of the conventional steel when comparing the conventional steel and the developed steel among the same steel grades.
  • Fig. 42 shows work hardening curves for other steel grades, that is, the developed products and the conventional products whose steel grades are SWRS92A, 92A-Cr, 92B-Si and 102A-Cr.
  • the tensile strength of the developed product is superior to that of the conventional product.
  • FIGS. 38, 41 and 42 Compare FIGS. 38, 41 and 42 from the viewpoint of carbon content. Focusing on the tensile strength of the developed product when the temperature of molten lead 16 is 450°C, the lower the carbon content (for example, see Fig. 38), the greater the tensile strength of the developed product when comparing the developed product and the conventional product of the same steel grade. The slope of the work hardening curve of the product is larger than that of the conventional product, and the tensile strength tends to be higher. Conversely, as the carbon content increases (see, for example, FIG. 42), the slope of the work hardening curve of the developed product approaches that of the conventional product.
  • the developed product has a higher tensile strength than the conventional product when comparing the same steel grades. It can be seen that the tensile strength is superior to that of the conventional product.
  • the difference in slope of the work hardening curve between the developed product and the conventional product does not occur as much as when the temperature of the molten lead 16 is 450°C.
  • the tensile strength of the developed steel is higher than that of the conventional steel, and the tensile strength of the developed steel is higher than that of the conventional steel. It can be seen that the tensile strength is excellent.
  • the work hardening curve of the developed steel type SWRH82A with a lead furnace temperature of 450°C and the developed steel type SWRH82B (which has a high manganese content) with the same lead furnace temperature of 450°C. are almost the same.
  • the developed product can have high tensile strength without the addition of expensive alloying elements (manganese and chromium mentioned above). In other words, the developed product achieves high strength without adopting steel grades containing expensive alloying elements (manganese, chromium, etc.). You can cut costs.
  • FIG. 43 shows the measurement of reduction of area during the tensile test for each of the conventional product and the developed product.
  • the horizontal axis indicates the tensile strength during the tensile test, and the vertical axis indicates the reduction of area.
  • the dashed line shown in the graph is a curve representing "-0.000064 x TS 2 +0.09 x TS + 46" (%) (TS is tensile strength (MPa)).
  • TS tensile strength
  • the aperture of the developed product exceeds "-0.000064 x TS 2 + 0.09 x TS + 46", while the aperture of the conventional product is "-0.000064 x TS 2 + 0.09 x TS + 46". was never exceeded.
  • the conventional product and the developed product can also be clearly distinguished by aperture.
  • FIG. 44 shows the S-S curves of the conventional product and the developed product of steel grade SWRH62A. ).
  • FIG. 45 shows the SS curves of the conventional product and the developed product of steel grade 102A-Cr.
  • FIG. 46 is an enlarged view of part of FIG.
  • the load (tensile strength) at the intersection of the SS curve and the straight line ⁇ obtained by moving the straight line ⁇ in contact with the elastic region of the SS curve parallel by 0.2% of elongation is called "0.2% yield strength”.
  • the load (tensile strength) at the intersection of the straight line ⁇ obtained by moving the straight line ⁇ by 0.4% of elongation in parallel with the SS curve is called "0.4% yield strength”.
  • Fig. 47 shows a graph in which the horizontal axis is the carbon content and the vertical axis is the difference between 0.4% proof stress and 0.2% proof stress (hereinafter referred to as proof stress difference) for each of the many developed products and conventional products. Further, in FIG. 47, a straight line representing "45 ⁇ carbon content (%) ⁇ 3" (MPa) is indicated by a broken line. Regardless of the carbon content, the yield strength difference of the developed product (white circles) is lower than that of the conventional product (black circles). In addition, the difference in yield strength of the conventional products (black circles) exceeds "45 x carbon content - 3" MPa, while the difference in yield strength of the developed products (white circles) is "45 x carbon content - 3" MPa. ” MPa or less. The conventional product and the developed product can be clearly distinguished from each other even in the above proof stress difference.
  • the tensile strength can be made equal to or higher than that of conventional products.
  • the isothermal transformation temperature lead furnace temperature
  • the tensile strength can be made equal to or higher than that of conventional products.
  • a wire mesh was made using the developed heat-treated steel material 12 that was plated, a product with higher strength and greater ductility than the conventional product was obtained.
  • plating after heat treatment and forming a wire mesh or gabion with a knitted mesh it is possible to achieve higher strength and impact resistance than conventional products.

Abstract

引張強さおよび靭性の両方に優れた熱処理鋼材を提供する。質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,粒界設定角度15°における平均結晶粒径が10×C+7(μm)以下(Cは炭素含有量(%))である熱処理鋼材。

