WO2022218113A1 - 金属滤波器、滤波回路模块及耦合量大小的调节方法 - Google Patents

金属滤波器、滤波回路模块及耦合量大小的调节方法 Download PDF

Info

Publication number
WO2022218113A1
WO2022218113A1 PCT/CN2022/082345 CN2022082345W WO2022218113A1 WO 2022218113 A1 WO2022218113 A1 WO 2022218113A1 CN 2022082345 W CN2022082345 W CN 2022082345W WO 2022218113 A1 WO2022218113 A1 WO 2022218113A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
coupling
zero point
point structure
coupled
Prior art date
Application number
PCT/CN2022/082345
Other languages
English (en)
French (fr)
Inventor
谢懿非
黄友胜
丁海
孟弼慧
Original Assignee
京信射频技术(广州)有限公司
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信射频技术(广州)有限公司, 京信通信技术(广州)有限公司 filed Critical 京信射频技术(广州)有限公司
Publication of WO2022218113A1 publication Critical patent/WO2022218113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies

Definitions

  • the present invention relates to the technical field of communication, in particular to a metal filter, a filter loop module and a method for adjusting the size of the coupling amount.
  • the filter As a frequency selection device, the filter is an indispensable communication device. With the rapid development of communication technology and entering the 5G era, filters are required to reduce insertion loss and improve suppression. Among them, there is a capacitive coupling structure in the filter circuit module of the metal filter.
  • the capacitive coupling structure usually includes a capacitive coupling probe (also called a capacitive coupling flying probe), and the capacitive coupling probe is used to realize two resonators. capacitive coupling between.
  • the size (diameter, length, etc.) or installation position of the capacitive coupling probe is slightly deviated (tolerance ⁇ 0.01mm), the loss and suppression will be affected, thereby increasing the difficulty of processing and assembly.
  • a filter circuit module comprising five resonators, the five resonators are arranged in sequence along a signal transmission path to form a main loop, and the main loop is provided with a first zero point structure, a first zero point structure, a second A zero point structure and a third zero point structure, the second zero point structure is arranged between the first zero point structure and the third zero point structure, wherein the first zero point structure and the Each of the third zero point structures is correspondingly provided with an inductive coupling portion with an adjustable coupling amount, and the second zero point structure is correspondingly provided with a capacitive coupling probe.
  • the signal can be transmitted from the first resonator to the last resonator in the main loop, thereby completing the signal transmission.
  • the size of the coupling amount of the first zero point structure and/or the size of the coupling amount of the third zero point structure is adjusted, so that the size of the coupling amount of the second zero point structure changes accordingly, And then get the required amount of coupling. Since the coupling amount of the second zero point structure can be adjusted by adjusting the coupling amount of the first zero point structure and/or the coupling amount of the third zero point structure, the coupling amount of the capacitive coupling probe can be reduced. Machining accuracy and assembly accuracy.
  • the five resonators are sequentially a first resonator, a second resonator, a third resonator, a fourth resonator and a fifth resonator along the signal transmission path, wherein the first resonator The resonator and the fifth resonator are coupled and connected through the inductive coupling part, the first resonator and the fourth resonator are coupled and connected through the capacitive coupling probe, and the second resonator and the The fourth resonator is coupled and connected through the inductive coupling part.
  • the first resonator and the second resonator are coupled and connected through the inductive coupling part
  • the second resonator and the third resonator are coupled and connected through the inductive coupling part
  • the third resonator and the fourth resonator are coupled and connected through the capacitive coupling probe
  • the fourth resonator and the fifth resonator are coupled and connected through the inductive coupling part.
  • the first resonator and the second resonator are coupled and connected through the inductive coupling part, and the second resonator and the third resonator are coupled through the capacitive coupling probe
  • the third resonator and the fourth resonator are coupled and connected through the inductive coupling part, and the fourth resonator and the fifth resonator are coupled and connected through the inductive coupling part.
  • the inductive coupling part includes a coupling window and a coupling member, and the depth of the coupling member inserted into the coupling window is adjustable.
  • the filter loop module further includes an insulating support for supporting the capacitive coupling probe.
  • each of the resonators is provided with a resonant cavity
  • the filter loop module further includes five frequency adjustment parts, the depth of which the frequency adjustment parts are inserted into the resonant cavity can be adjusted.
  • the filter loop module further includes a coupling connector, and the coupling connector is disposed corresponding to the inductive coupling part.
  • a metal filter including the filter loop module.
  • the coupling amount of the second zero point structure can be adjusted by adjusting the coupling amount of the first zero point structure and/or the coupling amount of the third zero point structure, so that the The machining accuracy and assembly accuracy of the capacitive coupling probe can be reduced.
  • a method for adjusting the coupling amount applied to the filter loop module is provided, by adjusting the coupling amount of the first zero point structure and/or the coupling amount of the third zero point structure, thereby The magnitude of the coupling amount of the second zero point structure is improved accordingly, and the required coupling amount is obtained.
  • the method for adjusting the size of the coupling amount of the above-mentioned embodiment has at least the following advantages: (1) By adjusting the inductive coupling part, the size of the coupling amount of the first zero point structure and/or the coupling amount of the third zero point structure can be adjusted (2) The size of the coupling amount of the second zero point structure can be adjusted by adjusting the size of the coupling amount of the first zero point structure and/or the size of the coupling amount of the third zero point structure , so that the machining error or installation error of the capacitive coupling probe set corresponding to the second zero point structure can be obtained by adjusting the coupling amount of the first zero point structure and/or the coupling amount of the third zero point structure. The influence of the processing error or assembly error of the capacitive coupling probe on the relevant indicators is compensated, reduced or eliminated, thereby reducing the processing difficulty and assembly difficulty of the capacitive coupling probe.
  • FIG. 1 is a schematic structural diagram of a filter loop module according to an embodiment
  • FIG. 2 is an equivalent circuit diagram of an embodiment of the filter loop module of FIG. 1;
  • FIG. 3 is an equivalent circuit diagram of another embodiment of the filter loop module of FIG. 1;
  • FIG. 4 is an equivalent circuit diagram of another embodiment of the filter loop module of FIG. 1;
  • FIG. 5 is an equivalent circuit diagram of another embodiment of the filter loop module of FIG. 1 .
  • filter circuit module 110, resonator, 110a, first resonator, 110b, second resonator, 110c, third resonator, 110d, fourth resonator, 110e, fifth resonator, 111, resonant cavity , 120, first zero point structure, 130, second zero point structure, 140, third zero point structure, 150, inductive coupling part, 151, coupling window, 160, capacitive coupling probe, 170, insulating support, 180.
