WO2022218078A1 - 一种诱导等离子发生装置及其制作方法 - Google Patents

一种诱导等离子发生装置及其制作方法 Download PDF

Info

Publication number
WO2022218078A1
WO2022218078A1 PCT/CN2022/080616 CN2022080616W WO2022218078A1 WO 2022218078 A1 WO2022218078 A1 WO 2022218078A1 CN 2022080616 W CN2022080616 W CN 2022080616W WO 2022218078 A1 WO2022218078 A1 WO 2022218078A1
Authority
WO
WIPO (PCT)
Prior art keywords
induced
generating device
plasma generating
oxide
manufacturing
Prior art date
Application number
PCT/CN2022/080616
Other languages
English (en)
French (fr)
Inventor
殷振华
Original Assignee
殷振华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 殷振华 filed Critical 殷振华
Priority to JP2022540731A priority Critical patent/JP7410304B2/ja
Publication of WO2022218078A1 publication Critical patent/WO2022218078A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to the technical field of air purification equipment, and more particularly, to an induced plasma generating device and a manufacturing method thereof.
  • an activated carbon filter can absorb organic harmful gases and some bacteria, but these harmful substances will accumulate on the activated carbon filter and become a breeding ground for bacteria, causing secondary pollution; using a UV lamp can only sterilize in a specific spectrum, and the UV lamp The tube is prone to heat, which affects its sterilization effect; using an ion purifier will not have a sterilization effect, and will generate a large amount of ozone, which will cause discomfort to the user's respiratory tract in severe cases.
  • the Chinese patent document with publication number CN204268589U discloses a high-efficiency air purification device.
  • the high-efficiency air purification device is loaded with photocatalyst foam metal, thereby increasing the purification effect.
  • the above solution is easy to generate heat during use, so that its sterilization effect is easily affected, thereby affecting its air purification effect.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and to provide an induced plasma generating device and a manufacturing method thereof, which can kill bacteria and decompose organic harmful gases, purify the air quickly and effectively, and have good economic benefits and safety. benefit.
  • the technical scheme adopted in the present invention is:
  • a manufacturing method of an induced plasma generating device comprising the following steps:
  • step S4 The induced ion release structure obtained in step S2 and the ionization structure obtained in step S3 are overlapped through a bracket, wherein the ionization structure is located between the induced ion release structures;
  • the induced ion release structure and the ionization structure are respectively connected with the plasma generating device to form a communication connection to form an induced plasma generating device.
  • the invention includes a manufacturing method of an induced plasma generating device.
  • the induced ion release structure and the ionization structure can jointly generate an electric field, and the ionization structure can be induced to generate a higher amount of ions by arranging the induced ion release structure.
  • the positive ions generated by the ionization structure and Negative ions can kill bacteria in the air and purify the air. Only a small amount of ozone is produced in the process, reducing the harm to human health.
  • step S2 specifically includes: sharpening one end of the induced ion release structure.
  • the inducing ion release structure includes at least two carbon fiber bundles.
  • the step S3 specifically includes: providing a metal foam mesh, and coating the metal foam mesh with an oxide metal coating or a nano-scale metal oxide coating to form the ionization structure.
  • the foam metal mesh is a foam metal mesh composed of any one or more of nickel, copper, iron, tungsten, magnesium, manganese, silver, platinum, cobalt, and titanium;
  • the oxidized metal coating is an oxidized metal mesh.
  • An oxidized metal coating composed of any one or more of nickel, copper oxide, iron oxide, tungsten oxide, magnesium oxide, manganese oxide, silver oxide, platinum oxide, cobalt oxide, and titanium oxide.
  • step S3 specifically includes the following steps:
  • the bracket includes a first plate member and a second plate member detachably connected to the first plate member, and the first plate member and the second plate member are provided with a mounting plate for installation
  • the first clamping part of the ionization structure, the first plate is also provided with a second clamping part for installing the induced ion release structure.
  • step S6 detecting the ion amount and the ozone amount on the induced plasma generating device.
  • the present invention also includes an induced plasma generating device, comprising a plasma generating device, an induced ion release structure and an ionization structure communicated and connected with the plasma generation device, the ionization structure and the induced ion release structure are overlapped by a bracket, and the ionization structure Structures are located between the ion release inducing structures.
  • the induced ion release structure includes at least two carbon fiber bundles
  • the ionization structure includes at least two metal foam meshes
  • the metal foam mesh is located between the carbon fiber bundles.
  • the invention provides an induced plasma generating device and a manufacturing method thereof.
  • the induced ion release structure and the ionization structure can jointly generate an electric field, and the ionization structure can be induced to generate a higher amount of ions by setting the induced ion release structure.
  • the positive ions generated by the ionization structure And negative ions can decompose or destroy bacteria in the air, purify the air, and only produce a trace amount of ozone in the process, reducing the harm to human health.
  • FIG. 1 is a flow chart of a manufacturing method of an induced plasma generating device according to the present invention.
  • FIG. 2 is a data test table of a manufacturing method of an induced plasma generating device of the present invention.
  • FIG. 3 is a schematic structural diagram of an induced plasma generating device according to the present invention.