Description

熱処理鋼材および鋼材の熱処理方法
 この発明は熱処理鋼材および鋼材の熱処理方法に関する。
 ワイヤおよび複数本のワイヤを撚り合わせたワイヤロープは,製鉄メーカーにおいて熱間圧延によって作成されたワイヤロッドと呼ばれる鋼材,具体的には硬鋼線材(JIS G 3506)やピアノ線材(JIS G 3502)などから作られる。この製鉄メーカーにおいて作成された硬鋼線材やピアノ線材などのワイヤロッドは長手方向の引張強さのばらつきが通常大きく,長手方向の品質を安定させた高品質のワイヤ,ワイヤロープ等を製造するためにワイヤロッドに対して熱処理が行われる。製鉄メーカーによって作成されるワイヤロッドの最小直径は通常約5.5mmである。より細いワイヤを製造する場合には熱処理されたワイヤロッドが伸線加工される。1度の伸線加工によってワイヤロッドの直径を急激に減径しようとすると靭性が劣化することがあり,これを避けるために熱処理と伸線加工とが交互に複数回行われることもある。
 品質安定のためにワイヤロッドおよび伸線加工材に対して行われる熱処理は一般に「パテンティング」と呼ばれている。パテンティングでは,パテンティング前のワイヤロッドおよび伸線加工材(熱処理前鋼材)を所定温度に加熱し,その後に加熱温度よりも低い所定温度に加熱された媒体(たとえば溶融鉛)に熱処理前鋼材を通過させて冷却する。パテンティングを経ることによって,長手方向の引張強さにばらつきが少なくかつ適度な靭性を有する熱処理鋼材(ワイヤ)を作ることができる。熱処理鋼材はたとえばめっきされた後に網組されて金網や蛇篭として利用されることもあるし,熱処理鋼材を伸線加工することもある。伸線加工された熱処理鋼材はそのまま出荷されることもあるし,めっき処理,被覆処理後に出荷されることもある。複数本の伸線加工された熱処理鋼材を撚り合わせてワイヤロープが製造されたり,さらにブラスめっきをしてスチールコードが製造されたりもする。いずれにしても,パテンティングは,高品質のワイヤ,ワイヤロープ,スチールコード等の製造工程において非常に重要な工程である。
 伸線加工時の断線等のトラブルを抑制するには引張強さと靭性の両立が不可欠である。そのために熱処理鋼材(伸線加工前の状態のもので,一般には伸線加工の対象とされるもの)はフェライトとセメンタイト(Fe(鉄)とC(炭素)の金属間化合物)が層状に交互に並んだパーライトと呼ばれる組織のものが好ましいとされている。パーライトは,上述のように鋼材を加熱することによって結晶構造が体心立方から面心立方に変態した(オーステナイト化された)鋼材を得,これを急冷することで出現する(たとえば特許文献1参照)。
 オーステナイト化された鋼材を得るための加熱が不十分であると,セメンタイトが加熱中に溶体化せず,その結果,熱処理鋼材の引張強さが低下し,伸線加工後の鋼材の靭性が劣化する。たとえば,熱処理される鋼材の厚さ(直径)が大きいと,鋼材の表面(表層)部の加熱は十分であるものの中心(中心層)部に加熱不足の可能性が生じる。一般には加熱不足とならないように(オーステナイト化が完全に行われるように)鋼材に対して余裕を見込んだ長時間の加熱処理が行われるが,そうすると,特に表面部の結晶粒(オーステナイト粒)が成長することがあり,結晶粒径が大きいと金属組織が粗くなり靭性が小さくなってしまう。
特許第3599551号公報
 この発明は,引張強さおよび靭性の両方に優れた熱処理鋼材を提供することを目的とする。
 この発明はまた,冷却媒体槽の保温時の放射熱を抑え,燃料費のコストダウンを図ることを目的とする。
 この発明はさらに,同一組成(同一鋼種)の鋼材から従来よりも高強度側に幅広い範囲の引張り強度を持つ熱処理鋼材を得ることができるようにすることを目的とする。
 この発明はさらに,高強度化のために高価な合金元素を熱処理鋼材に添加することなく,合金元素を添加した熱処理鋼材と同等の引張強さを得ることができるようにすることを目的とする。
 上述したように,引張強さと靭性を両立させる熱処理鋼材は,これまでフェライトとセメンタイトが層状に交互に並んだパーライトのものが好ましいとされていたところ,発明者の試験および検討によれば,フェライトとセメンタイトが層状に交互に並んだパーライトを持たずとも(そのようなパーライトが少ない金属組織であるとしても),引張強さと靭性を両立する熱処理鋼材が提供されるとの知見を得ることができた。
 この発明によって提供される熱処理鋼材は従来の熱処理鋼材と異なる複数の特性を有していることも確認された。以下に説明するように,(1)結晶粒径,(2)結晶粒数,(3)GOS(Grain Orientation Spread)値,(4)断面,(5)絞り,(6)S-S曲線から,この発明による熱処理鋼材は規定することができる。
 (1)結晶粒径に着目すると,第1の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物のものであって,粒界設定角度15°における平均結晶粒径が10×C+7(μm)以下(Cは炭素含有量(%))であることを特徴とする。
 同様に(1)結晶粒径に着目すると,第1の観点の発明によって提供される熱処理鋼材は,さらに(粒界設定角度15°における表面部の平均結晶粒径)/(粒界設定角度15°における中心部の平均結晶粒径)が0.70以上1.10以下であることを特徴とする。
 (2)結晶粒数に着目すると,第2の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物のものであって,(粒界設定角度5°における結晶粒数)/(粒界設定角度15°における結晶粒数)の値が5.4×C-0.95以下であること,または(粒界設定角度2°における結晶粒数)/(粒界設定角度15°における結晶粒数)の値が9.8×C-1.9以下であること(Cは炭素含有量(%))を特徴とする。
 (3)GOS値に着目すると,第3の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物のものであって,粒界設定角度15°におけるGOS値平均が11×(C-0.42)+5.3以下(Cは炭素含有量(%))であることを特徴とする。
 同様に(3)GOS値に着目すると,第4の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物のものであって,粒界設定角度15°におけるGOS値0°~10°の範囲の累積度数が,-0.1C-1.3C+1.1C+0.7以上(Cは炭素含有量(%))であることを特徴とする。
 この発明が提供する熱処理鋼材は,従来知られているパーライト組織およびベイナイト組織に含まれるセメンタイト(FeC)とは異なる鉄炭化物(Fe2~2.5C,Fe2~3Cなど)を含むことがある。また,この発明が提供する熱処理鋼材に含まれる鉄炭化物(実施例では「特殊セメンタイト」と呼ぶ)は,従来知られているパーライト組織およびベイナイト組織に含まれるセメンタイトと異なる形状,すなわち分岐,屈曲または湾曲している部分が多いという特徴を持つ。
 (4)断面に着目すると,第5の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物のものであって,反射電子像(BSE)によって組織を観察したときに,フェライトと鉄炭化物の層状組織において,分岐,屈曲または湾曲している鉄炭化物の面積比が視野中に9%以上含まれていることを特徴とする。BSE画像において分岐,屈曲または湾曲している鉄炭化物はまだら模様にも見える。
 同様に(4)断面に着目すると,第6の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物であるものであって,電子走査顕微鏡(SEM)によって組織を観察したときに,フェライトと鉄炭化物を含む層状組織において,上記鉄炭化物の表面に球状の凸部が観察されることを特徴とする。
 さらに(4)断面に着目すると,第7の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物であるものであって,電子走査顕微鏡(SEM)によって組織を観察したときに,フェライトと鉄炭化物の層状組織において,上記鉄炭化物の表面に凹凸があり,立体的に櫛状,網目状になった棒状もしくは板状の比較的等方的な鉄炭化物が生成していることを特徴とする。
 (5)絞りに着目すると,第8の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物のものであって,引張強さをTS(MPa)としたときに,絞りが-0.000064TS+0.09TS+46(%)以上であることを特徴とする。
 さらに,(6)S-S曲線に着目すると,第9の観点の発明によって提供される熱処理鋼材は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物であるものであって,S-S曲線において求められる0.4%耐力から上記S-S曲線において求められる0.2%耐力を減算した耐力差が,45×C-3(MPa)以下(Cは炭素含有量(%))であることを特徴とする。
 この発明によると,引張強度が高くかつ靭性にも優れた熱処理鋼材が提供される。
 この発明による鋼材の熱処理方法は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である鋼材を用意する工程と,上記鋼材自体を発熱させることによって上記鋼材を直接に加熱する工程と,恒温変態を行うことができる冷却媒体が貯められた浴槽に上記加熱された鋼材を通過させることによって上記鋼材を冷却する工程と,を含み,上記加熱工程は加熱最終段階の温度勾配が一番大きく,上記加熱工程の加熱最終段落において上記鋼材が所定加熱最高温度に到達した直後に上記加熱された鋼材を上記冷却媒体に進入させることによって,上記所定加熱最高温度を保持せずに冷却を開始することを特徴とする。加熱工程には通電または高周波などを用いた加熱が考えられる。溶融鉛などの溶融金属その他の冷却媒体を鋼材の冷却に用いることができる。
 この発明による鋼材の熱処理方法は次のように規定することもできる。すなわち,他の観点のこの発明による鋼材の熱処理方法は,質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である鋼材を,常温から800℃以上に数秒内に加熱し,加熱最高温度を保持することなく,加熱された鋼材を数秒内に620℃以下に冷却する。
 この熱処理方法を経ることによって,引張強度が高くかつ靭性にも優れた上述した熱処理鋼材を製造することができる。