  • a filter loop module 100 is provided, which can be applied in a metal filter.
  • the filter loop module 100 includes five resonators 110 .
  • Five resonators 110 are sequentially arranged along the signal transmission path to form a main loop.
  • the main loop is provided with a first zero point structure 120 , a second zero point structure 130 and a third zero point structure 140 which are arranged at relative intervals.
  • the second zero point structure 130 is disposed between the first zero point structure 120 and the third zero point structure 140 .
  • the first zero point structure 120 and the third zero point structure 140 are correspondingly provided with an inductive coupling portion 150 with adjustable coupling amount
  • the second zero point structure 130 is correspondingly provided with a capacitive coupling probe 160 .
  • the signal can be transmitted from the first resonator 110 to the last resonator 110 in the main loop, thereby completing the signal transmission.
  • the inductive coupling part 150 by adjusting the inductive coupling part 150 , the size of the coupling amount of the first zero point structure 120 and/or the size of the coupling amount of the third zero point structure 140 is adjusted, so that the size of the coupling amount of the second zero point structure 130 is adjusted. The corresponding changes are made to obtain the desired amount of coupling.
  • the coupling amount of the second null structure 130 can be adjusted by adjusting the coupling amount of the first null structure 120 and/or the coupling amount of the third null structure 140, the capacitive coupling can be reduced The machining accuracy and assembly accuracy of the probe 160 .
  • the first resonator 110 can be used as the input connector of the signal and the last resonator 110 can be used as the output connector of the signal.
  • the capacitive coupling probe 160 In the traditional metal filter, a slight deviation in the size of the capacitive coupling probe 160 will affect the stop-band suppression of the entire metal filter, so that the capacitive coupling probe 160 needs to be replaced, which not only affects the assembly efficiency, but also This increases the cost and also increases the difficulty of processing; in addition, the installation height of the capacitive coupling probe 160 or the relative distance between the resonator 110 and the resonator 110 also needs to reach a certain precision during the assembly process, which not only affects the assembly efficiency, but also increases the Assembly difficulty. In the traditional metal filter, the capacitive coupling probe 160 has a great influence on the relevant indicators.
  • the coupling amount of the second null structure 130 can be adjusted by adjusting the coupling amount of the first null structure 120 and/or the coupling amount of the third null structure 140
  • the adjustment is performed so that the machining error or installation error of the capacitive coupling probe 160 corresponding to the second zero point structure 130 can be adjusted by adjusting the coupling amount of the first zero point structure 120 and/or the third zero point structure.
  • the size of the coupling amount of the capacitive coupling probe 140 is compensated, which reduces or eliminates the influence of the processing error or assembly error of the capacitive coupling probe 160 on related indicators, thereby reducing the processing difficulty and assembly difficulty of the capacitive coupling probe 160 .
  • the processing tolerance of the capacitive coupling probe 160 is ⁇ 0.1 mm, which is convenient for the production of the capacitive coupling probe 160 .
  • the size of the coupling amount of the first zero point structure 120 and the size of the coupling amount of the third zero point structure 140 can be adjusted individually or at the same time, as long as the coupling amount of the second zero point structure 130 is satisfied.
  • the size can be changed accordingly.
  • the five resonators 110 are the first resonator 110a, the second resonator 110b, the third resonator 110c, the fourth resonator 110d and the The fifth resonator 110e.
  • the first resonator 110a and the fifth resonator 110e are coupled and connected through the inductive coupling part 150 .
  • the first resonator 110 a and the fifth resonator 110 e cooperate to form the first null structure 120 , and the coupling amount of the first null structure 120 can be adjusted by adjusting the inductive coupling part 150 .
  • the first resonator 110a and the fourth resonator 110d are coupled and connected through the capacitive coupling probe 160 . In this way, the first resonator 110a and the fourth resonator 110d cooperate to form the second null structure 130 .
  • the second resonator 110b and the fourth resonator 110d are coupled and connected through the inductive coupling part 150 . In this way, the second resonator 110b cooperates with the fourth resonator 110d to form the third null structure 140 , and the coupling amount of the first null structure 120 can be adjusted by adjusting the inductive coupling part 150 .
  • the second zero can be changed accordingly
  • the size of the coupling amount of the dot structure 130 enables the metal filter as a whole to meet the corresponding parameter requirements.
  • the first resonator 110 a and the second resonator 110 b are coupled and connected through the inductive coupling part 150 .
  • the second resonator 110b and the third resonator 110c are coupled and connected through the inductive coupling part 150 .
  • the third resonator 110c and the fourth resonator 110d are coupled and connected through the capacitive coupling probe 160 .
  • the fourth resonator 110d and the fifth resonator 110e are coupled and connected through the inductive coupling part 150 . In this way, signals can be transmitted along the first resonator 110a, the second resonator 110b, the third resonator 110c, the fourth resonator 110d, and the fifth resonator 110e in sequence.
  • the first resonator 110 a and the second resonator 110 b are coupled and connected through the inductive coupling part 150
  • the second resonator 110 b and the third resonator 110 c are coupled through the capacitive coupling probe 160
  • the third resonator 110 c and the fourth resonator 110 d are coupled and connected through the inductive coupling part 150
  • the fourth resonator 110 d and the fifth resonator 110 e are coupled and connected through the inductive coupling part 150 .
  • signals can be transmitted along the first resonator 110a, the second resonator 110b, the third resonator 110c, the fourth resonator 110d, and the fifth resonator 110e in sequence.
  • another capacitive coupling probe 160 can be flexibly disposed between the second resonator 110b and the third resonator between the resonators 110c or between the third resonator 110c and the fourth resonator 110d, so that the design of the filter loop module 100 is more flexible and meets the needs of practical use. Also, the machining accuracy and assembly accuracy of the capacitive coupling probe 160 provided between the second resonator 110b and the third resonator 110c or between the third resonator 110c and the fourth resonator 110d can be further reduced, and the It will affect the performance of the metal filter.
  • the inductive coupling portion 150 may be any existing structure capable of adjusting the amount of coupling between the two resonators 110.
  • the inductive coupling part 150 includes a coupling window 151 and a coupling member (not shown), and the depth of the coupling member inserted into the coupling window 151 is adjustable.