  • FIG. 4 is a schematic structural diagram of the induced ion release structure and the ionization structure of the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 3 of an induced plasma generating apparatus according to the present invention.
  • FIG. 6 is a schematic view of the structure of the stent of the present invention.
  • FIG. 7 is a schematic structural diagram of another angle of the stent of the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 4 of an induced plasma generating apparatus according to the present invention.
  • FIG. 9 is a schematic view of the structure of the wind guide cover of the present invention.
  • 1-Plasma generating device 2-Induced ion release structure, 3-Ionization structure, 4-Support, 41-First plate, 42-Second plate, 43-First clip, 44-Second clip part, 45-connecting piece, 46-connecting block, 5-air hood, 51-air outlet, 52-air inlet, 53-first connecting column, 54-second connecting column, 6-power supply.
  • the arrows in FIG. 5 indicate the direction of air flow.
  • a first embodiment of a manufacturing method of an induced plasma generating device of the present invention includes the following steps:
  • a plasma generating device 1 and an induced ion releasing structure 2 are provided.
  • the plasma generating device 1 is a plasma generator, and the induced ion releasing structure 2 includes at least two carbon fiber bundles.
  • the induced ion release structure 2 includes two carbon fiber bundles, which are respectively used to release positive ions and negative ions, and also used to induce the ionization structure 3 to generate a higher amount of ions.
  • step S2 pre-processing the induced ion release structure 2.
  • the pretreatment includes: sharpening one end of the carbon fiber bundle to form a tip structure.
  • ionization structure 3 Preparation of ionization structure 3: providing a metal foam mesh, and coating the metal foam mesh with an oxide metal coating or a nano-scale oxide metal coating to form an ionization structure 3.
  • the ionization structure 3 includes two foamed metal meshes coated with a coating, which are respectively used to generate a positive electrode and a negative electrode, and the generated positive electrode and the negative electrode form ionization to generate an electric field.
  • the foam metal mesh is a foam metal mesh composed of any one or more of nickel, copper, iron, tungsten, magnesium, manganese, silver, platinum, cobalt, and titanium.
  • the mesh of the foamed metal mesh is 40 meshes or more.
  • the oxide metal coating is an oxide metal coating composed of any one or more of nickel oxide, copper oxide, iron oxide, tungsten oxide, magnesium oxide, manganese oxide, silver oxide, platinum oxide, cobalt oxide, and titanium oxide. layer; the selection of nanoscale metal oxide coatings is similar to that of metal oxide coatings.
  • the coating of the oxide metal coating or the nano-scale metal oxide coating may be processed by spraying, electroplating, etc., which is not limited herein.
  • the material matching of the foam metal mesh and the coating can be matched according to the actual functional requirements.
  • the silver oxide coating is applied to the foam copper mesh, which can be decomposed by titanium oxide on the basis of sterilization and air purification. ozone, further reducing ozone production.
  • step S4 The induced ion release structure 2 obtained in step S2 and the ionization structure 3 obtained in step S3 are overlapped through the bracket 4, the induced ion release structure 2 at one end of the sharpened treatment is directed toward the direction of air flow, and the ionization structure 3 is located in the induced ion release structure 3. between structure 2.
  • the bracket 4 includes a first plate 41 and a second plate 42 detachably connected to the first plate 41 .
  • the first plate 41 and the second plate 42 are both provided with a first plate for installing the ionization structure 3 .
  • a snap portion 43 , the first board 41 is further provided with a second snap portion 44 for installing the induced ion release structure 2 ; specifically, the second snap portion 44 is located near the edge of the first board 41 .
  • step S4 specifically includes the following steps:
  • step S42 the two carbon fiber bundles are clamped at the second clamping portion 44, and the tip structures of the carbon fiber bundles are arranged in the direction of air flow;
  • step S43 After step S42, the first plate 41 and the second plate 42 are assembled.
  • step S5 the induced ion release structure 2 and the ionization structure 3 are respectively connected with the plasma generating device 1 to establish communication connection to constitute the induced plasma generating device.
  • Step S5 specifically includes: connecting the foam metal mesh used to generate the positive electrode and the carbon fiber bundle used to release positive ions to the positive electrode contact of the booster module of the plasma generating device 1 through wires; and connecting the foam metal mesh used to generate the negative electrode , and the carbon fiber bundles used for releasing negative ions are connected with the negative contacts of the boosting module of the plasma generating device 1 through wires.
  • the foam metal mesh used to generate the positive electrode and the carbon fiber bundle used to release positive ions are connected to the same potential of the plasma generator 1, and the foam metal mesh used to generate the negative electrode and the carbon fiber bundle used to release negative ions are connected to the same potential.
  • the plasma generator 1 is at the same potential; in addition, the positive electrode contact and the negative electrode contact can be located outside the plasma generator 1 or inside the plasma generator 1 .
  • the carbon fiber bundles for releasing positive ions are located adjacent to the metal foam mesh used for generating positive electrodes, and the carbon fiber bundles used for releasing negative ions are located adjacent to the metal foam mesh used for generating negative electrodes.
  • step S6 After step S5, the ion amount and the ozone amount are detected on the induced plasma generating device.