パテンティング装置を概略的に示すブロック図である。 ガス炉を用いてパテンティングした鋼材の温度変化を示すグラフである。 図1のパテンティング装置を用いてパテンティングした鋼材の温度変化を示すグラフである。 鋼種名と成分を表に示す。 従来品の光学顕微鏡画像を示す。 従来品の光学顕微鏡画像を示す。 開発品の光学顕微鏡画像を示す。 開発品の光学顕微鏡画像を示す。 従来品のSEM画像を示す。 従来品のSEM画像を示す。 開発品のSEM画像を示す。 開発品のSEM画像を示す。 従来品のSEM画像を示す。 従来品のSEM画像を示す。 開発品のSEM画像を示す。 開発品のSEM画像を示す。 従来品のBSE画像を示す。 開発品のBSE画像を示す。 開発品のBSE画像を示す。 従来品のBSE画像の一部拡大模式図である。 開発品のBSE画像の一部拡大模式図である。 開発品のSEM画像を示す。 開発品のSEM画像を示す。 開発品のBSE画像を示す。 開発品のSEM画像を示す。 開発品のSEM画像を示す。 開発品のBSE画像を示す。 従来品のSEM画像を示す。 開発品のSEM画像を示す。 従来品のBSE画像を示す。 開発品のBSE画像を示す。 開発品のSEM画像を示す。 開発品のBSE画像を示す。 開発品のSEM画像を示す。 開発品のSEM画像を示す。 開発品のBSE画像に現れる特異形状部の形状例を示す模式図である。 開発品および従来品のそれぞれについての,炭素含有量と特異形状部の割合との関係を示す。 開発品および従来品のそれぞれについての,粒界設定角度と平均結晶粒径との関係を示す。 開発品および従来品のそれぞれについての,炭素含有量と粒界設定角度15°における平均結晶粒径との関係を示す。 開発品および従来品のそれぞれについての,中心部の平均結晶粒径と,表面近傍および中心部の平均結晶粒径の比率との関係を示す。 開発品および従来品のそれぞれについての,粒界設定角度と,粒界設定角度15°の結晶粒数に対する粒界設定角度5°および2°のときの結晶粒数の割合を示す。 開発品および従来品のそれぞれについての,炭素含有量と粒界設定角度5°の結晶粒数/粒界設定角度15°の結晶粒数の関係を示す。 開発品および従来品のそれぞれについての,炭素含有量と粒界設定角度2°の結晶粒数/粒界設定角度15°の結晶粒数の関係を示す。 開発品および従来品のそれぞれについての,粒界設定角度と平均GOS値との関係を示す。 開発品および従来品のそれぞれについての,炭素含有量と平均GOS値との関係を示す。 開発品および従来品のそれぞれについての,累積度数までのGOS値と粒界設定角度15°における累積度数との関係を示す。 開発品および従来品のそれぞれについての,炭素含有量と粒界設定角度15°におけるGOS値10°までの累積度数との関係を示す。 開発品および従来品のそれぞれについての,真歪と引張強さとの関係を示す。 開発品のSEM画像を示す。 開発品のSEM画像を示す。 開発品のSEM画像を示す。 開発品のSEM画像を示す。 開発品および従来品のそれぞれについての,真歪と引張強さとの関係を示す。 開発品および従来品のそれぞれについての,真歪と引張強さとの関係を示す。 開発品および従来品のそれぞれについての,引張強さと絞りとの関係を示す。 開発品および従来品のそれぞれについての,S-S曲線を示す。 開発品および従来品のそれぞれについての,S-S曲線を示す。 図44の一部拡大図である。 開発品および従来品のそれぞれについての,炭素含有量と0.4%耐力-0.2%耐力の関係を示す。
 図1はパテンティング装置を概略的に示している。以下の説明では,パテンティング前の鋼材を単に「鋼材11」と呼び,パテンティング後の鋼材を「熱処理鋼材12」と呼んで区別する。
 パテンティング装置は,電源13,給電ロール14,浴槽15および浴槽15に貯められた溶融鉛16を含む。
 鋼材11は線条体(線材)の形態で供給される。ペイオフ(図示略)から繰り出された鋼材11は図1において左から右へ一定速度で走行し,給電ロール14を経て浴槽15に貯められた溶融鉛16に所定時間浸漬される。
 はじめに鋼材11に対して熱処理(加熱処理)が行われる。パテンティング装置が備える電源13は給電ロール14および浴槽15に接続され,電源13,給電ロール14,溶融鉛16および浴槽15を含む閉回路が構成される。給電ロール14から左側(上流側)においては鋼材11に電流が流れないように絶縁装置(図示略)が設けられる。給電ロール14から浴槽15に貯められた溶融鉛16の液面までの区間において,鋼材11には電源13から供給される電流が通電され,加熱される。
 鋼材11は,浴槽15に貯められた溶融鉛16の液面に入る直前箇所が最も加熱される。鋼材11の加熱温度(鋼材11の最高到達温度)は,後述する特性を発揮させるために975℃以下とされる。加熱温度が高すぎると結晶粒(オーステナイト粒)が成長し,金属組織が粗くなって靭性,特に絞りが小さくなるからである。もっとも加熱不足はFeとCの金属間化合物である鉄炭化物(一例としてセメンタイト)の非溶体化を招くので,好ましくは,鋼材11の加熱温度は800℃以上とされる。電源13の電圧または電流を調整することによって鋼材11の加熱温度は制御することができる。加熱時間は給電ロール14から溶融鉛16の液面までの経路長および鋼材11の走行速度によって調整される。
 浴槽15に貯められた溶融鉛16はガス炉(電熱ヒーターでもよい)によって一定温度に加熱されている。上述した鋼材11の加熱温度よりも溶融鉛16の温度は低く,溶融鉛16の液面に入る直前箇所において最高到達温度に加熱された鋼材11は,溶融鉛16に入るとすぐに冷却が開始される。
 溶融鉛16の温度(鉛炉温度),すなわち恒温変態温度は620℃以下とされる。鋼材11を急冷し,オーステナイトからパーライトや炭化物の析出を得るためである。もっとも,急冷しすぎると製品を脆くするマルテンサイトなどが発現するので溶融鉛16の下限温度は350℃程度とされる。
 溶融鉛16に浸漬され,その後に浴槽15から引き出されたパテンティングが完了した鋼材,すなわち熱処理鋼材12は,その後,水洗処理,皮膜処理に進み,必要に応じて伸線処理が行われる。
 図2はガス炉を用いてパテンティングした鋼材11(熱処理鋼材12)の温度変化(昇温カーブ)を,図3は図1に示すパテンティング装置を用いてパテンティングした鋼材11(熱処理鋼材12)の温度変化(昇温カーブ)を,それぞれ示している。図2および図3のグラフのいずれにおいても,鋼材11が溶融鉛16に進入したタイミングにおいて温度が急激に低下している。図2と図3とでは時間軸(横軸)の縮尺が相違することに留意されたい。
 図2を参照して,ガス炉を利用すると鋼材11は徐々に加熱される。ガス炉に代表される雰囲気加熱炉では,加熱に要する時間が鋼材11の線径に比例し,線径が細いほど加熱時間は短く,太くなるほど長くなる。図2,図3は線径φ2.11の鋼材11のグラフであり,ガス炉を利用すると最高到達温度(目標加熱温度)に到達するまでに40秒程度の時間を要している。他方,図3を参照して,図1に示すパテンティング装置を利用すると,鋼材11は数秒で最高到達温度(目標加熱温度)に到達する。図1に示すパテンティング装置は線径に関係なく昇温速度を一定にすることができる。
 図2のグラフと図3のグラフを対比すると,昇温カーブの形状が大きく異なっている。図2のグラフでは,オーステナイト化が開始される723℃付近から昇温速度が遅くなり,オーステナイト化に必要な時間の比率が長くなるのに対し,図3のグラフでは,723℃以上における昇温速度が速く,オーステナイト化に必要な時間の比率が短い。また,図2では最高温度到達後20秒程度保持されているのに対し,図3では最高温度到達後すぐに冷却が開始されている。
 出発線材である鋼材11およびこれをパテンティングした熱処理鋼材12は鉄(Fe)および炭素(C)を含む炭素鋼である。炭素含有量(炭素濃度)を0.38%(質量%を意味する。以下同じ)以上とすることによって十分な強度が得られやすく,1.05%以下とすることで加工性の低下,疲労限の低下等が抑制される。
 FeおよびCに加えて,マンガン(Mn),クロム(Cr),およびシリコン(Si)が熱処理鋼材12に含まれてもよい。
 マンガン(Mn)は脱酸材として含有されるものである。加工性低下の抑制のために1.0%以下の含有量にとどめられる。
 クロム(Cr)は一般にパーライトを微細化し,靭性の改善に効果がある。多量のCrの添加は逆に靭性の低下を招くので0.50%以下の含有量にとどめられる。
 シリコン(Si)は脱酸剤として使用される。延性劣化を避けるために1.5%程度の含有量にとどめられる。
 その他,バナジウム(V)(0.50%以下),モリブデン(Mo)(0.25%以下),ボロン(ホウ素)(B)(0.005%以下),チタン(Ti)(0.050%),ニッケル(Ni)(0.50%以下),アルミニウム(0.10%以下),ジルコニウム(Zr)(0.050%以下)等の他の元素を,用途に応じて鋼材11(熱処理鋼材12)に添加してもよい。
 以下の説明では,図2に示すような加熱が行われ,20秒程度の最高到達温度保持時間を確保して得られた熱処理鋼材12を「従来品」と呼び,図3に示すような加熱が行われ,最高温度到達後すぐに冷却を開始して得られた熱処理鋼材12を「開発品」と呼んで区別する。図4に,以下に説明する複数の鋼材11(熱処理鋼材12)の鋼種名とその成分をまとめておく。
(光学顕微鏡画像)(図5~図8)
 図5~図8は,熱処理前の鋼材11としてはいずれも同一(いずれも直径2.11mmのSWRH62A)であるが,図2および図3にそれぞれ示すようにパテンティングの方法を異ならせることによって得られた熱処理鋼材12の光学顕微鏡画像であり,図5および図6は従来品の光学顕微鏡画像,図7および図8は開発品の光学顕微鏡画像である。図5~図8に示す光学顕微鏡画像は,熱処理鋼材12を長手方向に研磨し,ナイタールを用いてエッチングした後に,熱処理鋼材12の中心部およびその近傍を撮影したものである。
 図5は溶融鉛16の温度を565℃として得られた従来品の光学顕微鏡画像,図6は溶融鉛16の温度を450℃として得られた従来品の光学顕微鏡画像である。溶融鉛16の温度を565℃とすると金属組織はパーライト組織となり(図5),溶融鉛16の温度を450℃にするとベイナイト組織になる(図6)。従来品は溶融鉛16の温度を565℃,450℃にすると,金属組織の違いがはっきり現れる。
 図7は溶融鉛16の温度を565℃として得られた開発品の光学顕微鏡画像,図8は溶融鉛16の温度を450℃として得られた開発品の光学顕微鏡画像である。図5,図6と比較して,開発品は従来品と比べて結晶が微細であることが分かる。また,溶融鉛16の温度が565℃であっても450℃であっても,金属組織はパーライト組織の特徴に似ており,ベイナイト組織の特徴が現れていない。溶融鉛16の温度を565℃としても,450℃としても,光学顕微鏡画像において従来品ほど金属組織に明確な相違が生じないことが分かる。
(走査電子顕微鏡画像)(図9A~図12B)
 図9A~図12Bは,いずれも熱処理前の鋼材11としてはいずれも同一(いずれも直径2.11mmのSWRH62A)であるが,図2および図3にそれぞれ示すようにパテンティングの方法を異ならせることによって得られた熱処理鋼材12の走査電子顕微鏡画像であり,図9A,図9B,図11Aおよび図11Bは従来品の走査電子顕微鏡画像,図10Aおよび図10Bは開発品の走査電子顕微鏡画像である。上述した光学顕微鏡画像と同様に,走査電子顕微鏡画像も,熱処理鋼材12を長手方向に研磨し,ナイタールを用いてエッチングした後に,熱処理鋼材12のワイヤ中心部近傍を撮影した。
 図9Aおよび図9Bはいずれも溶融鉛16の温度を565℃として得られた従来品の走査電子顕微鏡画像(以下,SEM画像という)であり,図9Aは倍率10,000倍のSEM画像を,図9Bは倍率50,000倍のSEM画像をそれぞれ示している。多数の板状(層状)のセメンタイト(FeC)(図9Aおよび図9Bにおいて白く見える線状部分)がフェライトとセメンタイトの層状組織(パーライト組織)中に確認される。セメンタイトの表面は平滑であり,複数のセメンタイトの板厚(層厚)はほぼ均一である(約30nm)。