  • the coupling member can be rod-shaped, column-shaped or strip-shaped. The depth of the coupling member inserted into the coupling window 151 can be achieved by moving the position of the coupling member in the coupling window 151 , or by removing the coupling member or increasing the length of the coupling member in the coupling window 151 .
  • the filter loop module 100 further includes an insulating support 170 for supporting the capacitive coupling probe 160 .
  • an insulating support 170 for supporting the capacitive coupling probe 160 .
  • the insulating support member 170 and the capacitive coupling probe 160 may be connected by means of snap connection, plug connection, or the like.
  • the insulating support member 170 may be in the form of a support column or a support frame, and may be any existing insulating material.
  • the insulating support 170 may be fixed with the metal casing by means of bonding or the like.
  • each resonator 110 is provided with a resonant cavity 111
  • the filter circuit module 100 further includes five frequency adjustment parts 180 , and the frequency adjustment parts 180 are inserted into the resonant cavity 111 .
  • the depth is adjustable. In this way, by adjusting the depth at which the frequency adjusting member 180 is inserted into the resonant cavity 111, the size of the frequency can be adjusted, which is simple, convenient, and has high adjustment efficiency.
  • the frequency adjustment member 180 may be rod-shaped, column-shaped or strip-shaped.
  • the depth of the frequency adjusting member 180 inserted into the resonant cavity 111 can be achieved by moving the position of the frequency adjusting member 180 in the resonant cavity 111 , or by removing the frequency adjusting member 180 or increasing the length of the frequency adjusting member 180 in the resonant cavity 111 accomplish.
  • the filter loop module 100 further includes a coupling connector 190 , and the coupling connector 190 is disposed corresponding to the inductive coupling portion 150 .
  • the coupling amount between the resonators 110 can be further enhanced by using the coupling connector 190, so that the adjustment of the coupling amount is more flexible and convenient, and the adjustment range is also wider.
  • the first resonator 110a and the fifth resonator 110e can be further coupled and connected through the coupling connector 190, so that the adjustment method of the coupling amount of the first zero point structure 120 is more flexible, The adjustment range is also wider.
  • the second resonator 110b and the fourth resonator 110d can also be further coupled and connected through the coupling connector 190, so that the adjustment method of the coupling amount of the third null structure 140 is more flexible and the adjustment range is wider.
  • other resonators 110 that are coupled and connected through the inductive coupling part 150 can also be further connected through the coupling connecting member 190, which can further enhance the coupling, so that the adjustment method of the coupling amount is more flexible and the adjustment range is also wider. widely.
  • the coupling connector 190 can be set in cooperation with the inductive coupling part 150 , so that the adjustment method of the size of the coupling amount is more flexible, and the adjustment range is also wider.
  • the filter loop module 100 may further include more resonators 110 (the number of the resonators 110 may be greater than five), and the remaining number of resonators
  • the resonator 110 may also be connected with the five resonators 110 of the above-described embodiment to form a main loop including more resonators 110 .
  • a metal filter is also provided, including the filter loop module 100 of any of the above-mentioned embodiments.
  • the coupling amount of the second null structure 130 can be adjusted by adjusting the coupling amount of the first null structure 120 and/or the coupling amount of the third null structure 140. Therefore, the machining accuracy and assembly accuracy of the capacitive coupling probe 160 can be reduced.
  • the filter loop module 100 of any of the above embodiments can also be applied to a duplexer, a combiner, or other suitable applications.
  • a method for adjusting the coupling amount of the filter loop module 100 applied to any of the above embodiments including the following steps: by adjusting the coupling amount of the first zero point structure 120 and/or Or the size of the coupling amount of the third zero point structure 140, so that the size of the coupling amount of the second zero point structure 130 is correspondingly improved, thereby obtaining the required coupling amount.
  • the method for adjusting the amount of coupling in the above embodiment has at least the following advantages: (1) By adjusting the inductive coupling part 150 , the coupling amount of the first zero point structure 120 and/or the third zero point structure 140 can be adjusted. (2) The size of the coupling amount of the second zero point structure 130 can be adjusted by adjusting the size of the coupling amount of the first zero point structure 120 and/or the coupling amount of the third zero point structure 140 It can be adjusted according to the size of the coupling amount of the first zero point structure 120 and/or the third The magnitude of the coupling amount of the zero point structure 140 is compensated, which reduces or eliminates the influence of the processing error or assembly error of the capacitive coupling probe 160 on related indexes, thereby reducing the processing difficulty and assembly difficulty of the capacitive coupling probe 160 .
  • a certain body and “a certain part” can be a part of the corresponding “component”, that is, “a certain body”, “a certain part” and the “other parts of the component” are integrally formed; “Other parts” of a separate component, that is, “a body” and “a part” can be manufactured independently, and then combined with “other parts of the component” to form a whole.
  • the expression of the above-mentioned “some body” and “some part” in this application is only one of the embodiments, for the convenience of reading, rather than limiting the scope of protection of the application, as long as the above features are included and the functions are the same, it should be understood as This application is equivalent to the technical solution.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • an element when an element is referred to as being “fixed on”, “disposed on”, “fixed on” or “mounted on” another element, it can be directly on the other element or an intervening element may also be present .
  • an element When an element is referred to as being “connected” to another element, it can be directly connected to the other element or intervening elements may also be present.
  • one element when one element is considered to be a "fixed transmission connection” to another element, the two can be fixed in a detachable connection, or can be fixed in a non-detachable connection, as long as power transmission can be achieved, such as socket connection, snap connection. , integral molding fixing, welding, etc., can be realized in the prior art, and will not be redundant here.
  • connection relationship or positional relationship of elements although not explicitly described, the connection relationship and positional relationship are interpreted to include a margin of error that should be acceptable for a specific value determined by those skilled in the art within the deviation range. For example, “about”, “approximately” or “substantially” can mean within one or more standard deviations, without limitation.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及一种金属滤波器、滤波回路模块及耦合量的大小调节方法,滤波回路模块包括五个谐振器,五个所述谐振器沿信号传输路径依次设置形成主回路,所述主回路设有相对间隔设置的第一零点结构、第二零点结构及第三零点结构,所述第二零点结构设置于所述第一零点结构与所述第三零点结构之间,其中,所述第一零点结构和所述第三零点结构均对应设有耦合量可调的感性耦合部,所述第二零点结构对应设有容性耦合探针。由于第二零点结构的耦合量的大小可以通过调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小而进行调整,从而能够降低容性耦合探针的加工精度和装配精度。