  • Step 6 specifically includes the following steps:
  • S61 Provide a power source 6, and connect the plasma generating device 1 to the power source 6;
  • S63 Provide an air positive and negative ion tester, and place the air positive and negative ion tester on the initial test point at the front end of the induced plasma generating device; Specifically, the horizontal distance between the initial test point and the air outlet of the fan is 10cm apart;
  • KT-401 Air Ion Tester is selected for testing, and the maximum readable value of the instrument is 1999 ⁇ 10 4 .
  • the induced plasma generating device can generate a higher amount of ions in a larger range.
  • the amount of ozone produced by the induced plasma generator is 0.033ppm, which is basically negligible without ozone odor; while the amount of ozone produced by the combined plasma tube, foam metal mesh, and carbon fiber bundle is between 0.2 and 1ppm, and has Strong ozone odor; thus, compared with the combined plasma tube, foam metal mesh, and carbon fiber bundle, the induced plasma generating device can significantly reduce the amount of ozone generated.
  • step S3 specifically includes the following steps:
  • FIG. 3 to 7 show the first embodiment of an induced plasma generating device according to the present invention, which includes a plasma generating device 1 and an induced ion releasing structure 2, an ionizing structure 3, and an ionizing structure 3 that are communicatively connected to the plasma generating device 1. It is overlapped with the induced ion release structure 2 through the scaffold 4 , and the ionization structure 3 is located between the induced ion release structures 2 .
  • the bracket 4 includes a first board 41, a second board 42, a connecting piece 45, and a connecting block 46.
  • the first board 41, the second board 42, and the connecting piece 45 are all connected to the connecting block 46; the first board 41
  • the second plate member 42 is provided with a first clamping portion 43 for fixing the ionization structure 3
  • the first plate member 41 is also provided with a second clamping portion 44 for fixing the induced ion release structure 2 .
  • the first plate member 41 , the second plate member 42 , and the connecting piece 45 are arranged in parallel with each other, and the connecting block 46 is connected to both ends of the first plate member 41 , and is also connected to the Both ends of the second plate member 42 .
  • the second engaging portions 44 are provided, and the second engaging portions 44 are located at the edge of the first plate member 41 .
  • the second engaging portion 44 is a through-hole structure; the first plate 41 is provided with a plurality of mutually parallel strip structures, the structure of the second plate 42 is similar to that of the first plate 41 , and the second plate 42 is also provided with a plurality of mutually parallel strip structures, and the first engaging portion 43 is a gap formed between adjacent strip structures.
  • the connecting piece 45 has a ring structure or a rectangular structure, which can facilitate the bracket 4 to be overlapped with any air purifier or fan.
  • the induced plasma generating device further includes a power source 6, and the power source 6 is electrically connected to the plasma generating device 1, as shown in FIG. 4 .
  • the induced ion release structure 2 includes two carbon fiber bundles, and the carbon fiber bundles are clamped at the through-hole structure.
  • the ionization structure 3 includes two foam metal meshes, and the foam metal meshes are clamped in the gap. , and the foam metal mesh is located between the two carbon fiber bundles.
  • the two metal foam meshes are arranged horizontally with each other, as shown in FIG. 4 ; the two metal foam meshes can also be arranged at an angle, as shown in FIG. 5 .
  • the generated wind speed forms a jet, which is the jet principle.
  • the ionization generates an electric field, which can purify bacteria, organic harmful gases (VOC), etc.
  • VOC organic harmful gases
  • the two foam metal meshes and the two carbon fiber bundles are located on both sides of the flowing air, which can reduce wind resistance and prevent the air output from decaying.
  • the generation of ions can be greatly increased, and only a small amount of ozone is generated in the process, which improves the purification effect and further protects the health of users.
  • the number of inductive plasma generating devices can be increased according to the actual performance, ensuring that bacteria are killed and organic harmful gases are decomposed, further improving the air purification effect.
  • the induced plasma generating device in this embodiment further includes an air guide cover 5 , and the air guide cover 5 is provided with an air outlet 51 and a
  • the air inlet 52 and the plasma generating device 1 are arranged in the air guide cover 5 , and the air guide cover 5 is detachably connected with the air outlet 51 .
  • the air guide cover 5 is connected with a first connecting column 53 for connecting with the bracket 4 , and the air guide cover 5 is also connected with a second connecting column 54 for connecting with the plasma generating device 1 .
  • the second connecting column 54 is provided with a cut surface, which can be easily fixed with the plasma generating device 1 .
  • the bracket 4 and the air outlet 51 are connected by screws through the connecting piece 45 and the first connecting column 53 in sequence.
  • Two ends of the plasma generating device 1 are provided with convex rings, and the plasma generating device 1 and the air guide hood 5 are connected by screws through the convex rings and the second connecting column 54 in sequence.
  • the air guide hood 5 is in a cylindrical shape. It should be noted that the air guide hood 5 can also be set to other structures such as a rectangular shape and a cone shape, which is not limited here.
  • the air inlet 52 of the air guide hood 5 is connected to the air purifier or fan, and the air blown by the air purifier or the fan flows out from the air outlet 51 after passing through the induced plasma generating device to achieve purification.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Abstract