 図10Aおよび図10Bはいずれも溶融鉛16の温度を565℃として得られた開発品のSEM画像であり,図10Aは倍率10,000倍のSEM画像を,図10Bは倍率50,000倍のSEM画像をそれぞれ示している。多数の板状(層状)の組織が確認される。図10Aおよび図10Bにおいて白く見える部分は,セメンタイト(FeC)が含まれるが,セメンタイトと異なる鉄炭化物(たとえばFe2~2.5C,Fe2~3C)を含むことがあり,その表面には球状の凸部が散見される。また複数の鉄炭化物の板厚(層厚)は不均一であり,従来品に比べて厚い(約60nm)。
 以下の説明では,従来品において確認される層状組織を構成する鉄炭化物である「セメンタイト」(FeC)と区別するために,開発品において確認される層状組織を構成する鉄炭化物(FeC,Fe2~2.5C,Fe2~3Cなど)を「特殊セメンタイト」と呼ぶ。
 図11Aおよび図11Bは,溶融鉛16の温度を450℃として得られた従来品のSEM画像であり,図11Aは倍率10,000倍のSEM画像を,図11Bは倍率50,000倍のSEM画像をそれぞれ示している。図11Aおよび図11Bにおいて白く見えるセメンタイトは板状(層状)となっておらず,パーライト組織ではなくベイナイト組織となっている。
 図12Aおよび図12Bは,溶融鉛16の温度を450℃として得られた開発品のSEM画像であり,図12Aは倍率10,000倍のSEM画像を,図12Bは倍率50,000倍のSEM画像をそれぞれ示している。図12A,図12Bにおいて白く見える特殊セメンタイトの表面に球状の凸部(凹凸部)が散見され,特異な形状をした棒状または板状の比較的等方的な部分が確認され,またそれらが組み合わされたような櫛状や網目状の部分,木の根のように立体的に網目状になった部分も確認される。これは従来のパーライト組織にもベイナイト組織にも見られない組織である。
(後方散乱電子画像)(図13~図15)(図16~図17)
 図13~図15は,熱処理前の鋼材11としてはいずれも同一(いずれも直径2.11mmのSWRH62A)であるが,図2および図3にそれぞれ示すようにパテンティングの方法を異ならせることによって得られた熱処理鋼材12の後方散乱電子(Backscattered Electron:BSE)画像であり,図13は従来品のBSE画像,図14および図15は開発品のBSE画像である(いずれも倍率は10,000倍)。図14と図15は鉛炉温度が異なっている。上述した光学顕微鏡画像および走査電子顕微鏡画像と異なり,後方散乱電子画像は,熱処理鋼材12を研磨し,アルゴンガスを用いたミリング処理を行い,熱処理鋼材12の長手方向を撮影した。図16は図13に示す従来品のBSE画像の一部拡大模式図を,図17は図14に示す開発品のBSE画像の一部拡大模式図を,それぞれ示している。
 図13は溶融鉛16の温度を565℃として得られた従来品のBSE画像である。図14は溶融鉛16の温度を450℃とした開発品のBSE画像,図15は溶融鉛16の温度を565℃とした開発品のBSE画像をそれぞれ示している。
 図13および図16に示すように,従来品のBSE画像には,旧オーステナイト粒界内においてフェライトとセメンタイトが層状に交互に並ぶ層状組織が確認される。従来品のBSE画像においてセメンタイトは互いに平行かつ細長くのびる複数の筋に見える。
 他方,図14,図15および図17に示すように,開発品のBSE画像においてもフェライトおよび特殊セメンタイトの層状組織は確認される。もっとも特殊セメンタイトは層状に並ぶもの(BSE画像において互いに平行かつ細長くのびる筋)はかなり少なく,層厚(BSE画像における筋の太さ)が不均一であり,分岐,屈曲,湾曲などをしている部分が多いことが分かる(視野の中での面積比は9%以上)。開発品のBSE画像において特殊セメンタイトはいわばまだら模様に見える。溶融鉛16の温度を565℃にした開発品(図15)では,溶融鉛16の温度を450℃にした開発品(図14)に比べると特殊セメンタイトはまっすぐにのびるが,従来品(図13)と比べると成長しておらず,やはり分岐,屈曲,湾曲している部分が多い。
(高炭素鋼SWRS92AのSEM画像,BSE画像)
 図18A~図21は,鋼種としてSWRS92Aを用いたもので,図18Aおよび図18Bは溶融鉛16の温度を565℃として得られた開発品のSEM画像である(図18Aの倍率は10,000倍,図18Bの倍率は50,000倍)。図19は溶融鉛16の温度を565℃として得られた開発品のBSE画像である。図20Aおよび図20Bは溶融鉛16の温度を450℃として得られた開発品のSEM画像でありそれぞれ倍率を10,000倍,50,000倍としたものである。図21は溶融鉛16の温度を450℃として得られた開発品のBSE画像である。図18A,図18B,図20Aおよび図20BのSEM画像は,熱処理鋼材12を研磨し,ナイタールを用いてエッチングした後に,熱処理鋼材12の長手方向を撮影したものである。図19および図21のBSE画像は,熱処理鋼材12を研磨し,アルゴンガスガスでミリングした後に,熱処理鋼材12の長手方向を撮影したものである。
 図18A,図18Bを参照して,開発品のSEM画像には特殊セメンタイトの表面に球状の凸部が散見される。図20A,図20Bを参照して,溶融鉛16の温度を低くすると(450℃),特殊セメンタイトの特異な形状が目立つものとなる。図19および図21を参照して,開発品のBSE画像においては,溶融鉛16の温度を565℃にしても(図19),450℃にしても(図21),層状に並ぶ特殊セメンタイトは少なく,まだら模様に見える。
(中炭素鋼SWRH42AのSEM画像,BSE画像)
 図22Aおよび図22Bは鋼種としてSWRH42Aを用いたもので,図22Aは溶融鉛16の温度を565℃として得られた従来品のSEM画像,図22Bは開発品のSEM画像である。図22Aと図22Bを比較すると,開発品(図22B)には従来品(図22A)よりも初析フェライトが多く存在する。他方,従来品のセメンタイトと開発品の特殊セメンタイトの形状の違いは分かりにくい。
 図23A,図23Bは鋼種としてSWRH42Aを用いたもので,図23Aは溶融鉛16の温度を565℃として得られた従来品のBSE画像,図23Bは溶融鉛16の温度を565℃として得られた開発品のBSE画像である。図22A,図22BのSEM画像に比べると,図23A,図23BのBSE画像には従来品のセメンタイトと開発品の特殊セメンタイトの形状の違いが分かりやすく表れている。従来品(図23A)ではセメンタイトがほぼ直線であるのに対し,開発品(図23B)において特殊セメンタイトは分岐,屈曲または湾曲している部分が多いことがわかる。
 図24Aおよび図24Bは鋼種としてSWRH42Aを用いたもので,図24Aは溶融鉛16の温度を450℃として得られた開発品のSEM画像,図24Bは溶融鉛16の温度を450℃として得られた開発品のBSE画像である。溶融鉛16の温度を565℃とした従来品のSEM画像(図22A)と,溶融鉛16の温度を450℃とした開発品のSEM画像(図24A)を比較すると,図24Aに示す開発品は特殊セメンタイトが微細なことがわかる。さらに溶融鉛16の温度を565℃とした従来品のBSE画像(図23A)と溶融鉛16の温度を450℃とした開発品のBSE画像(図24B)を比較すると,開発品の特殊セメンタイトの形状は,分岐,屈曲または湾曲している部分が多いことがわかる。従来品のセメンタイトおよび開発品の特殊セメンタイトの形状を確認するにはSEM画像よりもBSE画像の方が比較しやすい。
(鋼種SWRH62AのSEM画像)
 図25Aおよび図25Bはいずれも鋼種SWRH62Aを用いた開発品であって,400℃の溶融鉛16を用いた開発品のSEM画像であり,図25Aは3,500倍の倍率のSEM画像,図25Bは10,000倍の倍率のSEM画像である。図25A,図25Bに示す開発品のSEM画像においても特殊セメンタイトにおいて分岐,屈曲または湾曲している部分が多い。
 開発品において従来品と異なる金属組織が現われる要因には,以下が考えられる。すなわち,従来品は,熱処理の加熱時間が長いので炭素原子が十分に拡散する。そしてオーステナイト中の炭素濃度が均一である状態から急冷が始められる。溶融鉛16の温度が565℃であればオーステナイト粒界から核生成が起こり,生成された核からパーライト組織が成長する。溶融鉛16の温度を450℃にすると,フェライトが生成され,フェライトから押し出された炭素原子が濃縮し,フェライトが成長しながら粒状のセメンタイトを生成し,上部ベイナイト組織となる。
 他方,開発品は,熱処理の加熱時間がごく短いので,加熱時に未溶解炭化物がナノオーダーで残っているか,未溶解炭化物として観察できない程度に残った状態になり,炭素原子が完全には拡散しないと考えられる。オーステナイト中の炭素濃度が不均一な状態から急冷が開始されるので,炭素濃度の高いところから炭化物の核生成が生じる。従来品においてパーライト組織が生成される溶融鉛16の温度(565℃)では,パーライト組織と同じ生成メカニズムも生じるが,炭素濃度が不均一であるので,分岐,屈曲,湾曲した特殊セメンタイトが生成されると考えられる。また,ベイナイト組織が生成される溶融鉛16の温度(450℃)では,オーステナイト中の炭素濃度の高いところから核生成が始まるので,パーライト組織の生成メカニズムとは異なる生成メカニズムになり,分岐,屈曲または湾曲した部分を多く含む特殊セメンタイトが生成されると考えられる。
 また,ベイナイト組織が生成される溶融鉛16の温度(450℃)では,炭素含有量が多くなればなるほど,溶体化前はフェライト部分が少なくなり,オーステナイト中の炭素濃度が均一化されやすくなるために,ベイナイト組織が生成される割合が多くなっていく。開発品では,溶融鉛16の温度がたとえば450℃のように比較的低い場合,ベイナイト組織に多くの分岐,屈曲または湾曲の部分を含む特殊セメンタイトが混じることになる。
 分岐,屈曲または湾曲している部分(以下,特異形状部という)がどの程度含まれているかを以下のように観察した。すなわち,熱処理鋼材12を長手方向に研磨することで長手方向に断面を形成し,中心部から熱処理鋼材12の直径の1/2以内の範囲を撮影範囲として,10,000倍以上の倍率で5枚以上撮像し,合計で500μmの撮影面積のBSE画像を撮影する。撮影した画像において,撮影時の倍率で0.5μm間隔になるように縦方向および横方向のそれぞれに格子状になるように線を描く。撮影時の倍率において0.5μm四方の複数の矩形枠を,特異形状部が存在する矩形枠と特異形状部が存在しない矩形枠とに分ける。すなわち,複数の矩形枠において,図26(a),(b)に示すような分岐した特異形状部を含む矩形枠,図26(c),(d)および(e)に示すような80°以上屈曲している特異形状部を含む矩形枠,ならびに図26(f)のように曲率半径0.5μm以内で湾曲している特異形状部が存在する矩形枠をカウントする。一つの特異形状部が複数の矩形枠にまたがって存在するときは,分岐,屈曲または湾曲をしている部分が含まれている矩形枠のみをカウントする。また,一つのセメンタイトまたは特殊セメンタイトが異なる矩形枠内において分岐,屈曲または湾曲をしている場合はそれぞれの個所の矩形枠をカウントする。特異形状部の形状の向きによってはBSE画像において特異形状部の形状が不明確となって形状判断ができないものもあり,その場合はその矩形枠はカウントから除外する。特異形状部の形状が不明な矩形枠の割合が全ての矩形枠に対して5%以上になるときはその画像は使用せずに再度、撮影を行うものとする。