Description

金属滤波器、滤波回路模块及耦合量大小的调节方法 技术领域
本发明涉及通信技术领域,特别是涉及一种金属滤波器、滤波回路模块及耦合量大小的调节方法。
背景技术
滤波器作为一种选频器件,是一种不可或缺的通信设备。随着通信技术的高速发展并进入5G时代,需要滤波器能够降低插入损耗、提高抑制。其中,在金属滤波器的滤波回路模块中设有容性耦合结构,容性耦合结构通常包括容性耦合探针(也称容性耦合飞针),利用容性耦合探针实现两个谐振器之间的容性耦合。实际应用时,当容性耦合探针的尺寸(直径、长度等)或安装位置稍有偏差(公差±0.01mm),即会影响损耗和抑制,从而增加了加工难度和装配难度。
发明内容
基于此,有必要针对加工难度高、装配难度大的问题,提供一种金属滤波器、滤波回路模块及耦合量大小的调节方法。
其技术方案如下:
一方面,提供了一种滤波回路模块,包括五个谐振器,五个所述谐振器沿信号传输路径依次设置形成主回路,所述主回路设有相对间隔设置的第一零点结构、第二零点结构及第三零点结构,所述第二零点结构设置于所述第一零点结构与所述第三零点结构之间,其中,所述第一零点结构和所述第三零点结构 均对应设有耦合量可调的感性耦合部,所述第二零点结构对应设有容性耦合探针。
上述实施例的滤波回路模块,信号能够在主回路中从首个谐振器传输至最末尾的谐振器,从而完成信号的传输。并且,通过调节感性耦合部,从而调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小,从而使得第二零点结构的耦合量的大小相应发生变化,进而得到所需的耦合量。由于第二零点结构的耦合量的大小可以通过调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小而进行调整,从而能够降低容性耦合探针的加工精度和装配精度。
下面进一步对技术方案进行说明:
在其中一个实施例中,五个所述谐振器沿信号传输路径依次为第一谐振器、第二谐振器、第三谐振器、第四谐振器及第五谐振器,其中,所述第一谐振器与所述第五谐振器通过所述感性耦合部耦合连接,所述第一谐振器与所述第四谐振器通过所述容性耦合探针耦合连接,所述第二谐振器与所述第四谐振器通过所述感性耦合部耦合连接。
在其中一个实施例中,所述第一谐振器与所述第二谐振器通过所述感性耦合部耦合连接,所述第二谐振器与所述第三谐振器通过所述感性耦合部耦合连接,所述第三谐振器与所述第四谐振器通过所述容性耦合探针耦合连接,所述第四谐振器与所述第五谐振器通过所述感性耦合部耦合连接。
在其中一个实施例中,所述第一谐振器与所述第二谐振器通过所述感性耦合部耦合连接,所述第二谐振器与所述第三谐振器通过所述容性耦合探针耦合连接,所述第三谐振器与所述第四谐振器通过所述感性耦合部耦合连接,所述第四谐振器与所述第五谐振器通过所述感性耦合部耦合连接。
在其中一个实施例中,所述感性耦合部包括耦合窗口及耦合件,所述耦合件插入所述耦合窗口内的深度可调。
在其中一个实施例中,所述滤波回路模块还包括用于支撑所述容性耦合探针的绝缘支撑件。
在其中一个实施例中,每个所述谐振器均设有谐振腔,所述滤波回路模块还包括五个频率调节件,所述频率调节件插入所述谐振腔内的深度可调。
在其中一个实施例中,所述滤波回路模块还包括耦合连接件,所述耦合连接件对应所述感性耦合部设置。
另一方面,提供了一种金属滤波器,包括所述的滤波回路模块。
上述实施例的金属滤波器,由于第二零点结构的耦合量的大小可以通过调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小而进行调整,从而能够降低容性耦合探针的加工精度和装配精度。
再一方面,提供了一种应用于所述滤波回路模块的耦合量大小的调节方法,通过调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小,从而使得第二零点结构的耦合量的大小相应发生改进,进而得到所需的耦合量。
上述实施例的耦合量大小的调节方法,至少具有以下优点:(1)、通过调节感性耦合部,从而能够调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小,灵活、方便;(2)、第二零点结构的耦合量的大小可以通过调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小而进行调整,从而使得对应第二零点结构设置的容性耦合探针的加工误差或安装误差均能够通过调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小得到弥补,降低或消除了容性耦合探针的加工误差或装配误差对相关指标的影响,从而降低了容性耦合探针的加工难度和装配难度。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例的滤波回路模块的结构示意图;
图2为图1的滤波回路模块一个实施例的等效电路图;
图3为图1的滤波回路模块另一个实施例的等效电路图;
图4为图1的滤波回路模块再一个实施例的等效电路图;
图5为图1的滤波回路模块又一个实施例的等效电路图。
附图标记说明:
100、滤波回路模块,110、谐振器,110a、第一谐振器,110b、第二谐振器,110c、第三谐振器,110d、第四谐振器,110e、第五谐振器,111、谐振腔,120、第一零点结构,130、第二零点结构,140、第三零点结构,150、感性耦合部,151、耦合窗口,160、容性耦合探针,170、绝缘支撑件,180、频率调节件,190、耦合连接件。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以 便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
如图1至图3所示,在一个实施例中,提供了一种滤波回路模块100,能够应用在金属滤波器中。具体地,滤波回路模块100包括五个谐振器110。五个谐振器110沿信号传输路径依次设置形成主回路。主回路设有相对间隔设置的第一零点结构120、第二零点结构130及第三零点结构140。第二零点结构130设置于第一零点结构120与第三零点结构140之间。其中,第一零点结构120和第三零点结构140均对应设有耦合量可调的感性耦合部150,第二零点结构130对应设有容性耦合探针160。
上述实施例的滤波回路模块100,信号能够在主回路中从首个谐振器110传输至最末尾的谐振器110,从而完成信号的传输。并且,通过调节感性耦合部150,从而调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小,从而使得第二零点结构130的耦合量的大小相应发生变化,进而得到所需的耦合量。由于第二零点结构130的耦合量的大小可以通过调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小而进行调整,从而能够降低容性耦合探针160的加工精度和装配精度。
其中,首个谐振器110能够作为信号的输入接头而最末尾的谐振器110能够作为信号的输出接头。
在传统的金属滤波器中,容性耦合探针160的尺寸加工的稍有偏差,则会影响整个金属滤波器的阻带抑制,从而需要重新更换容性耦合探针160,不仅影响装配效率,增加了成本,也加大了加工难度;并且,容性耦合探针160装配过程中的安装高度或与谐振器110之间的相对间距也需要达到一定精度,不仅 影响装配效率,也加大了装配难度。传统的金属滤波器中,容性耦合探针160对相关指标的影响较大。本申请实施例的滤波回路模块100,由于第二零点结构130的耦合量的大小可以通过调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小而进行调整,从而使得对应第二零点结构130设置的容性耦合探针160的加工误差或安装误差均能够通过调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小得到弥补,降低或消除了容性耦合探针160的加工误差或装配误差对相关指标的影响,从而降低了容性耦合探针160的加工难度和装配难度。
可选地,容性耦合探针160的加工公差为±0.1mm,便于对容性耦合探针160进行生产。
其中,第一零点结构120的耦合量的大小及第三零点结构140的耦合量的大小可以单独进行调节,也可以同时进行调节,只需满足使得第二零点结构130的耦合量的大小相应发生变化即可。
如图1至图3所示,在一个实施例中,五个谐振器110沿信号传输路径依次为第一谐振器110a、第二谐振器110b、第三谐振器110c、第四谐振器110d及第五谐振器110e。其中,第一谐振器110a与第五谐振器110e通过感性耦合部150耦合连接。如此,第一谐振器110a与第五谐振器110e配合形成第一零点结构120,通过调节该感性耦合部150即可调节第一零点结构120的耦合量的大小。第一谐振器110a与第四谐振器110d通过容性耦合探针160耦合连接。如此,第一谐振器110a与第四谐振器110d配合形成第二零点结构130。第二谐振器110b与第四谐振器110d通过感性耦合部150耦合连接。如此,第二谐振器110b与第四谐振器110d配合形成第三零点结构140,通过调节该感性耦合部150即可调节第一零点结构120的耦合量的大小。当调节第一谐振器110a与第五谐振 器110e之间的感性耦合部150和/或调节第二谐振器110b与第四谐振器110d之间的感性耦合部150,从而能够相应改变第二零点结构130的耦合量的大小,进而使得金属滤波器整体能够满足相应的参数要求。
如图3所示,在一个实施例中,第一谐振器110a与第二谐振器110b通过感性耦合部150耦合连接。第二谐振器110b与第三谐振器110c通过感性耦合部150耦合连接。第三谐振器110c与第四谐振器110d通过容性耦合探针160耦合连接。第四谐振器110d与第五谐振器110e通过感性耦合部150耦合连接。如此,信号可依次沿第一谐振器110a、第二谐振器110b、第三谐振器110c、第四谐振器110d及第五谐振器110e进行传递。
如图2所示,在一个实施例中,第一谐振器110a与第二谐振器110b通过感性耦合部150耦合连接,第二谐振器110b与第三谐振器110c通过容性耦合探针160耦合连接,第三谐振器110c与第四谐振器110d通过感性耦合部150耦合连接,第四谐振器110d与第五谐振器110e通过感性耦合部150耦合连接。如此,信号可依次沿第一谐振器110a、第二谐振器110b、第三谐振器110c、第四谐振器110d及第五谐振器110e进行传递。