一种诱导等离子发生装置及其制作方法,包括如下步骤:S1.提供等离子发生装置(1)和诱导离子释放结构(2);S2.对诱导离子释放结构(2)进行预处理;S3.制备电离结构(3);S4.将步骤S2得到的诱导离子释放结构(2)与步骤S3得到的电离结构(3)通过支架(4)搭接,其中,电离结构(3)位于诱导离子释放结构(2)之间;S5.将诱导离子释放结构(2)、电离结构(3)分别与等离子发生装置(1)建立通信连接,构成诱导等离子发生装置,能够将细菌杀灭及有机有害气体分解,快速且有效地净化空气,具有较好的经济效益与安全效益。

Description

一种诱导等离子发生装置及其制作方法 技术领域
本发明涉及空气净化设备技术领域,更具体地,涉及一种诱导等离子发生装置及其制作方法。
背景技术
目前人们居住的环境,空气中漂浮着各种有机有害气体,在热岛效应下,各种细菌也随着环境污染而出现。现有的空气净化设备大多为活性炭滤网、紫外灯或离子净化机,且基本为被动式,净化效果不理想。使用活性炭滤网,虽然能够吸附有机有害气体及部分细菌,但这些有害物质会堆积在活性炭滤网上成为细菌温床,引起二次污染;使用紫外灯,只能够在特定频谱下进行杀菌,且紫外灯管易发热,从而影响其杀菌效果;使用离子净化机,则不具备杀菌效果,且会产生大量臭氧,严重时会引起使用者呼吸道的不适。
公开号为CN204268589U的中国专利文献,公开了一种高效空气净化装置,该高效空气净化装置加负载光触媒泡沫金属,从而增加净化效果。
但上述方案在使用时易发热,使得其杀菌效果容易被影响,进而影响其空气净化效果。
发明内容
本发明的目的在于克服现有技术的不足,提供一种诱导等离子发生装置及其制作方法,能够将细菌杀灭及有机有害气体分解,快速且有效地净化空气,具有较好的经济效益与安全效益。
为解决上述技术问题,本发明采用的技术方案是:
提供一种诱导等离子发生装置的制作方法,包括如下步骤:
S1.提供等离子发生装置和诱导离子释放结构;
S2.对诱导离子释放结构进行预处理;
S3.制备电离结构;
S4.将步骤S2得到的诱导离子释放结构与步骤S3得到的电离结构通过支架搭接,其中,所述电离结构位于诱导离子释放结构之间;
S5.将所述诱导离子释放结构、电离结构分别与等离子发生装置建立通信连 接,构成诱导等离子发生装置。
本发明包括一种诱导等离子发生装置的制作方法,诱导离子释放结构与电离结构能够共同产生电场,且通过设置诱导离子释放结构能够诱导电离结构产生更高的离子量,电离结构产生的正离子和负离子能够对空气中的细菌杀灭,对空气进行净化,在该过程中仅产生微量臭氧,减少对人体健康的危害。
进一步地,所述步骤S2具体包括:将所述诱导离子释放结构的其中一端进行削尖处理。
进一步地,所述诱导离子释放结构包括至少两个碳纤维束。
进一步地,所述步骤S3具体包括:提供泡沫金属网,并对所述泡沫金属网涂覆氧化金属涂层或纳米级氧化金属涂层,构成所述电离结构。
进一步地,所述泡沫金属网为镍、铜、铁、钨、镁、锰、银、铂金、钴、钛中的任意一种或多种组成的泡沫金属网;所述氧化金属涂层为氧化镍、氧化铜、氧化铁、氧化钨、氧化镁、氧化锰、氧化银、氧化铂金、氧化钴、氧化钛中的任意一种或多种组成的氧化金属涂层。
进一步地,所述步骤S3具体包括如下步骤:
S31.使用载体金属制备基材浆料;
S32.向所述基材浆料加入氧化金属材料混合制成网状结构,得到所述电离结构。
进一步地,在步骤S4中,所述支架包括第一板件和与所述第一板件可拆卸连接的第二板件,所述第一板件、第二板件上均设有用于安装电离结构的第一卡接部,所述第一板件上还设有用于安装诱导离子释放结构的第二卡接部。
进一步地,还包括步骤S6:对所述诱导等离子发生装置进行离子量以及臭氧量检测。
本发明还包括一种诱导等离子发生装置,包括等离子发生装置和与所述等离子发生装置通信连接的诱导离子释放结构、电离结构,所述电离结构与诱导离子释放结构通过支架搭接,所述电离结构位于所述诱导离子释放结构之间。
优选地,所述诱导离子释放结构包括至少两个碳纤维束,所述电离结构包括至少两个泡沫金属网,泡沫金属网位于碳纤维束之间。
与现有技术相比,本发明的有益效果是:
本发明提供一种诱导等离子发生装置及其制作方法,诱导离子释放结构与电 离结构能够共同产生电场,且通过设置诱导离子释放结构能够诱导电离结构产生更高的离子量,电离结构产生的正离子和负离子能够对空气中的细菌进行分解或破坏,对空气进行净化,在该过程中仅产生微量臭氧,减少对人体健康的危害。