 図27は,炭素含有量の異なる複数の従来品および開発品のそれぞれについて,上述した特異形状部を含む矩形枠のカウントに基づいて,BSE画像において特異形状部が占める割合を示したものである。図27から,開発品(白丸)は従来品(黒丸)に比べて特異形状部の割合が多く,開発品には特異形状部が9%以上含まれることが分かる。
 従来品の組織と異なる組織を持つ開発品(熱処理鋼材12)について,その特性を見極めるべく,上述した画像解析に加えて様々な測定を行った。測定は従来品の測定も併せて行っている。以下,測定結果を説明する。
 図28は横軸を粒界設定角度(°),縦軸を平均結晶粒径(μm)とするグラフであり,破線が開発品を,実線が従来品を,それぞれ示している。図22にはSWRH62Aの5つの開発品についてのグラフ(破線)と,2つの従来品についてのグラフ(実線)が示されている。5つの開発品の詳細(鋼種,直径,恒温変態温度(冷却温度,鉛炉温度))および2つの従来品の詳細は以下のとおりである。
 開発品(破線)
(1)SWRH62A,φ2.11,恒温変態温度565℃
(2)SWRH62A,φ1.06,恒温変態温度600℃
(3)SWRH62A,φ2.11,恒温変態温度450℃
(4)SWRH62A,φ2.11,恒温変態温度425℃
(5)SWRH62A,φ1.06,恒温変態温度475℃
 従来品(実線)
(a)SWRH62A,φ2.11,恒温変態温度565℃
(b)SWRH62A,φ1.06,恒温変態温度600℃
 図28のグラフにおいて横軸に示す粒界設定角度はEBSD(電子線後方散乱回折:Electron Back Scattered Diffraction )解析において設定される角度である。EBSD解析では研磨されたサンプル断面の測定領域が測定点(一般に「ピクセル」と呼ばれる)に区切られ,区切られたピクセルのそれぞれに電子線が入射され,入射電子線がピクセルにおいて反射されることで得られる反射電子に基づいて,ピクセルそれぞれにおける結晶方位が測定される。得られた結晶方位データが上記EBSD解析ソフトウェアを用いて解析され,各種パラメータが算出される。今回使用したEBSD検出器は,株式会社TSLソリューションズ製のもので,ピクセルには正6角形のピクセルが採用されている。
 EBSD解析ソフトウェアでは,ピクセルごとに得られる結晶方位を用いて,隣り合うピクセルとの間の結晶方位差が上述した粒界設定角度以上である境界が「粒界」として扱われ,粒界によって囲まれる範囲が「結晶粒」として扱われる。粒界設定角度(結晶粒界設定値)を小さくすると,結晶粒径は小さくなり,観測領域内における結晶数は多くなる。逆に粒界設定角度を大きくすると,結晶粒径は大きくなり,観測領域内における結晶数は少なくなる。EBSD解析ではフェライトの結晶方位が評価される。
 図28を参照して,従来品(実線参照)は,EBSD解析において粒界設定角度を大きくすればするほど平均結晶粒径(結晶粒面積と同等面積の円の直径に換算)が大きくなるのに対し,開発品(破線参照)は,EBSD解析において粒界設定角度に関わらず平均結晶粒径がほぼ一定であることが分かる。粒界設定角度が大きくなるほど,従来品(実線)の平均結晶粒径と開発品(破線)の平均結晶粒径との差が大きくなる。
 図29は,炭素含有量の異なる複数の従来品および開発品のそれぞれについて,粒界設定角度を15°に設定して平均結晶粒径を測定したものである。図29の横軸は炭素含有量(質量%)であり,縦軸は熱処理鋼材12の中心範囲(中心部から片側方向に直径の1/4以内,両側合わせて直径の1/2以内の範囲)について,粒界設定角度を15°に設定したときの平均結晶粒径(μm)を示している。
 図29には,19種類の開発品についての炭素含有量および平均結晶粒径が白丸によって,10種類の従来品について炭素含有量および平均結晶粒径が黒丸によって示されている。19種類の開発品の詳細(鋼種,直径,恒温変態温度(冷却温度,鉛炉温度))および10種類の従来品の詳細は以下のとおりである。
開発品
(1)SWRH42A,φ2.11,恒温変態温度565℃
(2)SWRH42A,φ2.11,恒温変態温度450℃
(3)SWRH62A,φ2.11,恒温変態温度565℃
(4)SWRH62A,φ2.11,恒温変態温度450℃
(5)SWRH62A,φ2.11,恒温変態温度425℃
(6)SWRH62A,φ1.06,恒温変態温度600℃
(7)SWRH62A,φ1.06,恒温変態温度475℃
(8)SWRH82A,φ2.11,恒温変態温度565℃
(9)SWRH82A,φ2.11,恒温変態温度450℃
(10)SWRH82B,φ2.11,恒温変態温度565℃
(11)SWRH82B,φ2.11,恒温変態温度450℃
(12)SWRH82B,φ2.51,恒温変態温度450℃
(13)SWRS92A,φ2.11,恒温変態温度565℃
(14)SWRS92A,φ2.11,恒温変態温度450℃
(15)92A-Cr,φ2.11,恒温変態温度565℃
(16)92A-Cr,φ2.11,恒温変態温度450℃
(17)92B-Si,φ2.11,恒温変態温度565℃
(18)102A-Cr,φ2.11,恒温変態温度565℃
(19)102A-Cr,φ2.11,恒温変態温度450℃
従来品
(a)SWRH42A,φ2.11,恒温変態温度565℃
(b)SWRH62A,φ2.11,恒温変態温度565℃
(c)SWRH62A,φ1.06,恒温変態温度600℃
(d)SWRH82A,φ2.11,恒温変態温度565℃
(e)SWRH82B,φ2.11,恒温変態温度565℃
(f)SWRH82B,φ2.51,恒温変態温度565℃
(g)SWRS92A,φ2.11,恒温変態温度565℃
(h)92A-Cr,φ2.11,恒温変態温度565℃
(i)92B-Si,φ2.11,恒温変態温度580℃
(j)102A-Cr,φ2.11,恒温変態温度565℃
 図29のグラフを参照して,グラフ中に示す破線は「10×炭素含有量(%)+7」(μm)を表す直線である。従来品(黒丸)は,粒界設定角度を15°に設定すると,いずれも平均結晶粒径が「10×炭素含有量(%)+7」μmを超えるのに対し,開発品(白丸)は同様に粒界設定角度を15°に設定すると,平均結晶粒径がいずれも「10×炭素含有量(%)+7」μm以下であった。従来品と開発品は,粒界設定角度15°における平均結晶粒径において明確に区別することができる。
 図30は,横軸を熱処理鋼材12の中心部の平均結晶粒径(μm),縦軸を熱処理鋼材12の表面近傍の平均結晶粒径と中心部の平均結晶粒径の比率(表面近傍の平均結晶粒径/中心部の平均結晶粒径)としたグラフである。縦軸の値が1.00を超えると,いわば中心部に比べて表面部が粗いことを意味する。図30のグラフは,図29のグラフと同様にEBSD解析によって得られる粒界設定角度15°における平均結晶粒径を用いて作成したものであり,黒丸が従来品を,白丸が開発品をそれぞれ示している。図30にも,従来品(黒丸)および開発品(白丸)のそれぞれについて,溶融鉛16の恒温変態温度,線種,線径等を異ならせた複数の熱処理鋼材12の測定結果が示されている(このことは以下においても同じである)。
 図30を参照して,開発品(白丸)は表面が粗いものはほとんどなく,すなわち表面近傍と中心部の平均結晶粒径の比率(縦軸の値)が1.00を大幅に超えるものはなく,上記比率は0.70~1.10の範囲に収まった。他方,従来品(黒丸)についてもその多くは,上記比率が0.70~1.10の範囲に収まっている。しかしながら,上記比率が1.10に近い従来品も見つかり,表面がやや粗いものが従来品には含まれている。上記比率が0.7を下回る従来品も存在している。表面の粗さは製品の靭性に密接に関連する。開発品は従来品と同等以上の靭性を有していることが分かる。
 図31は,図28のグラフの作成に用いた5種類の開発品および2種類の従来品と同じ開発品および従来品を用いた測定結果を示すもので,横軸を粒界設定角度(°)とし,縦軸を粒界設定角度15°の結晶粒数に対する粒界設定角度5°および2°のときの結晶粒数の割合とするグラフである。EBSD解析ソフトウェアは様々な粒界設定角度における結晶粒数を算出(カウント)することができる。
 図31を参照して,上記割合を算出すると,従来品(実線)と開発品(破線)とでは大きな乖離が生じる。従来品と開発品は上記割合においても違いを有している。
 図32は,図29のグラフの作成に用いた19種類の開発品および10種類の従来品と同じ開発品および従来品を用いた測定結果を示すもので,横軸を炭素含有量とし,縦軸を粒界設定角度15°の時の結晶粒数に対する粒界設定角度5°の時の結晶粒数の割合とするグラフである。図32のグラフには,「5.4×炭素含有量(%)-0.95」を示す直線が破線によって示されている。開発品(白丸)はいずれも上記直線よりも下側のグラフ領域に,従来品(黒丸)はいずれも上記直線よりも上側のグラフ領域に,それぞれプロットされている。粒界設定角度15°の時の結晶粒数に対する粒界設定角度5°の時の結晶粒数の割合によっても,開発品と従来品とを明確に区別することができる。
 図33は,上述と同様に19種類の開発品および10種類の従来品を用いた測定結果を示すもので,横軸を炭素含有量とし,縦軸を粒界設定角度15°の時の結晶粒数に対する粒界設定角度2°の結晶粒数の割合とするグラフである。図33のグラフには「9.8×炭素含有量(%)-1.9」を表す直線が破線によって示されている。開発品(白丸)はいずれも上記直線よりも下側のグラフ領域に,従来品(黒丸)はいずれも上記直線よりも上側のグラフ領域に,それぞれプロットされている。粒界設定角度15°のときの結晶粒数に対する粒界設定角度2°のときの結晶粒数の割合によっても,開発品と従来品とを明確に区別することができる。
 図34は,図28のグラフの作成に用いた5種類の開発品および2種類の従来品と同じ開発品および従来品を用いた測定結果を示すもので,横軸を粒界設定角度(°),縦軸を平均GOS値(°)とするグラフである。
 GOS(Grain Orientation Spread)値(平均GOS値とも言う)とは,同一結晶粒内の2つのピクセルのすべての組み合わせでの結晶粒内方位差を計算し,これを平均化したものであり,ひずみを表す指標として用いられる。上述のように,粒界設定角度に応じて結晶粒界は変動するので,粒界設定角度を変えるとGOS値は変動する。GOS値もEBSD解析ソフトウェアによって算出される値である。以下,平均GOS値は面積比(Area Fraction)から求めた値を使用する。