其中,将一个容性耦合探针160设置在第一谐振器110a与第四谐振器110d之间后,可以将另外一个容性耦合探针160灵活的设置在第二谐振器110b与第三谐振器110c之间或第三谐振器110c与第四谐振器110d之间,使得滤波回路模块100的设计更加灵活,满足实际使用需要。并且,可以将设置在第二谐振器110b与第三谐振器110c之间或第三谐振器110c与第四谐振器110d之间的容性耦合探针160的加工精度和装配精度进一步降低,也不会对金属滤波器的性能造成影响。
其中,感性耦合部150可以是现有的任意一种能够对两个谐振器110之间 的耦合量的大小进行调节的结构。
如图1所示,在一个实施例中,感性耦合部150包括耦合窗口151及耦合件(未图示),耦合件插入耦合窗口151内的深度可调。如此,通过调节耦合件插入耦合窗口151内的深度,从而能够对耦合量的大小进行调节,简单、方便,调节效率高。其中,耦合件可以是杆状、柱状或条状。耦合件插入耦合窗口151内的深度,可以通过移动耦合件在耦合窗口151内的位置实现,也可以通过采取去除耦合件或增长耦合件在耦合窗口151内的长度实现。
为了便于容性耦合探针160进行安装,在一个实施例中,滤波回路模块100还包括用于支撑容性耦合探针160的绝缘支撑件170。如此,利用绝缘支撑件170对容性耦合探针160进行支撑及提供安装位置,也能避免容性耦合探针160与金属滤波器的金属外壳发生短接。绝缘支撑件170与容性耦合探针160可以采取卡接、插接等方式进行连接。绝缘支撑件170可以是支撑柱、支撑架的形式,可以采取现有的任意一种绝缘材质。绝缘支撑件170可以与金属外壳采取粘结等方式进行固定。
如图1所示,在上述任一实施例的基础上,每个谐振器110均设有谐振腔111,滤波回路模块100还包括五个频率调节件180,频率调节件180插入谐振腔111内的深度可调。如此,通过调节频率调节件180插入谐振腔111内的深度,从而能够对频率的大小进行调节,简单、方便,调节效率高。其中,频率调节件180可以是杆状、柱状或条状。频率调节件180插入谐振腔111内的深度,可以通过移动频率调节件180在谐振腔111内的位置实现,也可以通过采取去除频率调节件180或增长频率调节件180在谐振腔111内的长度实现。
如图1所示,在上述任一实施例的基础上,滤波回路模块100还包括耦合连接件190,耦合连接件190对应感性耦合部150设置。如此,利用耦合连接件 190能够进一步增强谐振器110之间的耦合量,使得耦合量的大小的调节更加灵活、方便,调节范围也更加广泛。
如图1所示,其中,第一谐振器110a与第五谐振器110e之间可以通过耦合连接件190进一步耦合连接,从而使得第一零点结构120的耦合量的大小的调节方式更加灵活,调节范围也更加广泛。第二谐振器110b与第四谐振器110d之间也可以通过耦合连接件190进一步耦合连接,从而使得第三零点结构140的耦合量的大小的调节方式更加灵活,调节范围也更加广泛。当然,其他通过感性耦合部150进行耦合连接的谐振器110之间也均可以再通过耦合连接件190进一步进行连接,能够进一步增强耦合,使得耦合量的大小的调节方式更加灵活,调节范围也更加广泛。
如图1所示,当然,耦合连接件190可以与感性耦合部150配合进行设置,使得耦合量的大小的调节方式更加灵活,调节范围也更加广泛。
需要进行说明的是,如图4及图5所示,在其他实施例中,滤波回路模块100还可以包括更多的谐振器110(谐振器110的数量可以大于五个),其余数量的谐振器110也可以与上述实施例的五个谐振器110连接形成包括更多谐振器110的主回路。
在一个实施例中,还提供了一种金属滤波器,包括上述任一实施例的滤波回路模块100。
上述实施例的金属滤波器,由于第二零点结构130的耦合量的大小可以通过调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小而进行调整,从而能够降低容性耦合探针160的加工精度和装配精度。
需要进行说明的是,上述任一实施例的滤波回路模块100,还可应用于双工器、合路器或其他适宜使用的场合。
在一个实施例中,还提供了一种应用于上述任一实施例的滤波回路模块100的耦合量大小的调节方法,包括以下步骤:通过调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小,从而使得第二零点结构130的耦合量的大小相应发生改进,进而得到所需的耦合量。
上述实施例的耦合量大小的调节方法,至少具有以下优点:(1)、通过调节感性耦合部150,从而能够调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小,灵活、方便;(2)、第二零点结构130的耦合量的大小可以通过调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小而进行调整,从而使得对应第二零点结构130设置的容性耦合探针160的加工误差或安装误差均能够通过调节第一零点结构120的耦合量的大小和/或第三零点结构140的耦合量的大小得到弥补,降低或消除了容性耦合探针160的加工误差或装配误差对相关指标的影响,从而降低了容性耦合探针160的加工难度和装配难度。