附图说明
图1为本发明一种诱导等离子发生装置的制作方法的流程图。
图2为本发明一种诱导等离子发生装置的制作方法的数据测试表。
图3为本发明一种诱导等离子发生装置的结构示意图。
图4为本发明诱导离子释放结构与电离结构的结构示意图。
图5为本发明一种诱导性等离子发生装置实施例3的结构示意图。
图6为本发明支架的结构示意图。
图7为本发明支架另一角度的结构示意图。
图8为本发明一种诱导性等离子发生装置实施例4的结构示意图。
图9为本发明导风罩的结构示意图。
图示标记说明如下:
1-等离子发生装置,2-诱导离子释放结构,3-电离结构,4-支架,41-第一板件,42-第二板件,43-第一卡接部,44-第二卡接部,45-连接片,46-连接块,5-导风罩,51-出风口,52-进风口,53-第一连接柱,54-第二连接柱,6-电源。
图5中的箭头表示空气流动方向。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语 的具体含义。
实施例1
如图1所示为本发明一种诱导等离子发生装置的制作方法的第一实施例,包括如下步骤:
S1.提供等离子发生装置1和诱导离子释放结构2。
其中,等离子发生装置1为等离子发生器,诱导离子释放结构2包括至少两个碳纤维束。本实施例中诱导离子释放结构2包括两个碳纤维束,分别用于释放正离子和负离子,同时,也用于诱导电离结构3产生更高的离子量。
S2.在步骤S1之后,对诱导离子释放结构2进行预处理。预处理包括:将碳纤维束的其中一端进行削尖处理,构成尖端结构。
S3.制备电离结构3:提供泡沫金属网,并对泡沫金属网涂覆氧化金属涂层或纳米级氧化金属涂层,构成电离结构3。本实施例中电离结构3包括两个涂覆有涂层的泡沫金属网,分别用于产生正极和负极,产生的正极与负极形成电离,产生电场。
具体地,泡沫金属网为镍、铜、铁、钨、镁、锰、银、铂金、钴、钛中的任意一种或多种组成的泡沫金属网。本实施例中泡沫金属网的网孔为40目或以上。
具体地,氧化金属涂层为氧化镍、氧化铜、氧化铁、氧化钨、氧化镁、氧化锰、氧化银、氧化铂金、氧化钴、氧化钛中的任意一种或多种组成的氧化金属涂层;纳米级氧化金属涂层的选材与氧化金属涂层类似。本实施例中氧化金属涂层或纳米级氧化金属涂层的涂覆可通过喷射、电镀等方式进行处理,在此不做限制。
需要说明的是,泡沫金属网与涂层的材料搭配可根据实际功能需求进行搭配,如,在泡沫铜网上涂覆氧化银涂层,能够在实现杀菌、净化空气的基础上,利用氧化钛分解臭氧,进一步降低臭氧的产生。
S4.将步骤S2得到的诱导离子释放结构2与步骤S3得到的电离结构3通过支架4搭接,被削尖处理一端的诱导离子释放结构2朝向空气流动的方向,电离结构3位于诱导离子释放结构2之间。
具体地,支架4包括第一板件41和与第一板件41可拆卸连接的第二板件42,第一板件41、第二板件42上均设有用于安装电离结构3的第一卡接部43,第一板件41上还设有用于安装诱导离子释放结构2的第二卡接部44;具体地,第二卡接部44位于靠近第一板件41的边缘处。
具体地,步骤S4具体包括如下步骤:
S41.将两个涂覆有涂层的泡沫金属网卡接于第一卡接部43处;
S42.在步骤S41之后,将两个碳纤维束卡接于第二卡接部44处,并使碳纤维束的尖端结构朝向空气流动的方向设置;
S43.在步骤S42之后,将第一板件41与第二板件42进行组装。
S5.在步骤S4之后,将诱导离子释放结构2、电离结构3分别与等离子发生装置1建立通信连接,构成诱导等离子发生装置。
步骤S5具体包括:将用于产生正极的泡沫金属网、以及用于释放正离子的碳纤维束均与等离子发生装置1升压模块的正极接点通过导线连接;并将用于产生负极的泡沫金属网、以及用于释放负离子的碳纤维束均与等离子发生装置1升压模块的负极接点通过导线连接。需要说明的是,用于产生正极的泡沫金属网与用于释放正离子的碳纤维束连接于等离子发生装置1相同电位上,用于产生负极的泡沫金属网与用于释放负离子的碳纤维束连接于等离子发生装置1相同电位上;还有,正极接点、负极接点既能够位于等离子发生装置1外部,也能够位于等离子发生装置1内部。用于释放正离子的碳纤维束与用于产生正极的泡沫金属网位置相邻,用于释放负离子的碳纤维束与用于产生负极的泡沫金属网位置相邻。
S6.在步骤S5之后,对诱导等离子发生装置进行离子量以及臭氧量检测。
步骤6具体包括如下步骤:
S61.提供电源6,将等离子发生装置1与电源6连接;
S62.提供风机,然后将诱导等离子发生装置安装于风机的出风口处;
S63.提供空气正负离子测试仪,将空气正负离子测试仪放置于诱导等离子发生装置前端的初始测试点上;具体地,初始测试点与风机的出风口之间的水平距离相距10cm;
S64.启动电源、风机以及空气正负离子测试仪,在空气正负离子测试仪显示数值的5~10秒以后进行读数,该步骤重复至少三次,然后将三次得到的读数取平均值;
S65.移动空气正负离子测试仪,使空气正负离子测试仪远离初始测试点再次进行测试;具体地,在与风机的出风口相距20、30、40cm处均进行测试;
S66.使用臭氧监测仪进行臭氧量检测。
本实施例中选用KT-401 Air Ion Tester空气正负离子测试仪进行测试,该仪 器最大可读数值为1999×10 4。如图2所示,诱导等离子发生装置相较于组合等离子管、泡沫金属网、碳纤维束,能够在更大的范围内产生更高的离子量。再有,诱导等离子发生装置所产生的臭氧量为0.033ppm,没有臭氧气味,基本能够忽略不计;而组合等离子管、泡沫金属网、碳纤维束所产生的臭氧量在0.2~1ppm之间,且具有浓烈的臭氧气味;由此可得,诱导等离子发生装置相较于组合等离子管、泡沫金属网、碳纤维束,所产生的臭氧量明显降低。
实施例2
本实施例与实施例1类似,所不同之处在于,步骤S3具体包括如下步骤:
S31.使用载体金属制备基材浆料;
S32.向基材浆料加入氧化金属材料混合制成网状结构,得到电离结构3。
实施例3
如图3至图7所示为本发明一种诱导等离子发生装置的第一实施例,包括等离子发生装置1和与等离子发生装置1通信连接的诱导离子释放结构2、电离结构3,电离结构3与诱导离子释放结构2通过支架4搭接,电离结构3位于所述诱导离子释放结构2之间。
支架4包括第一板件41、第二板件42、连接片45、连接块46,第一板件41、第二板件42、连接片45均与连接块46连接;第一板件41、第二板件42上均设有用于固定电离结构3的第一卡接部43,第一板件41上还设有用于固定诱导离子释放结构2的第二卡接部44。如图3、图6和图7所示,第一板件41、第二板件42、连接片45三者相互平行设置,连接块46连接于第一板件41的两端,也连接于第二板件42的两端。本实施例中设置有至少两个第二卡接部44和至少两个第一卡接部43,第二卡接部44位于第一板件41的边缘处。具体地,第二卡接部44为通孔结构;第一板件41上设有多根相互平行的条状结构,第二板件42的结构与第一板件41类似,第二板件42上也设有多根相互平行的条状结构,第一卡接部43为相邻的条状结构之间所构成的间隙。还有,本实施例中连接片45呈环状结构或矩形结构,能够便于支架4与任意空气净化机或风机搭接。
还有,诱导性等离子发生装置还包括电源6,电源6与等离子发生装置1电连接,如图4所示。
如图3至图5所示,本实施例中诱导离子释放结构2包括两个碳纤维束,碳 纤维束卡设于通孔结构处,电离结构3包括两个泡沫金属网,泡沫金属网卡设于间隙处,且泡沫金属网位于两个碳纤维束之间。两个泡沫金属网之间相互水平设置,如图4所示;两个泡沫金属网之间还能够呈角度设置,如图5所示。
使用时,如图5所示,风吹向诱导性等离子发生装置时,产生的风速形成射流,为射流原理,当空气经过两个泡沫金属网之间,在射流原理下,两个泡沫金属网之间电离产生电场,能够对细菌、有机有害气体(VOC)等具有净化作用。空气流经支架4时,两个泡沫金属网、两个碳纤维束均位于流动的空气的两侧,能够减少风阻,防止出风量衰减。再有,通过设置碳纤维束对泡沫金属网进行诱导,能够大大地增加离子的产生,且在该过程中仅产生微量臭氧,提高净化效果,进一步保障使用者健康。还有,诱导性等离子发生装置的数量设置能够根据实际效能进行增加,确保细菌被杀灭、有机有害气体被分解,进一步提高空气净化效果。
实施例4
本实施例与实施例3类似,所不同之处在于,如图8和图9所示,本实施例中诱导等离子发生装置还包括导风罩5,导风罩5上设有出风口51和进风口52,等离子发生装置1设于导风罩5内,导风罩5与出风口51可拆卸连接。
如图9所示,导风罩5内连接有用于与支架4连接的第一连接柱53,导风罩5内还连接有用于与等离子发生装置1连接的第二连接柱54。第二连接柱54上设有切面,能够便于与等离子发生装置1固定。具体地,支架4与出风口51之间通过螺钉依次穿过连接片45、第一连接柱53进行连接。等离子发生装置1的两端设有凸环,等离子发生装置1与导风罩5之间通过螺钉依次穿过凸环、第二连接柱54进行连接。本实施例中导风罩5呈圆筒状,需要说明的是,导风罩5还能够设置为矩形状、锥状等其他结构,在此不做限制。