 図34を参照して,開発品(破線)のGOS値は従来品(実線)のGOS値に比べて小さく,粒界設定角度が大きいほど開発品のGOS値と従来品のGOS値は乖離する。たとえば,粒界設定角度15°におけるGOS値に着目すると,開発品(破線)のGOS値は6°以下のものが多いのに対し,従来品(実線)についてはいずれもGOS値が6°を超えている。
 熱処理鋼材12に含まれる炭素量によってもGOS値は変動する。図35を参照して,図35は粒界設定角度を15°として計測したもので,横軸を熱処理鋼材12に占める炭素含有量(%),縦軸をGOS値(°)とするグラフである。従来品は黒丸によって,開発品は白丸によってプロットされている。また,図35のグラフには「11×(炭素含有量(%)-0.42)+5.3」を表す直線が破線によって示されている。
 図35を参照して,炭素含有量が比較的少ない熱処理鋼材12については,従来品(黒丸)と開発品(白丸)の粒界設定角度15°のGOS値の差は小さいが,炭素含有量が比較的多い熱処理鋼材12については従来品と開発品とでGOS値の違いが大きくなる。開発品(白丸)はいずれも粒界設定角度15°におけるGOS値が「11×(炭素含有量(%)-0.42)+5.3」以下であるのに対し,従来品(黒丸)はいずれも粒界設定角度15°におけるGOS値が「11×(炭素含有量(%)-0.42)+5.3」を超えている。
 図36は,複数の開発品および複数の従来品の測定結果を示すもので,横軸をGOS値(°),縦軸を粒界設定角度15°における面積比を用いた累積度数とするグラフである。
 図36を参照して,開発品(破線)については,GOS値が10°まで(0°~10°の範囲)の面積比を用いた累積度数が80%を超えている。図36において,たとえばGOS値が10°であるときの累積度数は,GOS値が0°~10°の範囲のものが全体に対してどの程度含まれているかを表している。他方,従来品(実線)についてはGOS値のばらつきが大きく,GOS値が10°まで(0°~10°の範囲)の累積度数が80%を超えることはなかった。従来品と開発品は,粒界設定角度15°におけるGOS値10°まで(0°~10°の範囲)の累積度数においても明確な相違を有している。
 図37は,横軸を炭素含有量(%),縦軸を粒界設定角度15°におけるGOS値10°までの面積比を用いた累積度数とするグラフである。従来品は黒丸によって,開発品は白丸によってプロットされている。図37には,-0.1C-1.3C+1.1C+0.7(Cは炭素含有量(%))の曲線が破線によって示されている。
 図37を参照して,開発品(白丸)は,炭素含有量を変えても,粒界設定角度15°におけるGOS値10°までの累積度数は比較的大きいのに対し,従来品(黒丸)については炭素含有量が増えると粒界設定角度15°におけるGOS値10°までの累積度数は小さくなる傾向を示している。また,開発品(白丸)は,粒界設定角度15°におけるGOS値10°までの累積度数は0.1C-1.3C+1.1C+0.7を超えているのに対し,従来品(黒丸)は,粒界設定角度15°におけるGOS値10°までの累積度数は0.1C-1.3C+1.1C+0.7未満となっている。
 図38は,横軸を真歪,縦軸を引張強さ(MPa)とする,鋼種SWRH62Aの熱処理鋼材12の加工硬化曲線を示している。
 図38には4つの開発品のグラフ(いずれも破線)と2つの従来品のグラフ(いずれも実線)が示されている。開発品のグラフとしては溶融鉛16の温度(恒温変態温度)を425℃としたもの(2つ),450℃としたもの,および565℃としたものが示されている。従来品のグラフとしては,溶融鉛16の温度を450℃としたもの,および565℃としたものが示されている。溶融鉛16の温度が425℃である2つの開発品のグラフ(425℃その1および425℃その2)は溶融鉛16における鋼材11(熱処理鋼材12)の浸漬時間を異ならせたものである。
 破線(開発品)のグラフを比較すると,恒温変態温度を425℃または450℃とした開発品の方が,恒温変態温度を565℃とした開発品よりも引張強さに優れていることが分かる。恒温変態温度,すなわち溶融鉛16の温度を制御することによって,開発品の引張り強さを制御可能であることが分かる。また,恒温変態温度を425℃まで下げても引張強さに優れた熱処理鋼材12を得ることができており,恒温変態温度(溶融鉛16の温度)を565℃とする場合に比べると浴槽15からの放熱ロスを削減でき,燃料費を約20%削減することができる。
 図39Aおよび図39Bは,恒温変態温度(鉛炉温度)を425℃としかつ浸漬時間を長くした熱処理鋼材12のSEM画像であり(図38の「425℃その1」のグラフに対応),図40Aおよび図40Bは,恒温変態温度を425℃としかつ浸漬時間を短くした(その1の約半分),熱処理鋼材12のSEM画像である(図38の「425℃その2」のグラフに対応)。図39Aと図40AのSEM画像は倍率3,500倍のSEM画像,図39Bおよび図40Bは倍率10,000倍のSEM画像である。
 図39Aおよび図39Bに示すSEM画像にはミクロマルテンサイトがみられず,図40Aおよび図40Bに示すSEM画像にはミクロマルテンサイトがみられる。しかしながら,図38のグラフを参照すると,425℃その1のグラフと425℃その2のグラフにほとんど差はなく,いずれも同じ加工度(真歪)において従来品よりも靭性を保ったまま高強度化が図られている。開発品は若干のミクロマルテンサイトが存在しても問題のない特性を得ることができる。
 図41は他の鋼種,具体的には鋼種がSWRH42A,SWRH82AおよびSWRH82Bである開発品および従来品についての加工硬化曲線を示している。開発品については溶融鉛16の温度(恒温変態温度)を565℃にしたものと450℃にしたものが示されている。SWRH62A以外の上述の鋼種についても,同じ鋼種同士で従来品と開発品を比較すると,従来品よりも開発品の引張強さが優れている。
 図42はさらに他の鋼種,すなわち鋼種がSWRS92A,92A-Cr,92B-Siおよび102A-Crである開発品および従来品についての加工硬化曲線を示している。上述した鋼種についても従来品よりも開発品の引張強さが優れている。
 炭素含有量の観点から図38,図41および図42を比較する。溶融鉛16の温度を450℃としたときの開発品の引張強さに着目すると,炭素含有量が少ないほど(たとえば図38を参照),同じ鋼種の開発品と従来品とを比較すると,開発品の方が従来品に比べて加工硬化曲線の傾きが大きくなっており,引張強さが高くなりやすい。逆に言えば,炭素含有量が多くなるほど(たとえば図42を参照),開発品の加工硬化曲線の傾きは従来品の加工硬化曲線の傾きに近づく。もっとも,熱処理直後(真歪が0のとき)の引張強さに着目すると,いずれの鋼種についても,同じ鋼種同士で比較すると,従来品よりも開発品の方の引張強さが高く,開発品は従来品よりも引張強さが優れていることがわかる。
 溶融鉛16の温度を565℃とした場合,溶融鉛16の温度を450℃とした場合ほどは開発品と従来品との間の加工硬化曲線の傾きの差は生じない。もっとも,溶融鉛16の温度を565℃とした場合も,いずれの鋼種についても,同じ鋼種同士で比較すると,従来品よりも開発品の方の引張強さが高く,開発品は従来品よりも引張強さが優れていることがわかる。
 たとえば鉛炉温度を450℃とした鋼種SWRH82Aの開発品の加工硬化曲線と,鉛炉温度を同じく450℃とした鋼種SWRH82B(マンガン量が多いものである)の開発品の加工硬化曲線を比べると,ほとんど同じである。同様に,鉛炉温度を450℃とした鋼種SWRS92Aの開発品の加工硬化曲線と,鉛炉温度を同じく450℃とした鋼種92A-Cr(クロム添加されたものである)の開発品の加工硬化曲線を比べると,ほとんど同じである。これは,開発品については,高価な合金元素(上述のマンガンやクロム)の添加が無くても引張強さを高くすることができることを意味する。すなわち,開発品は,高強度化のために高価な合金元素(マンガン,クロムなど)を含む鋼種を採用しなくても高強度化が達成される。コスト削減をすることができる。
 図43は,従来品と開発品のそれぞれについての,引張試験時の絞りを測定したもので,横軸が引張試験時の引張強さを,縦軸が絞りを示している。グラフ中に示す破線は「-0.000064×TS+0.09×TS+46」(%)を表す曲線である(TSは引張強さ(MPa))。開発品(白丸)および従来品(黒丸)のいずれについても,引張強さが高くなるほど絞りが低下する傾向があるが,従来品(黒丸)に比べて開発品(白丸)は絞りが良好である。図43を参照して,開発品の絞りはいずれも「-0.000064×TS+0.09×TS+46」を超えているのに対し,従来品の絞りは「-0.000064×TS+0.09×TS+46」を超えることはなかった。従来品と開発品は絞りによっても明確に区別することができる。
 図44は,鋼種SWRH62Aの従来品および開発品のS-S曲線を示すもので,横軸が引張試験時の伸び(%)を,縦軸が引張試験時の荷重(引張強さ)(MPa)を示している。図45は鋼種102A-Crの従来品および開発品のS-S曲線を示している。
 材料に力を加えていくと,初めはばねのように力の大きさに比例して変形するが,ある大きさの力を境に大きく変形するようになる。この力の大きさが降伏点と呼ばれ,降伏点の前が弾性,後が塑性と呼ばれる。弾性範囲では力を取り除くと材料は元の形に戻るが,降伏点を超えて塑性範囲まで力を加えると力を取り除いても元の形に戻らず変形が残る。
 図44を参照して,熱処理鋼材12の炭素含有量が比較的少ない場合,開発品(破線)は明確な降伏点を示す(図44において傾きが急激に変化している荷重が降伏点である)。他方,従来品(実線)は降伏点が不明確である。
 図45を参照して,熱処理鋼材12の炭素含有量が比較的多い場合,従来品のみならず開発品においても降伏点は不明瞭になる。
 図46は図44の一部を拡大したものである。S-S曲線の弾性域に接する直線αを伸び0.2%分平行に移動させた直線βとS-S曲線との交点の荷重(引張強さ)は「0.2%耐力」と呼ばれる。直線αを伸び0.4%分平行に移動させた直線γとS-S曲線との交点の荷重(引張強さ)は「0.4%耐力」と呼ばれる。
 図47は,多数の開発品および従来品のそれぞれについて,横軸を炭素含有量,縦軸を0.4%耐力と0.2%耐力の差(以下,耐力差という)とするグラフを示している。また,図47には「45×炭素含有量(%)-3」(MPa)を表す直線が破線によって示されている。炭素含有量に関わらず,開発品(白丸)の上記耐力差は従来品(黒丸)の上記耐力差よりも低い。また,従来品(黒丸)は上記耐力差がいずれも「45×炭素含有量-3」MPaを超えるのに対し,開発品(白丸)の上記耐力差はいずれも「45×炭素含有量-3」MPa以下である。従来品と開発品は上記耐力差においても明確に区別することができる。
 恒温変態温度(鉛炉温度)を下げることで,引張強さを従来品と同等以上とすることができる。一例として,めっきをした開発品の熱処理鋼材12を用いて金網を作成したところ,従来品よりも高強度で延性に富む製品ができた。熱処理後にめっきを行い,編網をして金網や蛇篭などを作成することで,従来品より高強度で耐衝撃性能が高くなる可能性がある。
 11 鋼材
 12 熱処理鋼材
 13 電源
 14 給電ロール
 15 浴槽
 16 溶融鉛