需要说明的是,“某体”、“某部”可以为对应“构件”的一部分,即“某体”、“某部”与该“构件的其他部分”一体成型制造;也可以与“构件的其他部分”可分离的一个独立的构件,即“某体”、“某部”可以独立制造,再与“构件的其他部分”组合成一个整体。本申请对上述“某体”、“某部”的表达,仅是其中一个实施例,为了方便阅读,而不是对本申请的保护的范围的限制,只要包含了上述特征且作用相同应当理解为是本申请等同的技术方案。
需要说明的是,本申请“单元”、“组件”、“机构”、“装置”所包含的构件亦可灵活进行组合,即可根据实际需要进行模块化生产,以方便进行模块化组装。本申请对上述构件的划分,仅是其中一个实施例,为了方便阅读,而不是对本申请的保护的范围的限制,只要包含了上述构件且作用相同应当理 解是本申请等同的技术方案。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。本发明中使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。 第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。进一步地,当一个元件被认为是“固定传动连接”另一个元件,二者可以是可拆卸连接方式的固定,也可以不可拆卸连接的固定,能够实现动力传递即可,如套接、卡接、一体成型固定、焊接等,在现有技术中可以实现,在此不再累赘。当元件与另一个元件相互垂直或近似垂直是指二者的理想状态是垂直,但是因制造及装配的影响,可以存在一定的垂直误差。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
还应当理解的是,在解释元件的连接关系或位置关系时,尽管没有明确描述,但连接关系和位置关系解释为包括误差范围,该误差范围应当由本领域技术人员所确定的特定值可接受的偏差范围内。例如,“大约”、“近似”或“基本上”可以意味着一个或多个标准偏差内,在此不作限定。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进, 这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种滤波回路模块,其特征在于,包括五个谐振器,五个所述谐振器沿信号传输路径依次设置形成主回路,所述主回路设有相对间隔设置的第一零点结构、第二零点结构及第三零点结构,所述第二零点结构设置于所述第一零点结构与所述第三零点结构之间,其中,所述第一零点结构和所述第三零点结构均对应设有耦合量可调的感性耦合部,所述第二零点结构对应设有容性耦合探针。
  2. 根据权利要求1所述的滤波回路模块,其特征在于,五个所述谐振器沿信号传输路径依次为第一谐振器、第二谐振器、第三谐振器、第四谐振器及第五谐振器,其中,所述第一谐振器与所述第五谐振器通过所述感性耦合部耦合连接,所述第一谐振器与所述第四谐振器通过所述容性耦合探针耦合连接,所述第二谐振器与所述第四谐振器通过所述感性耦合部耦合连接。
  3. 根据权利要求2所述的滤波回路模块,其特征在于,所述第一谐振器与所述第二谐振器通过所述感性耦合部耦合连接,所述第二谐振器与所述第三谐振器通过所述感性耦合部耦合连接,所述第三谐振器与所述第四谐振器通过所述容性耦合探针耦合连接,所述第四谐振器与所述第五谐振器通过所述感性耦合部耦合连接。
  4. 根据权利要求2所述的滤波回路模块,其特征在于,所述第一谐振器与所述第二谐振器通过所述感性耦合部耦合连接,所述第二谐振器与所述第三谐振器通过所述容性耦合探针耦合连接,所述第三谐振器与所述第四谐振器通过所述感性耦合部耦合连接,所述第四谐振器与所述第五谐振器通过所述感性耦合部耦合连接。
  5. 根据权利要求1至4任一项所述的滤波回路模块,其特征在于,所述感性耦合部包括耦合窗口及耦合件,所述耦合件插入所述耦合窗口内的深度可调。
  6. 根据权利要求1至4任一项所述的滤波回路模块,其特征在于,所述滤波回路模块还包括用于支撑所述容性耦合探针的绝缘支撑件。
  7. 根据权利要求1至4任一项所述的滤波回路模块,其特征在于,每个所述谐振器均设有谐振腔,所述滤波回路模块还包括五个频率调节件,所述频率调节件插入所述谐振腔内的深度可调。
  8. 根据权利要求1至4任一项所述的滤波回路模块,其特征在于,所述滤波回路模块还包括耦合连接件,所述耦合连接件对应所述感性耦合部设置。
  9. 一种金属滤波器,其特征在于,包括如权利要求1至8任一项所述的滤波回路模块。
  10. 一种应用于权利要求1至8任一项所述滤波回路模块的耦合量大小的调节方法,其特征在于,包括以下步骤:通过调节第一零点结构的耦合量的大小和/或第三零点结构的耦合量的大小,从而使得第二零点结构的耦合量的大小相应发生改进,进而得到所需的耦合量。
PCT/CN2022/082345 2021-04-16 2022-03-22 金属滤波器、滤波回路模块及耦合量大小的调节方法 WO2022218113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110414562.0A CN112993510B (zh) 2021-04-16 2021-04-16 金属滤波器、滤波回路模块及耦合量大小的调节方法
CN202110414562.0 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022218113A1 true WO2022218113A1 (zh) 2022-10-20