使用时,将导风罩5的进风口52与空气净化机或风机连接,空气净化机或风机吹出的空气经过诱导等离子发生装置后从出风口51流出,达到净化作用。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种诱导等离子发生装置的制作方法,其特征在于,包括如下步骤:
    S1.提供等离子发生装置(1)和诱导离子释放结构(2);
    S2.对所述诱导离子释放结构(2)进行预处理;
    S3.制备电离结构(3);
    S4.将步骤S2得到的诱导离子释放结构(2)与步骤S3得到的电离结构(3)通过支架(4)搭接,其中,所述电离结构(3)位于诱导离子释放结构(2)之间;
    S5.将所述诱导离子释放结构(2)、电离结构(3)分别与等离子发生装置(1)建立通信连接,构成诱导等离子发生装置。
  2. 根据权利要求1所述的诱导等离子发生装置的制作方法,其特征在于,所述步骤S2具体包括:将所述诱导离子释放结构(2)的其中一端进行削尖处理。
  3. 根据权利要求1所述的诱导等离子发生装置的制作方法,其特征在于,所述诱导离子释放结构(2)包括至少两个碳纤维束。
  4. 根据权利要求1所述的诱导等离子发生装置的制作方法,其特征在于,所述步骤S3具体包括:提供泡沫金属网,并对所述泡沫金属网涂覆氧化金属涂层或纳米级氧化金属涂层,构成所述电离结构(3)。
  5. 根据权利要求4所述的诱导等离子发生装置的制作方法,其特征在于,所述泡沫金属网为镍、铜、铁、钨、镁、锰、银、铂金、钴、钛中的任意一种或多种组成的泡沫金属网;所述氧化金属涂层为氧化镍、氧化铜、氧化铁、氧化钨、氧化镁、氧化锰、氧化银、氧化铂金、氧化钴、氧化钛中的任意一种或多种组成的氧化金属涂层。
  6. 根据权利要求1所述的诱导等离子发生装置的制作方法,其特征在于,所述步骤S3具体包括如下步骤:
    S31.使用载体金属制备基材浆料;
    S32.向所述基材浆料加入氧化金属材料混合制成网状结构,得到所述电离结构(3)。
  7. 根据权利要求1所述的诱导等离子发生装置的制作方法,其特征在于,在步骤S4中,所述支架(4)包括第一板件(41)和与所述第一板件(41)可拆卸连接的第二板件(42),所述第一板件(41)、第二板件(42)上均设有用于安 装电离结构(3)的第一卡接部(43),所述第一板件(41)上还设有用于安装诱导离子释放结构(2)的第二卡接部(44)。
  8. 根据权利要求1所述的诱导等离子发生装置的制作方法,其特征在于,还包括步骤S6:对所述诱导等离子发生装置进行离子量以及臭氧量检测。
  9. 一种诱导等离子发生装置,其特征在于,包括等离子发生装置(1)和与所述等离子发生装置(1)通信连接的诱导离子释放结构(2)、电离结构(3),所述电离结构(3)与诱导离子释放结构(2)通过支架(4)搭接,所述电离结构(3)位于所述诱导离子释放结构(2)之间。
  10. 根据权利要求9所述的诱导等离子发生装置,其特征在于,所述诱导离子释放结构(2)包括至少两个碳纤维束,所述电离结构(3)包括至少两个泡沫金属网,泡沫金属网位于碳纤维束之间。
PCT/CN2022/080616 2021-04-14 2022-03-14 一种诱导等离子发生装置及其制作方法 WO2022218078A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022540731A JP7410304B2 (ja) 2021-04-14 2022-03-14 誘導プラズマ発生装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110402807.8 2021-04-14
CN202110402807.8A CN113015309A (zh) 2021-04-14 2021-04-14 一种诱导等离子发生装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2022218078A1 true WO2022218078A1 (zh) 2022-10-20