Claims (13)

  1.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     粒界設定角度15°における平均結晶粒径が10×C+7(μm)以下(Cは炭素含有量(%))であることを特徴とする,
     熱処理鋼材。
  2.  (粒界設定角度15°における表面部の平均結晶粒径)/(粒界設定角度15°における中心部の平均結晶粒径)が0.70以上1.10以下であることを特徴とする,
     請求項1に記載の熱処理鋼材。
  3.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     (粒界設定角度5°における結晶粒数)/(粒界設定角度15°における結晶粒数)が5.4×C-0.95以下(Cは炭素含有量(%))であることを特徴とする,
     熱処理鋼材。
  4.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     (粒界設定角度2°における結晶粒数)/(粒界設定角度15°における結晶粒数)が9.8×C-1.9以下(Cは炭素含有量(%))であることを特徴とする,
     熱処理鋼材。
  5.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     粒界設定角度15°におけるGOS値が11×(C-0.42)+5.3以下(Cは炭素含有量(%))であることを特徴とする,
     熱処理鋼材。
  6.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     粒界設定角度15°におけるGOS値0°~10°の範囲の累積度数が,-0.1C-1.3C+1.1C+0.7(Cは炭素含有量(%))以上であることを特徴とする,
     熱処理鋼材。
  7.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     反射電子像(BSE)によって組織を観察したときに,フェライトと鉄炭化物の層状組織において,分岐,屈曲,湾曲している鉄炭化物の面積比が視野中に9%以上含まれていることを特徴とする,
     熱処理鋼材。
  8.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     電子走査顕微鏡(SEM)によって組織を観察したときに,フェライトと鉄炭化物の層状組織において,上記鉄炭化物の表面に球状の凸部が観察されることを特徴とする,
     熱処理鋼材。
  9.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     電子走査顕微鏡(SEM)によって組織を観察したときに,フェライトと鉄炭化物の層状組織において,上記鉄炭化物の表面に凹凸があり,立体的に櫛状,網目状になった棒状もしくは板状の等方的な鉄炭化物が生成している,
     熱処理鋼材。
  10.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     引張強さをTS(MPa)としたときに,絞りが-0.000064TS+0.09TS+46(%)以上であることを特徴とする,
     熱処理鋼材。
  11.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である熱処理鋼材であって,
     S-S曲線において求められる0.4%耐力から上記S-S曲線において求められる0.2%耐力を減算した耐力差が,45×C-3(MPa)以下(Cは炭素含有量(%))であることを特徴とする,
     熱処理鋼材。
  12.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である鋼材を用意する工程と,
     上記鋼材自体を発熱させることによって上記鋼材を直接に加熱する工程と,
     恒温変態を行うことができる冷却媒体が貯められた浴槽に上記加熱された鋼材を通過させることによって上記鋼材を冷却する工程と,を含み,
     上記加熱工程は加熱最終段階の温度勾配が一番大きく,上記加熱工程の加熱最終段落において上記鋼材が所定加熱最高温度に到達した直後に上記加熱された鋼材を上記冷却媒体に進入させることによって,上記所定加熱最高温度を保持せずに冷却を開始することを特徴とする,
     鋼材の熱処理方法。
  13.  質量%においてC:0.38~1.05%,Mn:0.0~1.0%,Cr:0.0~0.50%およびSi:0.0~1.5%を含有し,残部がFeおよび不可避的不純物である鋼材を,常温から820℃以上に数秒内に加熱し,加熱最高温度を保持することなく,加熱された鋼材を数秒内に620℃以下に冷却する,
     鋼材の熱処理方法。
PCT/JP2022/017584 2021-04-15 2022-04-12 熱処理鋼材および鋼材の熱処理方法 WO2022220238A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22788163.8A EP4324944A1 (en) 2021-04-15 2022-04-12 Heat-treated steel material and heat treatment method for steel material
CN202280028481.XA CN117120654A (zh) 2021-04-15 2022-04-12 热处理钢材以及钢材的热处理方法
KR1020237039208A KR20230170753A (ko) 2021-04-15 2022-04-12 열처리 강재 및 강재의 열처리 방법
JP2023514654A JPWO2022220238A1 (ja) 2021-04-15 2022-04-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-069177 2021-04-15
JP2021069177 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022220238A1 true WO2022220238A1 (ja) 2022-10-20