Family

ID=76340979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082345 WO2022218113A1 (zh) 2021-04-16 2022-03-22 金属滤波器、滤波回路模块及耦合量大小的调节方法

Country Status (2)

Country Link
CN (1) CN112993510B (zh)
WO (1) WO2022218113A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993510B (zh) * 2021-04-16 2024-05-28 京信射频技术(广州)有限公司 金属滤波器、滤波回路模块及耦合量大小的调节方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201163655Y (zh) * 2008-03-06 2008-12-10 武汉凡谷电子技术股份有限公司 一种可调电容性耦合带通滤波器
US20120249266A1 (en) * 2011-03-31 2012-10-04 Ace Technologies Corporation Rf filter for adjusting coupling amount or transmission zero
CN110098453A (zh) * 2018-01-31 2019-08-06 株式会社Kmw 射频滤波器
CN110739511A (zh) * 2018-07-20 2020-01-31 波音公司 用于高性能交叉耦合rf滤波器的可调谐探头
CN111033886A (zh) * 2018-07-20 2020-04-17 深圳市大富科技股份有限公司 一种交叉耦合结构及腔体滤波器
CN112993510A (zh) * 2021-04-16 2021-06-18 京信射频技术(广州)有限公司 金属滤波器、滤波回路模块及耦合量大小的调节方法
CN214589198U (zh) * 2021-04-16 2021-11-02 京信射频技术(广州)有限公司 金属滤波器及滤波回路模块

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236550B2 (en) * 2014-12-15 2019-03-19 Commscope Italy S.R.L. In-line filter having mutually compensating inductive and capacitive coupling
CN209232915U (zh) * 2018-12-21 2019-08-09 深圳市大富科技股份有限公司 双工器及通信射频器件
CN112544012A (zh) * 2019-07-23 2021-03-23 深圳市大富科技股份有限公司 滤波器、通信及射频拉远设备、收发装置和塔顶放大器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201163655Y (zh) * 2008-03-06 2008-12-10 武汉凡谷电子技术股份有限公司 一种可调电容性耦合带通滤波器
US20120249266A1 (en) * 2011-03-31 2012-10-04 Ace Technologies Corporation Rf filter for adjusting coupling amount or transmission zero
CN110098453A (zh) * 2018-01-31 2019-08-06 株式会社Kmw 射频滤波器
CN110739511A (zh) * 2018-07-20 2020-01-31 波音公司 用于高性能交叉耦合rf滤波器的可调谐探头
CN111033886A (zh) * 2018-07-20 2020-04-17 深圳市大富科技股份有限公司 一种交叉耦合结构及腔体滤波器
CN112993510A (zh) * 2021-04-16 2021-06-18 京信射频技术(广州)有限公司 金属滤波器、滤波回路模块及耦合量大小的调节方法
CN214589198U (zh) * 2021-04-16 2021-11-02 京信射频技术(广州)有限公司 金属滤波器及滤波回路模块

Also Published As

Publication number Publication date
CN112993510B (zh) 2024-05-28
CN112993510A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2022218113A1 (zh) 金属滤波器、滤波回路模块及耦合量大小的调节方法
EP1411582B1 (en) Canonical general response bandpass microwave filter
JPS6221301A (ja) 誘電体共振器フイルタ
CN108039543B (zh) 一种基于介质谐振器的单体双路滤波器
CN106063027B (zh) 补偿微波滤波器的温度飘移的方法
JPH08330802A (ja) 高周波フィルタ用の誘電体共振器と、そのような共振器を含むフィルタ
JPH05206706A (ja) インターデジタル型バンドパスフィルタ
JP2004297774A (ja) 誘電体共振器装置、誘電体フィルタ、複合誘電体フィルタおよび通信装置
CN214589198U (zh) 金属滤波器及滤波回路模块
JP4571202B2 (ja) 高周波部品
CN116399466A (zh) 温度确定装置
CN112736383A (zh) 一种用于多模介质滤波器的可调耦合结构
JPS62213301A (ja) 誘電体フィルタ
JP4059141B2 (ja) 共振器装置、フィルタ、複合フィルタ装置および通信装置
WO2007129511A1 (ja) 誘電体共振器、誘電体フィルタ、および通信装置
CN106063026B (zh) 具有精细温度漂移调谐机构的微波滤波器
CN209217164U (zh) 叠层片式带通滤波器
JP2004312288A (ja) 誘電体共振器、誘電体フィルタ、複合誘電体フィルタおよび通信装置
CN209673244U (zh) 一种采用y字形叉臂的谐振式石英音叉温度传感器
JPS62217701A (ja) 分波器
JPH0659001B2 (ja) 誘電体共振器装置
CN216354694U (zh) 滤波器及通信装置
JP2004153815A (ja) 可変遅延線
JPH0153923B2 (zh)
CN210136992U (zh) 一种介质滤波器及弹性补偿部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787342

Country of ref document: EP

Kind code of ref document: A1