Family

ID=76388633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080616 WO2022218078A1 (zh) 2021-04-14 2022-03-14 一种诱导等离子发生装置及其制作方法

Country Status (3)

Country Link
JP (1) JP7410304B2 (zh)
CN (1) CN113015309A (zh)
WO (1) WO2022218078A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015309A (zh) * 2021-04-14 2021-06-22 殷振华 一种诱导等离子发生装置及其制作方法
CN114377686B (zh) * 2022-01-26 2024-04-02 华中师范大学 一种基于微波定位组装的电焦耳热催化材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444000A (zh) * 2018-03-21 2018-08-24 苏州美瑞康医疗科技有限公司 一种正负离子复合滤芯
CN110180012A (zh) * 2019-06-11 2019-08-30 珠海格力电器股份有限公司 等离子体杀菌消毒装置及空气净化器
CN111878920A (zh) * 2020-07-22 2020-11-03 费勉仪器科技(上海)有限公司 一种高效空气消毒杀菌装置
CN113015309A (zh) * 2021-04-14 2021-06-22 殷振华 一种诱导等离子发生装置及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040064815A (ko) * 2003-01-10 2004-07-21 엘지전자 주식회사 플라즈마 공기 정화기
JP6315482B2 (ja) * 2012-07-13 2018-04-25 エスピー テック 電極上に導電体突出部を有する誘電体障壁放電方式のプラズマ発生電極構造体
JP2019534531A (ja) 2016-09-02 2019-11-28 ソムニオ グローバル ホールディングス,エルエルシー フリーラジカル発生の装置と方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444000A (zh) * 2018-03-21 2018-08-24 苏州美瑞康医疗科技有限公司 一种正负离子复合滤芯
CN110180012A (zh) * 2019-06-11 2019-08-30 珠海格力电器股份有限公司 等离子体杀菌消毒装置及空气净化器
CN111878920A (zh) * 2020-07-22 2020-11-03 费勉仪器科技(上海)有限公司 一种高效空气消毒杀菌装置
CN113015309A (zh) * 2021-04-14 2021-06-22 殷振华 一种诱导等离子发生装置及其制作方法

Also Published As

Publication number Publication date
JP7410304B2 (ja) 2024-01-09
CN113015309A (zh) 2021-06-22
JP2023524332A (ja) 2023-06-12

Similar Documents

Publication Publication Date Title
WO2022218078A1 (zh) 一种诱导等离子发生装置及其制作方法
US9138504B2 (en) Plasma driven catalyst system for disinfection and purification of gases
CN101920031B (zh) 等离子体空气消毒净化器及其空气消毒净化方法
US20170341088A1 (en) Low Temperature Plasma Air Purifier with High Speed Ion Wind Self-adsorption
US20160030622A1 (en) Multiple Plasma Driven Catalyst (PDC) Reactors
CN104127907A (zh) 非热等离子体空气净化消毒反应器
JP2005329236A (ja) 炭素繊維を利用したマイナスイオン発生装置
JP2020506504A (ja) 空気清浄に用いられる双極イオン発生器及び該双極イオン発生器を使用したサーキュラーディフューザー
WO2020248566A1 (zh) 等离子体杀菌消毒装置及空气净化器
CN101920036A (zh) 设有金属带——板结构反应器的净化器
CN214481430U (zh) 一种具有梳状放电极的等离子发生器
CN101884803B (zh) 一种净化空气的方法
CN101920040A (zh) 风道式电子空气净化机
CN201586249U (zh) 一种等离子体空气消毒净化器
CN210089019U (zh) 一种带有滤网的纳米离子发生装置
CN214592101U (zh) 一种等离子发生器及具有其的空气消毒器
CN211487143U (zh) 一种农场除臭系统
WO2014139051A1 (zh) 大流量空气净化设备
CN211503081U (zh) 一种离子净化器
CN208003762U (zh) 一种高能高分子空气净化臭气治理成套设备
CN113203156A (zh) 一种离子发生器、离子发生装置及空气净化设备
TWM612517U (zh) 輸風結構的空氣淨化裝置
CN211011693U (zh) 温度调节与空气净化一体设备
CN201644086U (zh) 金属带——板结构反应器
CN201710703U (zh) 风道式电子空气净化机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022540731

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787308

Country of ref document: EP

Kind code of ref document: A1