Family

ID=83640085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017584 WO2022220238A1 (ja) 2021-04-15 2022-04-12 熱処理鋼材および鋼材の熱処理方法

Country Status (5)

Country Link
EP (1) EP4324944A1 (ja)
JP (1) JPWO2022220238A1 (ja)
KR (1) KR20230170753A (ja)
CN (1) CN117120654A (ja)
WO (1) WO2022220238A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322480A (ja) * 1993-05-13 1994-11-22 Sumitomo Metal Ind Ltd 伸線強化高強度鋼線用線材およびその製造方法
JPH10183242A (ja) * 1996-12-20 1998-07-14 Sumitomo Metal Ind Ltd 高強度鋼線の製造方法
JP3599551B2 (ja) 1998-01-09 2004-12-08 株式会社神戸製鋼所 生引き性に優れた線材
JP2008007856A (ja) * 2006-06-01 2008-01-17 Nippon Steel Corp 高延性の直接パテンティング線材の製造方法
JP2016056438A (ja) * 2014-09-12 2016-04-21 新日鐵住金株式会社 鋼線材及び鋼線材の製造方法
JP2017504721A (ja) * 2013-12-24 2017-02-09 アルセロールミタル・ワイヤ・フランス 高い疲労強度および水素脆性に対する耐性を有する冷間圧延鋼線ならびに該鋼線が組み込まれる可撓性導管の補強
WO2018012625A1 (ja) * 2016-07-14 2018-01-18 新日鐵住金株式会社 鋼線
WO2020032785A1 (ko) * 2018-08-08 2020-02-13 주식회사 포스코 연질 열처리 시간 단축형 냉간 압조용 선재 및 그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322480A (ja) * 1993-05-13 1994-11-22 Sumitomo Metal Ind Ltd 伸線強化高強度鋼線用線材およびその製造方法
JPH10183242A (ja) * 1996-12-20 1998-07-14 Sumitomo Metal Ind Ltd 高強度鋼線の製造方法
JP3599551B2 (ja) 1998-01-09 2004-12-08 株式会社神戸製鋼所 生引き性に優れた線材
JP2008007856A (ja) * 2006-06-01 2008-01-17 Nippon Steel Corp 高延性の直接パテンティング線材の製造方法
JP2017504721A (ja) * 2013-12-24 2017-02-09 アルセロールミタル・ワイヤ・フランス 高い疲労強度および水素脆性に対する耐性を有する冷間圧延鋼線ならびに該鋼線が組み込まれる可撓性導管の補強
JP2016056438A (ja) * 2014-09-12 2016-04-21 新日鐵住金株式会社 鋼線材及び鋼線材の製造方法
WO2018012625A1 (ja) * 2016-07-14 2018-01-18 新日鐵住金株式会社 鋼線
WO2020032785A1 (ko) * 2018-08-08 2020-02-13 주식회사 포스코 연질 열처리 시간 단축형 냉간 압조용 선재 및 그 제조 방법

Also Published As

Publication number Publication date
CN117120654A (zh) 2023-11-24
EP4324944A1 (en) 2024-02-21
JPWO2022220238A1 (ja) 2022-10-20
KR20230170753A (ko) 2023-12-19

Similar Documents

Publication Publication Date Title
JP4555768B2 (ja) 高強度ばね用鋼線
EP2692893B1 (en) Hot-rolled steel sheet and production method therefor
KR100851083B1 (ko) 고강도 스프링용 강 및 강선
CN106103774B (zh) 延性、延伸凸缘性和焊接性优异的高强度冷轧钢板、高强度热浸镀锌钢板、以及高强度合金化热浸镀锌钢板
EP2530180A1 (en) Steel sheet and process for producing steel sheet
JP6319437B2 (ja) 冷間鍛造用鋼材
EP3342892A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
EP3378964A1 (en) Wire rod for steel wire, and steel wire
WO2018193810A1 (ja) 高強度低熱膨張合金線
JP2016194158A (ja) 熱延鋼板及びその製造方法
US20180087125A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
CN109196132A (zh) 钢线
JPWO2020022481A1 (ja) 高強度鋼板
JP5900710B2 (ja) 伸線加工性に優れた高炭素鋼線材とその製造方法
JP6809652B2 (ja) 鋼板及びその製造方法
WO2022220238A1 (ja) 熱処理鋼材および鋼材の熱処理方法
JP6260745B1 (ja) 高強度冷延鋼板およびその製造方法
JP2017106048A (ja) 機械構造部品用鋼線
JP6809651B2 (ja) 鋼板及びその製造方法
JP2018162495A (ja) 高強度高延性鋼板およびその製造方法
WO2017033773A1 (ja) 冷間加工用機械構造用鋼、およびその製造方法
WO2022220281A1 (ja) 伸線材および伸線材の製造方法
JP6719518B2 (ja) 延性、伸びフランジ性、および溶接性に優れた引張強度が980MPa以上、且つ、0.2%耐力が700MPa未満の高強度冷延鋼板または高強度溶融亜鉛めっき鋼板
JP6719517B2 (ja) 延性、伸びフランジ性、および溶接性に優れた引張強度が980MPa以上、且つ、0.2%耐力が700MPa以上の高強度冷延鋼板または高強度溶融亜鉛めっき鋼板
JP7352069B2 (ja) 線材及び鋼線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514654

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237039208

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039208

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022788163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022788163

Country of ref document: EP

Effective date: 20231115